xref: /openbmc/linux/mm/mmap.c (revision 50fc8d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 	return prot;
106 }
107 #endif
108 
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 
115 	return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118 
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123 
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 	unsigned long vm_flags = vma->vm_flags;
128 	pgprot_t vm_page_prot;
129 
130 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 	if (vma_wants_writenotify(vma, vm_page_prot)) {
132 		vm_flags &= ~VM_SHARED;
133 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 	}
135 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138 
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 		struct file *file, struct address_space *mapping)
144 {
145 	if (vma->vm_flags & VM_DENYWRITE)
146 		allow_write_access(file);
147 	if (vma->vm_flags & VM_SHARED)
148 		mapping_unmap_writable(mapping);
149 
150 	flush_dcache_mmap_lock(mapping);
151 	vma_interval_tree_remove(vma, &mapping->i_mmap);
152 	flush_dcache_mmap_unlock(mapping);
153 }
154 
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 	struct file *file = vma->vm_file;
162 
163 	if (file) {
164 		struct address_space *mapping = file->f_mapping;
165 		i_mmap_lock_write(mapping);
166 		__remove_shared_vm_struct(vma, file, mapping);
167 		i_mmap_unlock_write(mapping);
168 	}
169 }
170 
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 	struct vm_area_struct *next = vma->vm_next;
177 
178 	might_sleep();
179 	if (vma->vm_ops && vma->vm_ops->close)
180 		vma->vm_ops->close(vma);
181 	if (vma->vm_file)
182 		fput(vma->vm_file);
183 	mpol_put(vma_policy(vma));
184 	vm_area_free(vma);
185 	return next;
186 }
187 
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 		struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long retval;
193 	unsigned long newbrk, oldbrk, origbrk;
194 	struct mm_struct *mm = current->mm;
195 	struct vm_area_struct *next;
196 	unsigned long min_brk;
197 	bool populate;
198 	bool downgraded = false;
199 	LIST_HEAD(uf);
200 
201 	if (mmap_write_lock_killable(mm))
202 		return -EINTR;
203 
204 	origbrk = mm->brk;
205 
206 #ifdef CONFIG_COMPAT_BRK
207 	/*
208 	 * CONFIG_COMPAT_BRK can still be overridden by setting
209 	 * randomize_va_space to 2, which will still cause mm->start_brk
210 	 * to be arbitrarily shifted
211 	 */
212 	if (current->brk_randomized)
213 		min_brk = mm->start_brk;
214 	else
215 		min_brk = mm->end_data;
216 #else
217 	min_brk = mm->start_brk;
218 #endif
219 	if (brk < min_brk)
220 		goto out;
221 
222 	/*
223 	 * Check against rlimit here. If this check is done later after the test
224 	 * of oldbrk with newbrk then it can escape the test and let the data
225 	 * segment grow beyond its set limit the in case where the limit is
226 	 * not page aligned -Ram Gupta
227 	 */
228 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 			      mm->end_data, mm->start_data))
230 		goto out;
231 
232 	newbrk = PAGE_ALIGN(brk);
233 	oldbrk = PAGE_ALIGN(mm->brk);
234 	if (oldbrk == newbrk) {
235 		mm->brk = brk;
236 		goto success;
237 	}
238 
239 	/*
240 	 * Always allow shrinking brk.
241 	 * __do_munmap() may downgrade mmap_lock to read.
242 	 */
243 	if (brk <= mm->brk) {
244 		int ret;
245 
246 		/*
247 		 * mm->brk must to be protected by write mmap_lock so update it
248 		 * before downgrading mmap_lock. When __do_munmap() fails,
249 		 * mm->brk will be restored from origbrk.
250 		 */
251 		mm->brk = brk;
252 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 		if (ret < 0) {
254 			mm->brk = origbrk;
255 			goto out;
256 		} else if (ret == 1) {
257 			downgraded = true;
258 		}
259 		goto success;
260 	}
261 
262 	/* Check against existing mmap mappings. */
263 	next = find_vma(mm, oldbrk);
264 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 		goto out;
266 
267 	/* Ok, looks good - let it rip. */
268 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 		goto out;
270 	mm->brk = brk;
271 
272 success:
273 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 	if (downgraded)
275 		mmap_read_unlock(mm);
276 	else
277 		mmap_write_unlock(mm);
278 	userfaultfd_unmap_complete(mm, &uf);
279 	if (populate)
280 		mm_populate(oldbrk, newbrk - oldbrk);
281 	return brk;
282 
283 out:
284 	retval = origbrk;
285 	mmap_write_unlock(mm);
286 	return retval;
287 }
288 
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 	unsigned long gap, prev_end;
292 
293 	/*
294 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 	 * allow two stack_guard_gaps between them here, and when choosing
296 	 * an unmapped area; whereas when expanding we only require one.
297 	 * That's a little inconsistent, but keeps the code here simpler.
298 	 */
299 	gap = vm_start_gap(vma);
300 	if (vma->vm_prev) {
301 		prev_end = vm_end_gap(vma->vm_prev);
302 		if (gap > prev_end)
303 			gap -= prev_end;
304 		else
305 			gap = 0;
306 	}
307 	return gap;
308 }
309 
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 	unsigned long max = vma_compute_gap(vma), subtree_gap;
314 	if (vma->vm_rb.rb_left) {
315 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 		if (subtree_gap > max)
318 			max = subtree_gap;
319 	}
320 	if (vma->vm_rb.rb_right) {
321 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 		if (subtree_gap > max)
324 			max = subtree_gap;
325 	}
326 	return max;
327 }
328 
329 static int browse_rb(struct mm_struct *mm)
330 {
331 	struct rb_root *root = &mm->mm_rb;
332 	int i = 0, j, bug = 0;
333 	struct rb_node *nd, *pn = NULL;
334 	unsigned long prev = 0, pend = 0;
335 
336 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 		struct vm_area_struct *vma;
338 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 		if (vma->vm_start < prev) {
340 			pr_emerg("vm_start %lx < prev %lx\n",
341 				  vma->vm_start, prev);
342 			bug = 1;
343 		}
344 		if (vma->vm_start < pend) {
345 			pr_emerg("vm_start %lx < pend %lx\n",
346 				  vma->vm_start, pend);
347 			bug = 1;
348 		}
349 		if (vma->vm_start > vma->vm_end) {
350 			pr_emerg("vm_start %lx > vm_end %lx\n",
351 				  vma->vm_start, vma->vm_end);
352 			bug = 1;
353 		}
354 		spin_lock(&mm->page_table_lock);
355 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 			pr_emerg("free gap %lx, correct %lx\n",
357 			       vma->rb_subtree_gap,
358 			       vma_compute_subtree_gap(vma));
359 			bug = 1;
360 		}
361 		spin_unlock(&mm->page_table_lock);
362 		i++;
363 		pn = nd;
364 		prev = vma->vm_start;
365 		pend = vma->vm_end;
366 	}
367 	j = 0;
368 	for (nd = pn; nd; nd = rb_prev(nd))
369 		j++;
370 	if (i != j) {
371 		pr_emerg("backwards %d, forwards %d\n", j, i);
372 		bug = 1;
373 	}
374 	return bug ? -1 : i;
375 }
376 
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 	struct rb_node *nd;
380 
381 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 		struct vm_area_struct *vma;
383 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 		VM_BUG_ON_VMA(vma != ignore &&
385 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 			vma);
387 	}
388 }
389 
390 static void validate_mm(struct mm_struct *mm)
391 {
392 	int bug = 0;
393 	int i = 0;
394 	unsigned long highest_address = 0;
395 	struct vm_area_struct *vma = mm->mmap;
396 
397 	while (vma) {
398 		struct anon_vma *anon_vma = vma->anon_vma;
399 		struct anon_vma_chain *avc;
400 
401 		if (anon_vma) {
402 			anon_vma_lock_read(anon_vma);
403 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 				anon_vma_interval_tree_verify(avc);
405 			anon_vma_unlock_read(anon_vma);
406 		}
407 
408 		highest_address = vm_end_gap(vma);
409 		vma = vma->vm_next;
410 		i++;
411 	}
412 	if (i != mm->map_count) {
413 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 		bug = 1;
415 	}
416 	if (highest_address != mm->highest_vm_end) {
417 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 			  mm->highest_vm_end, highest_address);
419 		bug = 1;
420 	}
421 	i = browse_rb(mm);
422 	if (i != mm->map_count) {
423 		if (i != -1)
424 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 		bug = 1;
426 	}
427 	VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433 
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 			 struct vm_area_struct, vm_rb,
436 			 unsigned long, rb_subtree_gap, vma_compute_gap)
437 
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 	/*
446 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 	 * a callback function that does exactly what we want.
448 	 */
449 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451 
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 				 struct rb_root *root)
454 {
455 	/* All rb_subtree_gap values must be consistent prior to insertion */
456 	validate_mm_rb(root, NULL);
457 
458 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460 
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 	/*
464 	 * Note rb_erase_augmented is a fairly large inline function,
465 	 * so make sure we instantiate it only once with our desired
466 	 * augmented rbtree callbacks.
467 	 */
468 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470 
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 						struct rb_root *root,
473 						struct vm_area_struct *ignore)
474 {
475 	/*
476 	 * All rb_subtree_gap values must be consistent prior to erase,
477 	 * with the possible exception of
478 	 *
479 	 * a. the "next" vma being erased if next->vm_start was reduced in
480 	 *    __vma_adjust() -> __vma_unlink()
481 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482 	 *    vma_rb_erase()
483 	 */
484 	validate_mm_rb(root, ignore);
485 
486 	__vma_rb_erase(vma, root);
487 }
488 
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490 					 struct rb_root *root)
491 {
492 	vma_rb_erase_ignore(vma, root, vma);
493 }
494 
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512 	struct anon_vma_chain *avc;
513 
514 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517 
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521 	struct anon_vma_chain *avc;
522 
523 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526 
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528 		unsigned long end, struct vm_area_struct **pprev,
529 		struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532 
533 	__rb_link = &mm->mm_rb.rb_node;
534 	rb_prev = __rb_parent = NULL;
535 
536 	while (*__rb_link) {
537 		struct vm_area_struct *vma_tmp;
538 
539 		__rb_parent = *__rb_link;
540 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541 
542 		if (vma_tmp->vm_end > addr) {
543 			/* Fail if an existing vma overlaps the area */
544 			if (vma_tmp->vm_start < end)
545 				return -ENOMEM;
546 			__rb_link = &__rb_parent->rb_left;
547 		} else {
548 			rb_prev = __rb_parent;
549 			__rb_link = &__rb_parent->rb_right;
550 		}
551 	}
552 
553 	*pprev = NULL;
554 	if (rb_prev)
555 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556 	*rb_link = __rb_link;
557 	*rb_parent = __rb_parent;
558 	return 0;
559 }
560 
561 /*
562  * vma_next() - Get the next VMA.
563  * @mm: The mm_struct.
564  * @vma: The current vma.
565  *
566  * If @vma is NULL, return the first vma in the mm.
567  *
568  * Returns: The next VMA after @vma.
569  */
570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571 					 struct vm_area_struct *vma)
572 {
573 	if (!vma)
574 		return mm->mmap;
575 
576 	return vma->vm_next;
577 }
578 
579 /*
580  * munmap_vma_range() - munmap VMAs that overlap a range.
581  * @mm: The mm struct
582  * @start: The start of the range.
583  * @len: The length of the range.
584  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585  * @rb_link: the rb_node
586  * @rb_parent: the parent rb_node
587  *
588  * Find all the vm_area_struct that overlap from @start to
589  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
590  *
591  * Returns: -ENOMEM on munmap failure or 0 on success.
592  */
593 static inline int
594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595 		 struct vm_area_struct **pprev, struct rb_node ***link,
596 		 struct rb_node **parent, struct list_head *uf)
597 {
598 
599 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
600 		if (do_munmap(mm, start, len, uf))
601 			return -ENOMEM;
602 
603 	return 0;
604 }
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 		unsigned long addr, unsigned long end)
607 {
608 	unsigned long nr_pages = 0;
609 	struct vm_area_struct *vma;
610 
611 	/* Find first overlaping mapping */
612 	vma = find_vma_intersection(mm, addr, end);
613 	if (!vma)
614 		return 0;
615 
616 	nr_pages = (min(end, vma->vm_end) -
617 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
618 
619 	/* Iterate over the rest of the overlaps */
620 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 		unsigned long overlap_len;
622 
623 		if (vma->vm_start > end)
624 			break;
625 
626 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 		nr_pages += overlap_len >> PAGE_SHIFT;
628 	}
629 
630 	return nr_pages;
631 }
632 
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 		struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636 	/* Update tracking information for the gap following the new vma. */
637 	if (vma->vm_next)
638 		vma_gap_update(vma->vm_next);
639 	else
640 		mm->highest_vm_end = vm_end_gap(vma);
641 
642 	/*
643 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 	 * correct insertion point for that vma. As a result, we could not
645 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 	 * So, we first insert the vma with a zero rb_subtree_gap value
647 	 * (to be consistent with what we did on the way down), and then
648 	 * immediately update the gap to the correct value. Finally we
649 	 * rebalance the rbtree after all augmented values have been set.
650 	 */
651 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 	vma->rb_subtree_gap = 0;
653 	vma_gap_update(vma);
654 	vma_rb_insert(vma, &mm->mm_rb);
655 }
656 
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659 	struct file *file;
660 
661 	file = vma->vm_file;
662 	if (file) {
663 		struct address_space *mapping = file->f_mapping;
664 
665 		if (vma->vm_flags & VM_DENYWRITE)
666 			put_write_access(file_inode(file));
667 		if (vma->vm_flags & VM_SHARED)
668 			mapping_allow_writable(mapping);
669 
670 		flush_dcache_mmap_lock(mapping);
671 		vma_interval_tree_insert(vma, &mapping->i_mmap);
672 		flush_dcache_mmap_unlock(mapping);
673 	}
674 }
675 
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 	struct vm_area_struct *prev, struct rb_node **rb_link,
679 	struct rb_node *rb_parent)
680 {
681 	__vma_link_list(mm, vma, prev);
682 	__vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684 
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 			struct vm_area_struct *prev, struct rb_node **rb_link,
687 			struct rb_node *rb_parent)
688 {
689 	struct address_space *mapping = NULL;
690 
691 	if (vma->vm_file) {
692 		mapping = vma->vm_file->f_mapping;
693 		i_mmap_lock_write(mapping);
694 	}
695 
696 	__vma_link(mm, vma, prev, rb_link, rb_parent);
697 	__vma_link_file(vma);
698 
699 	if (mapping)
700 		i_mmap_unlock_write(mapping);
701 
702 	mm->map_count++;
703 	validate_mm(mm);
704 }
705 
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712 	struct vm_area_struct *prev;
713 	struct rb_node **rb_link, *rb_parent;
714 
715 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 			   &prev, &rb_link, &rb_parent))
717 		BUG();
718 	__vma_link(mm, vma, prev, rb_link, rb_parent);
719 	mm->map_count++;
720 }
721 
722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723 						struct vm_area_struct *vma,
724 						struct vm_area_struct *ignore)
725 {
726 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727 	__vma_unlink_list(mm, vma);
728 	/* Kill the cache */
729 	vmacache_invalidate(mm);
730 }
731 
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741 	struct vm_area_struct *expand)
742 {
743 	struct mm_struct *mm = vma->vm_mm;
744 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745 	struct address_space *mapping = NULL;
746 	struct rb_root_cached *root = NULL;
747 	struct anon_vma *anon_vma = NULL;
748 	struct file *file = vma->vm_file;
749 	bool start_changed = false, end_changed = false;
750 	long adjust_next = 0;
751 	int remove_next = 0;
752 
753 	if (next && !insert) {
754 		struct vm_area_struct *exporter = NULL, *importer = NULL;
755 
756 		if (end >= next->vm_end) {
757 			/*
758 			 * vma expands, overlapping all the next, and
759 			 * perhaps the one after too (mprotect case 6).
760 			 * The only other cases that gets here are
761 			 * case 1, case 7 and case 8.
762 			 */
763 			if (next == expand) {
764 				/*
765 				 * The only case where we don't expand "vma"
766 				 * and we expand "next" instead is case 8.
767 				 */
768 				VM_WARN_ON(end != next->vm_end);
769 				/*
770 				 * remove_next == 3 means we're
771 				 * removing "vma" and that to do so we
772 				 * swapped "vma" and "next".
773 				 */
774 				remove_next = 3;
775 				VM_WARN_ON(file != next->vm_file);
776 				swap(vma, next);
777 			} else {
778 				VM_WARN_ON(expand != vma);
779 				/*
780 				 * case 1, 6, 7, remove_next == 2 is case 6,
781 				 * remove_next == 1 is case 1 or 7.
782 				 */
783 				remove_next = 1 + (end > next->vm_end);
784 				VM_WARN_ON(remove_next == 2 &&
785 					   end != next->vm_next->vm_end);
786 				/* trim end to next, for case 6 first pass */
787 				end = next->vm_end;
788 			}
789 
790 			exporter = next;
791 			importer = vma;
792 
793 			/*
794 			 * If next doesn't have anon_vma, import from vma after
795 			 * next, if the vma overlaps with it.
796 			 */
797 			if (remove_next == 2 && !next->anon_vma)
798 				exporter = next->vm_next;
799 
800 		} else if (end > next->vm_start) {
801 			/*
802 			 * vma expands, overlapping part of the next:
803 			 * mprotect case 5 shifting the boundary up.
804 			 */
805 			adjust_next = (end - next->vm_start);
806 			exporter = next;
807 			importer = vma;
808 			VM_WARN_ON(expand != importer);
809 		} else if (end < vma->vm_end) {
810 			/*
811 			 * vma shrinks, and !insert tells it's not
812 			 * split_vma inserting another: so it must be
813 			 * mprotect case 4 shifting the boundary down.
814 			 */
815 			adjust_next = -(vma->vm_end - end);
816 			exporter = vma;
817 			importer = next;
818 			VM_WARN_ON(expand != importer);
819 		}
820 
821 		/*
822 		 * Easily overlooked: when mprotect shifts the boundary,
823 		 * make sure the expanding vma has anon_vma set if the
824 		 * shrinking vma had, to cover any anon pages imported.
825 		 */
826 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
827 			int error;
828 
829 			importer->anon_vma = exporter->anon_vma;
830 			error = anon_vma_clone(importer, exporter);
831 			if (error)
832 				return error;
833 		}
834 	}
835 again:
836 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837 
838 	if (file) {
839 		mapping = file->f_mapping;
840 		root = &mapping->i_mmap;
841 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842 
843 		if (adjust_next)
844 			uprobe_munmap(next, next->vm_start, next->vm_end);
845 
846 		i_mmap_lock_write(mapping);
847 		if (insert) {
848 			/*
849 			 * Put into interval tree now, so instantiated pages
850 			 * are visible to arm/parisc __flush_dcache_page
851 			 * throughout; but we cannot insert into address
852 			 * space until vma start or end is updated.
853 			 */
854 			__vma_link_file(insert);
855 		}
856 	}
857 
858 	anon_vma = vma->anon_vma;
859 	if (!anon_vma && adjust_next)
860 		anon_vma = next->anon_vma;
861 	if (anon_vma) {
862 		VM_WARN_ON(adjust_next && next->anon_vma &&
863 			   anon_vma != next->anon_vma);
864 		anon_vma_lock_write(anon_vma);
865 		anon_vma_interval_tree_pre_update_vma(vma);
866 		if (adjust_next)
867 			anon_vma_interval_tree_pre_update_vma(next);
868 	}
869 
870 	if (file) {
871 		flush_dcache_mmap_lock(mapping);
872 		vma_interval_tree_remove(vma, root);
873 		if (adjust_next)
874 			vma_interval_tree_remove(next, root);
875 	}
876 
877 	if (start != vma->vm_start) {
878 		vma->vm_start = start;
879 		start_changed = true;
880 	}
881 	if (end != vma->vm_end) {
882 		vma->vm_end = end;
883 		end_changed = true;
884 	}
885 	vma->vm_pgoff = pgoff;
886 	if (adjust_next) {
887 		next->vm_start += adjust_next;
888 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889 	}
890 
891 	if (file) {
892 		if (adjust_next)
893 			vma_interval_tree_insert(next, root);
894 		vma_interval_tree_insert(vma, root);
895 		flush_dcache_mmap_unlock(mapping);
896 	}
897 
898 	if (remove_next) {
899 		/*
900 		 * vma_merge has merged next into vma, and needs
901 		 * us to remove next before dropping the locks.
902 		 */
903 		if (remove_next != 3)
904 			__vma_unlink(mm, next, next);
905 		else
906 			/*
907 			 * vma is not before next if they've been
908 			 * swapped.
909 			 *
910 			 * pre-swap() next->vm_start was reduced so
911 			 * tell validate_mm_rb to ignore pre-swap()
912 			 * "next" (which is stored in post-swap()
913 			 * "vma").
914 			 */
915 			__vma_unlink(mm, next, vma);
916 		if (file)
917 			__remove_shared_vm_struct(next, file, mapping);
918 	} else if (insert) {
919 		/*
920 		 * split_vma has split insert from vma, and needs
921 		 * us to insert it before dropping the locks
922 		 * (it may either follow vma or precede it).
923 		 */
924 		__insert_vm_struct(mm, insert);
925 	} else {
926 		if (start_changed)
927 			vma_gap_update(vma);
928 		if (end_changed) {
929 			if (!next)
930 				mm->highest_vm_end = vm_end_gap(vma);
931 			else if (!adjust_next)
932 				vma_gap_update(next);
933 		}
934 	}
935 
936 	if (anon_vma) {
937 		anon_vma_interval_tree_post_update_vma(vma);
938 		if (adjust_next)
939 			anon_vma_interval_tree_post_update_vma(next);
940 		anon_vma_unlock_write(anon_vma);
941 	}
942 
943 	if (file) {
944 		i_mmap_unlock_write(mapping);
945 		uprobe_mmap(vma);
946 
947 		if (adjust_next)
948 			uprobe_mmap(next);
949 	}
950 
951 	if (remove_next) {
952 		if (file) {
953 			uprobe_munmap(next, next->vm_start, next->vm_end);
954 			fput(file);
955 		}
956 		if (next->anon_vma)
957 			anon_vma_merge(vma, next);
958 		mm->map_count--;
959 		mpol_put(vma_policy(next));
960 		vm_area_free(next);
961 		/*
962 		 * In mprotect's case 6 (see comments on vma_merge),
963 		 * we must remove another next too. It would clutter
964 		 * up the code too much to do both in one go.
965 		 */
966 		if (remove_next != 3) {
967 			/*
968 			 * If "next" was removed and vma->vm_end was
969 			 * expanded (up) over it, in turn
970 			 * "next->vm_prev->vm_end" changed and the
971 			 * "vma->vm_next" gap must be updated.
972 			 */
973 			next = vma->vm_next;
974 		} else {
975 			/*
976 			 * For the scope of the comment "next" and
977 			 * "vma" considered pre-swap(): if "vma" was
978 			 * removed, next->vm_start was expanded (down)
979 			 * over it and the "next" gap must be updated.
980 			 * Because of the swap() the post-swap() "vma"
981 			 * actually points to pre-swap() "next"
982 			 * (post-swap() "next" as opposed is now a
983 			 * dangling pointer).
984 			 */
985 			next = vma;
986 		}
987 		if (remove_next == 2) {
988 			remove_next = 1;
989 			end = next->vm_end;
990 			goto again;
991 		}
992 		else if (next)
993 			vma_gap_update(next);
994 		else {
995 			/*
996 			 * If remove_next == 2 we obviously can't
997 			 * reach this path.
998 			 *
999 			 * If remove_next == 3 we can't reach this
1000 			 * path because pre-swap() next is always not
1001 			 * NULL. pre-swap() "next" is not being
1002 			 * removed and its next->vm_end is not altered
1003 			 * (and furthermore "end" already matches
1004 			 * next->vm_end in remove_next == 3).
1005 			 *
1006 			 * We reach this only in the remove_next == 1
1007 			 * case if the "next" vma that was removed was
1008 			 * the highest vma of the mm. However in such
1009 			 * case next->vm_end == "end" and the extended
1010 			 * "vma" has vma->vm_end == next->vm_end so
1011 			 * mm->highest_vm_end doesn't need any update
1012 			 * in remove_next == 1 case.
1013 			 */
1014 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015 		}
1016 	}
1017 	if (insert && file)
1018 		uprobe_mmap(insert);
1019 
1020 	validate_mm(mm);
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * If the vma has a ->close operation then the driver probably needs to release
1027  * per-vma resources, so we don't attempt to merge those.
1028  */
1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030 				struct file *file, unsigned long vm_flags,
1031 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 {
1033 	/*
1034 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1035 	 * match the flags but dirty bit -- the caller should mark
1036 	 * merged VMA as dirty. If dirty bit won't be excluded from
1037 	 * comparison, we increase pressure on the memory system forcing
1038 	 * the kernel to generate new VMAs when old one could be
1039 	 * extended instead.
1040 	 */
1041 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1042 		return 0;
1043 	if (vma->vm_file != file)
1044 		return 0;
1045 	if (vma->vm_ops && vma->vm_ops->close)
1046 		return 0;
1047 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1048 		return 0;
1049 	return 1;
1050 }
1051 
1052 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1053 					struct anon_vma *anon_vma2,
1054 					struct vm_area_struct *vma)
1055 {
1056 	/*
1057 	 * The list_is_singular() test is to avoid merging VMA cloned from
1058 	 * parents. This can improve scalability caused by anon_vma lock.
1059 	 */
1060 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1061 		list_is_singular(&vma->anon_vma_chain)))
1062 		return 1;
1063 	return anon_vma1 == anon_vma2;
1064 }
1065 
1066 /*
1067  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1068  * in front of (at a lower virtual address and file offset than) the vma.
1069  *
1070  * We cannot merge two vmas if they have differently assigned (non-NULL)
1071  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1072  *
1073  * We don't check here for the merged mmap wrapping around the end of pagecache
1074  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1075  * wrap, nor mmaps which cover the final page at index -1UL.
1076  */
1077 static int
1078 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1079 		     struct anon_vma *anon_vma, struct file *file,
1080 		     pgoff_t vm_pgoff,
1081 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085 		if (vma->vm_pgoff == vm_pgoff)
1086 			return 1;
1087 	}
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1093  * beyond (at a higher virtual address and file offset than) the vma.
1094  *
1095  * We cannot merge two vmas if they have differently assigned (non-NULL)
1096  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1097  */
1098 static int
1099 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1100 		    struct anon_vma *anon_vma, struct file *file,
1101 		    pgoff_t vm_pgoff,
1102 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1103 {
1104 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1105 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1106 		pgoff_t vm_pglen;
1107 		vm_pglen = vma_pages(vma);
1108 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1109 			return 1;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1116  * whether that can be merged with its predecessor or its successor.
1117  * Or both (it neatly fills a hole).
1118  *
1119  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1120  * certain not to be mapped by the time vma_merge is called; but when
1121  * called for mprotect, it is certain to be already mapped (either at
1122  * an offset within prev, or at the start of next), and the flags of
1123  * this area are about to be changed to vm_flags - and the no-change
1124  * case has already been eliminated.
1125  *
1126  * The following mprotect cases have to be considered, where AAAA is
1127  * the area passed down from mprotect_fixup, never extending beyond one
1128  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1129  *
1130  *     AAAA             AAAA                   AAAA
1131  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1132  *    cannot merge    might become       might become
1133  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1134  *    mmap, brk or    case 4 below       case 5 below
1135  *    mremap move:
1136  *                        AAAA               AAAA
1137  *                    PPPP    NNNN       PPPPNNNNXXXX
1138  *                    might become       might become
1139  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1140  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1141  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1142  *
1143  * It is important for case 8 that the vma NNNN overlapping the
1144  * region AAAA is never going to extended over XXXX. Instead XXXX must
1145  * be extended in region AAAA and NNNN must be removed. This way in
1146  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1147  * rmap_locks, the properties of the merged vma will be already
1148  * correct for the whole merged range. Some of those properties like
1149  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1150  * be correct for the whole merged range immediately after the
1151  * rmap_locks are released. Otherwise if XXXX would be removed and
1152  * NNNN would be extended over the XXXX range, remove_migration_ptes
1153  * or other rmap walkers (if working on addresses beyond the "end"
1154  * parameter) may establish ptes with the wrong permissions of NNNN
1155  * instead of the right permissions of XXXX.
1156  */
1157 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1158 			struct vm_area_struct *prev, unsigned long addr,
1159 			unsigned long end, unsigned long vm_flags,
1160 			struct anon_vma *anon_vma, struct file *file,
1161 			pgoff_t pgoff, struct mempolicy *policy,
1162 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1163 {
1164 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1165 	struct vm_area_struct *area, *next;
1166 	int err;
1167 
1168 	/*
1169 	 * We later require that vma->vm_flags == vm_flags,
1170 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1171 	 */
1172 	if (vm_flags & VM_SPECIAL)
1173 		return NULL;
1174 
1175 	next = vma_next(mm, prev);
1176 	area = next;
1177 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1178 		next = next->vm_next;
1179 
1180 	/* verify some invariant that must be enforced by the caller */
1181 	VM_WARN_ON(prev && addr <= prev->vm_start);
1182 	VM_WARN_ON(area && end > area->vm_end);
1183 	VM_WARN_ON(addr >= end);
1184 
1185 	/*
1186 	 * Can it merge with the predecessor?
1187 	 */
1188 	if (prev && prev->vm_end == addr &&
1189 			mpol_equal(vma_policy(prev), policy) &&
1190 			can_vma_merge_after(prev, vm_flags,
1191 					    anon_vma, file, pgoff,
1192 					    vm_userfaultfd_ctx)) {
1193 		/*
1194 		 * OK, it can.  Can we now merge in the successor as well?
1195 		 */
1196 		if (next && end == next->vm_start &&
1197 				mpol_equal(policy, vma_policy(next)) &&
1198 				can_vma_merge_before(next, vm_flags,
1199 						     anon_vma, file,
1200 						     pgoff+pglen,
1201 						     vm_userfaultfd_ctx) &&
1202 				is_mergeable_anon_vma(prev->anon_vma,
1203 						      next->anon_vma, NULL)) {
1204 							/* cases 1, 6 */
1205 			err = __vma_adjust(prev, prev->vm_start,
1206 					 next->vm_end, prev->vm_pgoff, NULL,
1207 					 prev);
1208 		} else					/* cases 2, 5, 7 */
1209 			err = __vma_adjust(prev, prev->vm_start,
1210 					 end, prev->vm_pgoff, NULL, prev);
1211 		if (err)
1212 			return NULL;
1213 		khugepaged_enter_vma_merge(prev, vm_flags);
1214 		return prev;
1215 	}
1216 
1217 	/*
1218 	 * Can this new request be merged in front of next?
1219 	 */
1220 	if (next && end == next->vm_start &&
1221 			mpol_equal(policy, vma_policy(next)) &&
1222 			can_vma_merge_before(next, vm_flags,
1223 					     anon_vma, file, pgoff+pglen,
1224 					     vm_userfaultfd_ctx)) {
1225 		if (prev && addr < prev->vm_end)	/* case 4 */
1226 			err = __vma_adjust(prev, prev->vm_start,
1227 					 addr, prev->vm_pgoff, NULL, next);
1228 		else {					/* cases 3, 8 */
1229 			err = __vma_adjust(area, addr, next->vm_end,
1230 					 next->vm_pgoff - pglen, NULL, next);
1231 			/*
1232 			 * In case 3 area is already equal to next and
1233 			 * this is a noop, but in case 8 "area" has
1234 			 * been removed and next was expanded over it.
1235 			 */
1236 			area = next;
1237 		}
1238 		if (err)
1239 			return NULL;
1240 		khugepaged_enter_vma_merge(area, vm_flags);
1241 		return area;
1242 	}
1243 
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * Rough compatibility check to quickly see if it's even worth looking
1249  * at sharing an anon_vma.
1250  *
1251  * They need to have the same vm_file, and the flags can only differ
1252  * in things that mprotect may change.
1253  *
1254  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1255  * we can merge the two vma's. For example, we refuse to merge a vma if
1256  * there is a vm_ops->close() function, because that indicates that the
1257  * driver is doing some kind of reference counting. But that doesn't
1258  * really matter for the anon_vma sharing case.
1259  */
1260 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1261 {
1262 	return a->vm_end == b->vm_start &&
1263 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1264 		a->vm_file == b->vm_file &&
1265 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1266 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1267 }
1268 
1269 /*
1270  * Do some basic sanity checking to see if we can re-use the anon_vma
1271  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1272  * the same as 'old', the other will be the new one that is trying
1273  * to share the anon_vma.
1274  *
1275  * NOTE! This runs with mm_sem held for reading, so it is possible that
1276  * the anon_vma of 'old' is concurrently in the process of being set up
1277  * by another page fault trying to merge _that_. But that's ok: if it
1278  * is being set up, that automatically means that it will be a singleton
1279  * acceptable for merging, so we can do all of this optimistically. But
1280  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1281  *
1282  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1283  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1284  * is to return an anon_vma that is "complex" due to having gone through
1285  * a fork).
1286  *
1287  * We also make sure that the two vma's are compatible (adjacent,
1288  * and with the same memory policies). That's all stable, even with just
1289  * a read lock on the mm_sem.
1290  */
1291 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1292 {
1293 	if (anon_vma_compatible(a, b)) {
1294 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1295 
1296 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1297 			return anon_vma;
1298 	}
1299 	return NULL;
1300 }
1301 
1302 /*
1303  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1304  * neighbouring vmas for a suitable anon_vma, before it goes off
1305  * to allocate a new anon_vma.  It checks because a repetitive
1306  * sequence of mprotects and faults may otherwise lead to distinct
1307  * anon_vmas being allocated, preventing vma merge in subsequent
1308  * mprotect.
1309  */
1310 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1311 {
1312 	struct anon_vma *anon_vma = NULL;
1313 
1314 	/* Try next first. */
1315 	if (vma->vm_next) {
1316 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1317 		if (anon_vma)
1318 			return anon_vma;
1319 	}
1320 
1321 	/* Try prev next. */
1322 	if (vma->vm_prev)
1323 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1324 
1325 	/*
1326 	 * We might reach here with anon_vma == NULL if we can't find
1327 	 * any reusable anon_vma.
1328 	 * There's no absolute need to look only at touching neighbours:
1329 	 * we could search further afield for "compatible" anon_vmas.
1330 	 * But it would probably just be a waste of time searching,
1331 	 * or lead to too many vmas hanging off the same anon_vma.
1332 	 * We're trying to allow mprotect remerging later on,
1333 	 * not trying to minimize memory used for anon_vmas.
1334 	 */
1335 	return anon_vma;
1336 }
1337 
1338 /*
1339  * If a hint addr is less than mmap_min_addr change hint to be as
1340  * low as possible but still greater than mmap_min_addr
1341  */
1342 static inline unsigned long round_hint_to_min(unsigned long hint)
1343 {
1344 	hint &= PAGE_MASK;
1345 	if (((void *)hint != NULL) &&
1346 	    (hint < mmap_min_addr))
1347 		return PAGE_ALIGN(mmap_min_addr);
1348 	return hint;
1349 }
1350 
1351 static inline int mlock_future_check(struct mm_struct *mm,
1352 				     unsigned long flags,
1353 				     unsigned long len)
1354 {
1355 	unsigned long locked, lock_limit;
1356 
1357 	/*  mlock MCL_FUTURE? */
1358 	if (flags & VM_LOCKED) {
1359 		locked = len >> PAGE_SHIFT;
1360 		locked += mm->locked_vm;
1361 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 		lock_limit >>= PAGE_SHIFT;
1363 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 			return -EAGAIN;
1365 	}
1366 	return 0;
1367 }
1368 
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 	if (S_ISREG(inode->i_mode))
1372 		return MAX_LFS_FILESIZE;
1373 
1374 	if (S_ISBLK(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISSOCK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	/* Special "we do even unsigned file positions" case */
1381 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 		return 0;
1383 
1384 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 	return ULONG_MAX;
1386 }
1387 
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 				unsigned long pgoff, unsigned long len)
1390 {
1391 	u64 maxsize = file_mmap_size_max(file, inode);
1392 
1393 	if (maxsize && len > maxsize)
1394 		return false;
1395 	maxsize -= len;
1396 	if (pgoff > maxsize >> PAGE_SHIFT)
1397 		return false;
1398 	return true;
1399 }
1400 
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 			unsigned long len, unsigned long prot,
1406 			unsigned long flags, unsigned long pgoff,
1407 			unsigned long *populate, struct list_head *uf)
1408 {
1409 	struct mm_struct *mm = current->mm;
1410 	vm_flags_t vm_flags;
1411 	int pkey = 0;
1412 
1413 	*populate = 0;
1414 
1415 	if (!len)
1416 		return -EINVAL;
1417 
1418 	/*
1419 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 	 *
1421 	 * (the exception is when the underlying filesystem is noexec
1422 	 *  mounted, in which case we dont add PROT_EXEC.)
1423 	 */
1424 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 		if (!(file && path_noexec(&file->f_path)))
1426 			prot |= PROT_EXEC;
1427 
1428 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 	if (flags & MAP_FIXED_NOREPLACE)
1430 		flags |= MAP_FIXED;
1431 
1432 	if (!(flags & MAP_FIXED))
1433 		addr = round_hint_to_min(addr);
1434 
1435 	/* Careful about overflows.. */
1436 	len = PAGE_ALIGN(len);
1437 	if (!len)
1438 		return -ENOMEM;
1439 
1440 	/* offset overflow? */
1441 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 		return -EOVERFLOW;
1443 
1444 	/* Too many mappings? */
1445 	if (mm->map_count > sysctl_max_map_count)
1446 		return -ENOMEM;
1447 
1448 	/* Obtain the address to map to. we verify (or select) it and ensure
1449 	 * that it represents a valid section of the address space.
1450 	 */
1451 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 	if (IS_ERR_VALUE(addr))
1453 		return addr;
1454 
1455 	if (flags & MAP_FIXED_NOREPLACE) {
1456 		struct vm_area_struct *vma = find_vma(mm, addr);
1457 
1458 		if (vma && vma->vm_start < addr + len)
1459 			return -EEXIST;
1460 	}
1461 
1462 	if (prot == PROT_EXEC) {
1463 		pkey = execute_only_pkey(mm);
1464 		if (pkey < 0)
1465 			pkey = 0;
1466 	}
1467 
1468 	/* Do simple checking here so the lower-level routines won't have
1469 	 * to. we assume access permissions have been handled by the open
1470 	 * of the memory object, so we don't do any here.
1471 	 */
1472 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1473 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1474 
1475 	if (flags & MAP_LOCKED)
1476 		if (!can_do_mlock())
1477 			return -EPERM;
1478 
1479 	if (mlock_future_check(mm, vm_flags, len))
1480 		return -EAGAIN;
1481 
1482 	if (file) {
1483 		struct inode *inode = file_inode(file);
1484 		unsigned long flags_mask;
1485 
1486 		if (!file_mmap_ok(file, inode, pgoff, len))
1487 			return -EOVERFLOW;
1488 
1489 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1490 
1491 		switch (flags & MAP_TYPE) {
1492 		case MAP_SHARED:
1493 			/*
1494 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1495 			 * flags. E.g. MAP_SYNC is dangerous to use with
1496 			 * MAP_SHARED as you don't know which consistency model
1497 			 * you will get. We silently ignore unsupported flags
1498 			 * with MAP_SHARED to preserve backward compatibility.
1499 			 */
1500 			flags &= LEGACY_MAP_MASK;
1501 			fallthrough;
1502 		case MAP_SHARED_VALIDATE:
1503 			if (flags & ~flags_mask)
1504 				return -EOPNOTSUPP;
1505 			if (prot & PROT_WRITE) {
1506 				if (!(file->f_mode & FMODE_WRITE))
1507 					return -EACCES;
1508 				if (IS_SWAPFILE(file->f_mapping->host))
1509 					return -ETXTBSY;
1510 			}
1511 
1512 			/*
1513 			 * Make sure we don't allow writing to an append-only
1514 			 * file..
1515 			 */
1516 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1517 				return -EACCES;
1518 
1519 			/*
1520 			 * Make sure there are no mandatory locks on the file.
1521 			 */
1522 			if (locks_verify_locked(file))
1523 				return -EAGAIN;
1524 
1525 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1526 			if (!(file->f_mode & FMODE_WRITE))
1527 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1528 			fallthrough;
1529 		case MAP_PRIVATE:
1530 			if (!(file->f_mode & FMODE_READ))
1531 				return -EACCES;
1532 			if (path_noexec(&file->f_path)) {
1533 				if (vm_flags & VM_EXEC)
1534 					return -EPERM;
1535 				vm_flags &= ~VM_MAYEXEC;
1536 			}
1537 
1538 			if (!file->f_op->mmap)
1539 				return -ENODEV;
1540 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1541 				return -EINVAL;
1542 			break;
1543 
1544 		default:
1545 			return -EINVAL;
1546 		}
1547 	} else {
1548 		switch (flags & MAP_TYPE) {
1549 		case MAP_SHARED:
1550 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551 				return -EINVAL;
1552 			/*
1553 			 * Ignore pgoff.
1554 			 */
1555 			pgoff = 0;
1556 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1557 			break;
1558 		case MAP_PRIVATE:
1559 			/*
1560 			 * Set pgoff according to addr for anon_vma.
1561 			 */
1562 			pgoff = addr >> PAGE_SHIFT;
1563 			break;
1564 		default:
1565 			return -EINVAL;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Set 'VM_NORESERVE' if we should not account for the
1571 	 * memory use of this mapping.
1572 	 */
1573 	if (flags & MAP_NORESERVE) {
1574 		/* We honor MAP_NORESERVE if allowed to overcommit */
1575 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1576 			vm_flags |= VM_NORESERVE;
1577 
1578 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1579 		if (file && is_file_hugepages(file))
1580 			vm_flags |= VM_NORESERVE;
1581 	}
1582 
1583 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1584 	if (!IS_ERR_VALUE(addr) &&
1585 	    ((vm_flags & VM_LOCKED) ||
1586 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587 		*populate = len;
1588 	return addr;
1589 }
1590 
1591 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1592 			      unsigned long prot, unsigned long flags,
1593 			      unsigned long fd, unsigned long pgoff)
1594 {
1595 	struct file *file = NULL;
1596 	unsigned long retval;
1597 
1598 	if (!(flags & MAP_ANONYMOUS)) {
1599 		audit_mmap_fd(fd, flags);
1600 		file = fget(fd);
1601 		if (!file)
1602 			return -EBADF;
1603 		if (is_file_hugepages(file)) {
1604 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1605 		} else if (unlikely(flags & MAP_HUGETLB)) {
1606 			retval = -EINVAL;
1607 			goto out_fput;
1608 		}
1609 	} else if (flags & MAP_HUGETLB) {
1610 		struct user_struct *user = NULL;
1611 		struct hstate *hs;
1612 
1613 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1614 		if (!hs)
1615 			return -EINVAL;
1616 
1617 		len = ALIGN(len, huge_page_size(hs));
1618 		/*
1619 		 * VM_NORESERVE is used because the reservations will be
1620 		 * taken when vm_ops->mmap() is called
1621 		 * A dummy user value is used because we are not locking
1622 		 * memory so no accounting is necessary
1623 		 */
1624 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1625 				VM_NORESERVE,
1626 				&user, HUGETLB_ANONHUGE_INODE,
1627 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1628 		if (IS_ERR(file))
1629 			return PTR_ERR(file);
1630 	}
1631 
1632 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1633 
1634 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1635 out_fput:
1636 	if (file)
1637 		fput(file);
1638 	return retval;
1639 }
1640 
1641 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1642 		unsigned long, prot, unsigned long, flags,
1643 		unsigned long, fd, unsigned long, pgoff)
1644 {
1645 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1646 }
1647 
1648 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1649 struct mmap_arg_struct {
1650 	unsigned long addr;
1651 	unsigned long len;
1652 	unsigned long prot;
1653 	unsigned long flags;
1654 	unsigned long fd;
1655 	unsigned long offset;
1656 };
1657 
1658 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 {
1660 	struct mmap_arg_struct a;
1661 
1662 	if (copy_from_user(&a, arg, sizeof(a)))
1663 		return -EFAULT;
1664 	if (offset_in_page(a.offset))
1665 		return -EINVAL;
1666 
1667 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1668 			       a.offset >> PAGE_SHIFT);
1669 }
1670 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1671 
1672 /*
1673  * Some shared mappings will want the pages marked read-only
1674  * to track write events. If so, we'll downgrade vm_page_prot
1675  * to the private version (using protection_map[] without the
1676  * VM_SHARED bit).
1677  */
1678 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 {
1680 	vm_flags_t vm_flags = vma->vm_flags;
1681 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682 
1683 	/* If it was private or non-writable, the write bit is already clear */
1684 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1685 		return 0;
1686 
1687 	/* The backer wishes to know when pages are first written to? */
1688 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1689 		return 1;
1690 
1691 	/* The open routine did something to the protections that pgprot_modify
1692 	 * won't preserve? */
1693 	if (pgprot_val(vm_page_prot) !=
1694 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1695 		return 0;
1696 
1697 	/* Do we need to track softdirty? */
1698 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1699 		return 1;
1700 
1701 	/* Specialty mapping? */
1702 	if (vm_flags & VM_PFNMAP)
1703 		return 0;
1704 
1705 	/* Can the mapping track the dirty pages? */
1706 	return vma->vm_file && vma->vm_file->f_mapping &&
1707 		mapping_can_writeback(vma->vm_file->f_mapping);
1708 }
1709 
1710 /*
1711  * We account for memory if it's a private writeable mapping,
1712  * not hugepages and VM_NORESERVE wasn't set.
1713  */
1714 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1715 {
1716 	/*
1717 	 * hugetlb has its own accounting separate from the core VM
1718 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1719 	 */
1720 	if (file && is_file_hugepages(file))
1721 		return 0;
1722 
1723 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1724 }
1725 
1726 unsigned long mmap_region(struct file *file, unsigned long addr,
1727 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1728 		struct list_head *uf)
1729 {
1730 	struct mm_struct *mm = current->mm;
1731 	struct vm_area_struct *vma, *prev, *merge;
1732 	int error;
1733 	struct rb_node **rb_link, *rb_parent;
1734 	unsigned long charged = 0;
1735 
1736 	/* Check against address space limit. */
1737 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1738 		unsigned long nr_pages;
1739 
1740 		/*
1741 		 * MAP_FIXED may remove pages of mappings that intersects with
1742 		 * requested mapping. Account for the pages it would unmap.
1743 		 */
1744 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1745 
1746 		if (!may_expand_vm(mm, vm_flags,
1747 					(len >> PAGE_SHIFT) - nr_pages))
1748 			return -ENOMEM;
1749 	}
1750 
1751 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1752 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1753 		return -ENOMEM;
1754 	/*
1755 	 * Private writable mapping: check memory availability
1756 	 */
1757 	if (accountable_mapping(file, vm_flags)) {
1758 		charged = len >> PAGE_SHIFT;
1759 		if (security_vm_enough_memory_mm(mm, charged))
1760 			return -ENOMEM;
1761 		vm_flags |= VM_ACCOUNT;
1762 	}
1763 
1764 	/*
1765 	 * Can we just expand an old mapping?
1766 	 */
1767 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1768 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1769 	if (vma)
1770 		goto out;
1771 
1772 	/*
1773 	 * Determine the object being mapped and call the appropriate
1774 	 * specific mapper. the address has already been validated, but
1775 	 * not unmapped, but the maps are removed from the list.
1776 	 */
1777 	vma = vm_area_alloc(mm);
1778 	if (!vma) {
1779 		error = -ENOMEM;
1780 		goto unacct_error;
1781 	}
1782 
1783 	vma->vm_start = addr;
1784 	vma->vm_end = addr + len;
1785 	vma->vm_flags = vm_flags;
1786 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1787 	vma->vm_pgoff = pgoff;
1788 
1789 	if (file) {
1790 		if (vm_flags & VM_DENYWRITE) {
1791 			error = deny_write_access(file);
1792 			if (error)
1793 				goto free_vma;
1794 		}
1795 		if (vm_flags & VM_SHARED) {
1796 			error = mapping_map_writable(file->f_mapping);
1797 			if (error)
1798 				goto allow_write_and_free_vma;
1799 		}
1800 
1801 		/* ->mmap() can change vma->vm_file, but must guarantee that
1802 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1803 		 * and map writably if VM_SHARED is set. This usually means the
1804 		 * new file must not have been exposed to user-space, yet.
1805 		 */
1806 		vma->vm_file = get_file(file);
1807 		error = call_mmap(file, vma);
1808 		if (error)
1809 			goto unmap_and_free_vma;
1810 
1811 		/* Can addr have changed??
1812 		 *
1813 		 * Answer: Yes, several device drivers can do it in their
1814 		 *         f_op->mmap method. -DaveM
1815 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1816 		 *      be updated for vma_link()
1817 		 */
1818 		WARN_ON_ONCE(addr != vma->vm_start);
1819 
1820 		addr = vma->vm_start;
1821 
1822 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1823 		 * as we may succeed this time.
1824 		 */
1825 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1826 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1827 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1828 			if (merge) {
1829 				/* ->mmap() can change vma->vm_file and fput the original file. So
1830 				 * fput the vma->vm_file here or we would add an extra fput for file
1831 				 * and cause general protection fault ultimately.
1832 				 */
1833 				fput(vma->vm_file);
1834 				vm_area_free(vma);
1835 				vma = merge;
1836 				/* Update vm_flags to pick up the change. */
1837 				vm_flags = vma->vm_flags;
1838 				goto unmap_writable;
1839 			}
1840 		}
1841 
1842 		vm_flags = vma->vm_flags;
1843 	} else if (vm_flags & VM_SHARED) {
1844 		error = shmem_zero_setup(vma);
1845 		if (error)
1846 			goto free_vma;
1847 	} else {
1848 		vma_set_anonymous(vma);
1849 	}
1850 
1851 	/* Allow architectures to sanity-check the vm_flags */
1852 	if (!arch_validate_flags(vma->vm_flags)) {
1853 		error = -EINVAL;
1854 		if (file)
1855 			goto unmap_and_free_vma;
1856 		else
1857 			goto free_vma;
1858 	}
1859 
1860 	vma_link(mm, vma, prev, rb_link, rb_parent);
1861 	/* Once vma denies write, undo our temporary denial count */
1862 	if (file) {
1863 unmap_writable:
1864 		if (vm_flags & VM_SHARED)
1865 			mapping_unmap_writable(file->f_mapping);
1866 		if (vm_flags & VM_DENYWRITE)
1867 			allow_write_access(file);
1868 	}
1869 	file = vma->vm_file;
1870 out:
1871 	perf_event_mmap(vma);
1872 
1873 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1874 	if (vm_flags & VM_LOCKED) {
1875 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1876 					is_vm_hugetlb_page(vma) ||
1877 					vma == get_gate_vma(current->mm))
1878 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1879 		else
1880 			mm->locked_vm += (len >> PAGE_SHIFT);
1881 	}
1882 
1883 	if (file)
1884 		uprobe_mmap(vma);
1885 
1886 	/*
1887 	 * New (or expanded) vma always get soft dirty status.
1888 	 * Otherwise user-space soft-dirty page tracker won't
1889 	 * be able to distinguish situation when vma area unmapped,
1890 	 * then new mapped in-place (which must be aimed as
1891 	 * a completely new data area).
1892 	 */
1893 	vma->vm_flags |= VM_SOFTDIRTY;
1894 
1895 	vma_set_page_prot(vma);
1896 
1897 	return addr;
1898 
1899 unmap_and_free_vma:
1900 	fput(vma->vm_file);
1901 	vma->vm_file = NULL;
1902 
1903 	/* Undo any partial mapping done by a device driver. */
1904 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1905 	charged = 0;
1906 	if (vm_flags & VM_SHARED)
1907 		mapping_unmap_writable(file->f_mapping);
1908 allow_write_and_free_vma:
1909 	if (vm_flags & VM_DENYWRITE)
1910 		allow_write_access(file);
1911 free_vma:
1912 	vm_area_free(vma);
1913 unacct_error:
1914 	if (charged)
1915 		vm_unacct_memory(charged);
1916 	return error;
1917 }
1918 
1919 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1920 {
1921 	/*
1922 	 * We implement the search by looking for an rbtree node that
1923 	 * immediately follows a suitable gap. That is,
1924 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1925 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1926 	 * - gap_end - gap_start >= length
1927 	 */
1928 
1929 	struct mm_struct *mm = current->mm;
1930 	struct vm_area_struct *vma;
1931 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1932 
1933 	/* Adjust search length to account for worst case alignment overhead */
1934 	length = info->length + info->align_mask;
1935 	if (length < info->length)
1936 		return -ENOMEM;
1937 
1938 	/* Adjust search limits by the desired length */
1939 	if (info->high_limit < length)
1940 		return -ENOMEM;
1941 	high_limit = info->high_limit - length;
1942 
1943 	if (info->low_limit > high_limit)
1944 		return -ENOMEM;
1945 	low_limit = info->low_limit + length;
1946 
1947 	/* Check if rbtree root looks promising */
1948 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1949 		goto check_highest;
1950 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1951 	if (vma->rb_subtree_gap < length)
1952 		goto check_highest;
1953 
1954 	while (true) {
1955 		/* Visit left subtree if it looks promising */
1956 		gap_end = vm_start_gap(vma);
1957 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1958 			struct vm_area_struct *left =
1959 				rb_entry(vma->vm_rb.rb_left,
1960 					 struct vm_area_struct, vm_rb);
1961 			if (left->rb_subtree_gap >= length) {
1962 				vma = left;
1963 				continue;
1964 			}
1965 		}
1966 
1967 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1968 check_current:
1969 		/* Check if current node has a suitable gap */
1970 		if (gap_start > high_limit)
1971 			return -ENOMEM;
1972 		if (gap_end >= low_limit &&
1973 		    gap_end > gap_start && gap_end - gap_start >= length)
1974 			goto found;
1975 
1976 		/* Visit right subtree if it looks promising */
1977 		if (vma->vm_rb.rb_right) {
1978 			struct vm_area_struct *right =
1979 				rb_entry(vma->vm_rb.rb_right,
1980 					 struct vm_area_struct, vm_rb);
1981 			if (right->rb_subtree_gap >= length) {
1982 				vma = right;
1983 				continue;
1984 			}
1985 		}
1986 
1987 		/* Go back up the rbtree to find next candidate node */
1988 		while (true) {
1989 			struct rb_node *prev = &vma->vm_rb;
1990 			if (!rb_parent(prev))
1991 				goto check_highest;
1992 			vma = rb_entry(rb_parent(prev),
1993 				       struct vm_area_struct, vm_rb);
1994 			if (prev == vma->vm_rb.rb_left) {
1995 				gap_start = vm_end_gap(vma->vm_prev);
1996 				gap_end = vm_start_gap(vma);
1997 				goto check_current;
1998 			}
1999 		}
2000 	}
2001 
2002 check_highest:
2003 	/* Check highest gap, which does not precede any rbtree node */
2004 	gap_start = mm->highest_vm_end;
2005 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2006 	if (gap_start > high_limit)
2007 		return -ENOMEM;
2008 
2009 found:
2010 	/* We found a suitable gap. Clip it with the original low_limit. */
2011 	if (gap_start < info->low_limit)
2012 		gap_start = info->low_limit;
2013 
2014 	/* Adjust gap address to the desired alignment */
2015 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2016 
2017 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2018 	VM_BUG_ON(gap_start + info->length > gap_end);
2019 	return gap_start;
2020 }
2021 
2022 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2023 {
2024 	struct mm_struct *mm = current->mm;
2025 	struct vm_area_struct *vma;
2026 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2027 
2028 	/* Adjust search length to account for worst case alignment overhead */
2029 	length = info->length + info->align_mask;
2030 	if (length < info->length)
2031 		return -ENOMEM;
2032 
2033 	/*
2034 	 * Adjust search limits by the desired length.
2035 	 * See implementation comment at top of unmapped_area().
2036 	 */
2037 	gap_end = info->high_limit;
2038 	if (gap_end < length)
2039 		return -ENOMEM;
2040 	high_limit = gap_end - length;
2041 
2042 	if (info->low_limit > high_limit)
2043 		return -ENOMEM;
2044 	low_limit = info->low_limit + length;
2045 
2046 	/* Check highest gap, which does not precede any rbtree node */
2047 	gap_start = mm->highest_vm_end;
2048 	if (gap_start <= high_limit)
2049 		goto found_highest;
2050 
2051 	/* Check if rbtree root looks promising */
2052 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2053 		return -ENOMEM;
2054 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2055 	if (vma->rb_subtree_gap < length)
2056 		return -ENOMEM;
2057 
2058 	while (true) {
2059 		/* Visit right subtree if it looks promising */
2060 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2061 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2062 			struct vm_area_struct *right =
2063 				rb_entry(vma->vm_rb.rb_right,
2064 					 struct vm_area_struct, vm_rb);
2065 			if (right->rb_subtree_gap >= length) {
2066 				vma = right;
2067 				continue;
2068 			}
2069 		}
2070 
2071 check_current:
2072 		/* Check if current node has a suitable gap */
2073 		gap_end = vm_start_gap(vma);
2074 		if (gap_end < low_limit)
2075 			return -ENOMEM;
2076 		if (gap_start <= high_limit &&
2077 		    gap_end > gap_start && gap_end - gap_start >= length)
2078 			goto found;
2079 
2080 		/* Visit left subtree if it looks promising */
2081 		if (vma->vm_rb.rb_left) {
2082 			struct vm_area_struct *left =
2083 				rb_entry(vma->vm_rb.rb_left,
2084 					 struct vm_area_struct, vm_rb);
2085 			if (left->rb_subtree_gap >= length) {
2086 				vma = left;
2087 				continue;
2088 			}
2089 		}
2090 
2091 		/* Go back up the rbtree to find next candidate node */
2092 		while (true) {
2093 			struct rb_node *prev = &vma->vm_rb;
2094 			if (!rb_parent(prev))
2095 				return -ENOMEM;
2096 			vma = rb_entry(rb_parent(prev),
2097 				       struct vm_area_struct, vm_rb);
2098 			if (prev == vma->vm_rb.rb_right) {
2099 				gap_start = vma->vm_prev ?
2100 					vm_end_gap(vma->vm_prev) : 0;
2101 				goto check_current;
2102 			}
2103 		}
2104 	}
2105 
2106 found:
2107 	/* We found a suitable gap. Clip it with the original high_limit. */
2108 	if (gap_end > info->high_limit)
2109 		gap_end = info->high_limit;
2110 
2111 found_highest:
2112 	/* Compute highest gap address at the desired alignment */
2113 	gap_end -= info->length;
2114 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2115 
2116 	VM_BUG_ON(gap_end < info->low_limit);
2117 	VM_BUG_ON(gap_end < gap_start);
2118 	return gap_end;
2119 }
2120 
2121 /*
2122  * Search for an unmapped address range.
2123  *
2124  * We are looking for a range that:
2125  * - does not intersect with any VMA;
2126  * - is contained within the [low_limit, high_limit) interval;
2127  * - is at least the desired size.
2128  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2129  */
2130 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2131 {
2132 	unsigned long addr;
2133 
2134 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2135 		addr = unmapped_area_topdown(info);
2136 	else
2137 		addr = unmapped_area(info);
2138 
2139 	trace_vm_unmapped_area(addr, info);
2140 	return addr;
2141 }
2142 
2143 #ifndef arch_get_mmap_end
2144 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2145 #endif
2146 
2147 #ifndef arch_get_mmap_base
2148 #define arch_get_mmap_base(addr, base) (base)
2149 #endif
2150 
2151 /* Get an address range which is currently unmapped.
2152  * For shmat() with addr=0.
2153  *
2154  * Ugly calling convention alert:
2155  * Return value with the low bits set means error value,
2156  * ie
2157  *	if (ret & ~PAGE_MASK)
2158  *		error = ret;
2159  *
2160  * This function "knows" that -ENOMEM has the bits set.
2161  */
2162 #ifndef HAVE_ARCH_UNMAPPED_AREA
2163 unsigned long
2164 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2165 		unsigned long len, unsigned long pgoff, unsigned long flags)
2166 {
2167 	struct mm_struct *mm = current->mm;
2168 	struct vm_area_struct *vma, *prev;
2169 	struct vm_unmapped_area_info info;
2170 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2171 
2172 	if (len > mmap_end - mmap_min_addr)
2173 		return -ENOMEM;
2174 
2175 	if (flags & MAP_FIXED)
2176 		return addr;
2177 
2178 	if (addr) {
2179 		addr = PAGE_ALIGN(addr);
2180 		vma = find_vma_prev(mm, addr, &prev);
2181 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2182 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2183 		    (!prev || addr >= vm_end_gap(prev)))
2184 			return addr;
2185 	}
2186 
2187 	info.flags = 0;
2188 	info.length = len;
2189 	info.low_limit = mm->mmap_base;
2190 	info.high_limit = mmap_end;
2191 	info.align_mask = 0;
2192 	info.align_offset = 0;
2193 	return vm_unmapped_area(&info);
2194 }
2195 #endif
2196 
2197 /*
2198  * This mmap-allocator allocates new areas top-down from below the
2199  * stack's low limit (the base):
2200  */
2201 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2202 unsigned long
2203 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2204 			  unsigned long len, unsigned long pgoff,
2205 			  unsigned long flags)
2206 {
2207 	struct vm_area_struct *vma, *prev;
2208 	struct mm_struct *mm = current->mm;
2209 	struct vm_unmapped_area_info info;
2210 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2211 
2212 	/* requested length too big for entire address space */
2213 	if (len > mmap_end - mmap_min_addr)
2214 		return -ENOMEM;
2215 
2216 	if (flags & MAP_FIXED)
2217 		return addr;
2218 
2219 	/* requesting a specific address */
2220 	if (addr) {
2221 		addr = PAGE_ALIGN(addr);
2222 		vma = find_vma_prev(mm, addr, &prev);
2223 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2224 				(!vma || addr + len <= vm_start_gap(vma)) &&
2225 				(!prev || addr >= vm_end_gap(prev)))
2226 			return addr;
2227 	}
2228 
2229 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2230 	info.length = len;
2231 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2232 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2233 	info.align_mask = 0;
2234 	info.align_offset = 0;
2235 	addr = vm_unmapped_area(&info);
2236 
2237 	/*
2238 	 * A failed mmap() very likely causes application failure,
2239 	 * so fall back to the bottom-up function here. This scenario
2240 	 * can happen with large stack limits and large mmap()
2241 	 * allocations.
2242 	 */
2243 	if (offset_in_page(addr)) {
2244 		VM_BUG_ON(addr != -ENOMEM);
2245 		info.flags = 0;
2246 		info.low_limit = TASK_UNMAPPED_BASE;
2247 		info.high_limit = mmap_end;
2248 		addr = vm_unmapped_area(&info);
2249 	}
2250 
2251 	return addr;
2252 }
2253 #endif
2254 
2255 unsigned long
2256 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2257 		unsigned long pgoff, unsigned long flags)
2258 {
2259 	unsigned long (*get_area)(struct file *, unsigned long,
2260 				  unsigned long, unsigned long, unsigned long);
2261 
2262 	unsigned long error = arch_mmap_check(addr, len, flags);
2263 	if (error)
2264 		return error;
2265 
2266 	/* Careful about overflows.. */
2267 	if (len > TASK_SIZE)
2268 		return -ENOMEM;
2269 
2270 	get_area = current->mm->get_unmapped_area;
2271 	if (file) {
2272 		if (file->f_op->get_unmapped_area)
2273 			get_area = file->f_op->get_unmapped_area;
2274 	} else if (flags & MAP_SHARED) {
2275 		/*
2276 		 * mmap_region() will call shmem_zero_setup() to create a file,
2277 		 * so use shmem's get_unmapped_area in case it can be huge.
2278 		 * do_mmap() will clear pgoff, so match alignment.
2279 		 */
2280 		pgoff = 0;
2281 		get_area = shmem_get_unmapped_area;
2282 	}
2283 
2284 	addr = get_area(file, addr, len, pgoff, flags);
2285 	if (IS_ERR_VALUE(addr))
2286 		return addr;
2287 
2288 	if (addr > TASK_SIZE - len)
2289 		return -ENOMEM;
2290 	if (offset_in_page(addr))
2291 		return -EINVAL;
2292 
2293 	error = security_mmap_addr(addr);
2294 	return error ? error : addr;
2295 }
2296 
2297 EXPORT_SYMBOL(get_unmapped_area);
2298 
2299 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2300 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2301 {
2302 	struct rb_node *rb_node;
2303 	struct vm_area_struct *vma;
2304 
2305 	/* Check the cache first. */
2306 	vma = vmacache_find(mm, addr);
2307 	if (likely(vma))
2308 		return vma;
2309 
2310 	rb_node = mm->mm_rb.rb_node;
2311 
2312 	while (rb_node) {
2313 		struct vm_area_struct *tmp;
2314 
2315 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2316 
2317 		if (tmp->vm_end > addr) {
2318 			vma = tmp;
2319 			if (tmp->vm_start <= addr)
2320 				break;
2321 			rb_node = rb_node->rb_left;
2322 		} else
2323 			rb_node = rb_node->rb_right;
2324 	}
2325 
2326 	if (vma)
2327 		vmacache_update(addr, vma);
2328 	return vma;
2329 }
2330 
2331 EXPORT_SYMBOL(find_vma);
2332 
2333 /*
2334  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2335  */
2336 struct vm_area_struct *
2337 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2338 			struct vm_area_struct **pprev)
2339 {
2340 	struct vm_area_struct *vma;
2341 
2342 	vma = find_vma(mm, addr);
2343 	if (vma) {
2344 		*pprev = vma->vm_prev;
2345 	} else {
2346 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2347 
2348 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2349 	}
2350 	return vma;
2351 }
2352 
2353 /*
2354  * Verify that the stack growth is acceptable and
2355  * update accounting. This is shared with both the
2356  * grow-up and grow-down cases.
2357  */
2358 static int acct_stack_growth(struct vm_area_struct *vma,
2359 			     unsigned long size, unsigned long grow)
2360 {
2361 	struct mm_struct *mm = vma->vm_mm;
2362 	unsigned long new_start;
2363 
2364 	/* address space limit tests */
2365 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2366 		return -ENOMEM;
2367 
2368 	/* Stack limit test */
2369 	if (size > rlimit(RLIMIT_STACK))
2370 		return -ENOMEM;
2371 
2372 	/* mlock limit tests */
2373 	if (vma->vm_flags & VM_LOCKED) {
2374 		unsigned long locked;
2375 		unsigned long limit;
2376 		locked = mm->locked_vm + grow;
2377 		limit = rlimit(RLIMIT_MEMLOCK);
2378 		limit >>= PAGE_SHIFT;
2379 		if (locked > limit && !capable(CAP_IPC_LOCK))
2380 			return -ENOMEM;
2381 	}
2382 
2383 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2384 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2385 			vma->vm_end - size;
2386 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2387 		return -EFAULT;
2388 
2389 	/*
2390 	 * Overcommit..  This must be the final test, as it will
2391 	 * update security statistics.
2392 	 */
2393 	if (security_vm_enough_memory_mm(mm, grow))
2394 		return -ENOMEM;
2395 
2396 	return 0;
2397 }
2398 
2399 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2400 /*
2401  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2402  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2403  */
2404 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2405 {
2406 	struct mm_struct *mm = vma->vm_mm;
2407 	struct vm_area_struct *next;
2408 	unsigned long gap_addr;
2409 	int error = 0;
2410 
2411 	if (!(vma->vm_flags & VM_GROWSUP))
2412 		return -EFAULT;
2413 
2414 	/* Guard against exceeding limits of the address space. */
2415 	address &= PAGE_MASK;
2416 	if (address >= (TASK_SIZE & PAGE_MASK))
2417 		return -ENOMEM;
2418 	address += PAGE_SIZE;
2419 
2420 	/* Enforce stack_guard_gap */
2421 	gap_addr = address + stack_guard_gap;
2422 
2423 	/* Guard against overflow */
2424 	if (gap_addr < address || gap_addr > TASK_SIZE)
2425 		gap_addr = TASK_SIZE;
2426 
2427 	next = vma->vm_next;
2428 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2429 		if (!(next->vm_flags & VM_GROWSUP))
2430 			return -ENOMEM;
2431 		/* Check that both stack segments have the same anon_vma? */
2432 	}
2433 
2434 	/* We must make sure the anon_vma is allocated. */
2435 	if (unlikely(anon_vma_prepare(vma)))
2436 		return -ENOMEM;
2437 
2438 	/*
2439 	 * vma->vm_start/vm_end cannot change under us because the caller
2440 	 * is required to hold the mmap_lock in read mode.  We need the
2441 	 * anon_vma lock to serialize against concurrent expand_stacks.
2442 	 */
2443 	anon_vma_lock_write(vma->anon_vma);
2444 
2445 	/* Somebody else might have raced and expanded it already */
2446 	if (address > vma->vm_end) {
2447 		unsigned long size, grow;
2448 
2449 		size = address - vma->vm_start;
2450 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2451 
2452 		error = -ENOMEM;
2453 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2454 			error = acct_stack_growth(vma, size, grow);
2455 			if (!error) {
2456 				/*
2457 				 * vma_gap_update() doesn't support concurrent
2458 				 * updates, but we only hold a shared mmap_lock
2459 				 * lock here, so we need to protect against
2460 				 * concurrent vma expansions.
2461 				 * anon_vma_lock_write() doesn't help here, as
2462 				 * we don't guarantee that all growable vmas
2463 				 * in a mm share the same root anon vma.
2464 				 * So, we reuse mm->page_table_lock to guard
2465 				 * against concurrent vma expansions.
2466 				 */
2467 				spin_lock(&mm->page_table_lock);
2468 				if (vma->vm_flags & VM_LOCKED)
2469 					mm->locked_vm += grow;
2470 				vm_stat_account(mm, vma->vm_flags, grow);
2471 				anon_vma_interval_tree_pre_update_vma(vma);
2472 				vma->vm_end = address;
2473 				anon_vma_interval_tree_post_update_vma(vma);
2474 				if (vma->vm_next)
2475 					vma_gap_update(vma->vm_next);
2476 				else
2477 					mm->highest_vm_end = vm_end_gap(vma);
2478 				spin_unlock(&mm->page_table_lock);
2479 
2480 				perf_event_mmap(vma);
2481 			}
2482 		}
2483 	}
2484 	anon_vma_unlock_write(vma->anon_vma);
2485 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2486 	validate_mm(mm);
2487 	return error;
2488 }
2489 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2490 
2491 /*
2492  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2493  */
2494 int expand_downwards(struct vm_area_struct *vma,
2495 				   unsigned long address)
2496 {
2497 	struct mm_struct *mm = vma->vm_mm;
2498 	struct vm_area_struct *prev;
2499 	int error = 0;
2500 
2501 	address &= PAGE_MASK;
2502 	if (address < mmap_min_addr)
2503 		return -EPERM;
2504 
2505 	/* Enforce stack_guard_gap */
2506 	prev = vma->vm_prev;
2507 	/* Check that both stack segments have the same anon_vma? */
2508 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2509 			vma_is_accessible(prev)) {
2510 		if (address - prev->vm_end < stack_guard_gap)
2511 			return -ENOMEM;
2512 	}
2513 
2514 	/* We must make sure the anon_vma is allocated. */
2515 	if (unlikely(anon_vma_prepare(vma)))
2516 		return -ENOMEM;
2517 
2518 	/*
2519 	 * vma->vm_start/vm_end cannot change under us because the caller
2520 	 * is required to hold the mmap_lock in read mode.  We need the
2521 	 * anon_vma lock to serialize against concurrent expand_stacks.
2522 	 */
2523 	anon_vma_lock_write(vma->anon_vma);
2524 
2525 	/* Somebody else might have raced and expanded it already */
2526 	if (address < vma->vm_start) {
2527 		unsigned long size, grow;
2528 
2529 		size = vma->vm_end - address;
2530 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2531 
2532 		error = -ENOMEM;
2533 		if (grow <= vma->vm_pgoff) {
2534 			error = acct_stack_growth(vma, size, grow);
2535 			if (!error) {
2536 				/*
2537 				 * vma_gap_update() doesn't support concurrent
2538 				 * updates, but we only hold a shared mmap_lock
2539 				 * lock here, so we need to protect against
2540 				 * concurrent vma expansions.
2541 				 * anon_vma_lock_write() doesn't help here, as
2542 				 * we don't guarantee that all growable vmas
2543 				 * in a mm share the same root anon vma.
2544 				 * So, we reuse mm->page_table_lock to guard
2545 				 * against concurrent vma expansions.
2546 				 */
2547 				spin_lock(&mm->page_table_lock);
2548 				if (vma->vm_flags & VM_LOCKED)
2549 					mm->locked_vm += grow;
2550 				vm_stat_account(mm, vma->vm_flags, grow);
2551 				anon_vma_interval_tree_pre_update_vma(vma);
2552 				vma->vm_start = address;
2553 				vma->vm_pgoff -= grow;
2554 				anon_vma_interval_tree_post_update_vma(vma);
2555 				vma_gap_update(vma);
2556 				spin_unlock(&mm->page_table_lock);
2557 
2558 				perf_event_mmap(vma);
2559 			}
2560 		}
2561 	}
2562 	anon_vma_unlock_write(vma->anon_vma);
2563 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2564 	validate_mm(mm);
2565 	return error;
2566 }
2567 
2568 /* enforced gap between the expanding stack and other mappings. */
2569 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2570 
2571 static int __init cmdline_parse_stack_guard_gap(char *p)
2572 {
2573 	unsigned long val;
2574 	char *endptr;
2575 
2576 	val = simple_strtoul(p, &endptr, 10);
2577 	if (!*endptr)
2578 		stack_guard_gap = val << PAGE_SHIFT;
2579 
2580 	return 0;
2581 }
2582 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2583 
2584 #ifdef CONFIG_STACK_GROWSUP
2585 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2586 {
2587 	return expand_upwards(vma, address);
2588 }
2589 
2590 struct vm_area_struct *
2591 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2592 {
2593 	struct vm_area_struct *vma, *prev;
2594 
2595 	addr &= PAGE_MASK;
2596 	vma = find_vma_prev(mm, addr, &prev);
2597 	if (vma && (vma->vm_start <= addr))
2598 		return vma;
2599 	/* don't alter vm_end if the coredump is running */
2600 	if (!prev || expand_stack(prev, addr))
2601 		return NULL;
2602 	if (prev->vm_flags & VM_LOCKED)
2603 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2604 	return prev;
2605 }
2606 #else
2607 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2608 {
2609 	return expand_downwards(vma, address);
2610 }
2611 
2612 struct vm_area_struct *
2613 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2614 {
2615 	struct vm_area_struct *vma;
2616 	unsigned long start;
2617 
2618 	addr &= PAGE_MASK;
2619 	vma = find_vma(mm, addr);
2620 	if (!vma)
2621 		return NULL;
2622 	if (vma->vm_start <= addr)
2623 		return vma;
2624 	if (!(vma->vm_flags & VM_GROWSDOWN))
2625 		return NULL;
2626 	start = vma->vm_start;
2627 	if (expand_stack(vma, addr))
2628 		return NULL;
2629 	if (vma->vm_flags & VM_LOCKED)
2630 		populate_vma_page_range(vma, addr, start, NULL);
2631 	return vma;
2632 }
2633 #endif
2634 
2635 EXPORT_SYMBOL_GPL(find_extend_vma);
2636 
2637 /*
2638  * Ok - we have the memory areas we should free on the vma list,
2639  * so release them, and do the vma updates.
2640  *
2641  * Called with the mm semaphore held.
2642  */
2643 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2644 {
2645 	unsigned long nr_accounted = 0;
2646 
2647 	/* Update high watermark before we lower total_vm */
2648 	update_hiwater_vm(mm);
2649 	do {
2650 		long nrpages = vma_pages(vma);
2651 
2652 		if (vma->vm_flags & VM_ACCOUNT)
2653 			nr_accounted += nrpages;
2654 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2655 		vma = remove_vma(vma);
2656 	} while (vma);
2657 	vm_unacct_memory(nr_accounted);
2658 	validate_mm(mm);
2659 }
2660 
2661 /*
2662  * Get rid of page table information in the indicated region.
2663  *
2664  * Called with the mm semaphore held.
2665  */
2666 static void unmap_region(struct mm_struct *mm,
2667 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2668 		unsigned long start, unsigned long end)
2669 {
2670 	struct vm_area_struct *next = vma_next(mm, prev);
2671 	struct mmu_gather tlb;
2672 
2673 	lru_add_drain();
2674 	tlb_gather_mmu(&tlb, mm, start, end);
2675 	update_hiwater_rss(mm);
2676 	unmap_vmas(&tlb, vma, start, end);
2677 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2678 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2679 	tlb_finish_mmu(&tlb, start, end);
2680 }
2681 
2682 /*
2683  * Create a list of vma's touched by the unmap, removing them from the mm's
2684  * vma list as we go..
2685  */
2686 static bool
2687 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2688 	struct vm_area_struct *prev, unsigned long end)
2689 {
2690 	struct vm_area_struct **insertion_point;
2691 	struct vm_area_struct *tail_vma = NULL;
2692 
2693 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2694 	vma->vm_prev = NULL;
2695 	do {
2696 		vma_rb_erase(vma, &mm->mm_rb);
2697 		mm->map_count--;
2698 		tail_vma = vma;
2699 		vma = vma->vm_next;
2700 	} while (vma && vma->vm_start < end);
2701 	*insertion_point = vma;
2702 	if (vma) {
2703 		vma->vm_prev = prev;
2704 		vma_gap_update(vma);
2705 	} else
2706 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2707 	tail_vma->vm_next = NULL;
2708 
2709 	/* Kill the cache */
2710 	vmacache_invalidate(mm);
2711 
2712 	/*
2713 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2714 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2715 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2716 	 */
2717 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2718 		return false;
2719 	if (prev && (prev->vm_flags & VM_GROWSUP))
2720 		return false;
2721 	return true;
2722 }
2723 
2724 /*
2725  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2726  * has already been checked or doesn't make sense to fail.
2727  */
2728 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2729 		unsigned long addr, int new_below)
2730 {
2731 	struct vm_area_struct *new;
2732 	int err;
2733 
2734 	if (vma->vm_ops && vma->vm_ops->may_split) {
2735 		err = vma->vm_ops->may_split(vma, addr);
2736 		if (err)
2737 			return err;
2738 	}
2739 
2740 	new = vm_area_dup(vma);
2741 	if (!new)
2742 		return -ENOMEM;
2743 
2744 	if (new_below)
2745 		new->vm_end = addr;
2746 	else {
2747 		new->vm_start = addr;
2748 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2749 	}
2750 
2751 	err = vma_dup_policy(vma, new);
2752 	if (err)
2753 		goto out_free_vma;
2754 
2755 	err = anon_vma_clone(new, vma);
2756 	if (err)
2757 		goto out_free_mpol;
2758 
2759 	if (new->vm_file)
2760 		get_file(new->vm_file);
2761 
2762 	if (new->vm_ops && new->vm_ops->open)
2763 		new->vm_ops->open(new);
2764 
2765 	if (new_below)
2766 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2767 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2768 	else
2769 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2770 
2771 	/* Success. */
2772 	if (!err)
2773 		return 0;
2774 
2775 	/* Clean everything up if vma_adjust failed. */
2776 	if (new->vm_ops && new->vm_ops->close)
2777 		new->vm_ops->close(new);
2778 	if (new->vm_file)
2779 		fput(new->vm_file);
2780 	unlink_anon_vmas(new);
2781  out_free_mpol:
2782 	mpol_put(vma_policy(new));
2783  out_free_vma:
2784 	vm_area_free(new);
2785 	return err;
2786 }
2787 
2788 /*
2789  * Split a vma into two pieces at address 'addr', a new vma is allocated
2790  * either for the first part or the tail.
2791  */
2792 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2793 	      unsigned long addr, int new_below)
2794 {
2795 	if (mm->map_count >= sysctl_max_map_count)
2796 		return -ENOMEM;
2797 
2798 	return __split_vma(mm, vma, addr, new_below);
2799 }
2800 
2801 /* Munmap is split into 2 main parts -- this part which finds
2802  * what needs doing, and the areas themselves, which do the
2803  * work.  This now handles partial unmappings.
2804  * Jeremy Fitzhardinge <jeremy@goop.org>
2805  */
2806 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2807 		struct list_head *uf, bool downgrade)
2808 {
2809 	unsigned long end;
2810 	struct vm_area_struct *vma, *prev, *last;
2811 
2812 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2813 		return -EINVAL;
2814 
2815 	len = PAGE_ALIGN(len);
2816 	end = start + len;
2817 	if (len == 0)
2818 		return -EINVAL;
2819 
2820 	/*
2821 	 * arch_unmap() might do unmaps itself.  It must be called
2822 	 * and finish any rbtree manipulation before this code
2823 	 * runs and also starts to manipulate the rbtree.
2824 	 */
2825 	arch_unmap(mm, start, end);
2826 
2827 	/* Find the first overlapping VMA */
2828 	vma = find_vma(mm, start);
2829 	if (!vma)
2830 		return 0;
2831 	prev = vma->vm_prev;
2832 	/* we have  start < vma->vm_end  */
2833 
2834 	/* if it doesn't overlap, we have nothing.. */
2835 	if (vma->vm_start >= end)
2836 		return 0;
2837 
2838 	/*
2839 	 * If we need to split any vma, do it now to save pain later.
2840 	 *
2841 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2842 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2843 	 * places tmp vma above, and higher split_vma places tmp vma below.
2844 	 */
2845 	if (start > vma->vm_start) {
2846 		int error;
2847 
2848 		/*
2849 		 * Make sure that map_count on return from munmap() will
2850 		 * not exceed its limit; but let map_count go just above
2851 		 * its limit temporarily, to help free resources as expected.
2852 		 */
2853 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2854 			return -ENOMEM;
2855 
2856 		error = __split_vma(mm, vma, start, 0);
2857 		if (error)
2858 			return error;
2859 		prev = vma;
2860 	}
2861 
2862 	/* Does it split the last one? */
2863 	last = find_vma(mm, end);
2864 	if (last && end > last->vm_start) {
2865 		int error = __split_vma(mm, last, end, 1);
2866 		if (error)
2867 			return error;
2868 	}
2869 	vma = vma_next(mm, prev);
2870 
2871 	if (unlikely(uf)) {
2872 		/*
2873 		 * If userfaultfd_unmap_prep returns an error the vmas
2874 		 * will remain splitted, but userland will get a
2875 		 * highly unexpected error anyway. This is no
2876 		 * different than the case where the first of the two
2877 		 * __split_vma fails, but we don't undo the first
2878 		 * split, despite we could. This is unlikely enough
2879 		 * failure that it's not worth optimizing it for.
2880 		 */
2881 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2882 		if (error)
2883 			return error;
2884 	}
2885 
2886 	/*
2887 	 * unlock any mlock()ed ranges before detaching vmas
2888 	 */
2889 	if (mm->locked_vm) {
2890 		struct vm_area_struct *tmp = vma;
2891 		while (tmp && tmp->vm_start < end) {
2892 			if (tmp->vm_flags & VM_LOCKED) {
2893 				mm->locked_vm -= vma_pages(tmp);
2894 				munlock_vma_pages_all(tmp);
2895 			}
2896 
2897 			tmp = tmp->vm_next;
2898 		}
2899 	}
2900 
2901 	/* Detach vmas from rbtree */
2902 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2903 		downgrade = false;
2904 
2905 	if (downgrade)
2906 		mmap_write_downgrade(mm);
2907 
2908 	unmap_region(mm, vma, prev, start, end);
2909 
2910 	/* Fix up all other VM information */
2911 	remove_vma_list(mm, vma);
2912 
2913 	return downgrade ? 1 : 0;
2914 }
2915 
2916 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2917 	      struct list_head *uf)
2918 {
2919 	return __do_munmap(mm, start, len, uf, false);
2920 }
2921 
2922 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2923 {
2924 	int ret;
2925 	struct mm_struct *mm = current->mm;
2926 	LIST_HEAD(uf);
2927 
2928 	if (mmap_write_lock_killable(mm))
2929 		return -EINTR;
2930 
2931 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2932 	/*
2933 	 * Returning 1 indicates mmap_lock is downgraded.
2934 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2935 	 * it to 0 before return.
2936 	 */
2937 	if (ret == 1) {
2938 		mmap_read_unlock(mm);
2939 		ret = 0;
2940 	} else
2941 		mmap_write_unlock(mm);
2942 
2943 	userfaultfd_unmap_complete(mm, &uf);
2944 	return ret;
2945 }
2946 
2947 int vm_munmap(unsigned long start, size_t len)
2948 {
2949 	return __vm_munmap(start, len, false);
2950 }
2951 EXPORT_SYMBOL(vm_munmap);
2952 
2953 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2954 {
2955 	addr = untagged_addr(addr);
2956 	profile_munmap(addr);
2957 	return __vm_munmap(addr, len, true);
2958 }
2959 
2960 
2961 /*
2962  * Emulation of deprecated remap_file_pages() syscall.
2963  */
2964 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2965 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2966 {
2967 
2968 	struct mm_struct *mm = current->mm;
2969 	struct vm_area_struct *vma;
2970 	unsigned long populate = 0;
2971 	unsigned long ret = -EINVAL;
2972 	struct file *file;
2973 
2974 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2975 		     current->comm, current->pid);
2976 
2977 	if (prot)
2978 		return ret;
2979 	start = start & PAGE_MASK;
2980 	size = size & PAGE_MASK;
2981 
2982 	if (start + size <= start)
2983 		return ret;
2984 
2985 	/* Does pgoff wrap? */
2986 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2987 		return ret;
2988 
2989 	if (mmap_write_lock_killable(mm))
2990 		return -EINTR;
2991 
2992 	vma = find_vma(mm, start);
2993 
2994 	if (!vma || !(vma->vm_flags & VM_SHARED))
2995 		goto out;
2996 
2997 	if (start < vma->vm_start)
2998 		goto out;
2999 
3000 	if (start + size > vma->vm_end) {
3001 		struct vm_area_struct *next;
3002 
3003 		for (next = vma->vm_next; next; next = next->vm_next) {
3004 			/* hole between vmas ? */
3005 			if (next->vm_start != next->vm_prev->vm_end)
3006 				goto out;
3007 
3008 			if (next->vm_file != vma->vm_file)
3009 				goto out;
3010 
3011 			if (next->vm_flags != vma->vm_flags)
3012 				goto out;
3013 
3014 			if (start + size <= next->vm_end)
3015 				break;
3016 		}
3017 
3018 		if (!next)
3019 			goto out;
3020 	}
3021 
3022 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3023 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3024 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3025 
3026 	flags &= MAP_NONBLOCK;
3027 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3028 	if (vma->vm_flags & VM_LOCKED) {
3029 		struct vm_area_struct *tmp;
3030 		flags |= MAP_LOCKED;
3031 
3032 		/* drop PG_Mlocked flag for over-mapped range */
3033 		for (tmp = vma; tmp->vm_start >= start + size;
3034 				tmp = tmp->vm_next) {
3035 			/*
3036 			 * Split pmd and munlock page on the border
3037 			 * of the range.
3038 			 */
3039 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3040 
3041 			munlock_vma_pages_range(tmp,
3042 					max(tmp->vm_start, start),
3043 					min(tmp->vm_end, start + size));
3044 		}
3045 	}
3046 
3047 	file = get_file(vma->vm_file);
3048 	ret = do_mmap(vma->vm_file, start, size,
3049 			prot, flags, pgoff, &populate, NULL);
3050 	fput(file);
3051 out:
3052 	mmap_write_unlock(mm);
3053 	if (populate)
3054 		mm_populate(ret, populate);
3055 	if (!IS_ERR_VALUE(ret))
3056 		ret = 0;
3057 	return ret;
3058 }
3059 
3060 /*
3061  *  this is really a simplified "do_mmap".  it only handles
3062  *  anonymous maps.  eventually we may be able to do some
3063  *  brk-specific accounting here.
3064  */
3065 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3066 {
3067 	struct mm_struct *mm = current->mm;
3068 	struct vm_area_struct *vma, *prev;
3069 	struct rb_node **rb_link, *rb_parent;
3070 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3071 	int error;
3072 	unsigned long mapped_addr;
3073 
3074 	/* Until we need other flags, refuse anything except VM_EXEC. */
3075 	if ((flags & (~VM_EXEC)) != 0)
3076 		return -EINVAL;
3077 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3078 
3079 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3080 	if (IS_ERR_VALUE(mapped_addr))
3081 		return mapped_addr;
3082 
3083 	error = mlock_future_check(mm, mm->def_flags, len);
3084 	if (error)
3085 		return error;
3086 
3087 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3088 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3089 		return -ENOMEM;
3090 
3091 	/* Check against address space limits *after* clearing old maps... */
3092 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3093 		return -ENOMEM;
3094 
3095 	if (mm->map_count > sysctl_max_map_count)
3096 		return -ENOMEM;
3097 
3098 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3099 		return -ENOMEM;
3100 
3101 	/* Can we just expand an old private anonymous mapping? */
3102 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3103 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3104 	if (vma)
3105 		goto out;
3106 
3107 	/*
3108 	 * create a vma struct for an anonymous mapping
3109 	 */
3110 	vma = vm_area_alloc(mm);
3111 	if (!vma) {
3112 		vm_unacct_memory(len >> PAGE_SHIFT);
3113 		return -ENOMEM;
3114 	}
3115 
3116 	vma_set_anonymous(vma);
3117 	vma->vm_start = addr;
3118 	vma->vm_end = addr + len;
3119 	vma->vm_pgoff = pgoff;
3120 	vma->vm_flags = flags;
3121 	vma->vm_page_prot = vm_get_page_prot(flags);
3122 	vma_link(mm, vma, prev, rb_link, rb_parent);
3123 out:
3124 	perf_event_mmap(vma);
3125 	mm->total_vm += len >> PAGE_SHIFT;
3126 	mm->data_vm += len >> PAGE_SHIFT;
3127 	if (flags & VM_LOCKED)
3128 		mm->locked_vm += (len >> PAGE_SHIFT);
3129 	vma->vm_flags |= VM_SOFTDIRTY;
3130 	return 0;
3131 }
3132 
3133 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3134 {
3135 	struct mm_struct *mm = current->mm;
3136 	unsigned long len;
3137 	int ret;
3138 	bool populate;
3139 	LIST_HEAD(uf);
3140 
3141 	len = PAGE_ALIGN(request);
3142 	if (len < request)
3143 		return -ENOMEM;
3144 	if (!len)
3145 		return 0;
3146 
3147 	if (mmap_write_lock_killable(mm))
3148 		return -EINTR;
3149 
3150 	ret = do_brk_flags(addr, len, flags, &uf);
3151 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3152 	mmap_write_unlock(mm);
3153 	userfaultfd_unmap_complete(mm, &uf);
3154 	if (populate && !ret)
3155 		mm_populate(addr, len);
3156 	return ret;
3157 }
3158 EXPORT_SYMBOL(vm_brk_flags);
3159 
3160 int vm_brk(unsigned long addr, unsigned long len)
3161 {
3162 	return vm_brk_flags(addr, len, 0);
3163 }
3164 EXPORT_SYMBOL(vm_brk);
3165 
3166 /* Release all mmaps. */
3167 void exit_mmap(struct mm_struct *mm)
3168 {
3169 	struct mmu_gather tlb;
3170 	struct vm_area_struct *vma;
3171 	unsigned long nr_accounted = 0;
3172 
3173 	/* mm's last user has gone, and its about to be pulled down */
3174 	mmu_notifier_release(mm);
3175 
3176 	if (unlikely(mm_is_oom_victim(mm))) {
3177 		/*
3178 		 * Manually reap the mm to free as much memory as possible.
3179 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3180 		 * this mm from further consideration.  Taking mm->mmap_lock for
3181 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3182 		 * reaper will not run on this mm again after mmap_lock is
3183 		 * dropped.
3184 		 *
3185 		 * Nothing can be holding mm->mmap_lock here and the above call
3186 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3187 		 * __oom_reap_task_mm() will not block.
3188 		 *
3189 		 * This needs to be done before calling munlock_vma_pages_all(),
3190 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3191 		 * reliably test it.
3192 		 */
3193 		(void)__oom_reap_task_mm(mm);
3194 
3195 		set_bit(MMF_OOM_SKIP, &mm->flags);
3196 		mmap_write_lock(mm);
3197 		mmap_write_unlock(mm);
3198 	}
3199 
3200 	if (mm->locked_vm) {
3201 		vma = mm->mmap;
3202 		while (vma) {
3203 			if (vma->vm_flags & VM_LOCKED)
3204 				munlock_vma_pages_all(vma);
3205 			vma = vma->vm_next;
3206 		}
3207 	}
3208 
3209 	arch_exit_mmap(mm);
3210 
3211 	vma = mm->mmap;
3212 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3213 		return;
3214 
3215 	lru_add_drain();
3216 	flush_cache_mm(mm);
3217 	tlb_gather_mmu(&tlb, mm, 0, -1);
3218 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3219 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3220 	unmap_vmas(&tlb, vma, 0, -1);
3221 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3222 	tlb_finish_mmu(&tlb, 0, -1);
3223 
3224 	/*
3225 	 * Walk the list again, actually closing and freeing it,
3226 	 * with preemption enabled, without holding any MM locks.
3227 	 */
3228 	while (vma) {
3229 		if (vma->vm_flags & VM_ACCOUNT)
3230 			nr_accounted += vma_pages(vma);
3231 		vma = remove_vma(vma);
3232 		cond_resched();
3233 	}
3234 	vm_unacct_memory(nr_accounted);
3235 }
3236 
3237 /* Insert vm structure into process list sorted by address
3238  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3239  * then i_mmap_rwsem is taken here.
3240  */
3241 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3242 {
3243 	struct vm_area_struct *prev;
3244 	struct rb_node **rb_link, *rb_parent;
3245 
3246 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3247 			   &prev, &rb_link, &rb_parent))
3248 		return -ENOMEM;
3249 	if ((vma->vm_flags & VM_ACCOUNT) &&
3250 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3251 		return -ENOMEM;
3252 
3253 	/*
3254 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3255 	 * until its first write fault, when page's anon_vma and index
3256 	 * are set.  But now set the vm_pgoff it will almost certainly
3257 	 * end up with (unless mremap moves it elsewhere before that
3258 	 * first wfault), so /proc/pid/maps tells a consistent story.
3259 	 *
3260 	 * By setting it to reflect the virtual start address of the
3261 	 * vma, merges and splits can happen in a seamless way, just
3262 	 * using the existing file pgoff checks and manipulations.
3263 	 * Similarly in do_mmap and in do_brk_flags.
3264 	 */
3265 	if (vma_is_anonymous(vma)) {
3266 		BUG_ON(vma->anon_vma);
3267 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3268 	}
3269 
3270 	vma_link(mm, vma, prev, rb_link, rb_parent);
3271 	return 0;
3272 }
3273 
3274 /*
3275  * Copy the vma structure to a new location in the same mm,
3276  * prior to moving page table entries, to effect an mremap move.
3277  */
3278 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3279 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3280 	bool *need_rmap_locks)
3281 {
3282 	struct vm_area_struct *vma = *vmap;
3283 	unsigned long vma_start = vma->vm_start;
3284 	struct mm_struct *mm = vma->vm_mm;
3285 	struct vm_area_struct *new_vma, *prev;
3286 	struct rb_node **rb_link, *rb_parent;
3287 	bool faulted_in_anon_vma = true;
3288 
3289 	/*
3290 	 * If anonymous vma has not yet been faulted, update new pgoff
3291 	 * to match new location, to increase its chance of merging.
3292 	 */
3293 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3294 		pgoff = addr >> PAGE_SHIFT;
3295 		faulted_in_anon_vma = false;
3296 	}
3297 
3298 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3299 		return NULL;	/* should never get here */
3300 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3301 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3302 			    vma->vm_userfaultfd_ctx);
3303 	if (new_vma) {
3304 		/*
3305 		 * Source vma may have been merged into new_vma
3306 		 */
3307 		if (unlikely(vma_start >= new_vma->vm_start &&
3308 			     vma_start < new_vma->vm_end)) {
3309 			/*
3310 			 * The only way we can get a vma_merge with
3311 			 * self during an mremap is if the vma hasn't
3312 			 * been faulted in yet and we were allowed to
3313 			 * reset the dst vma->vm_pgoff to the
3314 			 * destination address of the mremap to allow
3315 			 * the merge to happen. mremap must change the
3316 			 * vm_pgoff linearity between src and dst vmas
3317 			 * (in turn preventing a vma_merge) to be
3318 			 * safe. It is only safe to keep the vm_pgoff
3319 			 * linear if there are no pages mapped yet.
3320 			 */
3321 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3322 			*vmap = vma = new_vma;
3323 		}
3324 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3325 	} else {
3326 		new_vma = vm_area_dup(vma);
3327 		if (!new_vma)
3328 			goto out;
3329 		new_vma->vm_start = addr;
3330 		new_vma->vm_end = addr + len;
3331 		new_vma->vm_pgoff = pgoff;
3332 		if (vma_dup_policy(vma, new_vma))
3333 			goto out_free_vma;
3334 		if (anon_vma_clone(new_vma, vma))
3335 			goto out_free_mempol;
3336 		if (new_vma->vm_file)
3337 			get_file(new_vma->vm_file);
3338 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3339 			new_vma->vm_ops->open(new_vma);
3340 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3341 		*need_rmap_locks = false;
3342 	}
3343 	return new_vma;
3344 
3345 out_free_mempol:
3346 	mpol_put(vma_policy(new_vma));
3347 out_free_vma:
3348 	vm_area_free(new_vma);
3349 out:
3350 	return NULL;
3351 }
3352 
3353 /*
3354  * Return true if the calling process may expand its vm space by the passed
3355  * number of pages
3356  */
3357 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3358 {
3359 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3360 		return false;
3361 
3362 	if (is_data_mapping(flags) &&
3363 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3364 		/* Workaround for Valgrind */
3365 		if (rlimit(RLIMIT_DATA) == 0 &&
3366 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3367 			return true;
3368 
3369 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3370 			     current->comm, current->pid,
3371 			     (mm->data_vm + npages) << PAGE_SHIFT,
3372 			     rlimit(RLIMIT_DATA),
3373 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3374 
3375 		if (!ignore_rlimit_data)
3376 			return false;
3377 	}
3378 
3379 	return true;
3380 }
3381 
3382 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3383 {
3384 	mm->total_vm += npages;
3385 
3386 	if (is_exec_mapping(flags))
3387 		mm->exec_vm += npages;
3388 	else if (is_stack_mapping(flags))
3389 		mm->stack_vm += npages;
3390 	else if (is_data_mapping(flags))
3391 		mm->data_vm += npages;
3392 }
3393 
3394 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3395 
3396 /*
3397  * Having a close hook prevents vma merging regardless of flags.
3398  */
3399 static void special_mapping_close(struct vm_area_struct *vma)
3400 {
3401 }
3402 
3403 static const char *special_mapping_name(struct vm_area_struct *vma)
3404 {
3405 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3406 }
3407 
3408 static int special_mapping_mremap(struct vm_area_struct *new_vma,
3409 				  unsigned long flags)
3410 {
3411 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3412 
3413 	if (flags & MREMAP_DONTUNMAP)
3414 		return -EINVAL;
3415 
3416 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3417 		return -EFAULT;
3418 
3419 	if (sm->mremap)
3420 		return sm->mremap(sm, new_vma);
3421 
3422 	return 0;
3423 }
3424 
3425 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3426 {
3427 	/*
3428 	 * Forbid splitting special mappings - kernel has expectations over
3429 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3430 	 * the size of vma should stay the same over the special mapping's
3431 	 * lifetime.
3432 	 */
3433 	return -EINVAL;
3434 }
3435 
3436 static const struct vm_operations_struct special_mapping_vmops = {
3437 	.close = special_mapping_close,
3438 	.fault = special_mapping_fault,
3439 	.mremap = special_mapping_mremap,
3440 	.name = special_mapping_name,
3441 	/* vDSO code relies that VVAR can't be accessed remotely */
3442 	.access = NULL,
3443 	.may_split = special_mapping_split,
3444 };
3445 
3446 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3447 	.close = special_mapping_close,
3448 	.fault = special_mapping_fault,
3449 };
3450 
3451 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3452 {
3453 	struct vm_area_struct *vma = vmf->vma;
3454 	pgoff_t pgoff;
3455 	struct page **pages;
3456 
3457 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3458 		pages = vma->vm_private_data;
3459 	} else {
3460 		struct vm_special_mapping *sm = vma->vm_private_data;
3461 
3462 		if (sm->fault)
3463 			return sm->fault(sm, vmf->vma, vmf);
3464 
3465 		pages = sm->pages;
3466 	}
3467 
3468 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3469 		pgoff--;
3470 
3471 	if (*pages) {
3472 		struct page *page = *pages;
3473 		get_page(page);
3474 		vmf->page = page;
3475 		return 0;
3476 	}
3477 
3478 	return VM_FAULT_SIGBUS;
3479 }
3480 
3481 static struct vm_area_struct *__install_special_mapping(
3482 	struct mm_struct *mm,
3483 	unsigned long addr, unsigned long len,
3484 	unsigned long vm_flags, void *priv,
3485 	const struct vm_operations_struct *ops)
3486 {
3487 	int ret;
3488 	struct vm_area_struct *vma;
3489 
3490 	vma = vm_area_alloc(mm);
3491 	if (unlikely(vma == NULL))
3492 		return ERR_PTR(-ENOMEM);
3493 
3494 	vma->vm_start = addr;
3495 	vma->vm_end = addr + len;
3496 
3497 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3498 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3499 
3500 	vma->vm_ops = ops;
3501 	vma->vm_private_data = priv;
3502 
3503 	ret = insert_vm_struct(mm, vma);
3504 	if (ret)
3505 		goto out;
3506 
3507 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3508 
3509 	perf_event_mmap(vma);
3510 
3511 	return vma;
3512 
3513 out:
3514 	vm_area_free(vma);
3515 	return ERR_PTR(ret);
3516 }
3517 
3518 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3519 	const struct vm_special_mapping *sm)
3520 {
3521 	return vma->vm_private_data == sm &&
3522 		(vma->vm_ops == &special_mapping_vmops ||
3523 		 vma->vm_ops == &legacy_special_mapping_vmops);
3524 }
3525 
3526 /*
3527  * Called with mm->mmap_lock held for writing.
3528  * Insert a new vma covering the given region, with the given flags.
3529  * Its pages are supplied by the given array of struct page *.
3530  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3531  * The region past the last page supplied will always produce SIGBUS.
3532  * The array pointer and the pages it points to are assumed to stay alive
3533  * for as long as this mapping might exist.
3534  */
3535 struct vm_area_struct *_install_special_mapping(
3536 	struct mm_struct *mm,
3537 	unsigned long addr, unsigned long len,
3538 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3539 {
3540 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3541 					&special_mapping_vmops);
3542 }
3543 
3544 int install_special_mapping(struct mm_struct *mm,
3545 			    unsigned long addr, unsigned long len,
3546 			    unsigned long vm_flags, struct page **pages)
3547 {
3548 	struct vm_area_struct *vma = __install_special_mapping(
3549 		mm, addr, len, vm_flags, (void *)pages,
3550 		&legacy_special_mapping_vmops);
3551 
3552 	return PTR_ERR_OR_ZERO(vma);
3553 }
3554 
3555 static DEFINE_MUTEX(mm_all_locks_mutex);
3556 
3557 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3558 {
3559 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3560 		/*
3561 		 * The LSB of head.next can't change from under us
3562 		 * because we hold the mm_all_locks_mutex.
3563 		 */
3564 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3565 		/*
3566 		 * We can safely modify head.next after taking the
3567 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3568 		 * the same anon_vma we won't take it again.
3569 		 *
3570 		 * No need of atomic instructions here, head.next
3571 		 * can't change from under us thanks to the
3572 		 * anon_vma->root->rwsem.
3573 		 */
3574 		if (__test_and_set_bit(0, (unsigned long *)
3575 				       &anon_vma->root->rb_root.rb_root.rb_node))
3576 			BUG();
3577 	}
3578 }
3579 
3580 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3581 {
3582 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3583 		/*
3584 		 * AS_MM_ALL_LOCKS can't change from under us because
3585 		 * we hold the mm_all_locks_mutex.
3586 		 *
3587 		 * Operations on ->flags have to be atomic because
3588 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3589 		 * mm_all_locks_mutex, there may be other cpus
3590 		 * changing other bitflags in parallel to us.
3591 		 */
3592 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3593 			BUG();
3594 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3595 	}
3596 }
3597 
3598 /*
3599  * This operation locks against the VM for all pte/vma/mm related
3600  * operations that could ever happen on a certain mm. This includes
3601  * vmtruncate, try_to_unmap, and all page faults.
3602  *
3603  * The caller must take the mmap_lock in write mode before calling
3604  * mm_take_all_locks(). The caller isn't allowed to release the
3605  * mmap_lock until mm_drop_all_locks() returns.
3606  *
3607  * mmap_lock in write mode is required in order to block all operations
3608  * that could modify pagetables and free pages without need of
3609  * altering the vma layout. It's also needed in write mode to avoid new
3610  * anon_vmas to be associated with existing vmas.
3611  *
3612  * A single task can't take more than one mm_take_all_locks() in a row
3613  * or it would deadlock.
3614  *
3615  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3616  * mapping->flags avoid to take the same lock twice, if more than one
3617  * vma in this mm is backed by the same anon_vma or address_space.
3618  *
3619  * We take locks in following order, accordingly to comment at beginning
3620  * of mm/rmap.c:
3621  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3622  *     hugetlb mapping);
3623  *   - all i_mmap_rwsem locks;
3624  *   - all anon_vma->rwseml
3625  *
3626  * We can take all locks within these types randomly because the VM code
3627  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3628  * mm_all_locks_mutex.
3629  *
3630  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3631  * that may have to take thousand of locks.
3632  *
3633  * mm_take_all_locks() can fail if it's interrupted by signals.
3634  */
3635 int mm_take_all_locks(struct mm_struct *mm)
3636 {
3637 	struct vm_area_struct *vma;
3638 	struct anon_vma_chain *avc;
3639 
3640 	BUG_ON(mmap_read_trylock(mm));
3641 
3642 	mutex_lock(&mm_all_locks_mutex);
3643 
3644 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3645 		if (signal_pending(current))
3646 			goto out_unlock;
3647 		if (vma->vm_file && vma->vm_file->f_mapping &&
3648 				is_vm_hugetlb_page(vma))
3649 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3650 	}
3651 
3652 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3653 		if (signal_pending(current))
3654 			goto out_unlock;
3655 		if (vma->vm_file && vma->vm_file->f_mapping &&
3656 				!is_vm_hugetlb_page(vma))
3657 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3658 	}
3659 
3660 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3661 		if (signal_pending(current))
3662 			goto out_unlock;
3663 		if (vma->anon_vma)
3664 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3665 				vm_lock_anon_vma(mm, avc->anon_vma);
3666 	}
3667 
3668 	return 0;
3669 
3670 out_unlock:
3671 	mm_drop_all_locks(mm);
3672 	return -EINTR;
3673 }
3674 
3675 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3676 {
3677 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3678 		/*
3679 		 * The LSB of head.next can't change to 0 from under
3680 		 * us because we hold the mm_all_locks_mutex.
3681 		 *
3682 		 * We must however clear the bitflag before unlocking
3683 		 * the vma so the users using the anon_vma->rb_root will
3684 		 * never see our bitflag.
3685 		 *
3686 		 * No need of atomic instructions here, head.next
3687 		 * can't change from under us until we release the
3688 		 * anon_vma->root->rwsem.
3689 		 */
3690 		if (!__test_and_clear_bit(0, (unsigned long *)
3691 					  &anon_vma->root->rb_root.rb_root.rb_node))
3692 			BUG();
3693 		anon_vma_unlock_write(anon_vma);
3694 	}
3695 }
3696 
3697 static void vm_unlock_mapping(struct address_space *mapping)
3698 {
3699 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3700 		/*
3701 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3702 		 * because we hold the mm_all_locks_mutex.
3703 		 */
3704 		i_mmap_unlock_write(mapping);
3705 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3706 					&mapping->flags))
3707 			BUG();
3708 	}
3709 }
3710 
3711 /*
3712  * The mmap_lock cannot be released by the caller until
3713  * mm_drop_all_locks() returns.
3714  */
3715 void mm_drop_all_locks(struct mm_struct *mm)
3716 {
3717 	struct vm_area_struct *vma;
3718 	struct anon_vma_chain *avc;
3719 
3720 	BUG_ON(mmap_read_trylock(mm));
3721 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3722 
3723 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3724 		if (vma->anon_vma)
3725 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3726 				vm_unlock_anon_vma(avc->anon_vma);
3727 		if (vma->vm_file && vma->vm_file->f_mapping)
3728 			vm_unlock_mapping(vma->vm_file->f_mapping);
3729 	}
3730 
3731 	mutex_unlock(&mm_all_locks_mutex);
3732 }
3733 
3734 /*
3735  * initialise the percpu counter for VM
3736  */
3737 void __init mmap_init(void)
3738 {
3739 	int ret;
3740 
3741 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3742 	VM_BUG_ON(ret);
3743 }
3744 
3745 /*
3746  * Initialise sysctl_user_reserve_kbytes.
3747  *
3748  * This is intended to prevent a user from starting a single memory hogging
3749  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3750  * mode.
3751  *
3752  * The default value is min(3% of free memory, 128MB)
3753  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3754  */
3755 static int init_user_reserve(void)
3756 {
3757 	unsigned long free_kbytes;
3758 
3759 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3760 
3761 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3762 	return 0;
3763 }
3764 subsys_initcall(init_user_reserve);
3765 
3766 /*
3767  * Initialise sysctl_admin_reserve_kbytes.
3768  *
3769  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3770  * to log in and kill a memory hogging process.
3771  *
3772  * Systems with more than 256MB will reserve 8MB, enough to recover
3773  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3774  * only reserve 3% of free pages by default.
3775  */
3776 static int init_admin_reserve(void)
3777 {
3778 	unsigned long free_kbytes;
3779 
3780 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3781 
3782 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3783 	return 0;
3784 }
3785 subsys_initcall(init_admin_reserve);
3786 
3787 /*
3788  * Reinititalise user and admin reserves if memory is added or removed.
3789  *
3790  * The default user reserve max is 128MB, and the default max for the
3791  * admin reserve is 8MB. These are usually, but not always, enough to
3792  * enable recovery from a memory hogging process using login/sshd, a shell,
3793  * and tools like top. It may make sense to increase or even disable the
3794  * reserve depending on the existence of swap or variations in the recovery
3795  * tools. So, the admin may have changed them.
3796  *
3797  * If memory is added and the reserves have been eliminated or increased above
3798  * the default max, then we'll trust the admin.
3799  *
3800  * If memory is removed and there isn't enough free memory, then we
3801  * need to reset the reserves.
3802  *
3803  * Otherwise keep the reserve set by the admin.
3804  */
3805 static int reserve_mem_notifier(struct notifier_block *nb,
3806 			     unsigned long action, void *data)
3807 {
3808 	unsigned long tmp, free_kbytes;
3809 
3810 	switch (action) {
3811 	case MEM_ONLINE:
3812 		/* Default max is 128MB. Leave alone if modified by operator. */
3813 		tmp = sysctl_user_reserve_kbytes;
3814 		if (0 < tmp && tmp < (1UL << 17))
3815 			init_user_reserve();
3816 
3817 		/* Default max is 8MB.  Leave alone if modified by operator. */
3818 		tmp = sysctl_admin_reserve_kbytes;
3819 		if (0 < tmp && tmp < (1UL << 13))
3820 			init_admin_reserve();
3821 
3822 		break;
3823 	case MEM_OFFLINE:
3824 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3825 
3826 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3827 			init_user_reserve();
3828 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3829 				sysctl_user_reserve_kbytes);
3830 		}
3831 
3832 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3833 			init_admin_reserve();
3834 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3835 				sysctl_admin_reserve_kbytes);
3836 		}
3837 		break;
3838 	default:
3839 		break;
3840 	}
3841 	return NOTIFY_OK;
3842 }
3843 
3844 static struct notifier_block reserve_mem_nb = {
3845 	.notifier_call = reserve_mem_notifier,
3846 };
3847 
3848 static int __meminit init_reserve_notifier(void)
3849 {
3850 	if (register_hotmemory_notifier(&reserve_mem_nb))
3851 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3852 
3853 	return 0;
3854 }
3855 subsys_initcall(init_reserve_notifier);
3856