1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/vmacache.h> 18 #include <linux/shm.h> 19 #include <linux/mman.h> 20 #include <linux/pagemap.h> 21 #include <linux/swap.h> 22 #include <linux/syscalls.h> 23 #include <linux/capability.h> 24 #include <linux/init.h> 25 #include <linux/file.h> 26 #include <linux/fs.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/profile.h> 32 #include <linux/export.h> 33 #include <linux/mount.h> 34 #include <linux/mempolicy.h> 35 #include <linux/rmap.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/mmdebug.h> 38 #include <linux/perf_event.h> 39 #include <linux/audit.h> 40 #include <linux/khugepaged.h> 41 #include <linux/uprobes.h> 42 #include <linux/rbtree_augmented.h> 43 #include <linux/notifier.h> 44 #include <linux/memory.h> 45 #include <linux/printk.h> 46 #include <linux/userfaultfd_k.h> 47 #include <linux/moduleparam.h> 48 #include <linux/pkeys.h> 49 #include <linux/oom.h> 50 #include <linux/sched/mm.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/cacheflush.h> 54 #include <asm/tlb.h> 55 #include <asm/mmu_context.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/mmap.h> 59 60 #include "internal.h" 61 62 #ifndef arch_mmap_check 63 #define arch_mmap_check(addr, len, flags) (0) 64 #endif 65 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 70 #endif 71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 75 #endif 76 77 static bool ignore_rlimit_data; 78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 79 80 static void unmap_region(struct mm_struct *mm, 81 struct vm_area_struct *vma, struct vm_area_struct *prev, 82 unsigned long start, unsigned long end); 83 84 /* description of effects of mapping type and prot in current implementation. 85 * this is due to the limited x86 page protection hardware. The expected 86 * behavior is in parens: 87 * 88 * map_type prot 89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (yes) yes w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 95 * w: (no) no w: (no) no w: (copy) copy w: (no) no 96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 97 * 98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 99 * MAP_PRIVATE (with Enhanced PAN supported): 100 * r: (no) no 101 * w: (no) no 102 * x: (yes) yes 103 */ 104 pgprot_t protection_map[16] __ro_after_init = { 105 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 106 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 107 }; 108 109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 111 { 112 return prot; 113 } 114 #endif 115 116 pgprot_t vm_get_page_prot(unsigned long vm_flags) 117 { 118 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 119 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 120 pgprot_val(arch_vm_get_page_prot(vm_flags))); 121 122 return arch_filter_pgprot(ret); 123 } 124 EXPORT_SYMBOL(vm_get_page_prot); 125 126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 127 { 128 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 129 } 130 131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 132 void vma_set_page_prot(struct vm_area_struct *vma) 133 { 134 unsigned long vm_flags = vma->vm_flags; 135 pgprot_t vm_page_prot; 136 137 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 138 if (vma_wants_writenotify(vma, vm_page_prot)) { 139 vm_flags &= ~VM_SHARED; 140 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 141 } 142 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 143 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 144 } 145 146 /* 147 * Requires inode->i_mapping->i_mmap_rwsem 148 */ 149 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 150 struct file *file, struct address_space *mapping) 151 { 152 if (vma->vm_flags & VM_SHARED) 153 mapping_unmap_writable(mapping); 154 155 flush_dcache_mmap_lock(mapping); 156 vma_interval_tree_remove(vma, &mapping->i_mmap); 157 flush_dcache_mmap_unlock(mapping); 158 } 159 160 /* 161 * Unlink a file-based vm structure from its interval tree, to hide 162 * vma from rmap and vmtruncate before freeing its page tables. 163 */ 164 void unlink_file_vma(struct vm_area_struct *vma) 165 { 166 struct file *file = vma->vm_file; 167 168 if (file) { 169 struct address_space *mapping = file->f_mapping; 170 i_mmap_lock_write(mapping); 171 __remove_shared_vm_struct(vma, file, mapping); 172 i_mmap_unlock_write(mapping); 173 } 174 } 175 176 /* 177 * Close a vm structure and free it, returning the next. 178 */ 179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 180 { 181 struct vm_area_struct *next = vma->vm_next; 182 183 might_sleep(); 184 if (vma->vm_ops && vma->vm_ops->close) 185 vma->vm_ops->close(vma); 186 if (vma->vm_file) 187 fput(vma->vm_file); 188 mpol_put(vma_policy(vma)); 189 vm_area_free(vma); 190 return next; 191 } 192 193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 194 struct list_head *uf); 195 SYSCALL_DEFINE1(brk, unsigned long, brk) 196 { 197 unsigned long newbrk, oldbrk, origbrk; 198 struct mm_struct *mm = current->mm; 199 struct vm_area_struct *next; 200 unsigned long min_brk; 201 bool populate; 202 bool downgraded = false; 203 LIST_HEAD(uf); 204 205 if (mmap_write_lock_killable(mm)) 206 return -EINTR; 207 208 origbrk = mm->brk; 209 210 #ifdef CONFIG_COMPAT_BRK 211 /* 212 * CONFIG_COMPAT_BRK can still be overridden by setting 213 * randomize_va_space to 2, which will still cause mm->start_brk 214 * to be arbitrarily shifted 215 */ 216 if (current->brk_randomized) 217 min_brk = mm->start_brk; 218 else 219 min_brk = mm->end_data; 220 #else 221 min_brk = mm->start_brk; 222 #endif 223 if (brk < min_brk) 224 goto out; 225 226 /* 227 * Check against rlimit here. If this check is done later after the test 228 * of oldbrk with newbrk then it can escape the test and let the data 229 * segment grow beyond its set limit the in case where the limit is 230 * not page aligned -Ram Gupta 231 */ 232 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 233 mm->end_data, mm->start_data)) 234 goto out; 235 236 newbrk = PAGE_ALIGN(brk); 237 oldbrk = PAGE_ALIGN(mm->brk); 238 if (oldbrk == newbrk) { 239 mm->brk = brk; 240 goto success; 241 } 242 243 /* 244 * Always allow shrinking brk. 245 * __do_munmap() may downgrade mmap_lock to read. 246 */ 247 if (brk <= mm->brk) { 248 int ret; 249 250 /* 251 * mm->brk must to be protected by write mmap_lock so update it 252 * before downgrading mmap_lock. When __do_munmap() fails, 253 * mm->brk will be restored from origbrk. 254 */ 255 mm->brk = brk; 256 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 257 if (ret < 0) { 258 mm->brk = origbrk; 259 goto out; 260 } else if (ret == 1) { 261 downgraded = true; 262 } 263 goto success; 264 } 265 266 /* Check against existing mmap mappings. */ 267 next = find_vma(mm, oldbrk); 268 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 269 goto out; 270 271 /* Ok, looks good - let it rip. */ 272 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 273 goto out; 274 mm->brk = brk; 275 276 success: 277 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 278 if (downgraded) 279 mmap_read_unlock(mm); 280 else 281 mmap_write_unlock(mm); 282 userfaultfd_unmap_complete(mm, &uf); 283 if (populate) 284 mm_populate(oldbrk, newbrk - oldbrk); 285 return brk; 286 287 out: 288 mmap_write_unlock(mm); 289 return origbrk; 290 } 291 292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 293 { 294 unsigned long gap, prev_end; 295 296 /* 297 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 298 * allow two stack_guard_gaps between them here, and when choosing 299 * an unmapped area; whereas when expanding we only require one. 300 * That's a little inconsistent, but keeps the code here simpler. 301 */ 302 gap = vm_start_gap(vma); 303 if (vma->vm_prev) { 304 prev_end = vm_end_gap(vma->vm_prev); 305 if (gap > prev_end) 306 gap -= prev_end; 307 else 308 gap = 0; 309 } 310 return gap; 311 } 312 313 #ifdef CONFIG_DEBUG_VM_RB 314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 315 { 316 unsigned long max = vma_compute_gap(vma), subtree_gap; 317 if (vma->vm_rb.rb_left) { 318 subtree_gap = rb_entry(vma->vm_rb.rb_left, 319 struct vm_area_struct, vm_rb)->rb_subtree_gap; 320 if (subtree_gap > max) 321 max = subtree_gap; 322 } 323 if (vma->vm_rb.rb_right) { 324 subtree_gap = rb_entry(vma->vm_rb.rb_right, 325 struct vm_area_struct, vm_rb)->rb_subtree_gap; 326 if (subtree_gap > max) 327 max = subtree_gap; 328 } 329 return max; 330 } 331 332 static int browse_rb(struct mm_struct *mm) 333 { 334 struct rb_root *root = &mm->mm_rb; 335 int i = 0, j, bug = 0; 336 struct rb_node *nd, *pn = NULL; 337 unsigned long prev = 0, pend = 0; 338 339 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 340 struct vm_area_struct *vma; 341 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 342 if (vma->vm_start < prev) { 343 pr_emerg("vm_start %lx < prev %lx\n", 344 vma->vm_start, prev); 345 bug = 1; 346 } 347 if (vma->vm_start < pend) { 348 pr_emerg("vm_start %lx < pend %lx\n", 349 vma->vm_start, pend); 350 bug = 1; 351 } 352 if (vma->vm_start > vma->vm_end) { 353 pr_emerg("vm_start %lx > vm_end %lx\n", 354 vma->vm_start, vma->vm_end); 355 bug = 1; 356 } 357 spin_lock(&mm->page_table_lock); 358 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 359 pr_emerg("free gap %lx, correct %lx\n", 360 vma->rb_subtree_gap, 361 vma_compute_subtree_gap(vma)); 362 bug = 1; 363 } 364 spin_unlock(&mm->page_table_lock); 365 i++; 366 pn = nd; 367 prev = vma->vm_start; 368 pend = vma->vm_end; 369 } 370 j = 0; 371 for (nd = pn; nd; nd = rb_prev(nd)) 372 j++; 373 if (i != j) { 374 pr_emerg("backwards %d, forwards %d\n", j, i); 375 bug = 1; 376 } 377 return bug ? -1 : i; 378 } 379 380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 381 { 382 struct rb_node *nd; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 VM_BUG_ON_VMA(vma != ignore && 388 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 389 vma); 390 } 391 } 392 393 static void validate_mm(struct mm_struct *mm) 394 { 395 int bug = 0; 396 int i = 0; 397 unsigned long highest_address = 0; 398 struct vm_area_struct *vma = mm->mmap; 399 400 while (vma) { 401 struct anon_vma *anon_vma = vma->anon_vma; 402 struct anon_vma_chain *avc; 403 404 if (anon_vma) { 405 anon_vma_lock_read(anon_vma); 406 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 407 anon_vma_interval_tree_verify(avc); 408 anon_vma_unlock_read(anon_vma); 409 } 410 411 highest_address = vm_end_gap(vma); 412 vma = vma->vm_next; 413 i++; 414 } 415 if (i != mm->map_count) { 416 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 417 bug = 1; 418 } 419 if (highest_address != mm->highest_vm_end) { 420 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 421 mm->highest_vm_end, highest_address); 422 bug = 1; 423 } 424 i = browse_rb(mm); 425 if (i != mm->map_count) { 426 if (i != -1) 427 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 428 bug = 1; 429 } 430 VM_BUG_ON_MM(bug, mm); 431 } 432 #else 433 #define validate_mm_rb(root, ignore) do { } while (0) 434 #define validate_mm(mm) do { } while (0) 435 #endif 436 437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 438 struct vm_area_struct, vm_rb, 439 unsigned long, rb_subtree_gap, vma_compute_gap) 440 441 /* 442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 443 * vma->vm_prev->vm_end values changed, without modifying the vma's position 444 * in the rbtree. 445 */ 446 static void vma_gap_update(struct vm_area_struct *vma) 447 { 448 /* 449 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 450 * a callback function that does exactly what we want. 451 */ 452 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 453 } 454 455 static inline void vma_rb_insert(struct vm_area_struct *vma, 456 struct rb_root *root) 457 { 458 /* All rb_subtree_gap values must be consistent prior to insertion */ 459 validate_mm_rb(root, NULL); 460 461 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 462 } 463 464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 465 { 466 /* 467 * Note rb_erase_augmented is a fairly large inline function, 468 * so make sure we instantiate it only once with our desired 469 * augmented rbtree callbacks. 470 */ 471 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 472 } 473 474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 475 struct rb_root *root, 476 struct vm_area_struct *ignore) 477 { 478 /* 479 * All rb_subtree_gap values must be consistent prior to erase, 480 * with the possible exception of 481 * 482 * a. the "next" vma being erased if next->vm_start was reduced in 483 * __vma_adjust() -> __vma_unlink() 484 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 485 * vma_rb_erase() 486 */ 487 validate_mm_rb(root, ignore); 488 489 __vma_rb_erase(vma, root); 490 } 491 492 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 493 struct rb_root *root) 494 { 495 vma_rb_erase_ignore(vma, root, vma); 496 } 497 498 /* 499 * vma has some anon_vma assigned, and is already inserted on that 500 * anon_vma's interval trees. 501 * 502 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 503 * vma must be removed from the anon_vma's interval trees using 504 * anon_vma_interval_tree_pre_update_vma(). 505 * 506 * After the update, the vma will be reinserted using 507 * anon_vma_interval_tree_post_update_vma(). 508 * 509 * The entire update must be protected by exclusive mmap_lock and by 510 * the root anon_vma's mutex. 511 */ 512 static inline void 513 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 514 { 515 struct anon_vma_chain *avc; 516 517 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 518 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 519 } 520 521 static inline void 522 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 523 { 524 struct anon_vma_chain *avc; 525 526 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 527 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 528 } 529 530 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 531 unsigned long end, struct vm_area_struct **pprev, 532 struct rb_node ***rb_link, struct rb_node **rb_parent) 533 { 534 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 535 536 mmap_assert_locked(mm); 537 __rb_link = &mm->mm_rb.rb_node; 538 rb_prev = __rb_parent = NULL; 539 540 while (*__rb_link) { 541 struct vm_area_struct *vma_tmp; 542 543 __rb_parent = *__rb_link; 544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 545 546 if (vma_tmp->vm_end > addr) { 547 /* Fail if an existing vma overlaps the area */ 548 if (vma_tmp->vm_start < end) 549 return -ENOMEM; 550 __rb_link = &__rb_parent->rb_left; 551 } else { 552 rb_prev = __rb_parent; 553 __rb_link = &__rb_parent->rb_right; 554 } 555 } 556 557 *pprev = NULL; 558 if (rb_prev) 559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 560 *rb_link = __rb_link; 561 *rb_parent = __rb_parent; 562 return 0; 563 } 564 565 /* 566 * vma_next() - Get the next VMA. 567 * @mm: The mm_struct. 568 * @vma: The current vma. 569 * 570 * If @vma is NULL, return the first vma in the mm. 571 * 572 * Returns: The next VMA after @vma. 573 */ 574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 575 struct vm_area_struct *vma) 576 { 577 if (!vma) 578 return mm->mmap; 579 580 return vma->vm_next; 581 } 582 583 /* 584 * munmap_vma_range() - munmap VMAs that overlap a range. 585 * @mm: The mm struct 586 * @start: The start of the range. 587 * @len: The length of the range. 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 589 * @rb_link: the rb_node 590 * @rb_parent: the parent rb_node 591 * 592 * Find all the vm_area_struct that overlap from @start to 593 * @end and munmap them. Set @pprev to the previous vm_area_struct. 594 * 595 * Returns: -ENOMEM on munmap failure or 0 on success. 596 */ 597 static inline int 598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 599 struct vm_area_struct **pprev, struct rb_node ***link, 600 struct rb_node **parent, struct list_head *uf) 601 { 602 603 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 604 if (do_munmap(mm, start, len, uf)) 605 return -ENOMEM; 606 607 return 0; 608 } 609 static unsigned long count_vma_pages_range(struct mm_struct *mm, 610 unsigned long addr, unsigned long end) 611 { 612 unsigned long nr_pages = 0; 613 struct vm_area_struct *vma; 614 615 /* Find first overlapping mapping */ 616 vma = find_vma_intersection(mm, addr, end); 617 if (!vma) 618 return 0; 619 620 nr_pages = (min(end, vma->vm_end) - 621 max(addr, vma->vm_start)) >> PAGE_SHIFT; 622 623 /* Iterate over the rest of the overlaps */ 624 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 625 unsigned long overlap_len; 626 627 if (vma->vm_start > end) 628 break; 629 630 overlap_len = min(end, vma->vm_end) - vma->vm_start; 631 nr_pages += overlap_len >> PAGE_SHIFT; 632 } 633 634 return nr_pages; 635 } 636 637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct rb_node **rb_link, struct rb_node *rb_parent) 639 { 640 /* Update tracking information for the gap following the new vma. */ 641 if (vma->vm_next) 642 vma_gap_update(vma->vm_next); 643 else 644 mm->highest_vm_end = vm_end_gap(vma); 645 646 /* 647 * vma->vm_prev wasn't known when we followed the rbtree to find the 648 * correct insertion point for that vma. As a result, we could not 649 * update the vma vm_rb parents rb_subtree_gap values on the way down. 650 * So, we first insert the vma with a zero rb_subtree_gap value 651 * (to be consistent with what we did on the way down), and then 652 * immediately update the gap to the correct value. Finally we 653 * rebalance the rbtree after all augmented values have been set. 654 */ 655 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 656 vma->rb_subtree_gap = 0; 657 vma_gap_update(vma); 658 vma_rb_insert(vma, &mm->mm_rb); 659 } 660 661 static void __vma_link_file(struct vm_area_struct *vma) 662 { 663 struct file *file; 664 665 file = vma->vm_file; 666 if (file) { 667 struct address_space *mapping = file->f_mapping; 668 669 if (vma->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 672 flush_dcache_mmap_lock(mapping); 673 vma_interval_tree_insert(vma, &mapping->i_mmap); 674 flush_dcache_mmap_unlock(mapping); 675 } 676 } 677 678 static void 679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 680 struct vm_area_struct *prev, struct rb_node **rb_link, 681 struct rb_node *rb_parent) 682 { 683 __vma_link_list(mm, vma, prev); 684 __vma_link_rb(mm, vma, rb_link, rb_parent); 685 } 686 687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 688 struct vm_area_struct *prev, struct rb_node **rb_link, 689 struct rb_node *rb_parent) 690 { 691 struct address_space *mapping = NULL; 692 693 if (vma->vm_file) { 694 mapping = vma->vm_file->f_mapping; 695 i_mmap_lock_write(mapping); 696 } 697 698 __vma_link(mm, vma, prev, rb_link, rb_parent); 699 __vma_link_file(vma); 700 701 if (mapping) 702 i_mmap_unlock_write(mapping); 703 704 mm->map_count++; 705 validate_mm(mm); 706 } 707 708 /* 709 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 710 * mm's list and rbtree. It has already been inserted into the interval tree. 711 */ 712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 713 { 714 struct vm_area_struct *prev; 715 struct rb_node **rb_link, *rb_parent; 716 717 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 718 &prev, &rb_link, &rb_parent)) 719 BUG(); 720 __vma_link(mm, vma, prev, rb_link, rb_parent); 721 mm->map_count++; 722 } 723 724 static __always_inline void __vma_unlink(struct mm_struct *mm, 725 struct vm_area_struct *vma, 726 struct vm_area_struct *ignore) 727 { 728 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 729 __vma_unlink_list(mm, vma); 730 /* Kill the cache */ 731 vmacache_invalidate(mm); 732 } 733 734 /* 735 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 736 * is already present in an i_mmap tree without adjusting the tree. 737 * The following helper function should be used when such adjustments 738 * are necessary. The "insert" vma (if any) is to be inserted 739 * before we drop the necessary locks. 740 */ 741 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 742 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 743 struct vm_area_struct *expand) 744 { 745 struct mm_struct *mm = vma->vm_mm; 746 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 747 struct address_space *mapping = NULL; 748 struct rb_root_cached *root = NULL; 749 struct anon_vma *anon_vma = NULL; 750 struct file *file = vma->vm_file; 751 bool start_changed = false, end_changed = false; 752 long adjust_next = 0; 753 int remove_next = 0; 754 755 if (next && !insert) { 756 struct vm_area_struct *exporter = NULL, *importer = NULL; 757 758 if (end >= next->vm_end) { 759 /* 760 * vma expands, overlapping all the next, and 761 * perhaps the one after too (mprotect case 6). 762 * The only other cases that gets here are 763 * case 1, case 7 and case 8. 764 */ 765 if (next == expand) { 766 /* 767 * The only case where we don't expand "vma" 768 * and we expand "next" instead is case 8. 769 */ 770 VM_WARN_ON(end != next->vm_end); 771 /* 772 * remove_next == 3 means we're 773 * removing "vma" and that to do so we 774 * swapped "vma" and "next". 775 */ 776 remove_next = 3; 777 VM_WARN_ON(file != next->vm_file); 778 swap(vma, next); 779 } else { 780 VM_WARN_ON(expand != vma); 781 /* 782 * case 1, 6, 7, remove_next == 2 is case 6, 783 * remove_next == 1 is case 1 or 7. 784 */ 785 remove_next = 1 + (end > next->vm_end); 786 VM_WARN_ON(remove_next == 2 && 787 end != next->vm_next->vm_end); 788 /* trim end to next, for case 6 first pass */ 789 end = next->vm_end; 790 } 791 792 exporter = next; 793 importer = vma; 794 795 /* 796 * If next doesn't have anon_vma, import from vma after 797 * next, if the vma overlaps with it. 798 */ 799 if (remove_next == 2 && !next->anon_vma) 800 exporter = next->vm_next; 801 802 } else if (end > next->vm_start) { 803 /* 804 * vma expands, overlapping part of the next: 805 * mprotect case 5 shifting the boundary up. 806 */ 807 adjust_next = (end - next->vm_start); 808 exporter = next; 809 importer = vma; 810 VM_WARN_ON(expand != importer); 811 } else if (end < vma->vm_end) { 812 /* 813 * vma shrinks, and !insert tells it's not 814 * split_vma inserting another: so it must be 815 * mprotect case 4 shifting the boundary down. 816 */ 817 adjust_next = -(vma->vm_end - end); 818 exporter = vma; 819 importer = next; 820 VM_WARN_ON(expand != importer); 821 } 822 823 /* 824 * Easily overlooked: when mprotect shifts the boundary, 825 * make sure the expanding vma has anon_vma set if the 826 * shrinking vma had, to cover any anon pages imported. 827 */ 828 if (exporter && exporter->anon_vma && !importer->anon_vma) { 829 int error; 830 831 importer->anon_vma = exporter->anon_vma; 832 error = anon_vma_clone(importer, exporter); 833 if (error) 834 return error; 835 } 836 } 837 again: 838 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 839 840 if (file) { 841 mapping = file->f_mapping; 842 root = &mapping->i_mmap; 843 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 844 845 if (adjust_next) 846 uprobe_munmap(next, next->vm_start, next->vm_end); 847 848 i_mmap_lock_write(mapping); 849 if (insert) { 850 /* 851 * Put into interval tree now, so instantiated pages 852 * are visible to arm/parisc __flush_dcache_page 853 * throughout; but we cannot insert into address 854 * space until vma start or end is updated. 855 */ 856 __vma_link_file(insert); 857 } 858 } 859 860 anon_vma = vma->anon_vma; 861 if (!anon_vma && adjust_next) 862 anon_vma = next->anon_vma; 863 if (anon_vma) { 864 VM_WARN_ON(adjust_next && next->anon_vma && 865 anon_vma != next->anon_vma); 866 anon_vma_lock_write(anon_vma); 867 anon_vma_interval_tree_pre_update_vma(vma); 868 if (adjust_next) 869 anon_vma_interval_tree_pre_update_vma(next); 870 } 871 872 if (file) { 873 flush_dcache_mmap_lock(mapping); 874 vma_interval_tree_remove(vma, root); 875 if (adjust_next) 876 vma_interval_tree_remove(next, root); 877 } 878 879 if (start != vma->vm_start) { 880 vma->vm_start = start; 881 start_changed = true; 882 } 883 if (end != vma->vm_end) { 884 vma->vm_end = end; 885 end_changed = true; 886 } 887 vma->vm_pgoff = pgoff; 888 if (adjust_next) { 889 next->vm_start += adjust_next; 890 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 891 } 892 893 if (file) { 894 if (adjust_next) 895 vma_interval_tree_insert(next, root); 896 vma_interval_tree_insert(vma, root); 897 flush_dcache_mmap_unlock(mapping); 898 } 899 900 if (remove_next) { 901 /* 902 * vma_merge has merged next into vma, and needs 903 * us to remove next before dropping the locks. 904 */ 905 if (remove_next != 3) 906 __vma_unlink(mm, next, next); 907 else 908 /* 909 * vma is not before next if they've been 910 * swapped. 911 * 912 * pre-swap() next->vm_start was reduced so 913 * tell validate_mm_rb to ignore pre-swap() 914 * "next" (which is stored in post-swap() 915 * "vma"). 916 */ 917 __vma_unlink(mm, next, vma); 918 if (file) 919 __remove_shared_vm_struct(next, file, mapping); 920 } else if (insert) { 921 /* 922 * split_vma has split insert from vma, and needs 923 * us to insert it before dropping the locks 924 * (it may either follow vma or precede it). 925 */ 926 __insert_vm_struct(mm, insert); 927 } else { 928 if (start_changed) 929 vma_gap_update(vma); 930 if (end_changed) { 931 if (!next) 932 mm->highest_vm_end = vm_end_gap(vma); 933 else if (!adjust_next) 934 vma_gap_update(next); 935 } 936 } 937 938 if (anon_vma) { 939 anon_vma_interval_tree_post_update_vma(vma); 940 if (adjust_next) 941 anon_vma_interval_tree_post_update_vma(next); 942 anon_vma_unlock_write(anon_vma); 943 } 944 945 if (file) { 946 i_mmap_unlock_write(mapping); 947 uprobe_mmap(vma); 948 949 if (adjust_next) 950 uprobe_mmap(next); 951 } 952 953 if (remove_next) { 954 if (file) { 955 uprobe_munmap(next, next->vm_start, next->vm_end); 956 fput(file); 957 } 958 if (next->anon_vma) 959 anon_vma_merge(vma, next); 960 mm->map_count--; 961 mpol_put(vma_policy(next)); 962 vm_area_free(next); 963 /* 964 * In mprotect's case 6 (see comments on vma_merge), 965 * we must remove another next too. It would clutter 966 * up the code too much to do both in one go. 967 */ 968 if (remove_next != 3) { 969 /* 970 * If "next" was removed and vma->vm_end was 971 * expanded (up) over it, in turn 972 * "next->vm_prev->vm_end" changed and the 973 * "vma->vm_next" gap must be updated. 974 */ 975 next = vma->vm_next; 976 } else { 977 /* 978 * For the scope of the comment "next" and 979 * "vma" considered pre-swap(): if "vma" was 980 * removed, next->vm_start was expanded (down) 981 * over it and the "next" gap must be updated. 982 * Because of the swap() the post-swap() "vma" 983 * actually points to pre-swap() "next" 984 * (post-swap() "next" as opposed is now a 985 * dangling pointer). 986 */ 987 next = vma; 988 } 989 if (remove_next == 2) { 990 remove_next = 1; 991 end = next->vm_end; 992 goto again; 993 } 994 else if (next) 995 vma_gap_update(next); 996 else { 997 /* 998 * If remove_next == 2 we obviously can't 999 * reach this path. 1000 * 1001 * If remove_next == 3 we can't reach this 1002 * path because pre-swap() next is always not 1003 * NULL. pre-swap() "next" is not being 1004 * removed and its next->vm_end is not altered 1005 * (and furthermore "end" already matches 1006 * next->vm_end in remove_next == 3). 1007 * 1008 * We reach this only in the remove_next == 1 1009 * case if the "next" vma that was removed was 1010 * the highest vma of the mm. However in such 1011 * case next->vm_end == "end" and the extended 1012 * "vma" has vma->vm_end == next->vm_end so 1013 * mm->highest_vm_end doesn't need any update 1014 * in remove_next == 1 case. 1015 */ 1016 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1017 } 1018 } 1019 if (insert && file) 1020 uprobe_mmap(insert); 1021 1022 validate_mm(mm); 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * If the vma has a ->close operation then the driver probably needs to release 1029 * per-vma resources, so we don't attempt to merge those. 1030 */ 1031 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1032 struct file *file, unsigned long vm_flags, 1033 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1034 struct anon_vma_name *anon_name) 1035 { 1036 /* 1037 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1038 * match the flags but dirty bit -- the caller should mark 1039 * merged VMA as dirty. If dirty bit won't be excluded from 1040 * comparison, we increase pressure on the memory system forcing 1041 * the kernel to generate new VMAs when old one could be 1042 * extended instead. 1043 */ 1044 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1045 return 0; 1046 if (vma->vm_file != file) 1047 return 0; 1048 if (vma->vm_ops && vma->vm_ops->close) 1049 return 0; 1050 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1051 return 0; 1052 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 1053 return 0; 1054 return 1; 1055 } 1056 1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1058 struct anon_vma *anon_vma2, 1059 struct vm_area_struct *vma) 1060 { 1061 /* 1062 * The list_is_singular() test is to avoid merging VMA cloned from 1063 * parents. This can improve scalability caused by anon_vma lock. 1064 */ 1065 if ((!anon_vma1 || !anon_vma2) && (!vma || 1066 list_is_singular(&vma->anon_vma_chain))) 1067 return 1; 1068 return anon_vma1 == anon_vma2; 1069 } 1070 1071 /* 1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1073 * in front of (at a lower virtual address and file offset than) the vma. 1074 * 1075 * We cannot merge two vmas if they have differently assigned (non-NULL) 1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1077 * 1078 * We don't check here for the merged mmap wrapping around the end of pagecache 1079 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1080 * wrap, nor mmaps which cover the final page at index -1UL. 1081 */ 1082 static int 1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1084 struct anon_vma *anon_vma, struct file *file, 1085 pgoff_t vm_pgoff, 1086 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1087 struct anon_vma_name *anon_name) 1088 { 1089 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1090 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1091 if (vma->vm_pgoff == vm_pgoff) 1092 return 1; 1093 } 1094 return 0; 1095 } 1096 1097 /* 1098 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1099 * beyond (at a higher virtual address and file offset than) the vma. 1100 * 1101 * We cannot merge two vmas if they have differently assigned (non-NULL) 1102 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1103 */ 1104 static int 1105 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1106 struct anon_vma *anon_vma, struct file *file, 1107 pgoff_t vm_pgoff, 1108 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1109 struct anon_vma_name *anon_name) 1110 { 1111 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1112 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1113 pgoff_t vm_pglen; 1114 vm_pglen = vma_pages(vma); 1115 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1116 return 1; 1117 } 1118 return 0; 1119 } 1120 1121 /* 1122 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 1123 * figure out whether that can be merged with its predecessor or its 1124 * successor. Or both (it neatly fills a hole). 1125 * 1126 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1127 * certain not to be mapped by the time vma_merge is called; but when 1128 * called for mprotect, it is certain to be already mapped (either at 1129 * an offset within prev, or at the start of next), and the flags of 1130 * this area are about to be changed to vm_flags - and the no-change 1131 * case has already been eliminated. 1132 * 1133 * The following mprotect cases have to be considered, where AAAA is 1134 * the area passed down from mprotect_fixup, never extending beyond one 1135 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1136 * 1137 * AAAA AAAA AAAA 1138 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1139 * cannot merge might become might become 1140 * PPNNNNNNNNNN PPPPPPPPPPNN 1141 * mmap, brk or case 4 below case 5 below 1142 * mremap move: 1143 * AAAA AAAA 1144 * PPPP NNNN PPPPNNNNXXXX 1145 * might become might become 1146 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1147 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1148 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1149 * 1150 * It is important for case 8 that the vma NNNN overlapping the 1151 * region AAAA is never going to extended over XXXX. Instead XXXX must 1152 * be extended in region AAAA and NNNN must be removed. This way in 1153 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1154 * rmap_locks, the properties of the merged vma will be already 1155 * correct for the whole merged range. Some of those properties like 1156 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1157 * be correct for the whole merged range immediately after the 1158 * rmap_locks are released. Otherwise if XXXX would be removed and 1159 * NNNN would be extended over the XXXX range, remove_migration_ptes 1160 * or other rmap walkers (if working on addresses beyond the "end" 1161 * parameter) may establish ptes with the wrong permissions of NNNN 1162 * instead of the right permissions of XXXX. 1163 */ 1164 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1165 struct vm_area_struct *prev, unsigned long addr, 1166 unsigned long end, unsigned long vm_flags, 1167 struct anon_vma *anon_vma, struct file *file, 1168 pgoff_t pgoff, struct mempolicy *policy, 1169 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1170 struct anon_vma_name *anon_name) 1171 { 1172 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1173 struct vm_area_struct *area, *next; 1174 int err; 1175 1176 /* 1177 * We later require that vma->vm_flags == vm_flags, 1178 * so this tests vma->vm_flags & VM_SPECIAL, too. 1179 */ 1180 if (vm_flags & VM_SPECIAL) 1181 return NULL; 1182 1183 next = vma_next(mm, prev); 1184 area = next; 1185 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1186 next = next->vm_next; 1187 1188 /* verify some invariant that must be enforced by the caller */ 1189 VM_WARN_ON(prev && addr <= prev->vm_start); 1190 VM_WARN_ON(area && end > area->vm_end); 1191 VM_WARN_ON(addr >= end); 1192 1193 /* 1194 * Can it merge with the predecessor? 1195 */ 1196 if (prev && prev->vm_end == addr && 1197 mpol_equal(vma_policy(prev), policy) && 1198 can_vma_merge_after(prev, vm_flags, 1199 anon_vma, file, pgoff, 1200 vm_userfaultfd_ctx, anon_name)) { 1201 /* 1202 * OK, it can. Can we now merge in the successor as well? 1203 */ 1204 if (next && end == next->vm_start && 1205 mpol_equal(policy, vma_policy(next)) && 1206 can_vma_merge_before(next, vm_flags, 1207 anon_vma, file, 1208 pgoff+pglen, 1209 vm_userfaultfd_ctx, anon_name) && 1210 is_mergeable_anon_vma(prev->anon_vma, 1211 next->anon_vma, NULL)) { 1212 /* cases 1, 6 */ 1213 err = __vma_adjust(prev, prev->vm_start, 1214 next->vm_end, prev->vm_pgoff, NULL, 1215 prev); 1216 } else /* cases 2, 5, 7 */ 1217 err = __vma_adjust(prev, prev->vm_start, 1218 end, prev->vm_pgoff, NULL, prev); 1219 if (err) 1220 return NULL; 1221 khugepaged_enter_vma_merge(prev, vm_flags); 1222 return prev; 1223 } 1224 1225 /* 1226 * Can this new request be merged in front of next? 1227 */ 1228 if (next && end == next->vm_start && 1229 mpol_equal(policy, vma_policy(next)) && 1230 can_vma_merge_before(next, vm_flags, 1231 anon_vma, file, pgoff+pglen, 1232 vm_userfaultfd_ctx, anon_name)) { 1233 if (prev && addr < prev->vm_end) /* case 4 */ 1234 err = __vma_adjust(prev, prev->vm_start, 1235 addr, prev->vm_pgoff, NULL, next); 1236 else { /* cases 3, 8 */ 1237 err = __vma_adjust(area, addr, next->vm_end, 1238 next->vm_pgoff - pglen, NULL, next); 1239 /* 1240 * In case 3 area is already equal to next and 1241 * this is a noop, but in case 8 "area" has 1242 * been removed and next was expanded over it. 1243 */ 1244 area = next; 1245 } 1246 if (err) 1247 return NULL; 1248 khugepaged_enter_vma_merge(area, vm_flags); 1249 return area; 1250 } 1251 1252 return NULL; 1253 } 1254 1255 /* 1256 * Rough compatibility check to quickly see if it's even worth looking 1257 * at sharing an anon_vma. 1258 * 1259 * They need to have the same vm_file, and the flags can only differ 1260 * in things that mprotect may change. 1261 * 1262 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1263 * we can merge the two vma's. For example, we refuse to merge a vma if 1264 * there is a vm_ops->close() function, because that indicates that the 1265 * driver is doing some kind of reference counting. But that doesn't 1266 * really matter for the anon_vma sharing case. 1267 */ 1268 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1269 { 1270 return a->vm_end == b->vm_start && 1271 mpol_equal(vma_policy(a), vma_policy(b)) && 1272 a->vm_file == b->vm_file && 1273 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1274 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1275 } 1276 1277 /* 1278 * Do some basic sanity checking to see if we can re-use the anon_vma 1279 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1280 * the same as 'old', the other will be the new one that is trying 1281 * to share the anon_vma. 1282 * 1283 * NOTE! This runs with mm_sem held for reading, so it is possible that 1284 * the anon_vma of 'old' is concurrently in the process of being set up 1285 * by another page fault trying to merge _that_. But that's ok: if it 1286 * is being set up, that automatically means that it will be a singleton 1287 * acceptable for merging, so we can do all of this optimistically. But 1288 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1289 * 1290 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1291 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1292 * is to return an anon_vma that is "complex" due to having gone through 1293 * a fork). 1294 * 1295 * We also make sure that the two vma's are compatible (adjacent, 1296 * and with the same memory policies). That's all stable, even with just 1297 * a read lock on the mm_sem. 1298 */ 1299 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1300 { 1301 if (anon_vma_compatible(a, b)) { 1302 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1303 1304 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1305 return anon_vma; 1306 } 1307 return NULL; 1308 } 1309 1310 /* 1311 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1312 * neighbouring vmas for a suitable anon_vma, before it goes off 1313 * to allocate a new anon_vma. It checks because a repetitive 1314 * sequence of mprotects and faults may otherwise lead to distinct 1315 * anon_vmas being allocated, preventing vma merge in subsequent 1316 * mprotect. 1317 */ 1318 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1319 { 1320 struct anon_vma *anon_vma = NULL; 1321 1322 /* Try next first. */ 1323 if (vma->vm_next) { 1324 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1325 if (anon_vma) 1326 return anon_vma; 1327 } 1328 1329 /* Try prev next. */ 1330 if (vma->vm_prev) 1331 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1332 1333 /* 1334 * We might reach here with anon_vma == NULL if we can't find 1335 * any reusable anon_vma. 1336 * There's no absolute need to look only at touching neighbours: 1337 * we could search further afield for "compatible" anon_vmas. 1338 * But it would probably just be a waste of time searching, 1339 * or lead to too many vmas hanging off the same anon_vma. 1340 * We're trying to allow mprotect remerging later on, 1341 * not trying to minimize memory used for anon_vmas. 1342 */ 1343 return anon_vma; 1344 } 1345 1346 /* 1347 * If a hint addr is less than mmap_min_addr change hint to be as 1348 * low as possible but still greater than mmap_min_addr 1349 */ 1350 static inline unsigned long round_hint_to_min(unsigned long hint) 1351 { 1352 hint &= PAGE_MASK; 1353 if (((void *)hint != NULL) && 1354 (hint < mmap_min_addr)) 1355 return PAGE_ALIGN(mmap_min_addr); 1356 return hint; 1357 } 1358 1359 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1360 unsigned long len) 1361 { 1362 unsigned long locked, lock_limit; 1363 1364 /* mlock MCL_FUTURE? */ 1365 if (flags & VM_LOCKED) { 1366 locked = len >> PAGE_SHIFT; 1367 locked += mm->locked_vm; 1368 lock_limit = rlimit(RLIMIT_MEMLOCK); 1369 lock_limit >>= PAGE_SHIFT; 1370 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1371 return -EAGAIN; 1372 } 1373 return 0; 1374 } 1375 1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1377 { 1378 if (S_ISREG(inode->i_mode)) 1379 return MAX_LFS_FILESIZE; 1380 1381 if (S_ISBLK(inode->i_mode)) 1382 return MAX_LFS_FILESIZE; 1383 1384 if (S_ISSOCK(inode->i_mode)) 1385 return MAX_LFS_FILESIZE; 1386 1387 /* Special "we do even unsigned file positions" case */ 1388 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1389 return 0; 1390 1391 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1392 return ULONG_MAX; 1393 } 1394 1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1396 unsigned long pgoff, unsigned long len) 1397 { 1398 u64 maxsize = file_mmap_size_max(file, inode); 1399 1400 if (maxsize && len > maxsize) 1401 return false; 1402 maxsize -= len; 1403 if (pgoff > maxsize >> PAGE_SHIFT) 1404 return false; 1405 return true; 1406 } 1407 1408 /* 1409 * The caller must write-lock current->mm->mmap_lock. 1410 */ 1411 unsigned long do_mmap(struct file *file, unsigned long addr, 1412 unsigned long len, unsigned long prot, 1413 unsigned long flags, unsigned long pgoff, 1414 unsigned long *populate, struct list_head *uf) 1415 { 1416 struct mm_struct *mm = current->mm; 1417 vm_flags_t vm_flags; 1418 int pkey = 0; 1419 1420 *populate = 0; 1421 1422 if (!len) 1423 return -EINVAL; 1424 1425 /* 1426 * Does the application expect PROT_READ to imply PROT_EXEC? 1427 * 1428 * (the exception is when the underlying filesystem is noexec 1429 * mounted, in which case we dont add PROT_EXEC.) 1430 */ 1431 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1432 if (!(file && path_noexec(&file->f_path))) 1433 prot |= PROT_EXEC; 1434 1435 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1436 if (flags & MAP_FIXED_NOREPLACE) 1437 flags |= MAP_FIXED; 1438 1439 if (!(flags & MAP_FIXED)) 1440 addr = round_hint_to_min(addr); 1441 1442 /* Careful about overflows.. */ 1443 len = PAGE_ALIGN(len); 1444 if (!len) 1445 return -ENOMEM; 1446 1447 /* offset overflow? */ 1448 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1449 return -EOVERFLOW; 1450 1451 /* Too many mappings? */ 1452 if (mm->map_count > sysctl_max_map_count) 1453 return -ENOMEM; 1454 1455 /* Obtain the address to map to. we verify (or select) it and ensure 1456 * that it represents a valid section of the address space. 1457 */ 1458 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1459 if (IS_ERR_VALUE(addr)) 1460 return addr; 1461 1462 if (flags & MAP_FIXED_NOREPLACE) { 1463 if (find_vma_intersection(mm, addr, addr + len)) 1464 return -EEXIST; 1465 } 1466 1467 if (prot == PROT_EXEC) { 1468 pkey = execute_only_pkey(mm); 1469 if (pkey < 0) 1470 pkey = 0; 1471 } 1472 1473 /* Do simple checking here so the lower-level routines won't have 1474 * to. we assume access permissions have been handled by the open 1475 * of the memory object, so we don't do any here. 1476 */ 1477 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1478 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1479 1480 if (flags & MAP_LOCKED) 1481 if (!can_do_mlock()) 1482 return -EPERM; 1483 1484 if (mlock_future_check(mm, vm_flags, len)) 1485 return -EAGAIN; 1486 1487 if (file) { 1488 struct inode *inode = file_inode(file); 1489 unsigned long flags_mask; 1490 1491 if (!file_mmap_ok(file, inode, pgoff, len)) 1492 return -EOVERFLOW; 1493 1494 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1495 1496 switch (flags & MAP_TYPE) { 1497 case MAP_SHARED: 1498 /* 1499 * Force use of MAP_SHARED_VALIDATE with non-legacy 1500 * flags. E.g. MAP_SYNC is dangerous to use with 1501 * MAP_SHARED as you don't know which consistency model 1502 * you will get. We silently ignore unsupported flags 1503 * with MAP_SHARED to preserve backward compatibility. 1504 */ 1505 flags &= LEGACY_MAP_MASK; 1506 fallthrough; 1507 case MAP_SHARED_VALIDATE: 1508 if (flags & ~flags_mask) 1509 return -EOPNOTSUPP; 1510 if (prot & PROT_WRITE) { 1511 if (!(file->f_mode & FMODE_WRITE)) 1512 return -EACCES; 1513 if (IS_SWAPFILE(file->f_mapping->host)) 1514 return -ETXTBSY; 1515 } 1516 1517 /* 1518 * Make sure we don't allow writing to an append-only 1519 * file.. 1520 */ 1521 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1522 return -EACCES; 1523 1524 vm_flags |= VM_SHARED | VM_MAYSHARE; 1525 if (!(file->f_mode & FMODE_WRITE)) 1526 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1527 fallthrough; 1528 case MAP_PRIVATE: 1529 if (!(file->f_mode & FMODE_READ)) 1530 return -EACCES; 1531 if (path_noexec(&file->f_path)) { 1532 if (vm_flags & VM_EXEC) 1533 return -EPERM; 1534 vm_flags &= ~VM_MAYEXEC; 1535 } 1536 1537 if (!file->f_op->mmap) 1538 return -ENODEV; 1539 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1540 return -EINVAL; 1541 break; 1542 1543 default: 1544 return -EINVAL; 1545 } 1546 } else { 1547 switch (flags & MAP_TYPE) { 1548 case MAP_SHARED: 1549 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1550 return -EINVAL; 1551 /* 1552 * Ignore pgoff. 1553 */ 1554 pgoff = 0; 1555 vm_flags |= VM_SHARED | VM_MAYSHARE; 1556 break; 1557 case MAP_PRIVATE: 1558 /* 1559 * Set pgoff according to addr for anon_vma. 1560 */ 1561 pgoff = addr >> PAGE_SHIFT; 1562 break; 1563 default: 1564 return -EINVAL; 1565 } 1566 } 1567 1568 /* 1569 * Set 'VM_NORESERVE' if we should not account for the 1570 * memory use of this mapping. 1571 */ 1572 if (flags & MAP_NORESERVE) { 1573 /* We honor MAP_NORESERVE if allowed to overcommit */ 1574 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1575 vm_flags |= VM_NORESERVE; 1576 1577 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1578 if (file && is_file_hugepages(file)) 1579 vm_flags |= VM_NORESERVE; 1580 } 1581 1582 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1583 if (!IS_ERR_VALUE(addr) && 1584 ((vm_flags & VM_LOCKED) || 1585 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1586 *populate = len; 1587 return addr; 1588 } 1589 1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1591 unsigned long prot, unsigned long flags, 1592 unsigned long fd, unsigned long pgoff) 1593 { 1594 struct file *file = NULL; 1595 unsigned long retval; 1596 1597 if (!(flags & MAP_ANONYMOUS)) { 1598 audit_mmap_fd(fd, flags); 1599 file = fget(fd); 1600 if (!file) 1601 return -EBADF; 1602 if (is_file_hugepages(file)) { 1603 len = ALIGN(len, huge_page_size(hstate_file(file))); 1604 } else if (unlikely(flags & MAP_HUGETLB)) { 1605 retval = -EINVAL; 1606 goto out_fput; 1607 } 1608 } else if (flags & MAP_HUGETLB) { 1609 struct hstate *hs; 1610 1611 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1612 if (!hs) 1613 return -EINVAL; 1614 1615 len = ALIGN(len, huge_page_size(hs)); 1616 /* 1617 * VM_NORESERVE is used because the reservations will be 1618 * taken when vm_ops->mmap() is called 1619 * A dummy user value is used because we are not locking 1620 * memory so no accounting is necessary 1621 */ 1622 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1623 VM_NORESERVE, 1624 HUGETLB_ANONHUGE_INODE, 1625 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1626 if (IS_ERR(file)) 1627 return PTR_ERR(file); 1628 } 1629 1630 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1631 out_fput: 1632 if (file) 1633 fput(file); 1634 return retval; 1635 } 1636 1637 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1638 unsigned long, prot, unsigned long, flags, 1639 unsigned long, fd, unsigned long, pgoff) 1640 { 1641 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1642 } 1643 1644 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1645 struct mmap_arg_struct { 1646 unsigned long addr; 1647 unsigned long len; 1648 unsigned long prot; 1649 unsigned long flags; 1650 unsigned long fd; 1651 unsigned long offset; 1652 }; 1653 1654 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1655 { 1656 struct mmap_arg_struct a; 1657 1658 if (copy_from_user(&a, arg, sizeof(a))) 1659 return -EFAULT; 1660 if (offset_in_page(a.offset)) 1661 return -EINVAL; 1662 1663 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1664 a.offset >> PAGE_SHIFT); 1665 } 1666 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1667 1668 /* 1669 * Some shared mappings will want the pages marked read-only 1670 * to track write events. If so, we'll downgrade vm_page_prot 1671 * to the private version (using protection_map[] without the 1672 * VM_SHARED bit). 1673 */ 1674 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1675 { 1676 vm_flags_t vm_flags = vma->vm_flags; 1677 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1678 1679 /* If it was private or non-writable, the write bit is already clear */ 1680 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1681 return 0; 1682 1683 /* The backer wishes to know when pages are first written to? */ 1684 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1685 return 1; 1686 1687 /* The open routine did something to the protections that pgprot_modify 1688 * won't preserve? */ 1689 if (pgprot_val(vm_page_prot) != 1690 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1691 return 0; 1692 1693 /* Do we need to track softdirty? */ 1694 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1695 return 1; 1696 1697 /* Specialty mapping? */ 1698 if (vm_flags & VM_PFNMAP) 1699 return 0; 1700 1701 /* Can the mapping track the dirty pages? */ 1702 return vma->vm_file && vma->vm_file->f_mapping && 1703 mapping_can_writeback(vma->vm_file->f_mapping); 1704 } 1705 1706 /* 1707 * We account for memory if it's a private writeable mapping, 1708 * not hugepages and VM_NORESERVE wasn't set. 1709 */ 1710 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1711 { 1712 /* 1713 * hugetlb has its own accounting separate from the core VM 1714 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1715 */ 1716 if (file && is_file_hugepages(file)) 1717 return 0; 1718 1719 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1720 } 1721 1722 unsigned long mmap_region(struct file *file, unsigned long addr, 1723 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1724 struct list_head *uf) 1725 { 1726 struct mm_struct *mm = current->mm; 1727 struct vm_area_struct *vma, *prev, *merge; 1728 int error; 1729 struct rb_node **rb_link, *rb_parent; 1730 unsigned long charged = 0; 1731 1732 /* Check against address space limit. */ 1733 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1734 unsigned long nr_pages; 1735 1736 /* 1737 * MAP_FIXED may remove pages of mappings that intersects with 1738 * requested mapping. Account for the pages it would unmap. 1739 */ 1740 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1741 1742 if (!may_expand_vm(mm, vm_flags, 1743 (len >> PAGE_SHIFT) - nr_pages)) 1744 return -ENOMEM; 1745 } 1746 1747 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1748 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1749 return -ENOMEM; 1750 /* 1751 * Private writable mapping: check memory availability 1752 */ 1753 if (accountable_mapping(file, vm_flags)) { 1754 charged = len >> PAGE_SHIFT; 1755 if (security_vm_enough_memory_mm(mm, charged)) 1756 return -ENOMEM; 1757 vm_flags |= VM_ACCOUNT; 1758 } 1759 1760 /* 1761 * Can we just expand an old mapping? 1762 */ 1763 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1764 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1765 if (vma) 1766 goto out; 1767 1768 /* 1769 * Determine the object being mapped and call the appropriate 1770 * specific mapper. the address has already been validated, but 1771 * not unmapped, but the maps are removed from the list. 1772 */ 1773 vma = vm_area_alloc(mm); 1774 if (!vma) { 1775 error = -ENOMEM; 1776 goto unacct_error; 1777 } 1778 1779 vma->vm_start = addr; 1780 vma->vm_end = addr + len; 1781 vma->vm_flags = vm_flags; 1782 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1783 vma->vm_pgoff = pgoff; 1784 1785 if (file) { 1786 if (vm_flags & VM_SHARED) { 1787 error = mapping_map_writable(file->f_mapping); 1788 if (error) 1789 goto free_vma; 1790 } 1791 1792 vma->vm_file = get_file(file); 1793 error = call_mmap(file, vma); 1794 if (error) 1795 goto unmap_and_free_vma; 1796 1797 /* Can addr have changed?? 1798 * 1799 * Answer: Yes, several device drivers can do it in their 1800 * f_op->mmap method. -DaveM 1801 * Bug: If addr is changed, prev, rb_link, rb_parent should 1802 * be updated for vma_link() 1803 */ 1804 WARN_ON_ONCE(addr != vma->vm_start); 1805 1806 addr = vma->vm_start; 1807 1808 /* If vm_flags changed after call_mmap(), we should try merge vma again 1809 * as we may succeed this time. 1810 */ 1811 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1812 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1813 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1814 if (merge) { 1815 /* ->mmap() can change vma->vm_file and fput the original file. So 1816 * fput the vma->vm_file here or we would add an extra fput for file 1817 * and cause general protection fault ultimately. 1818 */ 1819 fput(vma->vm_file); 1820 vm_area_free(vma); 1821 vma = merge; 1822 /* Update vm_flags to pick up the change. */ 1823 vm_flags = vma->vm_flags; 1824 goto unmap_writable; 1825 } 1826 } 1827 1828 vm_flags = vma->vm_flags; 1829 } else if (vm_flags & VM_SHARED) { 1830 error = shmem_zero_setup(vma); 1831 if (error) 1832 goto free_vma; 1833 } else { 1834 vma_set_anonymous(vma); 1835 } 1836 1837 /* Allow architectures to sanity-check the vm_flags */ 1838 if (!arch_validate_flags(vma->vm_flags)) { 1839 error = -EINVAL; 1840 if (file) 1841 goto unmap_and_free_vma; 1842 else 1843 goto free_vma; 1844 } 1845 1846 vma_link(mm, vma, prev, rb_link, rb_parent); 1847 /* Once vma denies write, undo our temporary denial count */ 1848 unmap_writable: 1849 if (file && vm_flags & VM_SHARED) 1850 mapping_unmap_writable(file->f_mapping); 1851 file = vma->vm_file; 1852 out: 1853 perf_event_mmap(vma); 1854 1855 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1856 if (vm_flags & VM_LOCKED) { 1857 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1858 is_vm_hugetlb_page(vma) || 1859 vma == get_gate_vma(current->mm)) 1860 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1861 else 1862 mm->locked_vm += (len >> PAGE_SHIFT); 1863 } 1864 1865 if (file) 1866 uprobe_mmap(vma); 1867 1868 /* 1869 * New (or expanded) vma always get soft dirty status. 1870 * Otherwise user-space soft-dirty page tracker won't 1871 * be able to distinguish situation when vma area unmapped, 1872 * then new mapped in-place (which must be aimed as 1873 * a completely new data area). 1874 */ 1875 vma->vm_flags |= VM_SOFTDIRTY; 1876 1877 vma_set_page_prot(vma); 1878 1879 return addr; 1880 1881 unmap_and_free_vma: 1882 fput(vma->vm_file); 1883 vma->vm_file = NULL; 1884 1885 /* Undo any partial mapping done by a device driver. */ 1886 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1887 charged = 0; 1888 if (vm_flags & VM_SHARED) 1889 mapping_unmap_writable(file->f_mapping); 1890 free_vma: 1891 vm_area_free(vma); 1892 unacct_error: 1893 if (charged) 1894 vm_unacct_memory(charged); 1895 return error; 1896 } 1897 1898 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1899 { 1900 /* 1901 * We implement the search by looking for an rbtree node that 1902 * immediately follows a suitable gap. That is, 1903 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1904 * - gap_end = vma->vm_start >= info->low_limit + length; 1905 * - gap_end - gap_start >= length 1906 */ 1907 1908 struct mm_struct *mm = current->mm; 1909 struct vm_area_struct *vma; 1910 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1911 1912 /* Adjust search length to account for worst case alignment overhead */ 1913 length = info->length + info->align_mask; 1914 if (length < info->length) 1915 return -ENOMEM; 1916 1917 /* Adjust search limits by the desired length */ 1918 if (info->high_limit < length) 1919 return -ENOMEM; 1920 high_limit = info->high_limit - length; 1921 1922 if (info->low_limit > high_limit) 1923 return -ENOMEM; 1924 low_limit = info->low_limit + length; 1925 1926 /* Check if rbtree root looks promising */ 1927 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1928 goto check_highest; 1929 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1930 if (vma->rb_subtree_gap < length) 1931 goto check_highest; 1932 1933 while (true) { 1934 /* Visit left subtree if it looks promising */ 1935 gap_end = vm_start_gap(vma); 1936 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1937 struct vm_area_struct *left = 1938 rb_entry(vma->vm_rb.rb_left, 1939 struct vm_area_struct, vm_rb); 1940 if (left->rb_subtree_gap >= length) { 1941 vma = left; 1942 continue; 1943 } 1944 } 1945 1946 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1947 check_current: 1948 /* Check if current node has a suitable gap */ 1949 if (gap_start > high_limit) 1950 return -ENOMEM; 1951 if (gap_end >= low_limit && 1952 gap_end > gap_start && gap_end - gap_start >= length) 1953 goto found; 1954 1955 /* Visit right subtree if it looks promising */ 1956 if (vma->vm_rb.rb_right) { 1957 struct vm_area_struct *right = 1958 rb_entry(vma->vm_rb.rb_right, 1959 struct vm_area_struct, vm_rb); 1960 if (right->rb_subtree_gap >= length) { 1961 vma = right; 1962 continue; 1963 } 1964 } 1965 1966 /* Go back up the rbtree to find next candidate node */ 1967 while (true) { 1968 struct rb_node *prev = &vma->vm_rb; 1969 if (!rb_parent(prev)) 1970 goto check_highest; 1971 vma = rb_entry(rb_parent(prev), 1972 struct vm_area_struct, vm_rb); 1973 if (prev == vma->vm_rb.rb_left) { 1974 gap_start = vm_end_gap(vma->vm_prev); 1975 gap_end = vm_start_gap(vma); 1976 goto check_current; 1977 } 1978 } 1979 } 1980 1981 check_highest: 1982 /* Check highest gap, which does not precede any rbtree node */ 1983 gap_start = mm->highest_vm_end; 1984 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1985 if (gap_start > high_limit) 1986 return -ENOMEM; 1987 1988 found: 1989 /* We found a suitable gap. Clip it with the original low_limit. */ 1990 if (gap_start < info->low_limit) 1991 gap_start = info->low_limit; 1992 1993 /* Adjust gap address to the desired alignment */ 1994 gap_start += (info->align_offset - gap_start) & info->align_mask; 1995 1996 VM_BUG_ON(gap_start + info->length > info->high_limit); 1997 VM_BUG_ON(gap_start + info->length > gap_end); 1998 return gap_start; 1999 } 2000 2001 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2002 { 2003 struct mm_struct *mm = current->mm; 2004 struct vm_area_struct *vma; 2005 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2006 2007 /* Adjust search length to account for worst case alignment overhead */ 2008 length = info->length + info->align_mask; 2009 if (length < info->length) 2010 return -ENOMEM; 2011 2012 /* 2013 * Adjust search limits by the desired length. 2014 * See implementation comment at top of unmapped_area(). 2015 */ 2016 gap_end = info->high_limit; 2017 if (gap_end < length) 2018 return -ENOMEM; 2019 high_limit = gap_end - length; 2020 2021 if (info->low_limit > high_limit) 2022 return -ENOMEM; 2023 low_limit = info->low_limit + length; 2024 2025 /* Check highest gap, which does not precede any rbtree node */ 2026 gap_start = mm->highest_vm_end; 2027 if (gap_start <= high_limit) 2028 goto found_highest; 2029 2030 /* Check if rbtree root looks promising */ 2031 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2032 return -ENOMEM; 2033 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2034 if (vma->rb_subtree_gap < length) 2035 return -ENOMEM; 2036 2037 while (true) { 2038 /* Visit right subtree if it looks promising */ 2039 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2040 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2041 struct vm_area_struct *right = 2042 rb_entry(vma->vm_rb.rb_right, 2043 struct vm_area_struct, vm_rb); 2044 if (right->rb_subtree_gap >= length) { 2045 vma = right; 2046 continue; 2047 } 2048 } 2049 2050 check_current: 2051 /* Check if current node has a suitable gap */ 2052 gap_end = vm_start_gap(vma); 2053 if (gap_end < low_limit) 2054 return -ENOMEM; 2055 if (gap_start <= high_limit && 2056 gap_end > gap_start && gap_end - gap_start >= length) 2057 goto found; 2058 2059 /* Visit left subtree if it looks promising */ 2060 if (vma->vm_rb.rb_left) { 2061 struct vm_area_struct *left = 2062 rb_entry(vma->vm_rb.rb_left, 2063 struct vm_area_struct, vm_rb); 2064 if (left->rb_subtree_gap >= length) { 2065 vma = left; 2066 continue; 2067 } 2068 } 2069 2070 /* Go back up the rbtree to find next candidate node */ 2071 while (true) { 2072 struct rb_node *prev = &vma->vm_rb; 2073 if (!rb_parent(prev)) 2074 return -ENOMEM; 2075 vma = rb_entry(rb_parent(prev), 2076 struct vm_area_struct, vm_rb); 2077 if (prev == vma->vm_rb.rb_right) { 2078 gap_start = vma->vm_prev ? 2079 vm_end_gap(vma->vm_prev) : 0; 2080 goto check_current; 2081 } 2082 } 2083 } 2084 2085 found: 2086 /* We found a suitable gap. Clip it with the original high_limit. */ 2087 if (gap_end > info->high_limit) 2088 gap_end = info->high_limit; 2089 2090 found_highest: 2091 /* Compute highest gap address at the desired alignment */ 2092 gap_end -= info->length; 2093 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2094 2095 VM_BUG_ON(gap_end < info->low_limit); 2096 VM_BUG_ON(gap_end < gap_start); 2097 return gap_end; 2098 } 2099 2100 /* 2101 * Search for an unmapped address range. 2102 * 2103 * We are looking for a range that: 2104 * - does not intersect with any VMA; 2105 * - is contained within the [low_limit, high_limit) interval; 2106 * - is at least the desired size. 2107 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2108 */ 2109 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2110 { 2111 unsigned long addr; 2112 2113 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2114 addr = unmapped_area_topdown(info); 2115 else 2116 addr = unmapped_area(info); 2117 2118 trace_vm_unmapped_area(addr, info); 2119 return addr; 2120 } 2121 2122 #ifndef arch_get_mmap_end 2123 #define arch_get_mmap_end(addr) (TASK_SIZE) 2124 #endif 2125 2126 #ifndef arch_get_mmap_base 2127 #define arch_get_mmap_base(addr, base) (base) 2128 #endif 2129 2130 /* Get an address range which is currently unmapped. 2131 * For shmat() with addr=0. 2132 * 2133 * Ugly calling convention alert: 2134 * Return value with the low bits set means error value, 2135 * ie 2136 * if (ret & ~PAGE_MASK) 2137 * error = ret; 2138 * 2139 * This function "knows" that -ENOMEM has the bits set. 2140 */ 2141 #ifndef HAVE_ARCH_UNMAPPED_AREA 2142 unsigned long 2143 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2144 unsigned long len, unsigned long pgoff, unsigned long flags) 2145 { 2146 struct mm_struct *mm = current->mm; 2147 struct vm_area_struct *vma, *prev; 2148 struct vm_unmapped_area_info info; 2149 const unsigned long mmap_end = arch_get_mmap_end(addr); 2150 2151 if (len > mmap_end - mmap_min_addr) 2152 return -ENOMEM; 2153 2154 if (flags & MAP_FIXED) 2155 return addr; 2156 2157 if (addr) { 2158 addr = PAGE_ALIGN(addr); 2159 vma = find_vma_prev(mm, addr, &prev); 2160 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2161 (!vma || addr + len <= vm_start_gap(vma)) && 2162 (!prev || addr >= vm_end_gap(prev))) 2163 return addr; 2164 } 2165 2166 info.flags = 0; 2167 info.length = len; 2168 info.low_limit = mm->mmap_base; 2169 info.high_limit = mmap_end; 2170 info.align_mask = 0; 2171 info.align_offset = 0; 2172 return vm_unmapped_area(&info); 2173 } 2174 #endif 2175 2176 /* 2177 * This mmap-allocator allocates new areas top-down from below the 2178 * stack's low limit (the base): 2179 */ 2180 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2181 unsigned long 2182 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2183 unsigned long len, unsigned long pgoff, 2184 unsigned long flags) 2185 { 2186 struct vm_area_struct *vma, *prev; 2187 struct mm_struct *mm = current->mm; 2188 struct vm_unmapped_area_info info; 2189 const unsigned long mmap_end = arch_get_mmap_end(addr); 2190 2191 /* requested length too big for entire address space */ 2192 if (len > mmap_end - mmap_min_addr) 2193 return -ENOMEM; 2194 2195 if (flags & MAP_FIXED) 2196 return addr; 2197 2198 /* requesting a specific address */ 2199 if (addr) { 2200 addr = PAGE_ALIGN(addr); 2201 vma = find_vma_prev(mm, addr, &prev); 2202 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2203 (!vma || addr + len <= vm_start_gap(vma)) && 2204 (!prev || addr >= vm_end_gap(prev))) 2205 return addr; 2206 } 2207 2208 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2209 info.length = len; 2210 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2211 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2212 info.align_mask = 0; 2213 info.align_offset = 0; 2214 addr = vm_unmapped_area(&info); 2215 2216 /* 2217 * A failed mmap() very likely causes application failure, 2218 * so fall back to the bottom-up function here. This scenario 2219 * can happen with large stack limits and large mmap() 2220 * allocations. 2221 */ 2222 if (offset_in_page(addr)) { 2223 VM_BUG_ON(addr != -ENOMEM); 2224 info.flags = 0; 2225 info.low_limit = TASK_UNMAPPED_BASE; 2226 info.high_limit = mmap_end; 2227 addr = vm_unmapped_area(&info); 2228 } 2229 2230 return addr; 2231 } 2232 #endif 2233 2234 unsigned long 2235 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2236 unsigned long pgoff, unsigned long flags) 2237 { 2238 unsigned long (*get_area)(struct file *, unsigned long, 2239 unsigned long, unsigned long, unsigned long); 2240 2241 unsigned long error = arch_mmap_check(addr, len, flags); 2242 if (error) 2243 return error; 2244 2245 /* Careful about overflows.. */ 2246 if (len > TASK_SIZE) 2247 return -ENOMEM; 2248 2249 get_area = current->mm->get_unmapped_area; 2250 if (file) { 2251 if (file->f_op->get_unmapped_area) 2252 get_area = file->f_op->get_unmapped_area; 2253 } else if (flags & MAP_SHARED) { 2254 /* 2255 * mmap_region() will call shmem_zero_setup() to create a file, 2256 * so use shmem's get_unmapped_area in case it can be huge. 2257 * do_mmap() will clear pgoff, so match alignment. 2258 */ 2259 pgoff = 0; 2260 get_area = shmem_get_unmapped_area; 2261 } 2262 2263 addr = get_area(file, addr, len, pgoff, flags); 2264 if (IS_ERR_VALUE(addr)) 2265 return addr; 2266 2267 if (addr > TASK_SIZE - len) 2268 return -ENOMEM; 2269 if (offset_in_page(addr)) 2270 return -EINVAL; 2271 2272 error = security_mmap_addr(addr); 2273 return error ? error : addr; 2274 } 2275 2276 EXPORT_SYMBOL(get_unmapped_area); 2277 2278 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2279 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2280 { 2281 struct rb_node *rb_node; 2282 struct vm_area_struct *vma; 2283 2284 mmap_assert_locked(mm); 2285 /* Check the cache first. */ 2286 vma = vmacache_find(mm, addr); 2287 if (likely(vma)) 2288 return vma; 2289 2290 rb_node = mm->mm_rb.rb_node; 2291 2292 while (rb_node) { 2293 struct vm_area_struct *tmp; 2294 2295 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2296 2297 if (tmp->vm_end > addr) { 2298 vma = tmp; 2299 if (tmp->vm_start <= addr) 2300 break; 2301 rb_node = rb_node->rb_left; 2302 } else 2303 rb_node = rb_node->rb_right; 2304 } 2305 2306 if (vma) 2307 vmacache_update(addr, vma); 2308 return vma; 2309 } 2310 2311 EXPORT_SYMBOL(find_vma); 2312 2313 /* 2314 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2315 */ 2316 struct vm_area_struct * 2317 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2318 struct vm_area_struct **pprev) 2319 { 2320 struct vm_area_struct *vma; 2321 2322 vma = find_vma(mm, addr); 2323 if (vma) { 2324 *pprev = vma->vm_prev; 2325 } else { 2326 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2327 2328 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2329 } 2330 return vma; 2331 } 2332 2333 /* 2334 * Verify that the stack growth is acceptable and 2335 * update accounting. This is shared with both the 2336 * grow-up and grow-down cases. 2337 */ 2338 static int acct_stack_growth(struct vm_area_struct *vma, 2339 unsigned long size, unsigned long grow) 2340 { 2341 struct mm_struct *mm = vma->vm_mm; 2342 unsigned long new_start; 2343 2344 /* address space limit tests */ 2345 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2346 return -ENOMEM; 2347 2348 /* Stack limit test */ 2349 if (size > rlimit(RLIMIT_STACK)) 2350 return -ENOMEM; 2351 2352 /* mlock limit tests */ 2353 if (vma->vm_flags & VM_LOCKED) { 2354 unsigned long locked; 2355 unsigned long limit; 2356 locked = mm->locked_vm + grow; 2357 limit = rlimit(RLIMIT_MEMLOCK); 2358 limit >>= PAGE_SHIFT; 2359 if (locked > limit && !capable(CAP_IPC_LOCK)) 2360 return -ENOMEM; 2361 } 2362 2363 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2364 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2365 vma->vm_end - size; 2366 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2367 return -EFAULT; 2368 2369 /* 2370 * Overcommit.. This must be the final test, as it will 2371 * update security statistics. 2372 */ 2373 if (security_vm_enough_memory_mm(mm, grow)) 2374 return -ENOMEM; 2375 2376 return 0; 2377 } 2378 2379 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2380 /* 2381 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2382 * vma is the last one with address > vma->vm_end. Have to extend vma. 2383 */ 2384 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2385 { 2386 struct mm_struct *mm = vma->vm_mm; 2387 struct vm_area_struct *next; 2388 unsigned long gap_addr; 2389 int error = 0; 2390 2391 if (!(vma->vm_flags & VM_GROWSUP)) 2392 return -EFAULT; 2393 2394 /* Guard against exceeding limits of the address space. */ 2395 address &= PAGE_MASK; 2396 if (address >= (TASK_SIZE & PAGE_MASK)) 2397 return -ENOMEM; 2398 address += PAGE_SIZE; 2399 2400 /* Enforce stack_guard_gap */ 2401 gap_addr = address + stack_guard_gap; 2402 2403 /* Guard against overflow */ 2404 if (gap_addr < address || gap_addr > TASK_SIZE) 2405 gap_addr = TASK_SIZE; 2406 2407 next = vma->vm_next; 2408 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2409 if (!(next->vm_flags & VM_GROWSUP)) 2410 return -ENOMEM; 2411 /* Check that both stack segments have the same anon_vma? */ 2412 } 2413 2414 /* We must make sure the anon_vma is allocated. */ 2415 if (unlikely(anon_vma_prepare(vma))) 2416 return -ENOMEM; 2417 2418 /* 2419 * vma->vm_start/vm_end cannot change under us because the caller 2420 * is required to hold the mmap_lock in read mode. We need the 2421 * anon_vma lock to serialize against concurrent expand_stacks. 2422 */ 2423 anon_vma_lock_write(vma->anon_vma); 2424 2425 /* Somebody else might have raced and expanded it already */ 2426 if (address > vma->vm_end) { 2427 unsigned long size, grow; 2428 2429 size = address - vma->vm_start; 2430 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2431 2432 error = -ENOMEM; 2433 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2434 error = acct_stack_growth(vma, size, grow); 2435 if (!error) { 2436 /* 2437 * vma_gap_update() doesn't support concurrent 2438 * updates, but we only hold a shared mmap_lock 2439 * lock here, so we need to protect against 2440 * concurrent vma expansions. 2441 * anon_vma_lock_write() doesn't help here, as 2442 * we don't guarantee that all growable vmas 2443 * in a mm share the same root anon vma. 2444 * So, we reuse mm->page_table_lock to guard 2445 * against concurrent vma expansions. 2446 */ 2447 spin_lock(&mm->page_table_lock); 2448 if (vma->vm_flags & VM_LOCKED) 2449 mm->locked_vm += grow; 2450 vm_stat_account(mm, vma->vm_flags, grow); 2451 anon_vma_interval_tree_pre_update_vma(vma); 2452 vma->vm_end = address; 2453 anon_vma_interval_tree_post_update_vma(vma); 2454 if (vma->vm_next) 2455 vma_gap_update(vma->vm_next); 2456 else 2457 mm->highest_vm_end = vm_end_gap(vma); 2458 spin_unlock(&mm->page_table_lock); 2459 2460 perf_event_mmap(vma); 2461 } 2462 } 2463 } 2464 anon_vma_unlock_write(vma->anon_vma); 2465 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2466 validate_mm(mm); 2467 return error; 2468 } 2469 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2470 2471 /* 2472 * vma is the first one with address < vma->vm_start. Have to extend vma. 2473 */ 2474 int expand_downwards(struct vm_area_struct *vma, 2475 unsigned long address) 2476 { 2477 struct mm_struct *mm = vma->vm_mm; 2478 struct vm_area_struct *prev; 2479 int error = 0; 2480 2481 address &= PAGE_MASK; 2482 if (address < mmap_min_addr) 2483 return -EPERM; 2484 2485 /* Enforce stack_guard_gap */ 2486 prev = vma->vm_prev; 2487 /* Check that both stack segments have the same anon_vma? */ 2488 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2489 vma_is_accessible(prev)) { 2490 if (address - prev->vm_end < stack_guard_gap) 2491 return -ENOMEM; 2492 } 2493 2494 /* We must make sure the anon_vma is allocated. */ 2495 if (unlikely(anon_vma_prepare(vma))) 2496 return -ENOMEM; 2497 2498 /* 2499 * vma->vm_start/vm_end cannot change under us because the caller 2500 * is required to hold the mmap_lock in read mode. We need the 2501 * anon_vma lock to serialize against concurrent expand_stacks. 2502 */ 2503 anon_vma_lock_write(vma->anon_vma); 2504 2505 /* Somebody else might have raced and expanded it already */ 2506 if (address < vma->vm_start) { 2507 unsigned long size, grow; 2508 2509 size = vma->vm_end - address; 2510 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2511 2512 error = -ENOMEM; 2513 if (grow <= vma->vm_pgoff) { 2514 error = acct_stack_growth(vma, size, grow); 2515 if (!error) { 2516 /* 2517 * vma_gap_update() doesn't support concurrent 2518 * updates, but we only hold a shared mmap_lock 2519 * lock here, so we need to protect against 2520 * concurrent vma expansions. 2521 * anon_vma_lock_write() doesn't help here, as 2522 * we don't guarantee that all growable vmas 2523 * in a mm share the same root anon vma. 2524 * So, we reuse mm->page_table_lock to guard 2525 * against concurrent vma expansions. 2526 */ 2527 spin_lock(&mm->page_table_lock); 2528 if (vma->vm_flags & VM_LOCKED) 2529 mm->locked_vm += grow; 2530 vm_stat_account(mm, vma->vm_flags, grow); 2531 anon_vma_interval_tree_pre_update_vma(vma); 2532 vma->vm_start = address; 2533 vma->vm_pgoff -= grow; 2534 anon_vma_interval_tree_post_update_vma(vma); 2535 vma_gap_update(vma); 2536 spin_unlock(&mm->page_table_lock); 2537 2538 perf_event_mmap(vma); 2539 } 2540 } 2541 } 2542 anon_vma_unlock_write(vma->anon_vma); 2543 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2544 validate_mm(mm); 2545 return error; 2546 } 2547 2548 /* enforced gap between the expanding stack and other mappings. */ 2549 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2550 2551 static int __init cmdline_parse_stack_guard_gap(char *p) 2552 { 2553 unsigned long val; 2554 char *endptr; 2555 2556 val = simple_strtoul(p, &endptr, 10); 2557 if (!*endptr) 2558 stack_guard_gap = val << PAGE_SHIFT; 2559 2560 return 0; 2561 } 2562 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2563 2564 #ifdef CONFIG_STACK_GROWSUP 2565 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2566 { 2567 return expand_upwards(vma, address); 2568 } 2569 2570 struct vm_area_struct * 2571 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2572 { 2573 struct vm_area_struct *vma, *prev; 2574 2575 addr &= PAGE_MASK; 2576 vma = find_vma_prev(mm, addr, &prev); 2577 if (vma && (vma->vm_start <= addr)) 2578 return vma; 2579 /* don't alter vm_end if the coredump is running */ 2580 if (!prev || expand_stack(prev, addr)) 2581 return NULL; 2582 if (prev->vm_flags & VM_LOCKED) 2583 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2584 return prev; 2585 } 2586 #else 2587 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2588 { 2589 return expand_downwards(vma, address); 2590 } 2591 2592 struct vm_area_struct * 2593 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2594 { 2595 struct vm_area_struct *vma; 2596 unsigned long start; 2597 2598 addr &= PAGE_MASK; 2599 vma = find_vma(mm, addr); 2600 if (!vma) 2601 return NULL; 2602 if (vma->vm_start <= addr) 2603 return vma; 2604 if (!(vma->vm_flags & VM_GROWSDOWN)) 2605 return NULL; 2606 start = vma->vm_start; 2607 if (expand_stack(vma, addr)) 2608 return NULL; 2609 if (vma->vm_flags & VM_LOCKED) 2610 populate_vma_page_range(vma, addr, start, NULL); 2611 return vma; 2612 } 2613 #endif 2614 2615 EXPORT_SYMBOL_GPL(find_extend_vma); 2616 2617 /* 2618 * Ok - we have the memory areas we should free on the vma list, 2619 * so release them, and do the vma updates. 2620 * 2621 * Called with the mm semaphore held. 2622 */ 2623 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2624 { 2625 unsigned long nr_accounted = 0; 2626 2627 /* Update high watermark before we lower total_vm */ 2628 update_hiwater_vm(mm); 2629 do { 2630 long nrpages = vma_pages(vma); 2631 2632 if (vma->vm_flags & VM_ACCOUNT) 2633 nr_accounted += nrpages; 2634 vm_stat_account(mm, vma->vm_flags, -nrpages); 2635 vma = remove_vma(vma); 2636 } while (vma); 2637 vm_unacct_memory(nr_accounted); 2638 validate_mm(mm); 2639 } 2640 2641 /* 2642 * Get rid of page table information in the indicated region. 2643 * 2644 * Called with the mm semaphore held. 2645 */ 2646 static void unmap_region(struct mm_struct *mm, 2647 struct vm_area_struct *vma, struct vm_area_struct *prev, 2648 unsigned long start, unsigned long end) 2649 { 2650 struct vm_area_struct *next = vma_next(mm, prev); 2651 struct mmu_gather tlb; 2652 2653 lru_add_drain(); 2654 tlb_gather_mmu(&tlb, mm); 2655 update_hiwater_rss(mm); 2656 unmap_vmas(&tlb, vma, start, end); 2657 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2658 next ? next->vm_start : USER_PGTABLES_CEILING); 2659 tlb_finish_mmu(&tlb); 2660 } 2661 2662 /* 2663 * Create a list of vma's touched by the unmap, removing them from the mm's 2664 * vma list as we go.. 2665 */ 2666 static bool 2667 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2668 struct vm_area_struct *prev, unsigned long end) 2669 { 2670 struct vm_area_struct **insertion_point; 2671 struct vm_area_struct *tail_vma = NULL; 2672 2673 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2674 vma->vm_prev = NULL; 2675 do { 2676 vma_rb_erase(vma, &mm->mm_rb); 2677 mm->map_count--; 2678 tail_vma = vma; 2679 vma = vma->vm_next; 2680 } while (vma && vma->vm_start < end); 2681 *insertion_point = vma; 2682 if (vma) { 2683 vma->vm_prev = prev; 2684 vma_gap_update(vma); 2685 } else 2686 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2687 tail_vma->vm_next = NULL; 2688 2689 /* Kill the cache */ 2690 vmacache_invalidate(mm); 2691 2692 /* 2693 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2694 * VM_GROWSUP VMA. Such VMAs can change their size under 2695 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2696 */ 2697 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2698 return false; 2699 if (prev && (prev->vm_flags & VM_GROWSUP)) 2700 return false; 2701 return true; 2702 } 2703 2704 /* 2705 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2706 * has already been checked or doesn't make sense to fail. 2707 */ 2708 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2709 unsigned long addr, int new_below) 2710 { 2711 struct vm_area_struct *new; 2712 int err; 2713 2714 if (vma->vm_ops && vma->vm_ops->may_split) { 2715 err = vma->vm_ops->may_split(vma, addr); 2716 if (err) 2717 return err; 2718 } 2719 2720 new = vm_area_dup(vma); 2721 if (!new) 2722 return -ENOMEM; 2723 2724 if (new_below) 2725 new->vm_end = addr; 2726 else { 2727 new->vm_start = addr; 2728 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2729 } 2730 2731 err = vma_dup_policy(vma, new); 2732 if (err) 2733 goto out_free_vma; 2734 2735 err = anon_vma_clone(new, vma); 2736 if (err) 2737 goto out_free_mpol; 2738 2739 if (new->vm_file) 2740 get_file(new->vm_file); 2741 2742 if (new->vm_ops && new->vm_ops->open) 2743 new->vm_ops->open(new); 2744 2745 if (new_below) 2746 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2747 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2748 else 2749 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2750 2751 /* Success. */ 2752 if (!err) 2753 return 0; 2754 2755 /* Clean everything up if vma_adjust failed. */ 2756 if (new->vm_ops && new->vm_ops->close) 2757 new->vm_ops->close(new); 2758 if (new->vm_file) 2759 fput(new->vm_file); 2760 unlink_anon_vmas(new); 2761 out_free_mpol: 2762 mpol_put(vma_policy(new)); 2763 out_free_vma: 2764 vm_area_free(new); 2765 return err; 2766 } 2767 2768 /* 2769 * Split a vma into two pieces at address 'addr', a new vma is allocated 2770 * either for the first part or the tail. 2771 */ 2772 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2773 unsigned long addr, int new_below) 2774 { 2775 if (mm->map_count >= sysctl_max_map_count) 2776 return -ENOMEM; 2777 2778 return __split_vma(mm, vma, addr, new_below); 2779 } 2780 2781 static inline void 2782 unlock_range(struct vm_area_struct *start, unsigned long limit) 2783 { 2784 struct mm_struct *mm = start->vm_mm; 2785 struct vm_area_struct *tmp = start; 2786 2787 while (tmp && tmp->vm_start < limit) { 2788 if (tmp->vm_flags & VM_LOCKED) { 2789 mm->locked_vm -= vma_pages(tmp); 2790 munlock_vma_pages_all(tmp); 2791 } 2792 2793 tmp = tmp->vm_next; 2794 } 2795 } 2796 2797 /* Munmap is split into 2 main parts -- this part which finds 2798 * what needs doing, and the areas themselves, which do the 2799 * work. This now handles partial unmappings. 2800 * Jeremy Fitzhardinge <jeremy@goop.org> 2801 */ 2802 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2803 struct list_head *uf, bool downgrade) 2804 { 2805 unsigned long end; 2806 struct vm_area_struct *vma, *prev, *last; 2807 2808 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2809 return -EINVAL; 2810 2811 len = PAGE_ALIGN(len); 2812 end = start + len; 2813 if (len == 0) 2814 return -EINVAL; 2815 2816 /* 2817 * arch_unmap() might do unmaps itself. It must be called 2818 * and finish any rbtree manipulation before this code 2819 * runs and also starts to manipulate the rbtree. 2820 */ 2821 arch_unmap(mm, start, end); 2822 2823 /* Find the first overlapping VMA where start < vma->vm_end */ 2824 vma = find_vma_intersection(mm, start, end); 2825 if (!vma) 2826 return 0; 2827 prev = vma->vm_prev; 2828 2829 /* 2830 * If we need to split any vma, do it now to save pain later. 2831 * 2832 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2833 * unmapped vm_area_struct will remain in use: so lower split_vma 2834 * places tmp vma above, and higher split_vma places tmp vma below. 2835 */ 2836 if (start > vma->vm_start) { 2837 int error; 2838 2839 /* 2840 * Make sure that map_count on return from munmap() will 2841 * not exceed its limit; but let map_count go just above 2842 * its limit temporarily, to help free resources as expected. 2843 */ 2844 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2845 return -ENOMEM; 2846 2847 error = __split_vma(mm, vma, start, 0); 2848 if (error) 2849 return error; 2850 prev = vma; 2851 } 2852 2853 /* Does it split the last one? */ 2854 last = find_vma(mm, end); 2855 if (last && end > last->vm_start) { 2856 int error = __split_vma(mm, last, end, 1); 2857 if (error) 2858 return error; 2859 } 2860 vma = vma_next(mm, prev); 2861 2862 if (unlikely(uf)) { 2863 /* 2864 * If userfaultfd_unmap_prep returns an error the vmas 2865 * will remain split, but userland will get a 2866 * highly unexpected error anyway. This is no 2867 * different than the case where the first of the two 2868 * __split_vma fails, but we don't undo the first 2869 * split, despite we could. This is unlikely enough 2870 * failure that it's not worth optimizing it for. 2871 */ 2872 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2873 if (error) 2874 return error; 2875 } 2876 2877 /* 2878 * unlock any mlock()ed ranges before detaching vmas 2879 */ 2880 if (mm->locked_vm) 2881 unlock_range(vma, end); 2882 2883 /* Detach vmas from rbtree */ 2884 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2885 downgrade = false; 2886 2887 if (downgrade) 2888 mmap_write_downgrade(mm); 2889 2890 unmap_region(mm, vma, prev, start, end); 2891 2892 /* Fix up all other VM information */ 2893 remove_vma_list(mm, vma); 2894 2895 return downgrade ? 1 : 0; 2896 } 2897 2898 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2899 struct list_head *uf) 2900 { 2901 return __do_munmap(mm, start, len, uf, false); 2902 } 2903 2904 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2905 { 2906 int ret; 2907 struct mm_struct *mm = current->mm; 2908 LIST_HEAD(uf); 2909 2910 if (mmap_write_lock_killable(mm)) 2911 return -EINTR; 2912 2913 ret = __do_munmap(mm, start, len, &uf, downgrade); 2914 /* 2915 * Returning 1 indicates mmap_lock is downgraded. 2916 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2917 * it to 0 before return. 2918 */ 2919 if (ret == 1) { 2920 mmap_read_unlock(mm); 2921 ret = 0; 2922 } else 2923 mmap_write_unlock(mm); 2924 2925 userfaultfd_unmap_complete(mm, &uf); 2926 return ret; 2927 } 2928 2929 int vm_munmap(unsigned long start, size_t len) 2930 { 2931 return __vm_munmap(start, len, false); 2932 } 2933 EXPORT_SYMBOL(vm_munmap); 2934 2935 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2936 { 2937 addr = untagged_addr(addr); 2938 return __vm_munmap(addr, len, true); 2939 } 2940 2941 2942 /* 2943 * Emulation of deprecated remap_file_pages() syscall. 2944 */ 2945 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2946 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2947 { 2948 2949 struct mm_struct *mm = current->mm; 2950 struct vm_area_struct *vma; 2951 unsigned long populate = 0; 2952 unsigned long ret = -EINVAL; 2953 struct file *file; 2954 2955 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2956 current->comm, current->pid); 2957 2958 if (prot) 2959 return ret; 2960 start = start & PAGE_MASK; 2961 size = size & PAGE_MASK; 2962 2963 if (start + size <= start) 2964 return ret; 2965 2966 /* Does pgoff wrap? */ 2967 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2968 return ret; 2969 2970 if (mmap_write_lock_killable(mm)) 2971 return -EINTR; 2972 2973 vma = vma_lookup(mm, start); 2974 2975 if (!vma || !(vma->vm_flags & VM_SHARED)) 2976 goto out; 2977 2978 if (start + size > vma->vm_end) { 2979 struct vm_area_struct *next; 2980 2981 for (next = vma->vm_next; next; next = next->vm_next) { 2982 /* hole between vmas ? */ 2983 if (next->vm_start != next->vm_prev->vm_end) 2984 goto out; 2985 2986 if (next->vm_file != vma->vm_file) 2987 goto out; 2988 2989 if (next->vm_flags != vma->vm_flags) 2990 goto out; 2991 2992 if (start + size <= next->vm_end) 2993 break; 2994 } 2995 2996 if (!next) 2997 goto out; 2998 } 2999 3000 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3001 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3002 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3003 3004 flags &= MAP_NONBLOCK; 3005 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3006 if (vma->vm_flags & VM_LOCKED) 3007 flags |= MAP_LOCKED; 3008 3009 file = get_file(vma->vm_file); 3010 ret = do_mmap(vma->vm_file, start, size, 3011 prot, flags, pgoff, &populate, NULL); 3012 fput(file); 3013 out: 3014 mmap_write_unlock(mm); 3015 if (populate) 3016 mm_populate(ret, populate); 3017 if (!IS_ERR_VALUE(ret)) 3018 ret = 0; 3019 return ret; 3020 } 3021 3022 /* 3023 * this is really a simplified "do_mmap". it only handles 3024 * anonymous maps. eventually we may be able to do some 3025 * brk-specific accounting here. 3026 */ 3027 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3028 { 3029 struct mm_struct *mm = current->mm; 3030 struct vm_area_struct *vma, *prev; 3031 struct rb_node **rb_link, *rb_parent; 3032 pgoff_t pgoff = addr >> PAGE_SHIFT; 3033 int error; 3034 unsigned long mapped_addr; 3035 3036 /* Until we need other flags, refuse anything except VM_EXEC. */ 3037 if ((flags & (~VM_EXEC)) != 0) 3038 return -EINVAL; 3039 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3040 3041 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3042 if (IS_ERR_VALUE(mapped_addr)) 3043 return mapped_addr; 3044 3045 error = mlock_future_check(mm, mm->def_flags, len); 3046 if (error) 3047 return error; 3048 3049 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3050 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3051 return -ENOMEM; 3052 3053 /* Check against address space limits *after* clearing old maps... */ 3054 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3055 return -ENOMEM; 3056 3057 if (mm->map_count > sysctl_max_map_count) 3058 return -ENOMEM; 3059 3060 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3061 return -ENOMEM; 3062 3063 /* Can we just expand an old private anonymous mapping? */ 3064 vma = vma_merge(mm, prev, addr, addr + len, flags, 3065 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 3066 if (vma) 3067 goto out; 3068 3069 /* 3070 * create a vma struct for an anonymous mapping 3071 */ 3072 vma = vm_area_alloc(mm); 3073 if (!vma) { 3074 vm_unacct_memory(len >> PAGE_SHIFT); 3075 return -ENOMEM; 3076 } 3077 3078 vma_set_anonymous(vma); 3079 vma->vm_start = addr; 3080 vma->vm_end = addr + len; 3081 vma->vm_pgoff = pgoff; 3082 vma->vm_flags = flags; 3083 vma->vm_page_prot = vm_get_page_prot(flags); 3084 vma_link(mm, vma, prev, rb_link, rb_parent); 3085 out: 3086 perf_event_mmap(vma); 3087 mm->total_vm += len >> PAGE_SHIFT; 3088 mm->data_vm += len >> PAGE_SHIFT; 3089 if (flags & VM_LOCKED) 3090 mm->locked_vm += (len >> PAGE_SHIFT); 3091 vma->vm_flags |= VM_SOFTDIRTY; 3092 return 0; 3093 } 3094 3095 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3096 { 3097 struct mm_struct *mm = current->mm; 3098 unsigned long len; 3099 int ret; 3100 bool populate; 3101 LIST_HEAD(uf); 3102 3103 len = PAGE_ALIGN(request); 3104 if (len < request) 3105 return -ENOMEM; 3106 if (!len) 3107 return 0; 3108 3109 if (mmap_write_lock_killable(mm)) 3110 return -EINTR; 3111 3112 ret = do_brk_flags(addr, len, flags, &uf); 3113 populate = ((mm->def_flags & VM_LOCKED) != 0); 3114 mmap_write_unlock(mm); 3115 userfaultfd_unmap_complete(mm, &uf); 3116 if (populate && !ret) 3117 mm_populate(addr, len); 3118 return ret; 3119 } 3120 EXPORT_SYMBOL(vm_brk_flags); 3121 3122 int vm_brk(unsigned long addr, unsigned long len) 3123 { 3124 return vm_brk_flags(addr, len, 0); 3125 } 3126 EXPORT_SYMBOL(vm_brk); 3127 3128 /* Release all mmaps. */ 3129 void exit_mmap(struct mm_struct *mm) 3130 { 3131 struct mmu_gather tlb; 3132 struct vm_area_struct *vma; 3133 unsigned long nr_accounted = 0; 3134 3135 /* mm's last user has gone, and its about to be pulled down */ 3136 mmu_notifier_release(mm); 3137 3138 if (unlikely(mm_is_oom_victim(mm))) { 3139 /* 3140 * Manually reap the mm to free as much memory as possible. 3141 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3142 * this mm from further consideration. Taking mm->mmap_lock for 3143 * write after setting MMF_OOM_SKIP will guarantee that the oom 3144 * reaper will not run on this mm again after mmap_lock is 3145 * dropped. 3146 * 3147 * Nothing can be holding mm->mmap_lock here and the above call 3148 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3149 * __oom_reap_task_mm() will not block. 3150 * 3151 * This needs to be done before calling unlock_range(), 3152 * which clears VM_LOCKED, otherwise the oom reaper cannot 3153 * reliably test it. 3154 */ 3155 (void)__oom_reap_task_mm(mm); 3156 3157 set_bit(MMF_OOM_SKIP, &mm->flags); 3158 } 3159 3160 mmap_write_lock(mm); 3161 if (mm->locked_vm) 3162 unlock_range(mm->mmap, ULONG_MAX); 3163 3164 arch_exit_mmap(mm); 3165 3166 vma = mm->mmap; 3167 if (!vma) { 3168 /* Can happen if dup_mmap() received an OOM */ 3169 mmap_write_unlock(mm); 3170 return; 3171 } 3172 3173 lru_add_drain(); 3174 flush_cache_mm(mm); 3175 tlb_gather_mmu_fullmm(&tlb, mm); 3176 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3177 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3178 unmap_vmas(&tlb, vma, 0, -1); 3179 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3180 tlb_finish_mmu(&tlb); 3181 3182 /* Walk the list again, actually closing and freeing it. */ 3183 while (vma) { 3184 if (vma->vm_flags & VM_ACCOUNT) 3185 nr_accounted += vma_pages(vma); 3186 vma = remove_vma(vma); 3187 cond_resched(); 3188 } 3189 mm->mmap = NULL; 3190 mmap_write_unlock(mm); 3191 vm_unacct_memory(nr_accounted); 3192 } 3193 3194 /* Insert vm structure into process list sorted by address 3195 * and into the inode's i_mmap tree. If vm_file is non-NULL 3196 * then i_mmap_rwsem is taken here. 3197 */ 3198 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3199 { 3200 struct vm_area_struct *prev; 3201 struct rb_node **rb_link, *rb_parent; 3202 3203 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3204 &prev, &rb_link, &rb_parent)) 3205 return -ENOMEM; 3206 if ((vma->vm_flags & VM_ACCOUNT) && 3207 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3208 return -ENOMEM; 3209 3210 /* 3211 * The vm_pgoff of a purely anonymous vma should be irrelevant 3212 * until its first write fault, when page's anon_vma and index 3213 * are set. But now set the vm_pgoff it will almost certainly 3214 * end up with (unless mremap moves it elsewhere before that 3215 * first wfault), so /proc/pid/maps tells a consistent story. 3216 * 3217 * By setting it to reflect the virtual start address of the 3218 * vma, merges and splits can happen in a seamless way, just 3219 * using the existing file pgoff checks and manipulations. 3220 * Similarly in do_mmap and in do_brk_flags. 3221 */ 3222 if (vma_is_anonymous(vma)) { 3223 BUG_ON(vma->anon_vma); 3224 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3225 } 3226 3227 vma_link(mm, vma, prev, rb_link, rb_parent); 3228 return 0; 3229 } 3230 3231 /* 3232 * Copy the vma structure to a new location in the same mm, 3233 * prior to moving page table entries, to effect an mremap move. 3234 */ 3235 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3236 unsigned long addr, unsigned long len, pgoff_t pgoff, 3237 bool *need_rmap_locks) 3238 { 3239 struct vm_area_struct *vma = *vmap; 3240 unsigned long vma_start = vma->vm_start; 3241 struct mm_struct *mm = vma->vm_mm; 3242 struct vm_area_struct *new_vma, *prev; 3243 struct rb_node **rb_link, *rb_parent; 3244 bool faulted_in_anon_vma = true; 3245 3246 /* 3247 * If anonymous vma has not yet been faulted, update new pgoff 3248 * to match new location, to increase its chance of merging. 3249 */ 3250 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3251 pgoff = addr >> PAGE_SHIFT; 3252 faulted_in_anon_vma = false; 3253 } 3254 3255 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3256 return NULL; /* should never get here */ 3257 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3258 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3259 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3260 if (new_vma) { 3261 /* 3262 * Source vma may have been merged into new_vma 3263 */ 3264 if (unlikely(vma_start >= new_vma->vm_start && 3265 vma_start < new_vma->vm_end)) { 3266 /* 3267 * The only way we can get a vma_merge with 3268 * self during an mremap is if the vma hasn't 3269 * been faulted in yet and we were allowed to 3270 * reset the dst vma->vm_pgoff to the 3271 * destination address of the mremap to allow 3272 * the merge to happen. mremap must change the 3273 * vm_pgoff linearity between src and dst vmas 3274 * (in turn preventing a vma_merge) to be 3275 * safe. It is only safe to keep the vm_pgoff 3276 * linear if there are no pages mapped yet. 3277 */ 3278 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3279 *vmap = vma = new_vma; 3280 } 3281 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3282 } else { 3283 new_vma = vm_area_dup(vma); 3284 if (!new_vma) 3285 goto out; 3286 new_vma->vm_start = addr; 3287 new_vma->vm_end = addr + len; 3288 new_vma->vm_pgoff = pgoff; 3289 if (vma_dup_policy(vma, new_vma)) 3290 goto out_free_vma; 3291 if (anon_vma_clone(new_vma, vma)) 3292 goto out_free_mempol; 3293 if (new_vma->vm_file) 3294 get_file(new_vma->vm_file); 3295 if (new_vma->vm_ops && new_vma->vm_ops->open) 3296 new_vma->vm_ops->open(new_vma); 3297 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3298 *need_rmap_locks = false; 3299 } 3300 return new_vma; 3301 3302 out_free_mempol: 3303 mpol_put(vma_policy(new_vma)); 3304 out_free_vma: 3305 vm_area_free(new_vma); 3306 out: 3307 return NULL; 3308 } 3309 3310 /* 3311 * Return true if the calling process may expand its vm space by the passed 3312 * number of pages 3313 */ 3314 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3315 { 3316 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3317 return false; 3318 3319 if (is_data_mapping(flags) && 3320 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3321 /* Workaround for Valgrind */ 3322 if (rlimit(RLIMIT_DATA) == 0 && 3323 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3324 return true; 3325 3326 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3327 current->comm, current->pid, 3328 (mm->data_vm + npages) << PAGE_SHIFT, 3329 rlimit(RLIMIT_DATA), 3330 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3331 3332 if (!ignore_rlimit_data) 3333 return false; 3334 } 3335 3336 return true; 3337 } 3338 3339 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3340 { 3341 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3342 3343 if (is_exec_mapping(flags)) 3344 mm->exec_vm += npages; 3345 else if (is_stack_mapping(flags)) 3346 mm->stack_vm += npages; 3347 else if (is_data_mapping(flags)) 3348 mm->data_vm += npages; 3349 } 3350 3351 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3352 3353 /* 3354 * Having a close hook prevents vma merging regardless of flags. 3355 */ 3356 static void special_mapping_close(struct vm_area_struct *vma) 3357 { 3358 } 3359 3360 static const char *special_mapping_name(struct vm_area_struct *vma) 3361 { 3362 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3363 } 3364 3365 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3366 { 3367 struct vm_special_mapping *sm = new_vma->vm_private_data; 3368 3369 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3370 return -EFAULT; 3371 3372 if (sm->mremap) 3373 return sm->mremap(sm, new_vma); 3374 3375 return 0; 3376 } 3377 3378 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3379 { 3380 /* 3381 * Forbid splitting special mappings - kernel has expectations over 3382 * the number of pages in mapping. Together with VM_DONTEXPAND 3383 * the size of vma should stay the same over the special mapping's 3384 * lifetime. 3385 */ 3386 return -EINVAL; 3387 } 3388 3389 static const struct vm_operations_struct special_mapping_vmops = { 3390 .close = special_mapping_close, 3391 .fault = special_mapping_fault, 3392 .mremap = special_mapping_mremap, 3393 .name = special_mapping_name, 3394 /* vDSO code relies that VVAR can't be accessed remotely */ 3395 .access = NULL, 3396 .may_split = special_mapping_split, 3397 }; 3398 3399 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3400 .close = special_mapping_close, 3401 .fault = special_mapping_fault, 3402 }; 3403 3404 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3405 { 3406 struct vm_area_struct *vma = vmf->vma; 3407 pgoff_t pgoff; 3408 struct page **pages; 3409 3410 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3411 pages = vma->vm_private_data; 3412 } else { 3413 struct vm_special_mapping *sm = vma->vm_private_data; 3414 3415 if (sm->fault) 3416 return sm->fault(sm, vmf->vma, vmf); 3417 3418 pages = sm->pages; 3419 } 3420 3421 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3422 pgoff--; 3423 3424 if (*pages) { 3425 struct page *page = *pages; 3426 get_page(page); 3427 vmf->page = page; 3428 return 0; 3429 } 3430 3431 return VM_FAULT_SIGBUS; 3432 } 3433 3434 static struct vm_area_struct *__install_special_mapping( 3435 struct mm_struct *mm, 3436 unsigned long addr, unsigned long len, 3437 unsigned long vm_flags, void *priv, 3438 const struct vm_operations_struct *ops) 3439 { 3440 int ret; 3441 struct vm_area_struct *vma; 3442 3443 vma = vm_area_alloc(mm); 3444 if (unlikely(vma == NULL)) 3445 return ERR_PTR(-ENOMEM); 3446 3447 vma->vm_start = addr; 3448 vma->vm_end = addr + len; 3449 3450 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3451 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3452 3453 vma->vm_ops = ops; 3454 vma->vm_private_data = priv; 3455 3456 ret = insert_vm_struct(mm, vma); 3457 if (ret) 3458 goto out; 3459 3460 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3461 3462 perf_event_mmap(vma); 3463 3464 return vma; 3465 3466 out: 3467 vm_area_free(vma); 3468 return ERR_PTR(ret); 3469 } 3470 3471 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3472 const struct vm_special_mapping *sm) 3473 { 3474 return vma->vm_private_data == sm && 3475 (vma->vm_ops == &special_mapping_vmops || 3476 vma->vm_ops == &legacy_special_mapping_vmops); 3477 } 3478 3479 /* 3480 * Called with mm->mmap_lock held for writing. 3481 * Insert a new vma covering the given region, with the given flags. 3482 * Its pages are supplied by the given array of struct page *. 3483 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3484 * The region past the last page supplied will always produce SIGBUS. 3485 * The array pointer and the pages it points to are assumed to stay alive 3486 * for as long as this mapping might exist. 3487 */ 3488 struct vm_area_struct *_install_special_mapping( 3489 struct mm_struct *mm, 3490 unsigned long addr, unsigned long len, 3491 unsigned long vm_flags, const struct vm_special_mapping *spec) 3492 { 3493 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3494 &special_mapping_vmops); 3495 } 3496 3497 int install_special_mapping(struct mm_struct *mm, 3498 unsigned long addr, unsigned long len, 3499 unsigned long vm_flags, struct page **pages) 3500 { 3501 struct vm_area_struct *vma = __install_special_mapping( 3502 mm, addr, len, vm_flags, (void *)pages, 3503 &legacy_special_mapping_vmops); 3504 3505 return PTR_ERR_OR_ZERO(vma); 3506 } 3507 3508 static DEFINE_MUTEX(mm_all_locks_mutex); 3509 3510 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3511 { 3512 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3513 /* 3514 * The LSB of head.next can't change from under us 3515 * because we hold the mm_all_locks_mutex. 3516 */ 3517 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3518 /* 3519 * We can safely modify head.next after taking the 3520 * anon_vma->root->rwsem. If some other vma in this mm shares 3521 * the same anon_vma we won't take it again. 3522 * 3523 * No need of atomic instructions here, head.next 3524 * can't change from under us thanks to the 3525 * anon_vma->root->rwsem. 3526 */ 3527 if (__test_and_set_bit(0, (unsigned long *) 3528 &anon_vma->root->rb_root.rb_root.rb_node)) 3529 BUG(); 3530 } 3531 } 3532 3533 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3534 { 3535 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3536 /* 3537 * AS_MM_ALL_LOCKS can't change from under us because 3538 * we hold the mm_all_locks_mutex. 3539 * 3540 * Operations on ->flags have to be atomic because 3541 * even if AS_MM_ALL_LOCKS is stable thanks to the 3542 * mm_all_locks_mutex, there may be other cpus 3543 * changing other bitflags in parallel to us. 3544 */ 3545 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3546 BUG(); 3547 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3548 } 3549 } 3550 3551 /* 3552 * This operation locks against the VM for all pte/vma/mm related 3553 * operations that could ever happen on a certain mm. This includes 3554 * vmtruncate, try_to_unmap, and all page faults. 3555 * 3556 * The caller must take the mmap_lock in write mode before calling 3557 * mm_take_all_locks(). The caller isn't allowed to release the 3558 * mmap_lock until mm_drop_all_locks() returns. 3559 * 3560 * mmap_lock in write mode is required in order to block all operations 3561 * that could modify pagetables and free pages without need of 3562 * altering the vma layout. It's also needed in write mode to avoid new 3563 * anon_vmas to be associated with existing vmas. 3564 * 3565 * A single task can't take more than one mm_take_all_locks() in a row 3566 * or it would deadlock. 3567 * 3568 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3569 * mapping->flags avoid to take the same lock twice, if more than one 3570 * vma in this mm is backed by the same anon_vma or address_space. 3571 * 3572 * We take locks in following order, accordingly to comment at beginning 3573 * of mm/rmap.c: 3574 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3575 * hugetlb mapping); 3576 * - all i_mmap_rwsem locks; 3577 * - all anon_vma->rwseml 3578 * 3579 * We can take all locks within these types randomly because the VM code 3580 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3581 * mm_all_locks_mutex. 3582 * 3583 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3584 * that may have to take thousand of locks. 3585 * 3586 * mm_take_all_locks() can fail if it's interrupted by signals. 3587 */ 3588 int mm_take_all_locks(struct mm_struct *mm) 3589 { 3590 struct vm_area_struct *vma; 3591 struct anon_vma_chain *avc; 3592 3593 BUG_ON(mmap_read_trylock(mm)); 3594 3595 mutex_lock(&mm_all_locks_mutex); 3596 3597 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3598 if (signal_pending(current)) 3599 goto out_unlock; 3600 if (vma->vm_file && vma->vm_file->f_mapping && 3601 is_vm_hugetlb_page(vma)) 3602 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3603 } 3604 3605 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3606 if (signal_pending(current)) 3607 goto out_unlock; 3608 if (vma->vm_file && vma->vm_file->f_mapping && 3609 !is_vm_hugetlb_page(vma)) 3610 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3611 } 3612 3613 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3614 if (signal_pending(current)) 3615 goto out_unlock; 3616 if (vma->anon_vma) 3617 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3618 vm_lock_anon_vma(mm, avc->anon_vma); 3619 } 3620 3621 return 0; 3622 3623 out_unlock: 3624 mm_drop_all_locks(mm); 3625 return -EINTR; 3626 } 3627 3628 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3629 { 3630 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3631 /* 3632 * The LSB of head.next can't change to 0 from under 3633 * us because we hold the mm_all_locks_mutex. 3634 * 3635 * We must however clear the bitflag before unlocking 3636 * the vma so the users using the anon_vma->rb_root will 3637 * never see our bitflag. 3638 * 3639 * No need of atomic instructions here, head.next 3640 * can't change from under us until we release the 3641 * anon_vma->root->rwsem. 3642 */ 3643 if (!__test_and_clear_bit(0, (unsigned long *) 3644 &anon_vma->root->rb_root.rb_root.rb_node)) 3645 BUG(); 3646 anon_vma_unlock_write(anon_vma); 3647 } 3648 } 3649 3650 static void vm_unlock_mapping(struct address_space *mapping) 3651 { 3652 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3653 /* 3654 * AS_MM_ALL_LOCKS can't change to 0 from under us 3655 * because we hold the mm_all_locks_mutex. 3656 */ 3657 i_mmap_unlock_write(mapping); 3658 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3659 &mapping->flags)) 3660 BUG(); 3661 } 3662 } 3663 3664 /* 3665 * The mmap_lock cannot be released by the caller until 3666 * mm_drop_all_locks() returns. 3667 */ 3668 void mm_drop_all_locks(struct mm_struct *mm) 3669 { 3670 struct vm_area_struct *vma; 3671 struct anon_vma_chain *avc; 3672 3673 BUG_ON(mmap_read_trylock(mm)); 3674 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3675 3676 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3677 if (vma->anon_vma) 3678 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3679 vm_unlock_anon_vma(avc->anon_vma); 3680 if (vma->vm_file && vma->vm_file->f_mapping) 3681 vm_unlock_mapping(vma->vm_file->f_mapping); 3682 } 3683 3684 mutex_unlock(&mm_all_locks_mutex); 3685 } 3686 3687 /* 3688 * initialise the percpu counter for VM 3689 */ 3690 void __init mmap_init(void) 3691 { 3692 int ret; 3693 3694 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3695 VM_BUG_ON(ret); 3696 } 3697 3698 /* 3699 * Initialise sysctl_user_reserve_kbytes. 3700 * 3701 * This is intended to prevent a user from starting a single memory hogging 3702 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3703 * mode. 3704 * 3705 * The default value is min(3% of free memory, 128MB) 3706 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3707 */ 3708 static int init_user_reserve(void) 3709 { 3710 unsigned long free_kbytes; 3711 3712 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3713 3714 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3715 return 0; 3716 } 3717 subsys_initcall(init_user_reserve); 3718 3719 /* 3720 * Initialise sysctl_admin_reserve_kbytes. 3721 * 3722 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3723 * to log in and kill a memory hogging process. 3724 * 3725 * Systems with more than 256MB will reserve 8MB, enough to recover 3726 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3727 * only reserve 3% of free pages by default. 3728 */ 3729 static int init_admin_reserve(void) 3730 { 3731 unsigned long free_kbytes; 3732 3733 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3734 3735 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3736 return 0; 3737 } 3738 subsys_initcall(init_admin_reserve); 3739 3740 /* 3741 * Reinititalise user and admin reserves if memory is added or removed. 3742 * 3743 * The default user reserve max is 128MB, and the default max for the 3744 * admin reserve is 8MB. These are usually, but not always, enough to 3745 * enable recovery from a memory hogging process using login/sshd, a shell, 3746 * and tools like top. It may make sense to increase or even disable the 3747 * reserve depending on the existence of swap or variations in the recovery 3748 * tools. So, the admin may have changed them. 3749 * 3750 * If memory is added and the reserves have been eliminated or increased above 3751 * the default max, then we'll trust the admin. 3752 * 3753 * If memory is removed and there isn't enough free memory, then we 3754 * need to reset the reserves. 3755 * 3756 * Otherwise keep the reserve set by the admin. 3757 */ 3758 static int reserve_mem_notifier(struct notifier_block *nb, 3759 unsigned long action, void *data) 3760 { 3761 unsigned long tmp, free_kbytes; 3762 3763 switch (action) { 3764 case MEM_ONLINE: 3765 /* Default max is 128MB. Leave alone if modified by operator. */ 3766 tmp = sysctl_user_reserve_kbytes; 3767 if (0 < tmp && tmp < (1UL << 17)) 3768 init_user_reserve(); 3769 3770 /* Default max is 8MB. Leave alone if modified by operator. */ 3771 tmp = sysctl_admin_reserve_kbytes; 3772 if (0 < tmp && tmp < (1UL << 13)) 3773 init_admin_reserve(); 3774 3775 break; 3776 case MEM_OFFLINE: 3777 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3778 3779 if (sysctl_user_reserve_kbytes > free_kbytes) { 3780 init_user_reserve(); 3781 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3782 sysctl_user_reserve_kbytes); 3783 } 3784 3785 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3786 init_admin_reserve(); 3787 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3788 sysctl_admin_reserve_kbytes); 3789 } 3790 break; 3791 default: 3792 break; 3793 } 3794 return NOTIFY_OK; 3795 } 3796 3797 static struct notifier_block reserve_mem_nb = { 3798 .notifier_call = reserve_mem_notifier, 3799 }; 3800 3801 static int __meminit init_reserve_notifier(void) 3802 { 3803 if (register_hotmemory_notifier(&reserve_mem_nb)) 3804 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3805 3806 return 0; 3807 } 3808 subsys_initcall(init_reserve_notifier); 3809