xref: /openbmc/linux/mm/mmap.c (revision 5478afc5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57 
58 #include "internal.h"
59 
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)	(0)
62 #endif
63 
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74 
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77 
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 		struct vm_area_struct *vma, struct vm_area_struct *prev,
80 		struct vm_area_struct *next, unsigned long start,
81 		unsigned long end);
82 
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87 
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91 	unsigned long vm_flags = vma->vm_flags;
92 	pgprot_t vm_page_prot;
93 
94 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 	if (vma_wants_writenotify(vma, vm_page_prot)) {
96 		vm_flags &= ~VM_SHARED;
97 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98 	}
99 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102 
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 		struct file *file, struct address_space *mapping)
108 {
109 	if (vma->vm_flags & VM_SHARED)
110 		mapping_unmap_writable(mapping);
111 
112 	flush_dcache_mmap_lock(mapping);
113 	vma_interval_tree_remove(vma, &mapping->i_mmap);
114 	flush_dcache_mmap_unlock(mapping);
115 }
116 
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123 	struct file *file = vma->vm_file;
124 
125 	if (file) {
126 		struct address_space *mapping = file->f_mapping;
127 		i_mmap_lock_write(mapping);
128 		__remove_shared_vm_struct(vma, file, mapping);
129 		i_mmap_unlock_write(mapping);
130 	}
131 }
132 
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma)
137 {
138 	might_sleep();
139 	if (vma->vm_ops && vma->vm_ops->close)
140 		vma->vm_ops->close(vma);
141 	if (vma->vm_file)
142 		fput(vma->vm_file);
143 	mpol_put(vma_policy(vma));
144 	vm_area_free(vma);
145 }
146 
147 /*
148  * check_brk_limits() - Use platform specific check of range & verify mlock
149  * limits.
150  * @addr: The address to check
151  * @len: The size of increase.
152  *
153  * Return: 0 on success.
154  */
155 static int check_brk_limits(unsigned long addr, unsigned long len)
156 {
157 	unsigned long mapped_addr;
158 
159 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 	if (IS_ERR_VALUE(mapped_addr))
161 		return mapped_addr;
162 
163 	return mlock_future_check(current->mm, current->mm->def_flags, len);
164 }
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 			 unsigned long newbrk, unsigned long oldbrk,
167 			 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 		unsigned long addr, unsigned long request, unsigned long flags);
170 SYSCALL_DEFINE1(brk, unsigned long, brk)
171 {
172 	unsigned long newbrk, oldbrk, origbrk;
173 	struct mm_struct *mm = current->mm;
174 	struct vm_area_struct *brkvma, *next = NULL;
175 	unsigned long min_brk;
176 	bool populate;
177 	bool downgraded = false;
178 	LIST_HEAD(uf);
179 	MA_STATE(mas, &mm->mm_mt, 0, 0);
180 
181 	if (mmap_write_lock_killable(mm))
182 		return -EINTR;
183 
184 	origbrk = mm->brk;
185 
186 #ifdef CONFIG_COMPAT_BRK
187 	/*
188 	 * CONFIG_COMPAT_BRK can still be overridden by setting
189 	 * randomize_va_space to 2, which will still cause mm->start_brk
190 	 * to be arbitrarily shifted
191 	 */
192 	if (current->brk_randomized)
193 		min_brk = mm->start_brk;
194 	else
195 		min_brk = mm->end_data;
196 #else
197 	min_brk = mm->start_brk;
198 #endif
199 	if (brk < min_brk)
200 		goto out;
201 
202 	/*
203 	 * Check against rlimit here. If this check is done later after the test
204 	 * of oldbrk with newbrk then it can escape the test and let the data
205 	 * segment grow beyond its set limit the in case where the limit is
206 	 * not page aligned -Ram Gupta
207 	 */
208 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 			      mm->end_data, mm->start_data))
210 		goto out;
211 
212 	newbrk = PAGE_ALIGN(brk);
213 	oldbrk = PAGE_ALIGN(mm->brk);
214 	if (oldbrk == newbrk) {
215 		mm->brk = brk;
216 		goto success;
217 	}
218 
219 	/*
220 	 * Always allow shrinking brk.
221 	 * do_brk_munmap() may downgrade mmap_lock to read.
222 	 */
223 	if (brk <= mm->brk) {
224 		int ret;
225 
226 		/* Search one past newbrk */
227 		mas_set(&mas, newbrk);
228 		brkvma = mas_find(&mas, oldbrk);
229 		if (!brkvma || brkvma->vm_start >= oldbrk)
230 			goto out; /* mapping intersects with an existing non-brk vma. */
231 		/*
232 		 * mm->brk must be protected by write mmap_lock.
233 		 * do_brk_munmap() may downgrade the lock,  so update it
234 		 * before calling do_brk_munmap().
235 		 */
236 		mm->brk = brk;
237 		ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
238 		if (ret == 1)  {
239 			downgraded = true;
240 			goto success;
241 		} else if (!ret)
242 			goto success;
243 
244 		mm->brk = origbrk;
245 		goto out;
246 	}
247 
248 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
249 		goto out;
250 
251 	/*
252 	 * Only check if the next VMA is within the stack_guard_gap of the
253 	 * expansion area
254 	 */
255 	mas_set(&mas, oldbrk);
256 	next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
257 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
258 		goto out;
259 
260 	brkvma = mas_prev(&mas, mm->start_brk);
261 	/* Ok, looks good - let it rip. */
262 	if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
263 		goto out;
264 
265 	mm->brk = brk;
266 
267 success:
268 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
269 	if (downgraded)
270 		mmap_read_unlock(mm);
271 	else
272 		mmap_write_unlock(mm);
273 	userfaultfd_unmap_complete(mm, &uf);
274 	if (populate)
275 		mm_populate(oldbrk, newbrk - oldbrk);
276 	return brk;
277 
278 out:
279 	mmap_write_unlock(mm);
280 	return origbrk;
281 }
282 
283 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
284 extern void mt_validate(struct maple_tree *mt);
285 extern void mt_dump(const struct maple_tree *mt);
286 
287 /* Validate the maple tree */
288 static void validate_mm_mt(struct mm_struct *mm)
289 {
290 	struct maple_tree *mt = &mm->mm_mt;
291 	struct vm_area_struct *vma_mt;
292 
293 	MA_STATE(mas, mt, 0, 0);
294 
295 	mt_validate(&mm->mm_mt);
296 	mas_for_each(&mas, vma_mt, ULONG_MAX) {
297 		if ((vma_mt->vm_start != mas.index) ||
298 		    (vma_mt->vm_end - 1 != mas.last)) {
299 			pr_emerg("issue in %s\n", current->comm);
300 			dump_stack();
301 			dump_vma(vma_mt);
302 			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
303 				 mas.index, mas.last);
304 			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
305 				 vma_mt->vm_start, vma_mt->vm_end);
306 
307 			mt_dump(mas.tree);
308 			if (vma_mt->vm_end != mas.last + 1) {
309 				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
310 						mm, vma_mt->vm_start, vma_mt->vm_end,
311 						mas.index, mas.last);
312 				mt_dump(mas.tree);
313 			}
314 			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
315 			if (vma_mt->vm_start != mas.index) {
316 				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
317 						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
318 				mt_dump(mas.tree);
319 			}
320 			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
321 		}
322 	}
323 }
324 
325 static void validate_mm(struct mm_struct *mm)
326 {
327 	int bug = 0;
328 	int i = 0;
329 	struct vm_area_struct *vma;
330 	MA_STATE(mas, &mm->mm_mt, 0, 0);
331 
332 	validate_mm_mt(mm);
333 
334 	mas_for_each(&mas, vma, ULONG_MAX) {
335 #ifdef CONFIG_DEBUG_VM_RB
336 		struct anon_vma *anon_vma = vma->anon_vma;
337 		struct anon_vma_chain *avc;
338 
339 		if (anon_vma) {
340 			anon_vma_lock_read(anon_vma);
341 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342 				anon_vma_interval_tree_verify(avc);
343 			anon_vma_unlock_read(anon_vma);
344 		}
345 #endif
346 		i++;
347 	}
348 	if (i != mm->map_count) {
349 		pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
350 		bug = 1;
351 	}
352 	VM_BUG_ON_MM(bug, mm);
353 }
354 
355 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
356 #define validate_mm_mt(root) do { } while (0)
357 #define validate_mm(mm) do { } while (0)
358 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
359 
360 /*
361  * vma has some anon_vma assigned, and is already inserted on that
362  * anon_vma's interval trees.
363  *
364  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
365  * vma must be removed from the anon_vma's interval trees using
366  * anon_vma_interval_tree_pre_update_vma().
367  *
368  * After the update, the vma will be reinserted using
369  * anon_vma_interval_tree_post_update_vma().
370  *
371  * The entire update must be protected by exclusive mmap_lock and by
372  * the root anon_vma's mutex.
373  */
374 static inline void
375 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
376 {
377 	struct anon_vma_chain *avc;
378 
379 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
380 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
381 }
382 
383 static inline void
384 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
385 {
386 	struct anon_vma_chain *avc;
387 
388 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
389 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
390 }
391 
392 static unsigned long count_vma_pages_range(struct mm_struct *mm,
393 		unsigned long addr, unsigned long end)
394 {
395 	VMA_ITERATOR(vmi, mm, addr);
396 	struct vm_area_struct *vma;
397 	unsigned long nr_pages = 0;
398 
399 	for_each_vma_range(vmi, vma, end) {
400 		unsigned long vm_start = max(addr, vma->vm_start);
401 		unsigned long vm_end = min(end, vma->vm_end);
402 
403 		nr_pages += PHYS_PFN(vm_end - vm_start);
404 	}
405 
406 	return nr_pages;
407 }
408 
409 static void __vma_link_file(struct vm_area_struct *vma,
410 			    struct address_space *mapping)
411 {
412 	if (vma->vm_flags & VM_SHARED)
413 		mapping_allow_writable(mapping);
414 
415 	flush_dcache_mmap_lock(mapping);
416 	vma_interval_tree_insert(vma, &mapping->i_mmap);
417 	flush_dcache_mmap_unlock(mapping);
418 }
419 
420 /*
421  * vma_mas_store() - Store a VMA in the maple tree.
422  * @vma: The vm_area_struct
423  * @mas: The maple state
424  *
425  * Efficient way to store a VMA in the maple tree when the @mas has already
426  * walked to the correct location.
427  *
428  * Note: the end address is inclusive in the maple tree.
429  */
430 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
431 {
432 	trace_vma_store(mas->tree, vma);
433 	mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
434 	mas_store_prealloc(mas, vma);
435 }
436 
437 /*
438  * vma_mas_remove() - Remove a VMA from the maple tree.
439  * @vma: The vm_area_struct
440  * @mas: The maple state
441  *
442  * Efficient way to remove a VMA from the maple tree when the @mas has already
443  * been established and points to the correct location.
444  * Note: the end address is inclusive in the maple tree.
445  */
446 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
447 {
448 	trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
449 	mas->index = vma->vm_start;
450 	mas->last = vma->vm_end - 1;
451 	mas_store_prealloc(mas, NULL);
452 }
453 
454 /*
455  * vma_mas_szero() - Set a given range to zero.  Used when modifying a
456  * vm_area_struct start or end.
457  *
458  * @mas: The maple tree ma_state
459  * @start: The start address to zero
460  * @end: The end address to zero.
461  */
462 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
463 				unsigned long end)
464 {
465 	trace_vma_mas_szero(mas->tree, start, end - 1);
466 	mas_set_range(mas, start, end - 1);
467 	mas_store_prealloc(mas, NULL);
468 }
469 
470 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
471 {
472 	MA_STATE(mas, &mm->mm_mt, 0, 0);
473 	struct address_space *mapping = NULL;
474 
475 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
476 		return -ENOMEM;
477 
478 	if (vma->vm_file) {
479 		mapping = vma->vm_file->f_mapping;
480 		i_mmap_lock_write(mapping);
481 	}
482 
483 	vma_mas_store(vma, &mas);
484 
485 	if (mapping) {
486 		__vma_link_file(vma, mapping);
487 		i_mmap_unlock_write(mapping);
488 	}
489 
490 	mm->map_count++;
491 	validate_mm(mm);
492 	return 0;
493 }
494 
495 /*
496  * vma_expand - Expand an existing VMA
497  *
498  * @mas: The maple state
499  * @vma: The vma to expand
500  * @start: The start of the vma
501  * @end: The exclusive end of the vma
502  * @pgoff: The page offset of vma
503  * @next: The current of next vma.
504  *
505  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
506  * expand over @next if it's different from @vma and @end == @next->vm_end.
507  * Checking if the @vma can expand and merge with @next needs to be handled by
508  * the caller.
509  *
510  * Returns: 0 on success
511  */
512 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
513 		      unsigned long start, unsigned long end, pgoff_t pgoff,
514 		      struct vm_area_struct *next)
515 {
516 	struct mm_struct *mm = vma->vm_mm;
517 	struct address_space *mapping = NULL;
518 	struct rb_root_cached *root = NULL;
519 	struct anon_vma *anon_vma = vma->anon_vma;
520 	struct file *file = vma->vm_file;
521 	bool remove_next = false;
522 
523 	if (next && (vma != next) && (end == next->vm_end)) {
524 		remove_next = true;
525 		if (next->anon_vma && !vma->anon_vma) {
526 			int error;
527 
528 			anon_vma = next->anon_vma;
529 			vma->anon_vma = anon_vma;
530 			error = anon_vma_clone(vma, next);
531 			if (error)
532 				return error;
533 		}
534 	}
535 
536 	/* Not merging but overwriting any part of next is not handled. */
537 	VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
538 	/* Only handles expanding */
539 	VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
540 
541 	if (mas_preallocate(mas, vma, GFP_KERNEL))
542 		goto nomem;
543 
544 	vma_adjust_trans_huge(vma, start, end, 0);
545 
546 	if (file) {
547 		mapping = file->f_mapping;
548 		root = &mapping->i_mmap;
549 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
550 		i_mmap_lock_write(mapping);
551 	}
552 
553 	if (anon_vma) {
554 		anon_vma_lock_write(anon_vma);
555 		anon_vma_interval_tree_pre_update_vma(vma);
556 	}
557 
558 	if (file) {
559 		flush_dcache_mmap_lock(mapping);
560 		vma_interval_tree_remove(vma, root);
561 	}
562 
563 	vma->vm_start = start;
564 	vma->vm_end = end;
565 	vma->vm_pgoff = pgoff;
566 	/* Note: mas must be pointing to the expanding VMA */
567 	vma_mas_store(vma, mas);
568 
569 	if (file) {
570 		vma_interval_tree_insert(vma, root);
571 		flush_dcache_mmap_unlock(mapping);
572 	}
573 
574 	/* Expanding over the next vma */
575 	if (remove_next && file) {
576 		__remove_shared_vm_struct(next, file, mapping);
577 	}
578 
579 	if (anon_vma) {
580 		anon_vma_interval_tree_post_update_vma(vma);
581 		anon_vma_unlock_write(anon_vma);
582 	}
583 
584 	if (file) {
585 		i_mmap_unlock_write(mapping);
586 		uprobe_mmap(vma);
587 	}
588 
589 	if (remove_next) {
590 		if (file) {
591 			uprobe_munmap(next, next->vm_start, next->vm_end);
592 			fput(file);
593 		}
594 		if (next->anon_vma)
595 			anon_vma_merge(vma, next);
596 		mm->map_count--;
597 		mpol_put(vma_policy(next));
598 		vm_area_free(next);
599 	}
600 
601 	validate_mm(mm);
602 	return 0;
603 
604 nomem:
605 	return -ENOMEM;
606 }
607 
608 /*
609  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
610  * is already present in an i_mmap tree without adjusting the tree.
611  * The following helper function should be used when such adjustments
612  * are necessary.  The "insert" vma (if any) is to be inserted
613  * before we drop the necessary locks.
614  */
615 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
616 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
617 	struct vm_area_struct *expand)
618 {
619 	struct mm_struct *mm = vma->vm_mm;
620 	struct vm_area_struct *next_next = NULL;	/* uninit var warning */
621 	struct vm_area_struct *next = find_vma(mm, vma->vm_end);
622 	struct vm_area_struct *orig_vma = vma;
623 	struct address_space *mapping = NULL;
624 	struct rb_root_cached *root = NULL;
625 	struct anon_vma *anon_vma = NULL;
626 	struct file *file = vma->vm_file;
627 	bool vma_changed = false;
628 	long adjust_next = 0;
629 	int remove_next = 0;
630 	MA_STATE(mas, &mm->mm_mt, 0, 0);
631 	struct vm_area_struct *exporter = NULL, *importer = NULL;
632 
633 	if (next && !insert) {
634 		if (end >= next->vm_end) {
635 			/*
636 			 * vma expands, overlapping all the next, and
637 			 * perhaps the one after too (mprotect case 6).
638 			 * The only other cases that gets here are
639 			 * case 1, case 7 and case 8.
640 			 */
641 			if (next == expand) {
642 				/*
643 				 * The only case where we don't expand "vma"
644 				 * and we expand "next" instead is case 8.
645 				 */
646 				VM_WARN_ON(end != next->vm_end);
647 				/*
648 				 * remove_next == 3 means we're
649 				 * removing "vma" and that to do so we
650 				 * swapped "vma" and "next".
651 				 */
652 				remove_next = 3;
653 				VM_WARN_ON(file != next->vm_file);
654 				swap(vma, next);
655 			} else {
656 				VM_WARN_ON(expand != vma);
657 				/*
658 				 * case 1, 6, 7, remove_next == 2 is case 6,
659 				 * remove_next == 1 is case 1 or 7.
660 				 */
661 				remove_next = 1 + (end > next->vm_end);
662 				if (remove_next == 2)
663 					next_next = find_vma(mm, next->vm_end);
664 
665 				VM_WARN_ON(remove_next == 2 &&
666 					   end != next_next->vm_end);
667 			}
668 
669 			exporter = next;
670 			importer = vma;
671 
672 			/*
673 			 * If next doesn't have anon_vma, import from vma after
674 			 * next, if the vma overlaps with it.
675 			 */
676 			if (remove_next == 2 && !next->anon_vma)
677 				exporter = next_next;
678 
679 		} else if (end > next->vm_start) {
680 			/*
681 			 * vma expands, overlapping part of the next:
682 			 * mprotect case 5 shifting the boundary up.
683 			 */
684 			adjust_next = (end - next->vm_start);
685 			exporter = next;
686 			importer = vma;
687 			VM_WARN_ON(expand != importer);
688 		} else if (end < vma->vm_end) {
689 			/*
690 			 * vma shrinks, and !insert tells it's not
691 			 * split_vma inserting another: so it must be
692 			 * mprotect case 4 shifting the boundary down.
693 			 */
694 			adjust_next = -(vma->vm_end - end);
695 			exporter = vma;
696 			importer = next;
697 			VM_WARN_ON(expand != importer);
698 		}
699 
700 		/*
701 		 * Easily overlooked: when mprotect shifts the boundary,
702 		 * make sure the expanding vma has anon_vma set if the
703 		 * shrinking vma had, to cover any anon pages imported.
704 		 */
705 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
706 			int error;
707 
708 			importer->anon_vma = exporter->anon_vma;
709 			error = anon_vma_clone(importer, exporter);
710 			if (error)
711 				return error;
712 		}
713 	}
714 
715 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
716 		return -ENOMEM;
717 
718 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
719 	if (file) {
720 		mapping = file->f_mapping;
721 		root = &mapping->i_mmap;
722 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
723 
724 		if (adjust_next)
725 			uprobe_munmap(next, next->vm_start, next->vm_end);
726 
727 		i_mmap_lock_write(mapping);
728 		if (insert && insert->vm_file) {
729 			/*
730 			 * Put into interval tree now, so instantiated pages
731 			 * are visible to arm/parisc __flush_dcache_page
732 			 * throughout; but we cannot insert into address
733 			 * space until vma start or end is updated.
734 			 */
735 			__vma_link_file(insert, insert->vm_file->f_mapping);
736 		}
737 	}
738 
739 	anon_vma = vma->anon_vma;
740 	if (!anon_vma && adjust_next)
741 		anon_vma = next->anon_vma;
742 	if (anon_vma) {
743 		VM_WARN_ON(adjust_next && next->anon_vma &&
744 			   anon_vma != next->anon_vma);
745 		anon_vma_lock_write(anon_vma);
746 		anon_vma_interval_tree_pre_update_vma(vma);
747 		if (adjust_next)
748 			anon_vma_interval_tree_pre_update_vma(next);
749 	}
750 
751 	if (file) {
752 		flush_dcache_mmap_lock(mapping);
753 		vma_interval_tree_remove(vma, root);
754 		if (adjust_next)
755 			vma_interval_tree_remove(next, root);
756 	}
757 
758 	if (start != vma->vm_start) {
759 		if ((vma->vm_start < start) &&
760 		    (!insert || (insert->vm_end != start))) {
761 			vma_mas_szero(&mas, vma->vm_start, start);
762 			VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
763 		} else {
764 			vma_changed = true;
765 		}
766 		vma->vm_start = start;
767 	}
768 	if (end != vma->vm_end) {
769 		if (vma->vm_end > end) {
770 			if (!insert || (insert->vm_start != end)) {
771 				vma_mas_szero(&mas, end, vma->vm_end);
772 				mas_reset(&mas);
773 				VM_WARN_ON(insert &&
774 					   insert->vm_end < vma->vm_end);
775 			}
776 		} else {
777 			vma_changed = true;
778 		}
779 		vma->vm_end = end;
780 	}
781 
782 	if (vma_changed)
783 		vma_mas_store(vma, &mas);
784 
785 	vma->vm_pgoff = pgoff;
786 	if (adjust_next) {
787 		next->vm_start += adjust_next;
788 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
789 		vma_mas_store(next, &mas);
790 	}
791 
792 	if (file) {
793 		if (adjust_next)
794 			vma_interval_tree_insert(next, root);
795 		vma_interval_tree_insert(vma, root);
796 		flush_dcache_mmap_unlock(mapping);
797 	}
798 
799 	if (remove_next && file) {
800 		__remove_shared_vm_struct(next, file, mapping);
801 		if (remove_next == 2)
802 			__remove_shared_vm_struct(next_next, file, mapping);
803 	} else if (insert) {
804 		/*
805 		 * split_vma has split insert from vma, and needs
806 		 * us to insert it before dropping the locks
807 		 * (it may either follow vma or precede it).
808 		 */
809 		mas_reset(&mas);
810 		vma_mas_store(insert, &mas);
811 		mm->map_count++;
812 	}
813 
814 	if (anon_vma) {
815 		anon_vma_interval_tree_post_update_vma(vma);
816 		if (adjust_next)
817 			anon_vma_interval_tree_post_update_vma(next);
818 		anon_vma_unlock_write(anon_vma);
819 	}
820 
821 	if (file) {
822 		i_mmap_unlock_write(mapping);
823 		uprobe_mmap(vma);
824 
825 		if (adjust_next)
826 			uprobe_mmap(next);
827 	}
828 
829 	if (remove_next) {
830 again:
831 		if (file) {
832 			uprobe_munmap(next, next->vm_start, next->vm_end);
833 			fput(file);
834 		}
835 		if (next->anon_vma)
836 			anon_vma_merge(vma, next);
837 		mm->map_count--;
838 		mpol_put(vma_policy(next));
839 		if (remove_next != 2)
840 			BUG_ON(vma->vm_end < next->vm_end);
841 		vm_area_free(next);
842 
843 		/*
844 		 * In mprotect's case 6 (see comments on vma_merge),
845 		 * we must remove next_next too.
846 		 */
847 		if (remove_next == 2) {
848 			remove_next = 1;
849 			next = next_next;
850 			goto again;
851 		}
852 	}
853 	if (insert && file)
854 		uprobe_mmap(insert);
855 
856 	mas_destroy(&mas);
857 	validate_mm(mm);
858 
859 	return 0;
860 }
861 
862 /*
863  * If the vma has a ->close operation then the driver probably needs to release
864  * per-vma resources, so we don't attempt to merge those.
865  */
866 static inline int is_mergeable_vma(struct vm_area_struct *vma,
867 				struct file *file, unsigned long vm_flags,
868 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 				struct anon_vma_name *anon_name)
870 {
871 	/*
872 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
873 	 * match the flags but dirty bit -- the caller should mark
874 	 * merged VMA as dirty. If dirty bit won't be excluded from
875 	 * comparison, we increase pressure on the memory system forcing
876 	 * the kernel to generate new VMAs when old one could be
877 	 * extended instead.
878 	 */
879 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
880 		return 0;
881 	if (vma->vm_file != file)
882 		return 0;
883 	if (vma->vm_ops && vma->vm_ops->close)
884 		return 0;
885 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
886 		return 0;
887 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
888 		return 0;
889 	return 1;
890 }
891 
892 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
893 					struct anon_vma *anon_vma2,
894 					struct vm_area_struct *vma)
895 {
896 	/*
897 	 * The list_is_singular() test is to avoid merging VMA cloned from
898 	 * parents. This can improve scalability caused by anon_vma lock.
899 	 */
900 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
901 		list_is_singular(&vma->anon_vma_chain)))
902 		return 1;
903 	return anon_vma1 == anon_vma2;
904 }
905 
906 /*
907  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
908  * in front of (at a lower virtual address and file offset than) the vma.
909  *
910  * We cannot merge two vmas if they have differently assigned (non-NULL)
911  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
912  *
913  * We don't check here for the merged mmap wrapping around the end of pagecache
914  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
915  * wrap, nor mmaps which cover the final page at index -1UL.
916  */
917 static int
918 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
919 		     struct anon_vma *anon_vma, struct file *file,
920 		     pgoff_t vm_pgoff,
921 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
922 		     struct anon_vma_name *anon_name)
923 {
924 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
925 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
926 		if (vma->vm_pgoff == vm_pgoff)
927 			return 1;
928 	}
929 	return 0;
930 }
931 
932 /*
933  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934  * beyond (at a higher virtual address and file offset than) the vma.
935  *
936  * We cannot merge two vmas if they have differently assigned (non-NULL)
937  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
938  */
939 static int
940 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
941 		    struct anon_vma *anon_vma, struct file *file,
942 		    pgoff_t vm_pgoff,
943 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
944 		    struct anon_vma_name *anon_name)
945 {
946 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
947 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
948 		pgoff_t vm_pglen;
949 		vm_pglen = vma_pages(vma);
950 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
951 			return 1;
952 	}
953 	return 0;
954 }
955 
956 /*
957  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
958  * figure out whether that can be merged with its predecessor or its
959  * successor.  Or both (it neatly fills a hole).
960  *
961  * In most cases - when called for mmap, brk or mremap - [addr,end) is
962  * certain not to be mapped by the time vma_merge is called; but when
963  * called for mprotect, it is certain to be already mapped (either at
964  * an offset within prev, or at the start of next), and the flags of
965  * this area are about to be changed to vm_flags - and the no-change
966  * case has already been eliminated.
967  *
968  * The following mprotect cases have to be considered, where AAAA is
969  * the area passed down from mprotect_fixup, never extending beyond one
970  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
971  *
972  *     AAAA             AAAA                   AAAA
973  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
974  *    cannot merge    might become       might become
975  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
976  *    mmap, brk or    case 4 below       case 5 below
977  *    mremap move:
978  *                        AAAA               AAAA
979  *                    PPPP    NNNN       PPPPNNNNXXXX
980  *                    might become       might become
981  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
982  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
983  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
984  *
985  * It is important for case 8 that the vma NNNN overlapping the
986  * region AAAA is never going to extended over XXXX. Instead XXXX must
987  * be extended in region AAAA and NNNN must be removed. This way in
988  * all cases where vma_merge succeeds, the moment vma_adjust drops the
989  * rmap_locks, the properties of the merged vma will be already
990  * correct for the whole merged range. Some of those properties like
991  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
992  * be correct for the whole merged range immediately after the
993  * rmap_locks are released. Otherwise if XXXX would be removed and
994  * NNNN would be extended over the XXXX range, remove_migration_ptes
995  * or other rmap walkers (if working on addresses beyond the "end"
996  * parameter) may establish ptes with the wrong permissions of NNNN
997  * instead of the right permissions of XXXX.
998  */
999 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1000 			struct vm_area_struct *prev, unsigned long addr,
1001 			unsigned long end, unsigned long vm_flags,
1002 			struct anon_vma *anon_vma, struct file *file,
1003 			pgoff_t pgoff, struct mempolicy *policy,
1004 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1005 			struct anon_vma_name *anon_name)
1006 {
1007 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008 	struct vm_area_struct *mid, *next, *res;
1009 	int err = -1;
1010 	bool merge_prev = false;
1011 	bool merge_next = false;
1012 
1013 	/*
1014 	 * We later require that vma->vm_flags == vm_flags,
1015 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 	 */
1017 	if (vm_flags & VM_SPECIAL)
1018 		return NULL;
1019 
1020 	next = find_vma(mm, prev ? prev->vm_end : 0);
1021 	mid = next;
1022 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1023 		next = find_vma(mm, next->vm_end);
1024 
1025 	/* verify some invariant that must be enforced by the caller */
1026 	VM_WARN_ON(prev && addr <= prev->vm_start);
1027 	VM_WARN_ON(mid && end > mid->vm_end);
1028 	VM_WARN_ON(addr >= end);
1029 
1030 	/* Can we merge the predecessor? */
1031 	if (prev && prev->vm_end == addr &&
1032 			mpol_equal(vma_policy(prev), policy) &&
1033 			can_vma_merge_after(prev, vm_flags,
1034 					    anon_vma, file, pgoff,
1035 					    vm_userfaultfd_ctx, anon_name)) {
1036 		merge_prev = true;
1037 	}
1038 	/* Can we merge the successor? */
1039 	if (next && end == next->vm_start &&
1040 			mpol_equal(policy, vma_policy(next)) &&
1041 			can_vma_merge_before(next, vm_flags,
1042 					     anon_vma, file, pgoff+pglen,
1043 					     vm_userfaultfd_ctx, anon_name)) {
1044 		merge_next = true;
1045 	}
1046 	/* Can we merge both the predecessor and the successor? */
1047 	if (merge_prev && merge_next &&
1048 			is_mergeable_anon_vma(prev->anon_vma,
1049 				next->anon_vma, NULL)) {	 /* cases 1, 6 */
1050 		err = __vma_adjust(prev, prev->vm_start,
1051 					next->vm_end, prev->vm_pgoff, NULL,
1052 					prev);
1053 		res = prev;
1054 	} else if (merge_prev) {			/* cases 2, 5, 7 */
1055 		err = __vma_adjust(prev, prev->vm_start,
1056 					end, prev->vm_pgoff, NULL, prev);
1057 		res = prev;
1058 	} else if (merge_next) {
1059 		if (prev && addr < prev->vm_end)	/* case 4 */
1060 			err = __vma_adjust(prev, prev->vm_start,
1061 					addr, prev->vm_pgoff, NULL, next);
1062 		else					/* cases 3, 8 */
1063 			err = __vma_adjust(mid, addr, next->vm_end,
1064 					next->vm_pgoff - pglen, NULL, next);
1065 		res = next;
1066 	}
1067 
1068 	/*
1069 	 * Cannot merge with predecessor or successor or error in __vma_adjust?
1070 	 */
1071 	if (err)
1072 		return NULL;
1073 	khugepaged_enter_vma(res, vm_flags);
1074 	return res;
1075 }
1076 
1077 /*
1078  * Rough compatibility check to quickly see if it's even worth looking
1079  * at sharing an anon_vma.
1080  *
1081  * They need to have the same vm_file, and the flags can only differ
1082  * in things that mprotect may change.
1083  *
1084  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1085  * we can merge the two vma's. For example, we refuse to merge a vma if
1086  * there is a vm_ops->close() function, because that indicates that the
1087  * driver is doing some kind of reference counting. But that doesn't
1088  * really matter for the anon_vma sharing case.
1089  */
1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092 	return a->vm_end == b->vm_start &&
1093 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1094 		a->vm_file == b->vm_file &&
1095 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1096 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1097 }
1098 
1099 /*
1100  * Do some basic sanity checking to see if we can re-use the anon_vma
1101  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1102  * the same as 'old', the other will be the new one that is trying
1103  * to share the anon_vma.
1104  *
1105  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1106  * the anon_vma of 'old' is concurrently in the process of being set up
1107  * by another page fault trying to merge _that_. But that's ok: if it
1108  * is being set up, that automatically means that it will be a singleton
1109  * acceptable for merging, so we can do all of this optimistically. But
1110  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1111  *
1112  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1113  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1114  * is to return an anon_vma that is "complex" due to having gone through
1115  * a fork).
1116  *
1117  * We also make sure that the two vma's are compatible (adjacent,
1118  * and with the same memory policies). That's all stable, even with just
1119  * a read lock on the mmap_lock.
1120  */
1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1122 {
1123 	if (anon_vma_compatible(a, b)) {
1124 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1125 
1126 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1127 			return anon_vma;
1128 	}
1129 	return NULL;
1130 }
1131 
1132 /*
1133  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1134  * neighbouring vmas for a suitable anon_vma, before it goes off
1135  * to allocate a new anon_vma.  It checks because a repetitive
1136  * sequence of mprotects and faults may otherwise lead to distinct
1137  * anon_vmas being allocated, preventing vma merge in subsequent
1138  * mprotect.
1139  */
1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1141 {
1142 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1143 	struct anon_vma *anon_vma = NULL;
1144 	struct vm_area_struct *prev, *next;
1145 
1146 	/* Try next first. */
1147 	next = mas_walk(&mas);
1148 	if (next) {
1149 		anon_vma = reusable_anon_vma(next, vma, next);
1150 		if (anon_vma)
1151 			return anon_vma;
1152 	}
1153 
1154 	prev = mas_prev(&mas, 0);
1155 	VM_BUG_ON_VMA(prev != vma, vma);
1156 	prev = mas_prev(&mas, 0);
1157 	/* Try prev next. */
1158 	if (prev)
1159 		anon_vma = reusable_anon_vma(prev, prev, vma);
1160 
1161 	/*
1162 	 * We might reach here with anon_vma == NULL if we can't find
1163 	 * any reusable anon_vma.
1164 	 * There's no absolute need to look only at touching neighbours:
1165 	 * we could search further afield for "compatible" anon_vmas.
1166 	 * But it would probably just be a waste of time searching,
1167 	 * or lead to too many vmas hanging off the same anon_vma.
1168 	 * We're trying to allow mprotect remerging later on,
1169 	 * not trying to minimize memory used for anon_vmas.
1170 	 */
1171 	return anon_vma;
1172 }
1173 
1174 /*
1175  * If a hint addr is less than mmap_min_addr change hint to be as
1176  * low as possible but still greater than mmap_min_addr
1177  */
1178 static inline unsigned long round_hint_to_min(unsigned long hint)
1179 {
1180 	hint &= PAGE_MASK;
1181 	if (((void *)hint != NULL) &&
1182 	    (hint < mmap_min_addr))
1183 		return PAGE_ALIGN(mmap_min_addr);
1184 	return hint;
1185 }
1186 
1187 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1188 		       unsigned long len)
1189 {
1190 	unsigned long locked, lock_limit;
1191 
1192 	/*  mlock MCL_FUTURE? */
1193 	if (flags & VM_LOCKED) {
1194 		locked = len >> PAGE_SHIFT;
1195 		locked += mm->locked_vm;
1196 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1197 		lock_limit >>= PAGE_SHIFT;
1198 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1199 			return -EAGAIN;
1200 	}
1201 	return 0;
1202 }
1203 
1204 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1205 {
1206 	if (S_ISREG(inode->i_mode))
1207 		return MAX_LFS_FILESIZE;
1208 
1209 	if (S_ISBLK(inode->i_mode))
1210 		return MAX_LFS_FILESIZE;
1211 
1212 	if (S_ISSOCK(inode->i_mode))
1213 		return MAX_LFS_FILESIZE;
1214 
1215 	/* Special "we do even unsigned file positions" case */
1216 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1217 		return 0;
1218 
1219 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1220 	return ULONG_MAX;
1221 }
1222 
1223 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1224 				unsigned long pgoff, unsigned long len)
1225 {
1226 	u64 maxsize = file_mmap_size_max(file, inode);
1227 
1228 	if (maxsize && len > maxsize)
1229 		return false;
1230 	maxsize -= len;
1231 	if (pgoff > maxsize >> PAGE_SHIFT)
1232 		return false;
1233 	return true;
1234 }
1235 
1236 /*
1237  * The caller must write-lock current->mm->mmap_lock.
1238  */
1239 unsigned long do_mmap(struct file *file, unsigned long addr,
1240 			unsigned long len, unsigned long prot,
1241 			unsigned long flags, unsigned long pgoff,
1242 			unsigned long *populate, struct list_head *uf)
1243 {
1244 	struct mm_struct *mm = current->mm;
1245 	vm_flags_t vm_flags;
1246 	int pkey = 0;
1247 
1248 	validate_mm(mm);
1249 	*populate = 0;
1250 
1251 	if (!len)
1252 		return -EINVAL;
1253 
1254 	/*
1255 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1256 	 *
1257 	 * (the exception is when the underlying filesystem is noexec
1258 	 *  mounted, in which case we dont add PROT_EXEC.)
1259 	 */
1260 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1261 		if (!(file && path_noexec(&file->f_path)))
1262 			prot |= PROT_EXEC;
1263 
1264 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1265 	if (flags & MAP_FIXED_NOREPLACE)
1266 		flags |= MAP_FIXED;
1267 
1268 	if (!(flags & MAP_FIXED))
1269 		addr = round_hint_to_min(addr);
1270 
1271 	/* Careful about overflows.. */
1272 	len = PAGE_ALIGN(len);
1273 	if (!len)
1274 		return -ENOMEM;
1275 
1276 	/* offset overflow? */
1277 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1278 		return -EOVERFLOW;
1279 
1280 	/* Too many mappings? */
1281 	if (mm->map_count > sysctl_max_map_count)
1282 		return -ENOMEM;
1283 
1284 	/* Obtain the address to map to. we verify (or select) it and ensure
1285 	 * that it represents a valid section of the address space.
1286 	 */
1287 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1288 	if (IS_ERR_VALUE(addr))
1289 		return addr;
1290 
1291 	if (flags & MAP_FIXED_NOREPLACE) {
1292 		if (find_vma_intersection(mm, addr, addr + len))
1293 			return -EEXIST;
1294 	}
1295 
1296 	if (prot == PROT_EXEC) {
1297 		pkey = execute_only_pkey(mm);
1298 		if (pkey < 0)
1299 			pkey = 0;
1300 	}
1301 
1302 	/* Do simple checking here so the lower-level routines won't have
1303 	 * to. we assume access permissions have been handled by the open
1304 	 * of the memory object, so we don't do any here.
1305 	 */
1306 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1307 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1308 
1309 	if (flags & MAP_LOCKED)
1310 		if (!can_do_mlock())
1311 			return -EPERM;
1312 
1313 	if (mlock_future_check(mm, vm_flags, len))
1314 		return -EAGAIN;
1315 
1316 	if (file) {
1317 		struct inode *inode = file_inode(file);
1318 		unsigned long flags_mask;
1319 
1320 		if (!file_mmap_ok(file, inode, pgoff, len))
1321 			return -EOVERFLOW;
1322 
1323 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1324 
1325 		switch (flags & MAP_TYPE) {
1326 		case MAP_SHARED:
1327 			/*
1328 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1329 			 * flags. E.g. MAP_SYNC is dangerous to use with
1330 			 * MAP_SHARED as you don't know which consistency model
1331 			 * you will get. We silently ignore unsupported flags
1332 			 * with MAP_SHARED to preserve backward compatibility.
1333 			 */
1334 			flags &= LEGACY_MAP_MASK;
1335 			fallthrough;
1336 		case MAP_SHARED_VALIDATE:
1337 			if (flags & ~flags_mask)
1338 				return -EOPNOTSUPP;
1339 			if (prot & PROT_WRITE) {
1340 				if (!(file->f_mode & FMODE_WRITE))
1341 					return -EACCES;
1342 				if (IS_SWAPFILE(file->f_mapping->host))
1343 					return -ETXTBSY;
1344 			}
1345 
1346 			/*
1347 			 * Make sure we don't allow writing to an append-only
1348 			 * file..
1349 			 */
1350 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1351 				return -EACCES;
1352 
1353 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1354 			if (!(file->f_mode & FMODE_WRITE))
1355 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1356 			fallthrough;
1357 		case MAP_PRIVATE:
1358 			if (!(file->f_mode & FMODE_READ))
1359 				return -EACCES;
1360 			if (path_noexec(&file->f_path)) {
1361 				if (vm_flags & VM_EXEC)
1362 					return -EPERM;
1363 				vm_flags &= ~VM_MAYEXEC;
1364 			}
1365 
1366 			if (!file->f_op->mmap)
1367 				return -ENODEV;
1368 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1369 				return -EINVAL;
1370 			break;
1371 
1372 		default:
1373 			return -EINVAL;
1374 		}
1375 	} else {
1376 		switch (flags & MAP_TYPE) {
1377 		case MAP_SHARED:
1378 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1379 				return -EINVAL;
1380 			/*
1381 			 * Ignore pgoff.
1382 			 */
1383 			pgoff = 0;
1384 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1385 			break;
1386 		case MAP_PRIVATE:
1387 			/*
1388 			 * Set pgoff according to addr for anon_vma.
1389 			 */
1390 			pgoff = addr >> PAGE_SHIFT;
1391 			break;
1392 		default:
1393 			return -EINVAL;
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * Set 'VM_NORESERVE' if we should not account for the
1399 	 * memory use of this mapping.
1400 	 */
1401 	if (flags & MAP_NORESERVE) {
1402 		/* We honor MAP_NORESERVE if allowed to overcommit */
1403 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1404 			vm_flags |= VM_NORESERVE;
1405 
1406 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1407 		if (file && is_file_hugepages(file))
1408 			vm_flags |= VM_NORESERVE;
1409 	}
1410 
1411 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1412 	if (!IS_ERR_VALUE(addr) &&
1413 	    ((vm_flags & VM_LOCKED) ||
1414 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1415 		*populate = len;
1416 	return addr;
1417 }
1418 
1419 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1420 			      unsigned long prot, unsigned long flags,
1421 			      unsigned long fd, unsigned long pgoff)
1422 {
1423 	struct file *file = NULL;
1424 	unsigned long retval;
1425 
1426 	if (!(flags & MAP_ANONYMOUS)) {
1427 		audit_mmap_fd(fd, flags);
1428 		file = fget(fd);
1429 		if (!file)
1430 			return -EBADF;
1431 		if (is_file_hugepages(file)) {
1432 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1433 		} else if (unlikely(flags & MAP_HUGETLB)) {
1434 			retval = -EINVAL;
1435 			goto out_fput;
1436 		}
1437 	} else if (flags & MAP_HUGETLB) {
1438 		struct hstate *hs;
1439 
1440 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441 		if (!hs)
1442 			return -EINVAL;
1443 
1444 		len = ALIGN(len, huge_page_size(hs));
1445 		/*
1446 		 * VM_NORESERVE is used because the reservations will be
1447 		 * taken when vm_ops->mmap() is called
1448 		 */
1449 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1450 				VM_NORESERVE,
1451 				HUGETLB_ANONHUGE_INODE,
1452 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1453 		if (IS_ERR(file))
1454 			return PTR_ERR(file);
1455 	}
1456 
1457 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1458 out_fput:
1459 	if (file)
1460 		fput(file);
1461 	return retval;
1462 }
1463 
1464 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1465 		unsigned long, prot, unsigned long, flags,
1466 		unsigned long, fd, unsigned long, pgoff)
1467 {
1468 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1469 }
1470 
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1473 	unsigned long addr;
1474 	unsigned long len;
1475 	unsigned long prot;
1476 	unsigned long flags;
1477 	unsigned long fd;
1478 	unsigned long offset;
1479 };
1480 
1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1482 {
1483 	struct mmap_arg_struct a;
1484 
1485 	if (copy_from_user(&a, arg, sizeof(a)))
1486 		return -EFAULT;
1487 	if (offset_in_page(a.offset))
1488 		return -EINVAL;
1489 
1490 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491 			       a.offset >> PAGE_SHIFT);
1492 }
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1494 
1495 /*
1496  * Some shared mappings will want the pages marked read-only
1497  * to track write events. If so, we'll downgrade vm_page_prot
1498  * to the private version (using protection_map[] without the
1499  * VM_SHARED bit).
1500  */
1501 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1502 {
1503 	vm_flags_t vm_flags = vma->vm_flags;
1504 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1505 
1506 	/* If it was private or non-writable, the write bit is already clear */
1507 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1508 		return 0;
1509 
1510 	/* The backer wishes to know when pages are first written to? */
1511 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1512 		return 1;
1513 
1514 	/* The open routine did something to the protections that pgprot_modify
1515 	 * won't preserve? */
1516 	if (pgprot_val(vm_page_prot) !=
1517 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1518 		return 0;
1519 
1520 	/*
1521 	 * Do we need to track softdirty? hugetlb does not support softdirty
1522 	 * tracking yet.
1523 	 */
1524 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1525 		return 1;
1526 
1527 	/* Specialty mapping? */
1528 	if (vm_flags & VM_PFNMAP)
1529 		return 0;
1530 
1531 	/* Can the mapping track the dirty pages? */
1532 	return vma->vm_file && vma->vm_file->f_mapping &&
1533 		mapping_can_writeback(vma->vm_file->f_mapping);
1534 }
1535 
1536 /*
1537  * We account for memory if it's a private writeable mapping,
1538  * not hugepages and VM_NORESERVE wasn't set.
1539  */
1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1541 {
1542 	/*
1543 	 * hugetlb has its own accounting separate from the core VM
1544 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1545 	 */
1546 	if (file && is_file_hugepages(file))
1547 		return 0;
1548 
1549 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1550 }
1551 
1552 /**
1553  * unmapped_area() - Find an area between the low_limit and the high_limit with
1554  * the correct alignment and offset, all from @info. Note: current->mm is used
1555  * for the search.
1556  *
1557  * @info: The unmapped area information including the range (low_limit -
1558  * hight_limit), the alignment offset and mask.
1559  *
1560  * Return: A memory address or -ENOMEM.
1561  */
1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1563 {
1564 	unsigned long length, gap;
1565 
1566 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1567 
1568 	/* Adjust search length to account for worst case alignment overhead */
1569 	length = info->length + info->align_mask;
1570 	if (length < info->length)
1571 		return -ENOMEM;
1572 
1573 	if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1574 				  length))
1575 		return -ENOMEM;
1576 
1577 	gap = mas.index;
1578 	gap += (info->align_offset - gap) & info->align_mask;
1579 	return gap;
1580 }
1581 
1582 /**
1583  * unmapped_area_topdown() - Find an area between the low_limit and the
1584  * high_limit with * the correct alignment and offset at the highest available
1585  * address, all from @info. Note: current->mm is used for the search.
1586  *
1587  * @info: The unmapped area information including the range (low_limit -
1588  * hight_limit), the alignment offset and mask.
1589  *
1590  * Return: A memory address or -ENOMEM.
1591  */
1592 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1593 {
1594 	unsigned long length, gap;
1595 
1596 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1597 	/* Adjust search length to account for worst case alignment overhead */
1598 	length = info->length + info->align_mask;
1599 	if (length < info->length)
1600 		return -ENOMEM;
1601 
1602 	if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1603 				length))
1604 		return -ENOMEM;
1605 
1606 	gap = mas.last + 1 - info->length;
1607 	gap -= (gap - info->align_offset) & info->align_mask;
1608 	return gap;
1609 }
1610 
1611 /*
1612  * Search for an unmapped address range.
1613  *
1614  * We are looking for a range that:
1615  * - does not intersect with any VMA;
1616  * - is contained within the [low_limit, high_limit) interval;
1617  * - is at least the desired size.
1618  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1619  */
1620 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1621 {
1622 	unsigned long addr;
1623 
1624 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1625 		addr = unmapped_area_topdown(info);
1626 	else
1627 		addr = unmapped_area(info);
1628 
1629 	trace_vm_unmapped_area(addr, info);
1630 	return addr;
1631 }
1632 
1633 /* Get an address range which is currently unmapped.
1634  * For shmat() with addr=0.
1635  *
1636  * Ugly calling convention alert:
1637  * Return value with the low bits set means error value,
1638  * ie
1639  *	if (ret & ~PAGE_MASK)
1640  *		error = ret;
1641  *
1642  * This function "knows" that -ENOMEM has the bits set.
1643  */
1644 unsigned long
1645 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1646 			  unsigned long len, unsigned long pgoff,
1647 			  unsigned long flags)
1648 {
1649 	struct mm_struct *mm = current->mm;
1650 	struct vm_area_struct *vma, *prev;
1651 	struct vm_unmapped_area_info info;
1652 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1653 
1654 	if (len > mmap_end - mmap_min_addr)
1655 		return -ENOMEM;
1656 
1657 	if (flags & MAP_FIXED)
1658 		return addr;
1659 
1660 	if (addr) {
1661 		addr = PAGE_ALIGN(addr);
1662 		vma = find_vma_prev(mm, addr, &prev);
1663 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1664 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1665 		    (!prev || addr >= vm_end_gap(prev)))
1666 			return addr;
1667 	}
1668 
1669 	info.flags = 0;
1670 	info.length = len;
1671 	info.low_limit = mm->mmap_base;
1672 	info.high_limit = mmap_end;
1673 	info.align_mask = 0;
1674 	info.align_offset = 0;
1675 	return vm_unmapped_area(&info);
1676 }
1677 
1678 #ifndef HAVE_ARCH_UNMAPPED_AREA
1679 unsigned long
1680 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1681 		       unsigned long len, unsigned long pgoff,
1682 		       unsigned long flags)
1683 {
1684 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1685 }
1686 #endif
1687 
1688 /*
1689  * This mmap-allocator allocates new areas top-down from below the
1690  * stack's low limit (the base):
1691  */
1692 unsigned long
1693 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1694 				  unsigned long len, unsigned long pgoff,
1695 				  unsigned long flags)
1696 {
1697 	struct vm_area_struct *vma, *prev;
1698 	struct mm_struct *mm = current->mm;
1699 	struct vm_unmapped_area_info info;
1700 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1701 
1702 	/* requested length too big for entire address space */
1703 	if (len > mmap_end - mmap_min_addr)
1704 		return -ENOMEM;
1705 
1706 	if (flags & MAP_FIXED)
1707 		return addr;
1708 
1709 	/* requesting a specific address */
1710 	if (addr) {
1711 		addr = PAGE_ALIGN(addr);
1712 		vma = find_vma_prev(mm, addr, &prev);
1713 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1714 				(!vma || addr + len <= vm_start_gap(vma)) &&
1715 				(!prev || addr >= vm_end_gap(prev)))
1716 			return addr;
1717 	}
1718 
1719 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1720 	info.length = len;
1721 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1722 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1723 	info.align_mask = 0;
1724 	info.align_offset = 0;
1725 	addr = vm_unmapped_area(&info);
1726 
1727 	/*
1728 	 * A failed mmap() very likely causes application failure,
1729 	 * so fall back to the bottom-up function here. This scenario
1730 	 * can happen with large stack limits and large mmap()
1731 	 * allocations.
1732 	 */
1733 	if (offset_in_page(addr)) {
1734 		VM_BUG_ON(addr != -ENOMEM);
1735 		info.flags = 0;
1736 		info.low_limit = TASK_UNMAPPED_BASE;
1737 		info.high_limit = mmap_end;
1738 		addr = vm_unmapped_area(&info);
1739 	}
1740 
1741 	return addr;
1742 }
1743 
1744 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1745 unsigned long
1746 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1747 			       unsigned long len, unsigned long pgoff,
1748 			       unsigned long flags)
1749 {
1750 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1751 }
1752 #endif
1753 
1754 unsigned long
1755 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1756 		unsigned long pgoff, unsigned long flags)
1757 {
1758 	unsigned long (*get_area)(struct file *, unsigned long,
1759 				  unsigned long, unsigned long, unsigned long);
1760 
1761 	unsigned long error = arch_mmap_check(addr, len, flags);
1762 	if (error)
1763 		return error;
1764 
1765 	/* Careful about overflows.. */
1766 	if (len > TASK_SIZE)
1767 		return -ENOMEM;
1768 
1769 	get_area = current->mm->get_unmapped_area;
1770 	if (file) {
1771 		if (file->f_op->get_unmapped_area)
1772 			get_area = file->f_op->get_unmapped_area;
1773 	} else if (flags & MAP_SHARED) {
1774 		/*
1775 		 * mmap_region() will call shmem_zero_setup() to create a file,
1776 		 * so use shmem's get_unmapped_area in case it can be huge.
1777 		 * do_mmap() will clear pgoff, so match alignment.
1778 		 */
1779 		pgoff = 0;
1780 		get_area = shmem_get_unmapped_area;
1781 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1782 		/* Ensures that larger anonymous mappings are THP aligned. */
1783 		get_area = thp_get_unmapped_area;
1784 	}
1785 
1786 	addr = get_area(file, addr, len, pgoff, flags);
1787 	if (IS_ERR_VALUE(addr))
1788 		return addr;
1789 
1790 	if (addr > TASK_SIZE - len)
1791 		return -ENOMEM;
1792 	if (offset_in_page(addr))
1793 		return -EINVAL;
1794 
1795 	error = security_mmap_addr(addr);
1796 	return error ? error : addr;
1797 }
1798 
1799 EXPORT_SYMBOL(get_unmapped_area);
1800 
1801 /**
1802  * find_vma_intersection() - Look up the first VMA which intersects the interval
1803  * @mm: The process address space.
1804  * @start_addr: The inclusive start user address.
1805  * @end_addr: The exclusive end user address.
1806  *
1807  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1808  * start_addr < end_addr.
1809  */
1810 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1811 					     unsigned long start_addr,
1812 					     unsigned long end_addr)
1813 {
1814 	unsigned long index = start_addr;
1815 
1816 	mmap_assert_locked(mm);
1817 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1818 }
1819 EXPORT_SYMBOL(find_vma_intersection);
1820 
1821 /**
1822  * find_vma() - Find the VMA for a given address, or the next VMA.
1823  * @mm: The mm_struct to check
1824  * @addr: The address
1825  *
1826  * Returns: The VMA associated with addr, or the next VMA.
1827  * May return %NULL in the case of no VMA at addr or above.
1828  */
1829 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1830 {
1831 	unsigned long index = addr;
1832 
1833 	mmap_assert_locked(mm);
1834 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1835 }
1836 EXPORT_SYMBOL(find_vma);
1837 
1838 /**
1839  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1840  * set %pprev to the previous VMA, if any.
1841  * @mm: The mm_struct to check
1842  * @addr: The address
1843  * @pprev: The pointer to set to the previous VMA
1844  *
1845  * Note that RCU lock is missing here since the external mmap_lock() is used
1846  * instead.
1847  *
1848  * Returns: The VMA associated with @addr, or the next vma.
1849  * May return %NULL in the case of no vma at addr or above.
1850  */
1851 struct vm_area_struct *
1852 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1853 			struct vm_area_struct **pprev)
1854 {
1855 	struct vm_area_struct *vma;
1856 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1857 
1858 	vma = mas_walk(&mas);
1859 	*pprev = mas_prev(&mas, 0);
1860 	if (!vma)
1861 		vma = mas_next(&mas, ULONG_MAX);
1862 	return vma;
1863 }
1864 
1865 /*
1866  * Verify that the stack growth is acceptable and
1867  * update accounting. This is shared with both the
1868  * grow-up and grow-down cases.
1869  */
1870 static int acct_stack_growth(struct vm_area_struct *vma,
1871 			     unsigned long size, unsigned long grow)
1872 {
1873 	struct mm_struct *mm = vma->vm_mm;
1874 	unsigned long new_start;
1875 
1876 	/* address space limit tests */
1877 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1878 		return -ENOMEM;
1879 
1880 	/* Stack limit test */
1881 	if (size > rlimit(RLIMIT_STACK))
1882 		return -ENOMEM;
1883 
1884 	/* mlock limit tests */
1885 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1886 		return -ENOMEM;
1887 
1888 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1889 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1890 			vma->vm_end - size;
1891 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1892 		return -EFAULT;
1893 
1894 	/*
1895 	 * Overcommit..  This must be the final test, as it will
1896 	 * update security statistics.
1897 	 */
1898 	if (security_vm_enough_memory_mm(mm, grow))
1899 		return -ENOMEM;
1900 
1901 	return 0;
1902 }
1903 
1904 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1905 /*
1906  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1907  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1908  */
1909 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1910 {
1911 	struct mm_struct *mm = vma->vm_mm;
1912 	struct vm_area_struct *next;
1913 	unsigned long gap_addr;
1914 	int error = 0;
1915 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1916 
1917 	if (!(vma->vm_flags & VM_GROWSUP))
1918 		return -EFAULT;
1919 
1920 	/* Guard against exceeding limits of the address space. */
1921 	address &= PAGE_MASK;
1922 	if (address >= (TASK_SIZE & PAGE_MASK))
1923 		return -ENOMEM;
1924 	address += PAGE_SIZE;
1925 
1926 	/* Enforce stack_guard_gap */
1927 	gap_addr = address + stack_guard_gap;
1928 
1929 	/* Guard against overflow */
1930 	if (gap_addr < address || gap_addr > TASK_SIZE)
1931 		gap_addr = TASK_SIZE;
1932 
1933 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1934 	if (next && vma_is_accessible(next)) {
1935 		if (!(next->vm_flags & VM_GROWSUP))
1936 			return -ENOMEM;
1937 		/* Check that both stack segments have the same anon_vma? */
1938 	}
1939 
1940 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1941 		return -ENOMEM;
1942 
1943 	/* We must make sure the anon_vma is allocated. */
1944 	if (unlikely(anon_vma_prepare(vma))) {
1945 		mas_destroy(&mas);
1946 		return -ENOMEM;
1947 	}
1948 
1949 	/*
1950 	 * vma->vm_start/vm_end cannot change under us because the caller
1951 	 * is required to hold the mmap_lock in read mode.  We need the
1952 	 * anon_vma lock to serialize against concurrent expand_stacks.
1953 	 */
1954 	anon_vma_lock_write(vma->anon_vma);
1955 
1956 	/* Somebody else might have raced and expanded it already */
1957 	if (address > vma->vm_end) {
1958 		unsigned long size, grow;
1959 
1960 		size = address - vma->vm_start;
1961 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1962 
1963 		error = -ENOMEM;
1964 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1965 			error = acct_stack_growth(vma, size, grow);
1966 			if (!error) {
1967 				/*
1968 				 * We only hold a shared mmap_lock lock here, so
1969 				 * we need to protect against concurrent vma
1970 				 * expansions.  anon_vma_lock_write() doesn't
1971 				 * help here, as we don't guarantee that all
1972 				 * growable vmas in a mm share the same root
1973 				 * anon vma.  So, we reuse mm->page_table_lock
1974 				 * to guard against concurrent vma expansions.
1975 				 */
1976 				spin_lock(&mm->page_table_lock);
1977 				if (vma->vm_flags & VM_LOCKED)
1978 					mm->locked_vm += grow;
1979 				vm_stat_account(mm, vma->vm_flags, grow);
1980 				anon_vma_interval_tree_pre_update_vma(vma);
1981 				vma->vm_end = address;
1982 				/* Overwrite old entry in mtree. */
1983 				vma_mas_store(vma, &mas);
1984 				anon_vma_interval_tree_post_update_vma(vma);
1985 				spin_unlock(&mm->page_table_lock);
1986 
1987 				perf_event_mmap(vma);
1988 			}
1989 		}
1990 	}
1991 	anon_vma_unlock_write(vma->anon_vma);
1992 	khugepaged_enter_vma(vma, vma->vm_flags);
1993 	mas_destroy(&mas);
1994 	return error;
1995 }
1996 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1997 
1998 /*
1999  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2000  */
2001 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2002 {
2003 	struct mm_struct *mm = vma->vm_mm;
2004 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2005 	struct vm_area_struct *prev;
2006 	int error = 0;
2007 
2008 	address &= PAGE_MASK;
2009 	if (address < mmap_min_addr)
2010 		return -EPERM;
2011 
2012 	/* Enforce stack_guard_gap */
2013 	prev = mas_prev(&mas, 0);
2014 	/* Check that both stack segments have the same anon_vma? */
2015 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2016 			vma_is_accessible(prev)) {
2017 		if (address - prev->vm_end < stack_guard_gap)
2018 			return -ENOMEM;
2019 	}
2020 
2021 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2022 		return -ENOMEM;
2023 
2024 	/* We must make sure the anon_vma is allocated. */
2025 	if (unlikely(anon_vma_prepare(vma))) {
2026 		mas_destroy(&mas);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	/*
2031 	 * vma->vm_start/vm_end cannot change under us because the caller
2032 	 * is required to hold the mmap_lock in read mode.  We need the
2033 	 * anon_vma lock to serialize against concurrent expand_stacks.
2034 	 */
2035 	anon_vma_lock_write(vma->anon_vma);
2036 
2037 	/* Somebody else might have raced and expanded it already */
2038 	if (address < vma->vm_start) {
2039 		unsigned long size, grow;
2040 
2041 		size = vma->vm_end - address;
2042 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2043 
2044 		error = -ENOMEM;
2045 		if (grow <= vma->vm_pgoff) {
2046 			error = acct_stack_growth(vma, size, grow);
2047 			if (!error) {
2048 				/*
2049 				 * We only hold a shared mmap_lock lock here, so
2050 				 * we need to protect against concurrent vma
2051 				 * expansions.  anon_vma_lock_write() doesn't
2052 				 * help here, as we don't guarantee that all
2053 				 * growable vmas in a mm share the same root
2054 				 * anon vma.  So, we reuse mm->page_table_lock
2055 				 * to guard against concurrent vma expansions.
2056 				 */
2057 				spin_lock(&mm->page_table_lock);
2058 				if (vma->vm_flags & VM_LOCKED)
2059 					mm->locked_vm += grow;
2060 				vm_stat_account(mm, vma->vm_flags, grow);
2061 				anon_vma_interval_tree_pre_update_vma(vma);
2062 				vma->vm_start = address;
2063 				vma->vm_pgoff -= grow;
2064 				/* Overwrite old entry in mtree. */
2065 				vma_mas_store(vma, &mas);
2066 				anon_vma_interval_tree_post_update_vma(vma);
2067 				spin_unlock(&mm->page_table_lock);
2068 
2069 				perf_event_mmap(vma);
2070 			}
2071 		}
2072 	}
2073 	anon_vma_unlock_write(vma->anon_vma);
2074 	khugepaged_enter_vma(vma, vma->vm_flags);
2075 	mas_destroy(&mas);
2076 	return error;
2077 }
2078 
2079 /* enforced gap between the expanding stack and other mappings. */
2080 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2081 
2082 static int __init cmdline_parse_stack_guard_gap(char *p)
2083 {
2084 	unsigned long val;
2085 	char *endptr;
2086 
2087 	val = simple_strtoul(p, &endptr, 10);
2088 	if (!*endptr)
2089 		stack_guard_gap = val << PAGE_SHIFT;
2090 
2091 	return 1;
2092 }
2093 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2094 
2095 #ifdef CONFIG_STACK_GROWSUP
2096 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2097 {
2098 	return expand_upwards(vma, address);
2099 }
2100 
2101 struct vm_area_struct *
2102 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2103 {
2104 	struct vm_area_struct *vma, *prev;
2105 
2106 	addr &= PAGE_MASK;
2107 	vma = find_vma_prev(mm, addr, &prev);
2108 	if (vma && (vma->vm_start <= addr))
2109 		return vma;
2110 	if (!prev || expand_stack(prev, addr))
2111 		return NULL;
2112 	if (prev->vm_flags & VM_LOCKED)
2113 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2114 	return prev;
2115 }
2116 #else
2117 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2118 {
2119 	return expand_downwards(vma, address);
2120 }
2121 
2122 struct vm_area_struct *
2123 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2124 {
2125 	struct vm_area_struct *vma;
2126 	unsigned long start;
2127 
2128 	addr &= PAGE_MASK;
2129 	vma = find_vma(mm, addr);
2130 	if (!vma)
2131 		return NULL;
2132 	if (vma->vm_start <= addr)
2133 		return vma;
2134 	if (!(vma->vm_flags & VM_GROWSDOWN))
2135 		return NULL;
2136 	start = vma->vm_start;
2137 	if (expand_stack(vma, addr))
2138 		return NULL;
2139 	if (vma->vm_flags & VM_LOCKED)
2140 		populate_vma_page_range(vma, addr, start, NULL);
2141 	return vma;
2142 }
2143 #endif
2144 
2145 EXPORT_SYMBOL_GPL(find_extend_vma);
2146 
2147 /*
2148  * Ok - we have the memory areas we should free on a maple tree so release them,
2149  * and do the vma updates.
2150  *
2151  * Called with the mm semaphore held.
2152  */
2153 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2154 {
2155 	unsigned long nr_accounted = 0;
2156 	struct vm_area_struct *vma;
2157 
2158 	/* Update high watermark before we lower total_vm */
2159 	update_hiwater_vm(mm);
2160 	mas_for_each(mas, vma, ULONG_MAX) {
2161 		long nrpages = vma_pages(vma);
2162 
2163 		if (vma->vm_flags & VM_ACCOUNT)
2164 			nr_accounted += nrpages;
2165 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2166 		remove_vma(vma);
2167 	}
2168 	vm_unacct_memory(nr_accounted);
2169 	validate_mm(mm);
2170 }
2171 
2172 /*
2173  * Get rid of page table information in the indicated region.
2174  *
2175  * Called with the mm semaphore held.
2176  */
2177 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2178 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2179 		struct vm_area_struct *next,
2180 		unsigned long start, unsigned long end)
2181 {
2182 	struct mmu_gather tlb;
2183 
2184 	lru_add_drain();
2185 	tlb_gather_mmu(&tlb, mm);
2186 	update_hiwater_rss(mm);
2187 	unmap_vmas(&tlb, mt, vma, start, end);
2188 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2189 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2190 	tlb_finish_mmu(&tlb);
2191 }
2192 
2193 /*
2194  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2195  * has already been checked or doesn't make sense to fail.
2196  */
2197 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2198 		unsigned long addr, int new_below)
2199 {
2200 	struct vm_area_struct *new;
2201 	int err;
2202 	validate_mm_mt(mm);
2203 
2204 	if (vma->vm_ops && vma->vm_ops->may_split) {
2205 		err = vma->vm_ops->may_split(vma, addr);
2206 		if (err)
2207 			return err;
2208 	}
2209 
2210 	new = vm_area_dup(vma);
2211 	if (!new)
2212 		return -ENOMEM;
2213 
2214 	if (new_below)
2215 		new->vm_end = addr;
2216 	else {
2217 		new->vm_start = addr;
2218 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2219 	}
2220 
2221 	err = vma_dup_policy(vma, new);
2222 	if (err)
2223 		goto out_free_vma;
2224 
2225 	err = anon_vma_clone(new, vma);
2226 	if (err)
2227 		goto out_free_mpol;
2228 
2229 	if (new->vm_file)
2230 		get_file(new->vm_file);
2231 
2232 	if (new->vm_ops && new->vm_ops->open)
2233 		new->vm_ops->open(new);
2234 
2235 	if (new_below)
2236 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2237 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2238 	else
2239 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2240 
2241 	/* Success. */
2242 	if (!err)
2243 		return 0;
2244 
2245 	/* Avoid vm accounting in close() operation */
2246 	new->vm_start = new->vm_end;
2247 	new->vm_pgoff = 0;
2248 	/* Clean everything up if vma_adjust failed. */
2249 	if (new->vm_ops && new->vm_ops->close)
2250 		new->vm_ops->close(new);
2251 	if (new->vm_file)
2252 		fput(new->vm_file);
2253 	unlink_anon_vmas(new);
2254  out_free_mpol:
2255 	mpol_put(vma_policy(new));
2256  out_free_vma:
2257 	vm_area_free(new);
2258 	validate_mm_mt(mm);
2259 	return err;
2260 }
2261 
2262 /*
2263  * Split a vma into two pieces at address 'addr', a new vma is allocated
2264  * either for the first part or the tail.
2265  */
2266 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2267 	      unsigned long addr, int new_below)
2268 {
2269 	if (mm->map_count >= sysctl_max_map_count)
2270 		return -ENOMEM;
2271 
2272 	return __split_vma(mm, vma, addr, new_below);
2273 }
2274 
2275 static inline int munmap_sidetree(struct vm_area_struct *vma,
2276 				   struct ma_state *mas_detach)
2277 {
2278 	mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2279 	if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2280 		return -ENOMEM;
2281 
2282 	if (vma->vm_flags & VM_LOCKED)
2283 		vma->vm_mm->locked_vm -= vma_pages(vma);
2284 
2285 	return 0;
2286 }
2287 
2288 /*
2289  * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2290  * @mas: The maple_state, ideally set up to alter the correct tree location.
2291  * @vma: The starting vm_area_struct
2292  * @mm: The mm_struct
2293  * @start: The aligned start address to munmap.
2294  * @end: The aligned end address to munmap.
2295  * @uf: The userfaultfd list_head
2296  * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2297  *
2298  * If @downgrade is true, check return code for potential release of the lock.
2299  */
2300 static int
2301 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2302 		    struct mm_struct *mm, unsigned long start,
2303 		    unsigned long end, struct list_head *uf, bool downgrade)
2304 {
2305 	struct vm_area_struct *prev, *next = NULL;
2306 	struct maple_tree mt_detach;
2307 	int count = 0;
2308 	int error = -ENOMEM;
2309 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2310 	mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2311 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2312 
2313 	if (mas_preallocate(mas, vma, GFP_KERNEL))
2314 		return -ENOMEM;
2315 
2316 	mas->last = end - 1;
2317 	/*
2318 	 * If we need to split any vma, do it now to save pain later.
2319 	 *
2320 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2321 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2322 	 * places tmp vma above, and higher split_vma places tmp vma below.
2323 	 */
2324 
2325 	/* Does it split the first one? */
2326 	if (start > vma->vm_start) {
2327 
2328 		/*
2329 		 * Make sure that map_count on return from munmap() will
2330 		 * not exceed its limit; but let map_count go just above
2331 		 * its limit temporarily, to help free resources as expected.
2332 		 */
2333 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2334 			goto map_count_exceeded;
2335 
2336 		/*
2337 		 * mas_pause() is not needed since mas->index needs to be set
2338 		 * differently than vma->vm_end anyways.
2339 		 */
2340 		error = __split_vma(mm, vma, start, 0);
2341 		if (error)
2342 			goto start_split_failed;
2343 
2344 		mas_set(mas, start);
2345 		vma = mas_walk(mas);
2346 	}
2347 
2348 	prev = mas_prev(mas, 0);
2349 	if (unlikely((!prev)))
2350 		mas_set(mas, start);
2351 
2352 	/*
2353 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2354 	 * it is always overwritten.
2355 	 */
2356 	mas_for_each(mas, next, end - 1) {
2357 		/* Does it split the end? */
2358 		if (next->vm_end > end) {
2359 			struct vm_area_struct *split;
2360 
2361 			error = __split_vma(mm, next, end, 1);
2362 			if (error)
2363 				goto end_split_failed;
2364 
2365 			mas_set(mas, end);
2366 			split = mas_prev(mas, 0);
2367 			error = munmap_sidetree(split, &mas_detach);
2368 			if (error)
2369 				goto munmap_sidetree_failed;
2370 
2371 			count++;
2372 			if (vma == next)
2373 				vma = split;
2374 			break;
2375 		}
2376 		error = munmap_sidetree(next, &mas_detach);
2377 		if (error)
2378 			goto munmap_sidetree_failed;
2379 
2380 		count++;
2381 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2382 		BUG_ON(next->vm_start < start);
2383 		BUG_ON(next->vm_start > end);
2384 #endif
2385 	}
2386 
2387 	if (!next)
2388 		next = mas_next(mas, ULONG_MAX);
2389 
2390 	if (unlikely(uf)) {
2391 		/*
2392 		 * If userfaultfd_unmap_prep returns an error the vmas
2393 		 * will remain split, but userland will get a
2394 		 * highly unexpected error anyway. This is no
2395 		 * different than the case where the first of the two
2396 		 * __split_vma fails, but we don't undo the first
2397 		 * split, despite we could. This is unlikely enough
2398 		 * failure that it's not worth optimizing it for.
2399 		 */
2400 		error = userfaultfd_unmap_prep(mm, start, end, uf);
2401 
2402 		if (error)
2403 			goto userfaultfd_error;
2404 	}
2405 
2406 	/* Point of no return */
2407 	mas_set_range(mas, start, end - 1);
2408 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2409 	/* Make sure no VMAs are about to be lost. */
2410 	{
2411 		MA_STATE(test, &mt_detach, start, end - 1);
2412 		struct vm_area_struct *vma_mas, *vma_test;
2413 		int test_count = 0;
2414 
2415 		rcu_read_lock();
2416 		vma_test = mas_find(&test, end - 1);
2417 		mas_for_each(mas, vma_mas, end - 1) {
2418 			BUG_ON(vma_mas != vma_test);
2419 			test_count++;
2420 			vma_test = mas_next(&test, end - 1);
2421 		}
2422 		rcu_read_unlock();
2423 		BUG_ON(count != test_count);
2424 		mas_set_range(mas, start, end - 1);
2425 	}
2426 #endif
2427 	mas_store_prealloc(mas, NULL);
2428 	mm->map_count -= count;
2429 	/*
2430 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2431 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2432 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2433 	 */
2434 	if (downgrade) {
2435 		if (next && (next->vm_flags & VM_GROWSDOWN))
2436 			downgrade = false;
2437 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2438 			downgrade = false;
2439 		else
2440 			mmap_write_downgrade(mm);
2441 	}
2442 
2443 	unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2444 	/* Statistics and freeing VMAs */
2445 	mas_set(&mas_detach, start);
2446 	remove_mt(mm, &mas_detach);
2447 	__mt_destroy(&mt_detach);
2448 
2449 
2450 	validate_mm(mm);
2451 	return downgrade ? 1 : 0;
2452 
2453 userfaultfd_error:
2454 munmap_sidetree_failed:
2455 end_split_failed:
2456 	__mt_destroy(&mt_detach);
2457 start_split_failed:
2458 map_count_exceeded:
2459 	mas_destroy(mas);
2460 	return error;
2461 }
2462 
2463 /*
2464  * do_mas_munmap() - munmap a given range.
2465  * @mas: The maple state
2466  * @mm: The mm_struct
2467  * @start: The start address to munmap
2468  * @len: The length of the range to munmap
2469  * @uf: The userfaultfd list_head
2470  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2471  * mmap_sem
2472  *
2473  * This function takes a @mas that is either pointing to the previous VMA or set
2474  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2475  * aligned and any arch_unmap work will be preformed.
2476  *
2477  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2478  */
2479 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2480 		  unsigned long start, size_t len, struct list_head *uf,
2481 		  bool downgrade)
2482 {
2483 	unsigned long end;
2484 	struct vm_area_struct *vma;
2485 
2486 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2487 		return -EINVAL;
2488 
2489 	end = start + PAGE_ALIGN(len);
2490 	if (end == start)
2491 		return -EINVAL;
2492 
2493 	 /* arch_unmap() might do unmaps itself.  */
2494 	arch_unmap(mm, start, end);
2495 
2496 	/* Find the first overlapping VMA */
2497 	vma = mas_find(mas, end - 1);
2498 	if (!vma)
2499 		return 0;
2500 
2501 	return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2502 }
2503 
2504 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2505  * @mm: The mm_struct
2506  * @start: The start address to munmap
2507  * @len: The length to be munmapped.
2508  * @uf: The userfaultfd list_head
2509  */
2510 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2511 	      struct list_head *uf)
2512 {
2513 	MA_STATE(mas, &mm->mm_mt, start, start);
2514 
2515 	return do_mas_munmap(&mas, mm, start, len, uf, false);
2516 }
2517 
2518 unsigned long mmap_region(struct file *file, unsigned long addr,
2519 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2520 		struct list_head *uf)
2521 {
2522 	struct mm_struct *mm = current->mm;
2523 	struct vm_area_struct *vma = NULL;
2524 	struct vm_area_struct *next, *prev, *merge;
2525 	pgoff_t pglen = len >> PAGE_SHIFT;
2526 	unsigned long charged = 0;
2527 	unsigned long end = addr + len;
2528 	unsigned long merge_start = addr, merge_end = end;
2529 	pgoff_t vm_pgoff;
2530 	int error;
2531 	MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2532 
2533 	/* Check against address space limit. */
2534 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2535 		unsigned long nr_pages;
2536 
2537 		/*
2538 		 * MAP_FIXED may remove pages of mappings that intersects with
2539 		 * requested mapping. Account for the pages it would unmap.
2540 		 */
2541 		nr_pages = count_vma_pages_range(mm, addr, end);
2542 
2543 		if (!may_expand_vm(mm, vm_flags,
2544 					(len >> PAGE_SHIFT) - nr_pages))
2545 			return -ENOMEM;
2546 	}
2547 
2548 	/* Unmap any existing mapping in the area */
2549 	if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2550 		return -ENOMEM;
2551 
2552 	/*
2553 	 * Private writable mapping: check memory availability
2554 	 */
2555 	if (accountable_mapping(file, vm_flags)) {
2556 		charged = len >> PAGE_SHIFT;
2557 		if (security_vm_enough_memory_mm(mm, charged))
2558 			return -ENOMEM;
2559 		vm_flags |= VM_ACCOUNT;
2560 	}
2561 
2562 	next = mas_next(&mas, ULONG_MAX);
2563 	prev = mas_prev(&mas, 0);
2564 	if (vm_flags & VM_SPECIAL)
2565 		goto cannot_expand;
2566 
2567 	/* Attempt to expand an old mapping */
2568 	/* Check next */
2569 	if (next && next->vm_start == end && !vma_policy(next) &&
2570 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2571 				 NULL_VM_UFFD_CTX, NULL)) {
2572 		merge_end = next->vm_end;
2573 		vma = next;
2574 		vm_pgoff = next->vm_pgoff - pglen;
2575 	}
2576 
2577 	/* Check prev */
2578 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2579 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2580 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2581 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2582 				       NULL_VM_UFFD_CTX, NULL))) {
2583 		merge_start = prev->vm_start;
2584 		vma = prev;
2585 		vm_pgoff = prev->vm_pgoff;
2586 	}
2587 
2588 
2589 	/* Actually expand, if possible */
2590 	if (vma &&
2591 	    !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2592 		khugepaged_enter_vma(vma, vm_flags);
2593 		goto expanded;
2594 	}
2595 
2596 	mas.index = addr;
2597 	mas.last = end - 1;
2598 cannot_expand:
2599 	/*
2600 	 * Determine the object being mapped and call the appropriate
2601 	 * specific mapper. the address has already been validated, but
2602 	 * not unmapped, but the maps are removed from the list.
2603 	 */
2604 	vma = vm_area_alloc(mm);
2605 	if (!vma) {
2606 		error = -ENOMEM;
2607 		goto unacct_error;
2608 	}
2609 
2610 	vma->vm_start = addr;
2611 	vma->vm_end = end;
2612 	vma->vm_flags = vm_flags;
2613 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2614 	vma->vm_pgoff = pgoff;
2615 
2616 	if (file) {
2617 		if (vm_flags & VM_SHARED) {
2618 			error = mapping_map_writable(file->f_mapping);
2619 			if (error)
2620 				goto free_vma;
2621 		}
2622 
2623 		vma->vm_file = get_file(file);
2624 		error = call_mmap(file, vma);
2625 		if (error)
2626 			goto unmap_and_free_vma;
2627 
2628 		/*
2629 		 * Expansion is handled above, merging is handled below.
2630 		 * Drivers should not alter the address of the VMA.
2631 		 */
2632 		if (WARN_ON((addr != vma->vm_start))) {
2633 			error = -EINVAL;
2634 			goto close_and_free_vma;
2635 		}
2636 		mas_reset(&mas);
2637 
2638 		/*
2639 		 * If vm_flags changed after call_mmap(), we should try merge
2640 		 * vma again as we may succeed this time.
2641 		 */
2642 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2643 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2644 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2645 			if (merge) {
2646 				/*
2647 				 * ->mmap() can change vma->vm_file and fput
2648 				 * the original file. So fput the vma->vm_file
2649 				 * here or we would add an extra fput for file
2650 				 * and cause general protection fault
2651 				 * ultimately.
2652 				 */
2653 				fput(vma->vm_file);
2654 				vm_area_free(vma);
2655 				vma = merge;
2656 				/* Update vm_flags to pick up the change. */
2657 				vm_flags = vma->vm_flags;
2658 				goto unmap_writable;
2659 			}
2660 		}
2661 
2662 		vm_flags = vma->vm_flags;
2663 	} else if (vm_flags & VM_SHARED) {
2664 		error = shmem_zero_setup(vma);
2665 		if (error)
2666 			goto free_vma;
2667 	} else {
2668 		vma_set_anonymous(vma);
2669 	}
2670 
2671 	/* Allow architectures to sanity-check the vm_flags */
2672 	if (!arch_validate_flags(vma->vm_flags)) {
2673 		error = -EINVAL;
2674 		if (file)
2675 			goto close_and_free_vma;
2676 		else if (vma->vm_file)
2677 			goto unmap_and_free_vma;
2678 		else
2679 			goto free_vma;
2680 	}
2681 
2682 	if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2683 		error = -ENOMEM;
2684 		if (file)
2685 			goto close_and_free_vma;
2686 		else if (vma->vm_file)
2687 			goto unmap_and_free_vma;
2688 		else
2689 			goto free_vma;
2690 	}
2691 
2692 	if (vma->vm_file)
2693 		i_mmap_lock_write(vma->vm_file->f_mapping);
2694 
2695 	vma_mas_store(vma, &mas);
2696 	mm->map_count++;
2697 	if (vma->vm_file) {
2698 		if (vma->vm_flags & VM_SHARED)
2699 			mapping_allow_writable(vma->vm_file->f_mapping);
2700 
2701 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2702 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2703 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2704 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2705 	}
2706 
2707 	/*
2708 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2709 	 * call covers the non-merge case.
2710 	 */
2711 	khugepaged_enter_vma(vma, vma->vm_flags);
2712 
2713 	/* Once vma denies write, undo our temporary denial count */
2714 unmap_writable:
2715 	if (file && vm_flags & VM_SHARED)
2716 		mapping_unmap_writable(file->f_mapping);
2717 	file = vma->vm_file;
2718 expanded:
2719 	perf_event_mmap(vma);
2720 
2721 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2722 	if (vm_flags & VM_LOCKED) {
2723 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2724 					is_vm_hugetlb_page(vma) ||
2725 					vma == get_gate_vma(current->mm))
2726 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2727 		else
2728 			mm->locked_vm += (len >> PAGE_SHIFT);
2729 	}
2730 
2731 	if (file)
2732 		uprobe_mmap(vma);
2733 
2734 	/*
2735 	 * New (or expanded) vma always get soft dirty status.
2736 	 * Otherwise user-space soft-dirty page tracker won't
2737 	 * be able to distinguish situation when vma area unmapped,
2738 	 * then new mapped in-place (which must be aimed as
2739 	 * a completely new data area).
2740 	 */
2741 	vma->vm_flags |= VM_SOFTDIRTY;
2742 
2743 	vma_set_page_prot(vma);
2744 
2745 	validate_mm(mm);
2746 	return addr;
2747 
2748 close_and_free_vma:
2749 	if (vma->vm_ops && vma->vm_ops->close)
2750 		vma->vm_ops->close(vma);
2751 unmap_and_free_vma:
2752 	fput(vma->vm_file);
2753 	vma->vm_file = NULL;
2754 
2755 	/* Undo any partial mapping done by a device driver. */
2756 	unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2757 	if (file && (vm_flags & VM_SHARED))
2758 		mapping_unmap_writable(file->f_mapping);
2759 free_vma:
2760 	vm_area_free(vma);
2761 unacct_error:
2762 	if (charged)
2763 		vm_unacct_memory(charged);
2764 	validate_mm(mm);
2765 	return error;
2766 }
2767 
2768 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2769 {
2770 	int ret;
2771 	struct mm_struct *mm = current->mm;
2772 	LIST_HEAD(uf);
2773 	MA_STATE(mas, &mm->mm_mt, start, start);
2774 
2775 	if (mmap_write_lock_killable(mm))
2776 		return -EINTR;
2777 
2778 	ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2779 	/*
2780 	 * Returning 1 indicates mmap_lock is downgraded.
2781 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2782 	 * it to 0 before return.
2783 	 */
2784 	if (ret == 1) {
2785 		mmap_read_unlock(mm);
2786 		ret = 0;
2787 	} else
2788 		mmap_write_unlock(mm);
2789 
2790 	userfaultfd_unmap_complete(mm, &uf);
2791 	return ret;
2792 }
2793 
2794 int vm_munmap(unsigned long start, size_t len)
2795 {
2796 	return __vm_munmap(start, len, false);
2797 }
2798 EXPORT_SYMBOL(vm_munmap);
2799 
2800 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2801 {
2802 	addr = untagged_addr(addr);
2803 	return __vm_munmap(addr, len, true);
2804 }
2805 
2806 
2807 /*
2808  * Emulation of deprecated remap_file_pages() syscall.
2809  */
2810 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2811 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2812 {
2813 
2814 	struct mm_struct *mm = current->mm;
2815 	struct vm_area_struct *vma;
2816 	unsigned long populate = 0;
2817 	unsigned long ret = -EINVAL;
2818 	struct file *file;
2819 
2820 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2821 		     current->comm, current->pid);
2822 
2823 	if (prot)
2824 		return ret;
2825 	start = start & PAGE_MASK;
2826 	size = size & PAGE_MASK;
2827 
2828 	if (start + size <= start)
2829 		return ret;
2830 
2831 	/* Does pgoff wrap? */
2832 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2833 		return ret;
2834 
2835 	if (mmap_write_lock_killable(mm))
2836 		return -EINTR;
2837 
2838 	vma = vma_lookup(mm, start);
2839 
2840 	if (!vma || !(vma->vm_flags & VM_SHARED))
2841 		goto out;
2842 
2843 	if (start + size > vma->vm_end) {
2844 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2845 		struct vm_area_struct *next, *prev = vma;
2846 
2847 		for_each_vma_range(vmi, next, start + size) {
2848 			/* hole between vmas ? */
2849 			if (next->vm_start != prev->vm_end)
2850 				goto out;
2851 
2852 			if (next->vm_file != vma->vm_file)
2853 				goto out;
2854 
2855 			if (next->vm_flags != vma->vm_flags)
2856 				goto out;
2857 
2858 			if (start + size <= next->vm_end)
2859 				break;
2860 
2861 			prev = next;
2862 		}
2863 
2864 		if (!next)
2865 			goto out;
2866 	}
2867 
2868 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2869 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2870 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2871 
2872 	flags &= MAP_NONBLOCK;
2873 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2874 	if (vma->vm_flags & VM_LOCKED)
2875 		flags |= MAP_LOCKED;
2876 
2877 	file = get_file(vma->vm_file);
2878 	ret = do_mmap(vma->vm_file, start, size,
2879 			prot, flags, pgoff, &populate, NULL);
2880 	fput(file);
2881 out:
2882 	mmap_write_unlock(mm);
2883 	if (populate)
2884 		mm_populate(ret, populate);
2885 	if (!IS_ERR_VALUE(ret))
2886 		ret = 0;
2887 	return ret;
2888 }
2889 
2890 /*
2891  * brk_munmap() - Unmap a parital vma.
2892  * @mas: The maple tree state.
2893  * @vma: The vma to be modified
2894  * @newbrk: the start of the address to unmap
2895  * @oldbrk: The end of the address to unmap
2896  * @uf: The userfaultfd list_head
2897  *
2898  * Returns: 1 on success.
2899  * unmaps a partial VMA mapping.  Does not handle alignment, downgrades lock if
2900  * possible.
2901  */
2902 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2903 			 unsigned long newbrk, unsigned long oldbrk,
2904 			 struct list_head *uf)
2905 {
2906 	struct mm_struct *mm = vma->vm_mm;
2907 	int ret;
2908 
2909 	arch_unmap(mm, newbrk, oldbrk);
2910 	ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
2911 	validate_mm_mt(mm);
2912 	return ret;
2913 }
2914 
2915 /*
2916  * do_brk_flags() - Increase the brk vma if the flags match.
2917  * @mas: The maple tree state.
2918  * @addr: The start address
2919  * @len: The length of the increase
2920  * @vma: The vma,
2921  * @flags: The VMA Flags
2922  *
2923  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2924  * do not match then create a new anonymous VMA.  Eventually we may be able to
2925  * do some brk-specific accounting here.
2926  */
2927 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
2928 		unsigned long addr, unsigned long len, unsigned long flags)
2929 {
2930 	struct mm_struct *mm = current->mm;
2931 
2932 	validate_mm_mt(mm);
2933 	/*
2934 	 * Check against address space limits by the changed size
2935 	 * Note: This happens *after* clearing old mappings in some code paths.
2936 	 */
2937 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2938 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2939 		return -ENOMEM;
2940 
2941 	if (mm->map_count > sysctl_max_map_count)
2942 		return -ENOMEM;
2943 
2944 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2945 		return -ENOMEM;
2946 
2947 	/*
2948 	 * Expand the existing vma if possible; Note that singular lists do not
2949 	 * occur after forking, so the expand will only happen on new VMAs.
2950 	 */
2951 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2952 	    can_vma_merge_after(vma, flags, NULL, NULL,
2953 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2954 		mas_set_range(mas, vma->vm_start, addr + len - 1);
2955 		if (mas_preallocate(mas, vma, GFP_KERNEL))
2956 			goto unacct_fail;
2957 
2958 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2959 		if (vma->anon_vma) {
2960 			anon_vma_lock_write(vma->anon_vma);
2961 			anon_vma_interval_tree_pre_update_vma(vma);
2962 		}
2963 		vma->vm_end = addr + len;
2964 		vma->vm_flags |= VM_SOFTDIRTY;
2965 		mas_store_prealloc(mas, vma);
2966 
2967 		if (vma->anon_vma) {
2968 			anon_vma_interval_tree_post_update_vma(vma);
2969 			anon_vma_unlock_write(vma->anon_vma);
2970 		}
2971 		khugepaged_enter_vma(vma, flags);
2972 		goto out;
2973 	}
2974 
2975 	/* create a vma struct for an anonymous mapping */
2976 	vma = vm_area_alloc(mm);
2977 	if (!vma)
2978 		goto unacct_fail;
2979 
2980 	vma_set_anonymous(vma);
2981 	vma->vm_start = addr;
2982 	vma->vm_end = addr + len;
2983 	vma->vm_pgoff = addr >> PAGE_SHIFT;
2984 	vma->vm_flags = flags;
2985 	vma->vm_page_prot = vm_get_page_prot(flags);
2986 	mas_set_range(mas, vma->vm_start, addr + len - 1);
2987 	if (mas_store_gfp(mas, vma, GFP_KERNEL))
2988 		goto mas_store_fail;
2989 
2990 	mm->map_count++;
2991 out:
2992 	perf_event_mmap(vma);
2993 	mm->total_vm += len >> PAGE_SHIFT;
2994 	mm->data_vm += len >> PAGE_SHIFT;
2995 	if (flags & VM_LOCKED)
2996 		mm->locked_vm += (len >> PAGE_SHIFT);
2997 	vma->vm_flags |= VM_SOFTDIRTY;
2998 	validate_mm(mm);
2999 	return 0;
3000 
3001 mas_store_fail:
3002 	vm_area_free(vma);
3003 unacct_fail:
3004 	vm_unacct_memory(len >> PAGE_SHIFT);
3005 	return -ENOMEM;
3006 }
3007 
3008 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3009 {
3010 	struct mm_struct *mm = current->mm;
3011 	struct vm_area_struct *vma = NULL;
3012 	unsigned long len;
3013 	int ret;
3014 	bool populate;
3015 	LIST_HEAD(uf);
3016 	MA_STATE(mas, &mm->mm_mt, addr, addr);
3017 
3018 	len = PAGE_ALIGN(request);
3019 	if (len < request)
3020 		return -ENOMEM;
3021 	if (!len)
3022 		return 0;
3023 
3024 	if (mmap_write_lock_killable(mm))
3025 		return -EINTR;
3026 
3027 	/* Until we need other flags, refuse anything except VM_EXEC. */
3028 	if ((flags & (~VM_EXEC)) != 0)
3029 		return -EINVAL;
3030 
3031 	ret = check_brk_limits(addr, len);
3032 	if (ret)
3033 		goto limits_failed;
3034 
3035 	ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3036 	if (ret)
3037 		goto munmap_failed;
3038 
3039 	vma = mas_prev(&mas, 0);
3040 	ret = do_brk_flags(&mas, vma, addr, len, flags);
3041 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3042 	mmap_write_unlock(mm);
3043 	userfaultfd_unmap_complete(mm, &uf);
3044 	if (populate && !ret)
3045 		mm_populate(addr, len);
3046 	return ret;
3047 
3048 munmap_failed:
3049 limits_failed:
3050 	mmap_write_unlock(mm);
3051 	return ret;
3052 }
3053 EXPORT_SYMBOL(vm_brk_flags);
3054 
3055 int vm_brk(unsigned long addr, unsigned long len)
3056 {
3057 	return vm_brk_flags(addr, len, 0);
3058 }
3059 EXPORT_SYMBOL(vm_brk);
3060 
3061 /* Release all mmaps. */
3062 void exit_mmap(struct mm_struct *mm)
3063 {
3064 	struct mmu_gather tlb;
3065 	struct vm_area_struct *vma;
3066 	unsigned long nr_accounted = 0;
3067 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3068 	int count = 0;
3069 
3070 	/* mm's last user has gone, and its about to be pulled down */
3071 	mmu_notifier_release(mm);
3072 
3073 	mmap_read_lock(mm);
3074 	arch_exit_mmap(mm);
3075 
3076 	vma = mas_find(&mas, ULONG_MAX);
3077 	if (!vma) {
3078 		/* Can happen if dup_mmap() received an OOM */
3079 		mmap_read_unlock(mm);
3080 		return;
3081 	}
3082 
3083 	lru_add_drain();
3084 	flush_cache_mm(mm);
3085 	tlb_gather_mmu_fullmm(&tlb, mm);
3086 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3087 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3088 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3089 	mmap_read_unlock(mm);
3090 
3091 	/*
3092 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3093 	 * because the memory has been already freed.
3094 	 */
3095 	set_bit(MMF_OOM_SKIP, &mm->flags);
3096 	mmap_write_lock(mm);
3097 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3098 		      USER_PGTABLES_CEILING);
3099 	tlb_finish_mmu(&tlb);
3100 
3101 	/*
3102 	 * Walk the list again, actually closing and freeing it, with preemption
3103 	 * enabled, without holding any MM locks besides the unreachable
3104 	 * mmap_write_lock.
3105 	 */
3106 	do {
3107 		if (vma->vm_flags & VM_ACCOUNT)
3108 			nr_accounted += vma_pages(vma);
3109 		remove_vma(vma);
3110 		count++;
3111 		cond_resched();
3112 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3113 
3114 	BUG_ON(count != mm->map_count);
3115 
3116 	trace_exit_mmap(mm);
3117 	__mt_destroy(&mm->mm_mt);
3118 	mmap_write_unlock(mm);
3119 	vm_unacct_memory(nr_accounted);
3120 }
3121 
3122 /* Insert vm structure into process list sorted by address
3123  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3124  * then i_mmap_rwsem is taken here.
3125  */
3126 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3127 {
3128 	unsigned long charged = vma_pages(vma);
3129 
3130 
3131 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3132 		return -ENOMEM;
3133 
3134 	if ((vma->vm_flags & VM_ACCOUNT) &&
3135 	     security_vm_enough_memory_mm(mm, charged))
3136 		return -ENOMEM;
3137 
3138 	/*
3139 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3140 	 * until its first write fault, when page's anon_vma and index
3141 	 * are set.  But now set the vm_pgoff it will almost certainly
3142 	 * end up with (unless mremap moves it elsewhere before that
3143 	 * first wfault), so /proc/pid/maps tells a consistent story.
3144 	 *
3145 	 * By setting it to reflect the virtual start address of the
3146 	 * vma, merges and splits can happen in a seamless way, just
3147 	 * using the existing file pgoff checks and manipulations.
3148 	 * Similarly in do_mmap and in do_brk_flags.
3149 	 */
3150 	if (vma_is_anonymous(vma)) {
3151 		BUG_ON(vma->anon_vma);
3152 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3153 	}
3154 
3155 	if (vma_link(mm, vma)) {
3156 		vm_unacct_memory(charged);
3157 		return -ENOMEM;
3158 	}
3159 
3160 	return 0;
3161 }
3162 
3163 /*
3164  * Copy the vma structure to a new location in the same mm,
3165  * prior to moving page table entries, to effect an mremap move.
3166  */
3167 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3168 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3169 	bool *need_rmap_locks)
3170 {
3171 	struct vm_area_struct *vma = *vmap;
3172 	unsigned long vma_start = vma->vm_start;
3173 	struct mm_struct *mm = vma->vm_mm;
3174 	struct vm_area_struct *new_vma, *prev;
3175 	bool faulted_in_anon_vma = true;
3176 
3177 	validate_mm_mt(mm);
3178 	/*
3179 	 * If anonymous vma has not yet been faulted, update new pgoff
3180 	 * to match new location, to increase its chance of merging.
3181 	 */
3182 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3183 		pgoff = addr >> PAGE_SHIFT;
3184 		faulted_in_anon_vma = false;
3185 	}
3186 
3187 	new_vma = find_vma_prev(mm, addr, &prev);
3188 	if (new_vma && new_vma->vm_start < addr + len)
3189 		return NULL;	/* should never get here */
3190 
3191 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3192 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3193 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3194 	if (new_vma) {
3195 		/*
3196 		 * Source vma may have been merged into new_vma
3197 		 */
3198 		if (unlikely(vma_start >= new_vma->vm_start &&
3199 			     vma_start < new_vma->vm_end)) {
3200 			/*
3201 			 * The only way we can get a vma_merge with
3202 			 * self during an mremap is if the vma hasn't
3203 			 * been faulted in yet and we were allowed to
3204 			 * reset the dst vma->vm_pgoff to the
3205 			 * destination address of the mremap to allow
3206 			 * the merge to happen. mremap must change the
3207 			 * vm_pgoff linearity between src and dst vmas
3208 			 * (in turn preventing a vma_merge) to be
3209 			 * safe. It is only safe to keep the vm_pgoff
3210 			 * linear if there are no pages mapped yet.
3211 			 */
3212 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3213 			*vmap = vma = new_vma;
3214 		}
3215 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3216 	} else {
3217 		new_vma = vm_area_dup(vma);
3218 		if (!new_vma)
3219 			goto out;
3220 		new_vma->vm_start = addr;
3221 		new_vma->vm_end = addr + len;
3222 		new_vma->vm_pgoff = pgoff;
3223 		if (vma_dup_policy(vma, new_vma))
3224 			goto out_free_vma;
3225 		if (anon_vma_clone(new_vma, vma))
3226 			goto out_free_mempol;
3227 		if (new_vma->vm_file)
3228 			get_file(new_vma->vm_file);
3229 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3230 			new_vma->vm_ops->open(new_vma);
3231 		if (vma_link(mm, new_vma))
3232 			goto out_vma_link;
3233 		*need_rmap_locks = false;
3234 	}
3235 	validate_mm_mt(mm);
3236 	return new_vma;
3237 
3238 out_vma_link:
3239 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3240 		new_vma->vm_ops->close(new_vma);
3241 
3242 	if (new_vma->vm_file)
3243 		fput(new_vma->vm_file);
3244 
3245 	unlink_anon_vmas(new_vma);
3246 out_free_mempol:
3247 	mpol_put(vma_policy(new_vma));
3248 out_free_vma:
3249 	vm_area_free(new_vma);
3250 out:
3251 	validate_mm_mt(mm);
3252 	return NULL;
3253 }
3254 
3255 /*
3256  * Return true if the calling process may expand its vm space by the passed
3257  * number of pages
3258  */
3259 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3260 {
3261 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3262 		return false;
3263 
3264 	if (is_data_mapping(flags) &&
3265 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3266 		/* Workaround for Valgrind */
3267 		if (rlimit(RLIMIT_DATA) == 0 &&
3268 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3269 			return true;
3270 
3271 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3272 			     current->comm, current->pid,
3273 			     (mm->data_vm + npages) << PAGE_SHIFT,
3274 			     rlimit(RLIMIT_DATA),
3275 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3276 
3277 		if (!ignore_rlimit_data)
3278 			return false;
3279 	}
3280 
3281 	return true;
3282 }
3283 
3284 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3285 {
3286 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3287 
3288 	if (is_exec_mapping(flags))
3289 		mm->exec_vm += npages;
3290 	else if (is_stack_mapping(flags))
3291 		mm->stack_vm += npages;
3292 	else if (is_data_mapping(flags))
3293 		mm->data_vm += npages;
3294 }
3295 
3296 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3297 
3298 /*
3299  * Having a close hook prevents vma merging regardless of flags.
3300  */
3301 static void special_mapping_close(struct vm_area_struct *vma)
3302 {
3303 }
3304 
3305 static const char *special_mapping_name(struct vm_area_struct *vma)
3306 {
3307 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3308 }
3309 
3310 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3311 {
3312 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3313 
3314 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3315 		return -EFAULT;
3316 
3317 	if (sm->mremap)
3318 		return sm->mremap(sm, new_vma);
3319 
3320 	return 0;
3321 }
3322 
3323 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3324 {
3325 	/*
3326 	 * Forbid splitting special mappings - kernel has expectations over
3327 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3328 	 * the size of vma should stay the same over the special mapping's
3329 	 * lifetime.
3330 	 */
3331 	return -EINVAL;
3332 }
3333 
3334 static const struct vm_operations_struct special_mapping_vmops = {
3335 	.close = special_mapping_close,
3336 	.fault = special_mapping_fault,
3337 	.mremap = special_mapping_mremap,
3338 	.name = special_mapping_name,
3339 	/* vDSO code relies that VVAR can't be accessed remotely */
3340 	.access = NULL,
3341 	.may_split = special_mapping_split,
3342 };
3343 
3344 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3345 	.close = special_mapping_close,
3346 	.fault = special_mapping_fault,
3347 };
3348 
3349 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3350 {
3351 	struct vm_area_struct *vma = vmf->vma;
3352 	pgoff_t pgoff;
3353 	struct page **pages;
3354 
3355 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3356 		pages = vma->vm_private_data;
3357 	} else {
3358 		struct vm_special_mapping *sm = vma->vm_private_data;
3359 
3360 		if (sm->fault)
3361 			return sm->fault(sm, vmf->vma, vmf);
3362 
3363 		pages = sm->pages;
3364 	}
3365 
3366 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3367 		pgoff--;
3368 
3369 	if (*pages) {
3370 		struct page *page = *pages;
3371 		get_page(page);
3372 		vmf->page = page;
3373 		return 0;
3374 	}
3375 
3376 	return VM_FAULT_SIGBUS;
3377 }
3378 
3379 static struct vm_area_struct *__install_special_mapping(
3380 	struct mm_struct *mm,
3381 	unsigned long addr, unsigned long len,
3382 	unsigned long vm_flags, void *priv,
3383 	const struct vm_operations_struct *ops)
3384 {
3385 	int ret;
3386 	struct vm_area_struct *vma;
3387 
3388 	validate_mm_mt(mm);
3389 	vma = vm_area_alloc(mm);
3390 	if (unlikely(vma == NULL))
3391 		return ERR_PTR(-ENOMEM);
3392 
3393 	vma->vm_start = addr;
3394 	vma->vm_end = addr + len;
3395 
3396 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3397 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3398 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3399 
3400 	vma->vm_ops = ops;
3401 	vma->vm_private_data = priv;
3402 
3403 	ret = insert_vm_struct(mm, vma);
3404 	if (ret)
3405 		goto out;
3406 
3407 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3408 
3409 	perf_event_mmap(vma);
3410 
3411 	validate_mm_mt(mm);
3412 	return vma;
3413 
3414 out:
3415 	vm_area_free(vma);
3416 	validate_mm_mt(mm);
3417 	return ERR_PTR(ret);
3418 }
3419 
3420 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3421 	const struct vm_special_mapping *sm)
3422 {
3423 	return vma->vm_private_data == sm &&
3424 		(vma->vm_ops == &special_mapping_vmops ||
3425 		 vma->vm_ops == &legacy_special_mapping_vmops);
3426 }
3427 
3428 /*
3429  * Called with mm->mmap_lock held for writing.
3430  * Insert a new vma covering the given region, with the given flags.
3431  * Its pages are supplied by the given array of struct page *.
3432  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3433  * The region past the last page supplied will always produce SIGBUS.
3434  * The array pointer and the pages it points to are assumed to stay alive
3435  * for as long as this mapping might exist.
3436  */
3437 struct vm_area_struct *_install_special_mapping(
3438 	struct mm_struct *mm,
3439 	unsigned long addr, unsigned long len,
3440 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3441 {
3442 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3443 					&special_mapping_vmops);
3444 }
3445 
3446 int install_special_mapping(struct mm_struct *mm,
3447 			    unsigned long addr, unsigned long len,
3448 			    unsigned long vm_flags, struct page **pages)
3449 {
3450 	struct vm_area_struct *vma = __install_special_mapping(
3451 		mm, addr, len, vm_flags, (void *)pages,
3452 		&legacy_special_mapping_vmops);
3453 
3454 	return PTR_ERR_OR_ZERO(vma);
3455 }
3456 
3457 static DEFINE_MUTEX(mm_all_locks_mutex);
3458 
3459 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3460 {
3461 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3462 		/*
3463 		 * The LSB of head.next can't change from under us
3464 		 * because we hold the mm_all_locks_mutex.
3465 		 */
3466 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3467 		/*
3468 		 * We can safely modify head.next after taking the
3469 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3470 		 * the same anon_vma we won't take it again.
3471 		 *
3472 		 * No need of atomic instructions here, head.next
3473 		 * can't change from under us thanks to the
3474 		 * anon_vma->root->rwsem.
3475 		 */
3476 		if (__test_and_set_bit(0, (unsigned long *)
3477 				       &anon_vma->root->rb_root.rb_root.rb_node))
3478 			BUG();
3479 	}
3480 }
3481 
3482 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3483 {
3484 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3485 		/*
3486 		 * AS_MM_ALL_LOCKS can't change from under us because
3487 		 * we hold the mm_all_locks_mutex.
3488 		 *
3489 		 * Operations on ->flags have to be atomic because
3490 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3491 		 * mm_all_locks_mutex, there may be other cpus
3492 		 * changing other bitflags in parallel to us.
3493 		 */
3494 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3495 			BUG();
3496 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3497 	}
3498 }
3499 
3500 /*
3501  * This operation locks against the VM for all pte/vma/mm related
3502  * operations that could ever happen on a certain mm. This includes
3503  * vmtruncate, try_to_unmap, and all page faults.
3504  *
3505  * The caller must take the mmap_lock in write mode before calling
3506  * mm_take_all_locks(). The caller isn't allowed to release the
3507  * mmap_lock until mm_drop_all_locks() returns.
3508  *
3509  * mmap_lock in write mode is required in order to block all operations
3510  * that could modify pagetables and free pages without need of
3511  * altering the vma layout. It's also needed in write mode to avoid new
3512  * anon_vmas to be associated with existing vmas.
3513  *
3514  * A single task can't take more than one mm_take_all_locks() in a row
3515  * or it would deadlock.
3516  *
3517  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3518  * mapping->flags avoid to take the same lock twice, if more than one
3519  * vma in this mm is backed by the same anon_vma or address_space.
3520  *
3521  * We take locks in following order, accordingly to comment at beginning
3522  * of mm/rmap.c:
3523  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3524  *     hugetlb mapping);
3525  *   - all i_mmap_rwsem locks;
3526  *   - all anon_vma->rwseml
3527  *
3528  * We can take all locks within these types randomly because the VM code
3529  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3530  * mm_all_locks_mutex.
3531  *
3532  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3533  * that may have to take thousand of locks.
3534  *
3535  * mm_take_all_locks() can fail if it's interrupted by signals.
3536  */
3537 int mm_take_all_locks(struct mm_struct *mm)
3538 {
3539 	struct vm_area_struct *vma;
3540 	struct anon_vma_chain *avc;
3541 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3542 
3543 	mmap_assert_write_locked(mm);
3544 
3545 	mutex_lock(&mm_all_locks_mutex);
3546 
3547 	mas_for_each(&mas, vma, ULONG_MAX) {
3548 		if (signal_pending(current))
3549 			goto out_unlock;
3550 		if (vma->vm_file && vma->vm_file->f_mapping &&
3551 				is_vm_hugetlb_page(vma))
3552 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3553 	}
3554 
3555 	mas_set(&mas, 0);
3556 	mas_for_each(&mas, vma, ULONG_MAX) {
3557 		if (signal_pending(current))
3558 			goto out_unlock;
3559 		if (vma->vm_file && vma->vm_file->f_mapping &&
3560 				!is_vm_hugetlb_page(vma))
3561 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3562 	}
3563 
3564 	mas_set(&mas, 0);
3565 	mas_for_each(&mas, vma, ULONG_MAX) {
3566 		if (signal_pending(current))
3567 			goto out_unlock;
3568 		if (vma->anon_vma)
3569 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3570 				vm_lock_anon_vma(mm, avc->anon_vma);
3571 	}
3572 
3573 	return 0;
3574 
3575 out_unlock:
3576 	mm_drop_all_locks(mm);
3577 	return -EINTR;
3578 }
3579 
3580 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3581 {
3582 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3583 		/*
3584 		 * The LSB of head.next can't change to 0 from under
3585 		 * us because we hold the mm_all_locks_mutex.
3586 		 *
3587 		 * We must however clear the bitflag before unlocking
3588 		 * the vma so the users using the anon_vma->rb_root will
3589 		 * never see our bitflag.
3590 		 *
3591 		 * No need of atomic instructions here, head.next
3592 		 * can't change from under us until we release the
3593 		 * anon_vma->root->rwsem.
3594 		 */
3595 		if (!__test_and_clear_bit(0, (unsigned long *)
3596 					  &anon_vma->root->rb_root.rb_root.rb_node))
3597 			BUG();
3598 		anon_vma_unlock_write(anon_vma);
3599 	}
3600 }
3601 
3602 static void vm_unlock_mapping(struct address_space *mapping)
3603 {
3604 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605 		/*
3606 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3607 		 * because we hold the mm_all_locks_mutex.
3608 		 */
3609 		i_mmap_unlock_write(mapping);
3610 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3611 					&mapping->flags))
3612 			BUG();
3613 	}
3614 }
3615 
3616 /*
3617  * The mmap_lock cannot be released by the caller until
3618  * mm_drop_all_locks() returns.
3619  */
3620 void mm_drop_all_locks(struct mm_struct *mm)
3621 {
3622 	struct vm_area_struct *vma;
3623 	struct anon_vma_chain *avc;
3624 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3625 
3626 	mmap_assert_write_locked(mm);
3627 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3628 
3629 	mas_for_each(&mas, vma, ULONG_MAX) {
3630 		if (vma->anon_vma)
3631 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3632 				vm_unlock_anon_vma(avc->anon_vma);
3633 		if (vma->vm_file && vma->vm_file->f_mapping)
3634 			vm_unlock_mapping(vma->vm_file->f_mapping);
3635 	}
3636 
3637 	mutex_unlock(&mm_all_locks_mutex);
3638 }
3639 
3640 /*
3641  * initialise the percpu counter for VM
3642  */
3643 void __init mmap_init(void)
3644 {
3645 	int ret;
3646 
3647 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3648 	VM_BUG_ON(ret);
3649 }
3650 
3651 /*
3652  * Initialise sysctl_user_reserve_kbytes.
3653  *
3654  * This is intended to prevent a user from starting a single memory hogging
3655  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3656  * mode.
3657  *
3658  * The default value is min(3% of free memory, 128MB)
3659  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3660  */
3661 static int init_user_reserve(void)
3662 {
3663 	unsigned long free_kbytes;
3664 
3665 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3666 
3667 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3668 	return 0;
3669 }
3670 subsys_initcall(init_user_reserve);
3671 
3672 /*
3673  * Initialise sysctl_admin_reserve_kbytes.
3674  *
3675  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3676  * to log in and kill a memory hogging process.
3677  *
3678  * Systems with more than 256MB will reserve 8MB, enough to recover
3679  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3680  * only reserve 3% of free pages by default.
3681  */
3682 static int init_admin_reserve(void)
3683 {
3684 	unsigned long free_kbytes;
3685 
3686 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3687 
3688 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3689 	return 0;
3690 }
3691 subsys_initcall(init_admin_reserve);
3692 
3693 /*
3694  * Reinititalise user and admin reserves if memory is added or removed.
3695  *
3696  * The default user reserve max is 128MB, and the default max for the
3697  * admin reserve is 8MB. These are usually, but not always, enough to
3698  * enable recovery from a memory hogging process using login/sshd, a shell,
3699  * and tools like top. It may make sense to increase or even disable the
3700  * reserve depending on the existence of swap or variations in the recovery
3701  * tools. So, the admin may have changed them.
3702  *
3703  * If memory is added and the reserves have been eliminated or increased above
3704  * the default max, then we'll trust the admin.
3705  *
3706  * If memory is removed and there isn't enough free memory, then we
3707  * need to reset the reserves.
3708  *
3709  * Otherwise keep the reserve set by the admin.
3710  */
3711 static int reserve_mem_notifier(struct notifier_block *nb,
3712 			     unsigned long action, void *data)
3713 {
3714 	unsigned long tmp, free_kbytes;
3715 
3716 	switch (action) {
3717 	case MEM_ONLINE:
3718 		/* Default max is 128MB. Leave alone if modified by operator. */
3719 		tmp = sysctl_user_reserve_kbytes;
3720 		if (0 < tmp && tmp < (1UL << 17))
3721 			init_user_reserve();
3722 
3723 		/* Default max is 8MB.  Leave alone if modified by operator. */
3724 		tmp = sysctl_admin_reserve_kbytes;
3725 		if (0 < tmp && tmp < (1UL << 13))
3726 			init_admin_reserve();
3727 
3728 		break;
3729 	case MEM_OFFLINE:
3730 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3731 
3732 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3733 			init_user_reserve();
3734 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3735 				sysctl_user_reserve_kbytes);
3736 		}
3737 
3738 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3739 			init_admin_reserve();
3740 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3741 				sysctl_admin_reserve_kbytes);
3742 		}
3743 		break;
3744 	default:
3745 		break;
3746 	}
3747 	return NOTIFY_OK;
3748 }
3749 
3750 static int __meminit init_reserve_notifier(void)
3751 {
3752 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3753 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3754 
3755 	return 0;
3756 }
3757 subsys_initcall(init_reserve_notifier);
3758