xref: /openbmc/linux/mm/mmap.c (revision 4dc7ccf7)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "internal.h"
38 
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)	(0)
41 #endif
42 
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)		(addr)
45 #endif
46 
47 static void unmap_region(struct mm_struct *mm,
48 		struct vm_area_struct *vma, struct vm_area_struct *prev,
49 		unsigned long start, unsigned long end);
50 
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56 
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type	prot
62  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66  *
67  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76 
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 	return __pgprot(pgprot_val(protection_map[vm_flags &
80 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84 
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;	/* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 
90 /*
91  * Check that a process has enough memory to allocate a new virtual
92  * mapping. 0 means there is enough memory for the allocation to
93  * succeed and -ENOMEM implies there is not.
94  *
95  * We currently support three overcommit policies, which are set via the
96  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97  *
98  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99  * Additional code 2002 Jul 20 by Robert Love.
100  *
101  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102  *
103  * Note this is a helper function intended to be used by LSMs which
104  * wish to use this logic.
105  */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 	unsigned long free, allowed;
109 
110 	vm_acct_memory(pages);
111 
112 	/*
113 	 * Sometimes we want to use more memory than we have
114 	 */
115 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 		return 0;
117 
118 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 		unsigned long n;
120 
121 		free = global_page_state(NR_FILE_PAGES);
122 		free += nr_swap_pages;
123 
124 		/*
125 		 * Any slabs which are created with the
126 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 		 * which are reclaimable, under pressure.  The dentry
128 		 * cache and most inode caches should fall into this
129 		 */
130 		free += global_page_state(NR_SLAB_RECLAIMABLE);
131 
132 		/*
133 		 * Leave the last 3% for root
134 		 */
135 		if (!cap_sys_admin)
136 			free -= free / 32;
137 
138 		if (free > pages)
139 			return 0;
140 
141 		/*
142 		 * nr_free_pages() is very expensive on large systems,
143 		 * only call if we're about to fail.
144 		 */
145 		n = nr_free_pages();
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (n <= totalreserve_pages)
151 			goto error;
152 		else
153 			n -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			n -= n / 32;
160 		free += n;
161 
162 		if (free > pages)
163 			return 0;
164 
165 		goto error;
166 	}
167 
168 	allowed = (totalram_pages - hugetlb_total_pages())
169 	       	* sysctl_overcommit_ratio / 100;
170 	/*
171 	 * Leave the last 3% for root
172 	 */
173 	if (!cap_sys_admin)
174 		allowed -= allowed / 32;
175 	allowed += total_swap_pages;
176 
177 	/* Don't let a single process grow too big:
178 	   leave 3% of the size of this process for other processes */
179 	if (mm)
180 		allowed -= mm->total_vm / 32;
181 
182 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 		return 0;
184 error:
185 	vm_unacct_memory(pages);
186 
187 	return -ENOMEM;
188 }
189 
190 /*
191  * Requires inode->i_mapping->i_mmap_lock
192  */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 		struct file *file, struct address_space *mapping)
195 {
196 	if (vma->vm_flags & VM_DENYWRITE)
197 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 	if (vma->vm_flags & VM_SHARED)
199 		mapping->i_mmap_writable--;
200 
201 	flush_dcache_mmap_lock(mapping);
202 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 		list_del_init(&vma->shared.vm_set.list);
204 	else
205 		vma_prio_tree_remove(vma, &mapping->i_mmap);
206 	flush_dcache_mmap_unlock(mapping);
207 }
208 
209 /*
210  * Unlink a file-based vm structure from its prio_tree, to hide
211  * vma from rmap and vmtruncate before freeing its page tables.
212  */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 	struct file *file = vma->vm_file;
216 
217 	if (file) {
218 		struct address_space *mapping = file->f_mapping;
219 		spin_lock(&mapping->i_mmap_lock);
220 		__remove_shared_vm_struct(vma, file, mapping);
221 		spin_unlock(&mapping->i_mmap_lock);
222 	}
223 }
224 
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 	struct vm_area_struct *next = vma->vm_next;
231 
232 	might_sleep();
233 	if (vma->vm_ops && vma->vm_ops->close)
234 		vma->vm_ops->close(vma);
235 	if (vma->vm_file) {
236 		fput(vma->vm_file);
237 		if (vma->vm_flags & VM_EXECUTABLE)
238 			removed_exe_file_vma(vma->vm_mm);
239 	}
240 	mpol_put(vma_policy(vma));
241 	kmem_cache_free(vm_area_cachep, vma);
242 	return next;
243 }
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	min_brk = mm->end_code;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *tmp = mm->mmap;
335 	while (tmp) {
336 		tmp = tmp->vm_next;
337 		i++;
338 	}
339 	if (i != mm->map_count)
340 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 	i = browse_rb(&mm->mm_rb);
342 	if (i != mm->map_count)
343 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 	BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349 
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 		struct rb_node ** rb_parent)
354 {
355 	struct vm_area_struct * vma;
356 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 
358 	__rb_link = &mm->mm_rb.rb_node;
359 	rb_prev = __rb_parent = NULL;
360 	vma = NULL;
361 
362 	while (*__rb_link) {
363 		struct vm_area_struct *vma_tmp;
364 
365 		__rb_parent = *__rb_link;
366 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 
368 		if (vma_tmp->vm_end > addr) {
369 			vma = vma_tmp;
370 			if (vma_tmp->vm_start <= addr)
371 				break;
372 			__rb_link = &__rb_parent->rb_left;
373 		} else {
374 			rb_prev = __rb_parent;
375 			__rb_link = &__rb_parent->rb_right;
376 		}
377 	}
378 
379 	*pprev = NULL;
380 	if (rb_prev)
381 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 	*rb_link = __rb_link;
383 	*rb_parent = __rb_parent;
384 	return vma;
385 }
386 
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 	if (prev) {
392 		vma->vm_next = prev->vm_next;
393 		prev->vm_next = vma;
394 	} else {
395 		mm->mmap = vma;
396 		if (rb_parent)
397 			vma->vm_next = rb_entry(rb_parent,
398 					struct vm_area_struct, vm_rb);
399 		else
400 			vma->vm_next = NULL;
401 	}
402 }
403 
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 		struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410 
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 	struct file *file;
414 
415 	file = vma->vm_file;
416 	if (file) {
417 		struct address_space *mapping = file->f_mapping;
418 
419 		if (vma->vm_flags & VM_DENYWRITE)
420 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 		if (vma->vm_flags & VM_SHARED)
422 			mapping->i_mmap_writable++;
423 
424 		flush_dcache_mmap_lock(mapping);
425 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 		else
428 			vma_prio_tree_insert(vma, &mapping->i_mmap);
429 		flush_dcache_mmap_unlock(mapping);
430 	}
431 }
432 
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 	struct vm_area_struct *prev, struct rb_node **rb_link,
436 	struct rb_node *rb_parent)
437 {
438 	__vma_link_list(mm, vma, prev, rb_parent);
439 	__vma_link_rb(mm, vma, rb_link, rb_parent);
440 }
441 
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 			struct vm_area_struct *prev, struct rb_node **rb_link,
444 			struct rb_node *rb_parent)
445 {
446 	struct address_space *mapping = NULL;
447 
448 	if (vma->vm_file)
449 		mapping = vma->vm_file->f_mapping;
450 
451 	if (mapping) {
452 		spin_lock(&mapping->i_mmap_lock);
453 		vma->vm_truncate_count = mapping->truncate_count;
454 	}
455 	anon_vma_lock(vma);
456 
457 	__vma_link(mm, vma, prev, rb_link, rb_parent);
458 	__vma_link_file(vma);
459 
460 	anon_vma_unlock(vma);
461 	if (mapping)
462 		spin_unlock(&mapping->i_mmap_lock);
463 
464 	mm->map_count++;
465 	validate_mm(mm);
466 }
467 
468 /*
469  * Helper for vma_adjust in the split_vma insert case:
470  * insert vm structure into list and rbtree and anon_vma,
471  * but it has already been inserted into prio_tree earlier.
472  */
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
474 {
475 	struct vm_area_struct *__vma, *prev;
476 	struct rb_node **rb_link, *rb_parent;
477 
478 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 	__vma_link(mm, vma, prev, rb_link, rb_parent);
481 	mm->map_count++;
482 }
483 
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 		struct vm_area_struct *prev)
487 {
488 	prev->vm_next = vma->vm_next;
489 	rb_erase(&vma->vm_rb, &mm->mm_rb);
490 	if (mm->mmap_cache == vma)
491 		mm->mmap_cache = prev;
492 }
493 
494 /*
495  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496  * is already present in an i_mmap tree without adjusting the tree.
497  * The following helper function should be used when such adjustments
498  * are necessary.  The "insert" vma (if any) is to be inserted
499  * before we drop the necessary locks.
500  */
501 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
503 {
504 	struct mm_struct *mm = vma->vm_mm;
505 	struct vm_area_struct *next = vma->vm_next;
506 	struct vm_area_struct *importer = NULL;
507 	struct address_space *mapping = NULL;
508 	struct prio_tree_root *root = NULL;
509 	struct file *file = vma->vm_file;
510 	struct anon_vma *anon_vma = NULL;
511 	long adjust_next = 0;
512 	int remove_next = 0;
513 
514 	if (next && !insert) {
515 		if (end >= next->vm_end) {
516 			/*
517 			 * vma expands, overlapping all the next, and
518 			 * perhaps the one after too (mprotect case 6).
519 			 */
520 again:			remove_next = 1 + (end > next->vm_end);
521 			end = next->vm_end;
522 			anon_vma = next->anon_vma;
523 			importer = vma;
524 		} else if (end > next->vm_start) {
525 			/*
526 			 * vma expands, overlapping part of the next:
527 			 * mprotect case 5 shifting the boundary up.
528 			 */
529 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 			anon_vma = next->anon_vma;
531 			importer = vma;
532 		} else if (end < vma->vm_end) {
533 			/*
534 			 * vma shrinks, and !insert tells it's not
535 			 * split_vma inserting another: so it must be
536 			 * mprotect case 4 shifting the boundary down.
537 			 */
538 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 			anon_vma = next->anon_vma;
540 			importer = next;
541 		}
542 	}
543 
544 	/*
545 	 * When changing only vma->vm_end, we don't really need anon_vma lock.
546 	 */
547 	if (vma->anon_vma && (insert || importer || start != vma->vm_start))
548 		anon_vma = vma->anon_vma;
549 	if (anon_vma) {
550 		/*
551 		 * Easily overlooked: when mprotect shifts the boundary,
552 		 * make sure the expanding vma has anon_vma set if the
553 		 * shrinking vma had, to cover any anon pages imported.
554 		 */
555 		if (importer && !importer->anon_vma) {
556 			/* Block reverse map lookups until things are set up. */
557 			if (anon_vma_clone(importer, vma)) {
558 				return -ENOMEM;
559 			}
560 			importer->anon_vma = anon_vma;
561 		}
562 	}
563 
564 	if (file) {
565 		mapping = file->f_mapping;
566 		if (!(vma->vm_flags & VM_NONLINEAR))
567 			root = &mapping->i_mmap;
568 		spin_lock(&mapping->i_mmap_lock);
569 		if (importer &&
570 		    vma->vm_truncate_count != next->vm_truncate_count) {
571 			/*
572 			 * unmap_mapping_range might be in progress:
573 			 * ensure that the expanding vma is rescanned.
574 			 */
575 			importer->vm_truncate_count = 0;
576 		}
577 		if (insert) {
578 			insert->vm_truncate_count = vma->vm_truncate_count;
579 			/*
580 			 * Put into prio_tree now, so instantiated pages
581 			 * are visible to arm/parisc __flush_dcache_page
582 			 * throughout; but we cannot insert into address
583 			 * space until vma start or end is updated.
584 			 */
585 			__vma_link_file(insert);
586 		}
587 	}
588 
589 	if (root) {
590 		flush_dcache_mmap_lock(mapping);
591 		vma_prio_tree_remove(vma, root);
592 		if (adjust_next)
593 			vma_prio_tree_remove(next, root);
594 	}
595 
596 	vma->vm_start = start;
597 	vma->vm_end = end;
598 	vma->vm_pgoff = pgoff;
599 	if (adjust_next) {
600 		next->vm_start += adjust_next << PAGE_SHIFT;
601 		next->vm_pgoff += adjust_next;
602 	}
603 
604 	if (root) {
605 		if (adjust_next)
606 			vma_prio_tree_insert(next, root);
607 		vma_prio_tree_insert(vma, root);
608 		flush_dcache_mmap_unlock(mapping);
609 	}
610 
611 	if (remove_next) {
612 		/*
613 		 * vma_merge has merged next into vma, and needs
614 		 * us to remove next before dropping the locks.
615 		 */
616 		__vma_unlink(mm, next, vma);
617 		if (file)
618 			__remove_shared_vm_struct(next, file, mapping);
619 	} else if (insert) {
620 		/*
621 		 * split_vma has split insert from vma, and needs
622 		 * us to insert it before dropping the locks
623 		 * (it may either follow vma or precede it).
624 		 */
625 		__insert_vm_struct(mm, insert);
626 	}
627 
628 	if (mapping)
629 		spin_unlock(&mapping->i_mmap_lock);
630 
631 	if (remove_next) {
632 		if (file) {
633 			fput(file);
634 			if (next->vm_flags & VM_EXECUTABLE)
635 				removed_exe_file_vma(mm);
636 		}
637 		if (next->anon_vma)
638 			anon_vma_merge(vma, next);
639 		mm->map_count--;
640 		mpol_put(vma_policy(next));
641 		kmem_cache_free(vm_area_cachep, next);
642 		/*
643 		 * In mprotect's case 6 (see comments on vma_merge),
644 		 * we must remove another next too. It would clutter
645 		 * up the code too much to do both in one go.
646 		 */
647 		if (remove_next == 2) {
648 			next = vma->vm_next;
649 			goto again;
650 		}
651 	}
652 
653 	validate_mm(mm);
654 
655 	return 0;
656 }
657 
658 /*
659  * If the vma has a ->close operation then the driver probably needs to release
660  * per-vma resources, so we don't attempt to merge those.
661  */
662 static inline int is_mergeable_vma(struct vm_area_struct *vma,
663 			struct file *file, unsigned long vm_flags)
664 {
665 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
666 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
667 		return 0;
668 	if (vma->vm_file != file)
669 		return 0;
670 	if (vma->vm_ops && vma->vm_ops->close)
671 		return 0;
672 	return 1;
673 }
674 
675 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
676 					struct anon_vma *anon_vma2)
677 {
678 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
679 }
680 
681 /*
682  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
683  * in front of (at a lower virtual address and file offset than) the vma.
684  *
685  * We cannot merge two vmas if they have differently assigned (non-NULL)
686  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
687  *
688  * We don't check here for the merged mmap wrapping around the end of pagecache
689  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
690  * wrap, nor mmaps which cover the final page at index -1UL.
691  */
692 static int
693 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
694 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
695 {
696 	if (is_mergeable_vma(vma, file, vm_flags) &&
697 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698 		if (vma->vm_pgoff == vm_pgoff)
699 			return 1;
700 	}
701 	return 0;
702 }
703 
704 /*
705  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
706  * beyond (at a higher virtual address and file offset than) the vma.
707  *
708  * We cannot merge two vmas if they have differently assigned (non-NULL)
709  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
710  */
711 static int
712 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
713 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
714 {
715 	if (is_mergeable_vma(vma, file, vm_flags) &&
716 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
717 		pgoff_t vm_pglen;
718 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
719 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
720 			return 1;
721 	}
722 	return 0;
723 }
724 
725 /*
726  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
727  * whether that can be merged with its predecessor or its successor.
728  * Or both (it neatly fills a hole).
729  *
730  * In most cases - when called for mmap, brk or mremap - [addr,end) is
731  * certain not to be mapped by the time vma_merge is called; but when
732  * called for mprotect, it is certain to be already mapped (either at
733  * an offset within prev, or at the start of next), and the flags of
734  * this area are about to be changed to vm_flags - and the no-change
735  * case has already been eliminated.
736  *
737  * The following mprotect cases have to be considered, where AAAA is
738  * the area passed down from mprotect_fixup, never extending beyond one
739  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
740  *
741  *     AAAA             AAAA                AAAA          AAAA
742  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
743  *    cannot merge    might become    might become    might become
744  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
745  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
746  *    mremap move:                                    PPPPNNNNNNNN 8
747  *        AAAA
748  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
749  *    might become    case 1 below    case 2 below    case 3 below
750  *
751  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
752  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
753  */
754 struct vm_area_struct *vma_merge(struct mm_struct *mm,
755 			struct vm_area_struct *prev, unsigned long addr,
756 			unsigned long end, unsigned long vm_flags,
757 		     	struct anon_vma *anon_vma, struct file *file,
758 			pgoff_t pgoff, struct mempolicy *policy)
759 {
760 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
761 	struct vm_area_struct *area, *next;
762 	int err;
763 
764 	/*
765 	 * We later require that vma->vm_flags == vm_flags,
766 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
767 	 */
768 	if (vm_flags & VM_SPECIAL)
769 		return NULL;
770 
771 	if (prev)
772 		next = prev->vm_next;
773 	else
774 		next = mm->mmap;
775 	area = next;
776 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
777 		next = next->vm_next;
778 
779 	/*
780 	 * Can it merge with the predecessor?
781 	 */
782 	if (prev && prev->vm_end == addr &&
783   			mpol_equal(vma_policy(prev), policy) &&
784 			can_vma_merge_after(prev, vm_flags,
785 						anon_vma, file, pgoff)) {
786 		/*
787 		 * OK, it can.  Can we now merge in the successor as well?
788 		 */
789 		if (next && end == next->vm_start &&
790 				mpol_equal(policy, vma_policy(next)) &&
791 				can_vma_merge_before(next, vm_flags,
792 					anon_vma, file, pgoff+pglen) &&
793 				is_mergeable_anon_vma(prev->anon_vma,
794 						      next->anon_vma)) {
795 							/* cases 1, 6 */
796 			err = vma_adjust(prev, prev->vm_start,
797 				next->vm_end, prev->vm_pgoff, NULL);
798 		} else					/* cases 2, 5, 7 */
799 			err = vma_adjust(prev, prev->vm_start,
800 				end, prev->vm_pgoff, NULL);
801 		if (err)
802 			return NULL;
803 		return prev;
804 	}
805 
806 	/*
807 	 * Can this new request be merged in front of next?
808 	 */
809 	if (next && end == next->vm_start &&
810  			mpol_equal(policy, vma_policy(next)) &&
811 			can_vma_merge_before(next, vm_flags,
812 					anon_vma, file, pgoff+pglen)) {
813 		if (prev && addr < prev->vm_end)	/* case 4 */
814 			err = vma_adjust(prev, prev->vm_start,
815 				addr, prev->vm_pgoff, NULL);
816 		else					/* cases 3, 8 */
817 			err = vma_adjust(area, addr, next->vm_end,
818 				next->vm_pgoff - pglen, NULL);
819 		if (err)
820 			return NULL;
821 		return area;
822 	}
823 
824 	return NULL;
825 }
826 
827 /*
828  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
829  * neighbouring vmas for a suitable anon_vma, before it goes off
830  * to allocate a new anon_vma.  It checks because a repetitive
831  * sequence of mprotects and faults may otherwise lead to distinct
832  * anon_vmas being allocated, preventing vma merge in subsequent
833  * mprotect.
834  */
835 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
836 {
837 	struct vm_area_struct *near;
838 	unsigned long vm_flags;
839 
840 	near = vma->vm_next;
841 	if (!near)
842 		goto try_prev;
843 
844 	/*
845 	 * Since only mprotect tries to remerge vmas, match flags
846 	 * which might be mprotected into each other later on.
847 	 * Neither mlock nor madvise tries to remerge at present,
848 	 * so leave their flags as obstructing a merge.
849 	 */
850 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
852 
853 	if (near->anon_vma && vma->vm_end == near->vm_start &&
854  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
855 			can_vma_merge_before(near, vm_flags,
856 				NULL, vma->vm_file, vma->vm_pgoff +
857 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
858 		return near->anon_vma;
859 try_prev:
860 	/*
861 	 * It is potentially slow to have to call find_vma_prev here.
862 	 * But it's only on the first write fault on the vma, not
863 	 * every time, and we could devise a way to avoid it later
864 	 * (e.g. stash info in next's anon_vma_node when assigning
865 	 * an anon_vma, or when trying vma_merge).  Another time.
866 	 */
867 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
868 	if (!near)
869 		goto none;
870 
871 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
872 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
873 
874 	if (near->anon_vma && near->vm_end == vma->vm_start &&
875   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
876 			can_vma_merge_after(near, vm_flags,
877 				NULL, vma->vm_file, vma->vm_pgoff))
878 		return near->anon_vma;
879 none:
880 	/*
881 	 * There's no absolute need to look only at touching neighbours:
882 	 * we could search further afield for "compatible" anon_vmas.
883 	 * But it would probably just be a waste of time searching,
884 	 * or lead to too many vmas hanging off the same anon_vma.
885 	 * We're trying to allow mprotect remerging later on,
886 	 * not trying to minimize memory used for anon_vmas.
887 	 */
888 	return NULL;
889 }
890 
891 #ifdef CONFIG_PROC_FS
892 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
893 						struct file *file, long pages)
894 {
895 	const unsigned long stack_flags
896 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
897 
898 	if (file) {
899 		mm->shared_vm += pages;
900 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
901 			mm->exec_vm += pages;
902 	} else if (flags & stack_flags)
903 		mm->stack_vm += pages;
904 	if (flags & (VM_RESERVED|VM_IO))
905 		mm->reserved_vm += pages;
906 }
907 #endif /* CONFIG_PROC_FS */
908 
909 /*
910  * The caller must hold down_write(&current->mm->mmap_sem).
911  */
912 
913 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
914 			unsigned long len, unsigned long prot,
915 			unsigned long flags, unsigned long pgoff)
916 {
917 	struct mm_struct * mm = current->mm;
918 	struct inode *inode;
919 	unsigned int vm_flags;
920 	int error;
921 	unsigned long reqprot = prot;
922 
923 	/*
924 	 * Does the application expect PROT_READ to imply PROT_EXEC?
925 	 *
926 	 * (the exception is when the underlying filesystem is noexec
927 	 *  mounted, in which case we dont add PROT_EXEC.)
928 	 */
929 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
930 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
931 			prot |= PROT_EXEC;
932 
933 	if (!len)
934 		return -EINVAL;
935 
936 	if (!(flags & MAP_FIXED))
937 		addr = round_hint_to_min(addr);
938 
939 	/* Careful about overflows.. */
940 	len = PAGE_ALIGN(len);
941 	if (!len)
942 		return -ENOMEM;
943 
944 	/* offset overflow? */
945 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946                return -EOVERFLOW;
947 
948 	/* Too many mappings? */
949 	if (mm->map_count > sysctl_max_map_count)
950 		return -ENOMEM;
951 
952 	/* Obtain the address to map to. we verify (or select) it and ensure
953 	 * that it represents a valid section of the address space.
954 	 */
955 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
956 	if (addr & ~PAGE_MASK)
957 		return addr;
958 
959 	/* Do simple checking here so the lower-level routines won't have
960 	 * to. we assume access permissions have been handled by the open
961 	 * of the memory object, so we don't do any here.
962 	 */
963 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
964 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
965 
966 	if (flags & MAP_LOCKED)
967 		if (!can_do_mlock())
968 			return -EPERM;
969 
970 	/* mlock MCL_FUTURE? */
971 	if (vm_flags & VM_LOCKED) {
972 		unsigned long locked, lock_limit;
973 		locked = len >> PAGE_SHIFT;
974 		locked += mm->locked_vm;
975 		lock_limit = rlimit(RLIMIT_MEMLOCK);
976 		lock_limit >>= PAGE_SHIFT;
977 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
978 			return -EAGAIN;
979 	}
980 
981 	inode = file ? file->f_path.dentry->d_inode : NULL;
982 
983 	if (file) {
984 		switch (flags & MAP_TYPE) {
985 		case MAP_SHARED:
986 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
987 				return -EACCES;
988 
989 			/*
990 			 * Make sure we don't allow writing to an append-only
991 			 * file..
992 			 */
993 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
994 				return -EACCES;
995 
996 			/*
997 			 * Make sure there are no mandatory locks on the file.
998 			 */
999 			if (locks_verify_locked(inode))
1000 				return -EAGAIN;
1001 
1002 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1003 			if (!(file->f_mode & FMODE_WRITE))
1004 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1005 
1006 			/* fall through */
1007 		case MAP_PRIVATE:
1008 			if (!(file->f_mode & FMODE_READ))
1009 				return -EACCES;
1010 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1011 				if (vm_flags & VM_EXEC)
1012 					return -EPERM;
1013 				vm_flags &= ~VM_MAYEXEC;
1014 			}
1015 
1016 			if (!file->f_op || !file->f_op->mmap)
1017 				return -ENODEV;
1018 			break;
1019 
1020 		default:
1021 			return -EINVAL;
1022 		}
1023 	} else {
1024 		switch (flags & MAP_TYPE) {
1025 		case MAP_SHARED:
1026 			/*
1027 			 * Ignore pgoff.
1028 			 */
1029 			pgoff = 0;
1030 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1031 			break;
1032 		case MAP_PRIVATE:
1033 			/*
1034 			 * Set pgoff according to addr for anon_vma.
1035 			 */
1036 			pgoff = addr >> PAGE_SHIFT;
1037 			break;
1038 		default:
1039 			return -EINVAL;
1040 		}
1041 	}
1042 
1043 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1044 	if (error)
1045 		return error;
1046 
1047 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1048 }
1049 EXPORT_SYMBOL(do_mmap_pgoff);
1050 
1051 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1052 		unsigned long, prot, unsigned long, flags,
1053 		unsigned long, fd, unsigned long, pgoff)
1054 {
1055 	struct file *file = NULL;
1056 	unsigned long retval = -EBADF;
1057 
1058 	if (!(flags & MAP_ANONYMOUS)) {
1059 		if (unlikely(flags & MAP_HUGETLB))
1060 			return -EINVAL;
1061 		file = fget(fd);
1062 		if (!file)
1063 			goto out;
1064 	} else if (flags & MAP_HUGETLB) {
1065 		struct user_struct *user = NULL;
1066 		/*
1067 		 * VM_NORESERVE is used because the reservations will be
1068 		 * taken when vm_ops->mmap() is called
1069 		 * A dummy user value is used because we are not locking
1070 		 * memory so no accounting is necessary
1071 		 */
1072 		len = ALIGN(len, huge_page_size(&default_hstate));
1073 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1074 						&user, HUGETLB_ANONHUGE_INODE);
1075 		if (IS_ERR(file))
1076 			return PTR_ERR(file);
1077 	}
1078 
1079 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1080 
1081 	down_write(&current->mm->mmap_sem);
1082 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1083 	up_write(&current->mm->mmap_sem);
1084 
1085 	if (file)
1086 		fput(file);
1087 out:
1088 	return retval;
1089 }
1090 
1091 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1092 struct mmap_arg_struct {
1093 	unsigned long addr;
1094 	unsigned long len;
1095 	unsigned long prot;
1096 	unsigned long flags;
1097 	unsigned long fd;
1098 	unsigned long offset;
1099 };
1100 
1101 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1102 {
1103 	struct mmap_arg_struct a;
1104 
1105 	if (copy_from_user(&a, arg, sizeof(a)))
1106 		return -EFAULT;
1107 	if (a.offset & ~PAGE_MASK)
1108 		return -EINVAL;
1109 
1110 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1111 			      a.offset >> PAGE_SHIFT);
1112 }
1113 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1114 
1115 /*
1116  * Some shared mappigns will want the pages marked read-only
1117  * to track write events. If so, we'll downgrade vm_page_prot
1118  * to the private version (using protection_map[] without the
1119  * VM_SHARED bit).
1120  */
1121 int vma_wants_writenotify(struct vm_area_struct *vma)
1122 {
1123 	unsigned int vm_flags = vma->vm_flags;
1124 
1125 	/* If it was private or non-writable, the write bit is already clear */
1126 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1127 		return 0;
1128 
1129 	/* The backer wishes to know when pages are first written to? */
1130 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1131 		return 1;
1132 
1133 	/* The open routine did something to the protections already? */
1134 	if (pgprot_val(vma->vm_page_prot) !=
1135 	    pgprot_val(vm_get_page_prot(vm_flags)))
1136 		return 0;
1137 
1138 	/* Specialty mapping? */
1139 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1140 		return 0;
1141 
1142 	/* Can the mapping track the dirty pages? */
1143 	return vma->vm_file && vma->vm_file->f_mapping &&
1144 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1145 }
1146 
1147 /*
1148  * We account for memory if it's a private writeable mapping,
1149  * not hugepages and VM_NORESERVE wasn't set.
1150  */
1151 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1152 {
1153 	/*
1154 	 * hugetlb has its own accounting separate from the core VM
1155 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1156 	 */
1157 	if (file && is_file_hugepages(file))
1158 		return 0;
1159 
1160 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1161 }
1162 
1163 unsigned long mmap_region(struct file *file, unsigned long addr,
1164 			  unsigned long len, unsigned long flags,
1165 			  unsigned int vm_flags, unsigned long pgoff)
1166 {
1167 	struct mm_struct *mm = current->mm;
1168 	struct vm_area_struct *vma, *prev;
1169 	int correct_wcount = 0;
1170 	int error;
1171 	struct rb_node **rb_link, *rb_parent;
1172 	unsigned long charged = 0;
1173 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1174 
1175 	/* Clear old maps */
1176 	error = -ENOMEM;
1177 munmap_back:
1178 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1179 	if (vma && vma->vm_start < addr + len) {
1180 		if (do_munmap(mm, addr, len))
1181 			return -ENOMEM;
1182 		goto munmap_back;
1183 	}
1184 
1185 	/* Check against address space limit. */
1186 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1187 		return -ENOMEM;
1188 
1189 	/*
1190 	 * Set 'VM_NORESERVE' if we should not account for the
1191 	 * memory use of this mapping.
1192 	 */
1193 	if ((flags & MAP_NORESERVE)) {
1194 		/* We honor MAP_NORESERVE if allowed to overcommit */
1195 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1196 			vm_flags |= VM_NORESERVE;
1197 
1198 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1199 		if (file && is_file_hugepages(file))
1200 			vm_flags |= VM_NORESERVE;
1201 	}
1202 
1203 	/*
1204 	 * Private writable mapping: check memory availability
1205 	 */
1206 	if (accountable_mapping(file, vm_flags)) {
1207 		charged = len >> PAGE_SHIFT;
1208 		if (security_vm_enough_memory(charged))
1209 			return -ENOMEM;
1210 		vm_flags |= VM_ACCOUNT;
1211 	}
1212 
1213 	/*
1214 	 * Can we just expand an old mapping?
1215 	 */
1216 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1217 	if (vma)
1218 		goto out;
1219 
1220 	/*
1221 	 * Determine the object being mapped and call the appropriate
1222 	 * specific mapper. the address has already been validated, but
1223 	 * not unmapped, but the maps are removed from the list.
1224 	 */
1225 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1226 	if (!vma) {
1227 		error = -ENOMEM;
1228 		goto unacct_error;
1229 	}
1230 
1231 	vma->vm_mm = mm;
1232 	vma->vm_start = addr;
1233 	vma->vm_end = addr + len;
1234 	vma->vm_flags = vm_flags;
1235 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1236 	vma->vm_pgoff = pgoff;
1237 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1238 
1239 	if (file) {
1240 		error = -EINVAL;
1241 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1242 			goto free_vma;
1243 		if (vm_flags & VM_DENYWRITE) {
1244 			error = deny_write_access(file);
1245 			if (error)
1246 				goto free_vma;
1247 			correct_wcount = 1;
1248 		}
1249 		vma->vm_file = file;
1250 		get_file(file);
1251 		error = file->f_op->mmap(file, vma);
1252 		if (error)
1253 			goto unmap_and_free_vma;
1254 		if (vm_flags & VM_EXECUTABLE)
1255 			added_exe_file_vma(mm);
1256 
1257 		/* Can addr have changed??
1258 		 *
1259 		 * Answer: Yes, several device drivers can do it in their
1260 		 *         f_op->mmap method. -DaveM
1261 		 */
1262 		addr = vma->vm_start;
1263 		pgoff = vma->vm_pgoff;
1264 		vm_flags = vma->vm_flags;
1265 	} else if (vm_flags & VM_SHARED) {
1266 		error = shmem_zero_setup(vma);
1267 		if (error)
1268 			goto free_vma;
1269 	}
1270 
1271 	if (vma_wants_writenotify(vma)) {
1272 		pgprot_t pprot = vma->vm_page_prot;
1273 
1274 		/* Can vma->vm_page_prot have changed??
1275 		 *
1276 		 * Answer: Yes, drivers may have changed it in their
1277 		 *         f_op->mmap method.
1278 		 *
1279 		 * Ensures that vmas marked as uncached stay that way.
1280 		 */
1281 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1282 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1283 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1284 	}
1285 
1286 	vma_link(mm, vma, prev, rb_link, rb_parent);
1287 	file = vma->vm_file;
1288 
1289 	/* Once vma denies write, undo our temporary denial count */
1290 	if (correct_wcount)
1291 		atomic_inc(&inode->i_writecount);
1292 out:
1293 	perf_event_mmap(vma);
1294 
1295 	mm->total_vm += len >> PAGE_SHIFT;
1296 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1297 	if (vm_flags & VM_LOCKED) {
1298 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1299 			mm->locked_vm += (len >> PAGE_SHIFT);
1300 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1301 		make_pages_present(addr, addr + len);
1302 	return addr;
1303 
1304 unmap_and_free_vma:
1305 	if (correct_wcount)
1306 		atomic_inc(&inode->i_writecount);
1307 	vma->vm_file = NULL;
1308 	fput(file);
1309 
1310 	/* Undo any partial mapping done by a device driver. */
1311 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1312 	charged = 0;
1313 free_vma:
1314 	kmem_cache_free(vm_area_cachep, vma);
1315 unacct_error:
1316 	if (charged)
1317 		vm_unacct_memory(charged);
1318 	return error;
1319 }
1320 
1321 /* Get an address range which is currently unmapped.
1322  * For shmat() with addr=0.
1323  *
1324  * Ugly calling convention alert:
1325  * Return value with the low bits set means error value,
1326  * ie
1327  *	if (ret & ~PAGE_MASK)
1328  *		error = ret;
1329  *
1330  * This function "knows" that -ENOMEM has the bits set.
1331  */
1332 #ifndef HAVE_ARCH_UNMAPPED_AREA
1333 unsigned long
1334 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1335 		unsigned long len, unsigned long pgoff, unsigned long flags)
1336 {
1337 	struct mm_struct *mm = current->mm;
1338 	struct vm_area_struct *vma;
1339 	unsigned long start_addr;
1340 
1341 	if (len > TASK_SIZE)
1342 		return -ENOMEM;
1343 
1344 	if (flags & MAP_FIXED)
1345 		return addr;
1346 
1347 	if (addr) {
1348 		addr = PAGE_ALIGN(addr);
1349 		vma = find_vma(mm, addr);
1350 		if (TASK_SIZE - len >= addr &&
1351 		    (!vma || addr + len <= vma->vm_start))
1352 			return addr;
1353 	}
1354 	if (len > mm->cached_hole_size) {
1355 	        start_addr = addr = mm->free_area_cache;
1356 	} else {
1357 	        start_addr = addr = TASK_UNMAPPED_BASE;
1358 	        mm->cached_hole_size = 0;
1359 	}
1360 
1361 full_search:
1362 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1363 		/* At this point:  (!vma || addr < vma->vm_end). */
1364 		if (TASK_SIZE - len < addr) {
1365 			/*
1366 			 * Start a new search - just in case we missed
1367 			 * some holes.
1368 			 */
1369 			if (start_addr != TASK_UNMAPPED_BASE) {
1370 				addr = TASK_UNMAPPED_BASE;
1371 			        start_addr = addr;
1372 				mm->cached_hole_size = 0;
1373 				goto full_search;
1374 			}
1375 			return -ENOMEM;
1376 		}
1377 		if (!vma || addr + len <= vma->vm_start) {
1378 			/*
1379 			 * Remember the place where we stopped the search:
1380 			 */
1381 			mm->free_area_cache = addr + len;
1382 			return addr;
1383 		}
1384 		if (addr + mm->cached_hole_size < vma->vm_start)
1385 		        mm->cached_hole_size = vma->vm_start - addr;
1386 		addr = vma->vm_end;
1387 	}
1388 }
1389 #endif
1390 
1391 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1392 {
1393 	/*
1394 	 * Is this a new hole at the lowest possible address?
1395 	 */
1396 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1397 		mm->free_area_cache = addr;
1398 		mm->cached_hole_size = ~0UL;
1399 	}
1400 }
1401 
1402 /*
1403  * This mmap-allocator allocates new areas top-down from below the
1404  * stack's low limit (the base):
1405  */
1406 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1407 unsigned long
1408 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1409 			  const unsigned long len, const unsigned long pgoff,
1410 			  const unsigned long flags)
1411 {
1412 	struct vm_area_struct *vma;
1413 	struct mm_struct *mm = current->mm;
1414 	unsigned long addr = addr0;
1415 
1416 	/* requested length too big for entire address space */
1417 	if (len > TASK_SIZE)
1418 		return -ENOMEM;
1419 
1420 	if (flags & MAP_FIXED)
1421 		return addr;
1422 
1423 	/* requesting a specific address */
1424 	if (addr) {
1425 		addr = PAGE_ALIGN(addr);
1426 		vma = find_vma(mm, addr);
1427 		if (TASK_SIZE - len >= addr &&
1428 				(!vma || addr + len <= vma->vm_start))
1429 			return addr;
1430 	}
1431 
1432 	/* check if free_area_cache is useful for us */
1433 	if (len <= mm->cached_hole_size) {
1434  	        mm->cached_hole_size = 0;
1435  		mm->free_area_cache = mm->mmap_base;
1436  	}
1437 
1438 	/* either no address requested or can't fit in requested address hole */
1439 	addr = mm->free_area_cache;
1440 
1441 	/* make sure it can fit in the remaining address space */
1442 	if (addr > len) {
1443 		vma = find_vma(mm, addr-len);
1444 		if (!vma || addr <= vma->vm_start)
1445 			/* remember the address as a hint for next time */
1446 			return (mm->free_area_cache = addr-len);
1447 	}
1448 
1449 	if (mm->mmap_base < len)
1450 		goto bottomup;
1451 
1452 	addr = mm->mmap_base-len;
1453 
1454 	do {
1455 		/*
1456 		 * Lookup failure means no vma is above this address,
1457 		 * else if new region fits below vma->vm_start,
1458 		 * return with success:
1459 		 */
1460 		vma = find_vma(mm, addr);
1461 		if (!vma || addr+len <= vma->vm_start)
1462 			/* remember the address as a hint for next time */
1463 			return (mm->free_area_cache = addr);
1464 
1465  		/* remember the largest hole we saw so far */
1466  		if (addr + mm->cached_hole_size < vma->vm_start)
1467  		        mm->cached_hole_size = vma->vm_start - addr;
1468 
1469 		/* try just below the current vma->vm_start */
1470 		addr = vma->vm_start-len;
1471 	} while (len < vma->vm_start);
1472 
1473 bottomup:
1474 	/*
1475 	 * A failed mmap() very likely causes application failure,
1476 	 * so fall back to the bottom-up function here. This scenario
1477 	 * can happen with large stack limits and large mmap()
1478 	 * allocations.
1479 	 */
1480 	mm->cached_hole_size = ~0UL;
1481   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1482 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1483 	/*
1484 	 * Restore the topdown base:
1485 	 */
1486 	mm->free_area_cache = mm->mmap_base;
1487 	mm->cached_hole_size = ~0UL;
1488 
1489 	return addr;
1490 }
1491 #endif
1492 
1493 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1494 {
1495 	/*
1496 	 * Is this a new hole at the highest possible address?
1497 	 */
1498 	if (addr > mm->free_area_cache)
1499 		mm->free_area_cache = addr;
1500 
1501 	/* dont allow allocations above current base */
1502 	if (mm->free_area_cache > mm->mmap_base)
1503 		mm->free_area_cache = mm->mmap_base;
1504 }
1505 
1506 unsigned long
1507 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1508 		unsigned long pgoff, unsigned long flags)
1509 {
1510 	unsigned long (*get_area)(struct file *, unsigned long,
1511 				  unsigned long, unsigned long, unsigned long);
1512 
1513 	unsigned long error = arch_mmap_check(addr, len, flags);
1514 	if (error)
1515 		return error;
1516 
1517 	/* Careful about overflows.. */
1518 	if (len > TASK_SIZE)
1519 		return -ENOMEM;
1520 
1521 	get_area = current->mm->get_unmapped_area;
1522 	if (file && file->f_op && file->f_op->get_unmapped_area)
1523 		get_area = file->f_op->get_unmapped_area;
1524 	addr = get_area(file, addr, len, pgoff, flags);
1525 	if (IS_ERR_VALUE(addr))
1526 		return addr;
1527 
1528 	if (addr > TASK_SIZE - len)
1529 		return -ENOMEM;
1530 	if (addr & ~PAGE_MASK)
1531 		return -EINVAL;
1532 
1533 	return arch_rebalance_pgtables(addr, len);
1534 }
1535 
1536 EXPORT_SYMBOL(get_unmapped_area);
1537 
1538 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1539 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1540 {
1541 	struct vm_area_struct *vma = NULL;
1542 
1543 	if (mm) {
1544 		/* Check the cache first. */
1545 		/* (Cache hit rate is typically around 35%.) */
1546 		vma = mm->mmap_cache;
1547 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1548 			struct rb_node * rb_node;
1549 
1550 			rb_node = mm->mm_rb.rb_node;
1551 			vma = NULL;
1552 
1553 			while (rb_node) {
1554 				struct vm_area_struct * vma_tmp;
1555 
1556 				vma_tmp = rb_entry(rb_node,
1557 						struct vm_area_struct, vm_rb);
1558 
1559 				if (vma_tmp->vm_end > addr) {
1560 					vma = vma_tmp;
1561 					if (vma_tmp->vm_start <= addr)
1562 						break;
1563 					rb_node = rb_node->rb_left;
1564 				} else
1565 					rb_node = rb_node->rb_right;
1566 			}
1567 			if (vma)
1568 				mm->mmap_cache = vma;
1569 		}
1570 	}
1571 	return vma;
1572 }
1573 
1574 EXPORT_SYMBOL(find_vma);
1575 
1576 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1577 struct vm_area_struct *
1578 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1579 			struct vm_area_struct **pprev)
1580 {
1581 	struct vm_area_struct *vma = NULL, *prev = NULL;
1582 	struct rb_node *rb_node;
1583 	if (!mm)
1584 		goto out;
1585 
1586 	/* Guard against addr being lower than the first VMA */
1587 	vma = mm->mmap;
1588 
1589 	/* Go through the RB tree quickly. */
1590 	rb_node = mm->mm_rb.rb_node;
1591 
1592 	while (rb_node) {
1593 		struct vm_area_struct *vma_tmp;
1594 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1595 
1596 		if (addr < vma_tmp->vm_end) {
1597 			rb_node = rb_node->rb_left;
1598 		} else {
1599 			prev = vma_tmp;
1600 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1601 				break;
1602 			rb_node = rb_node->rb_right;
1603 		}
1604 	}
1605 
1606 out:
1607 	*pprev = prev;
1608 	return prev ? prev->vm_next : vma;
1609 }
1610 
1611 /*
1612  * Verify that the stack growth is acceptable and
1613  * update accounting. This is shared with both the
1614  * grow-up and grow-down cases.
1615  */
1616 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1617 {
1618 	struct mm_struct *mm = vma->vm_mm;
1619 	struct rlimit *rlim = current->signal->rlim;
1620 	unsigned long new_start;
1621 
1622 	/* address space limit tests */
1623 	if (!may_expand_vm(mm, grow))
1624 		return -ENOMEM;
1625 
1626 	/* Stack limit test */
1627 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1628 		return -ENOMEM;
1629 
1630 	/* mlock limit tests */
1631 	if (vma->vm_flags & VM_LOCKED) {
1632 		unsigned long locked;
1633 		unsigned long limit;
1634 		locked = mm->locked_vm + grow;
1635 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1636 		limit >>= PAGE_SHIFT;
1637 		if (locked > limit && !capable(CAP_IPC_LOCK))
1638 			return -ENOMEM;
1639 	}
1640 
1641 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1642 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1643 			vma->vm_end - size;
1644 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1645 		return -EFAULT;
1646 
1647 	/*
1648 	 * Overcommit..  This must be the final test, as it will
1649 	 * update security statistics.
1650 	 */
1651 	if (security_vm_enough_memory_mm(mm, grow))
1652 		return -ENOMEM;
1653 
1654 	/* Ok, everything looks good - let it rip */
1655 	mm->total_vm += grow;
1656 	if (vma->vm_flags & VM_LOCKED)
1657 		mm->locked_vm += grow;
1658 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1659 	return 0;
1660 }
1661 
1662 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1663 /*
1664  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1665  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1666  */
1667 #ifndef CONFIG_IA64
1668 static
1669 #endif
1670 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1671 {
1672 	int error;
1673 
1674 	if (!(vma->vm_flags & VM_GROWSUP))
1675 		return -EFAULT;
1676 
1677 	/*
1678 	 * We must make sure the anon_vma is allocated
1679 	 * so that the anon_vma locking is not a noop.
1680 	 */
1681 	if (unlikely(anon_vma_prepare(vma)))
1682 		return -ENOMEM;
1683 	anon_vma_lock(vma);
1684 
1685 	/*
1686 	 * vma->vm_start/vm_end cannot change under us because the caller
1687 	 * is required to hold the mmap_sem in read mode.  We need the
1688 	 * anon_vma lock to serialize against concurrent expand_stacks.
1689 	 * Also guard against wrapping around to address 0.
1690 	 */
1691 	if (address < PAGE_ALIGN(address+4))
1692 		address = PAGE_ALIGN(address+4);
1693 	else {
1694 		anon_vma_unlock(vma);
1695 		return -ENOMEM;
1696 	}
1697 	error = 0;
1698 
1699 	/* Somebody else might have raced and expanded it already */
1700 	if (address > vma->vm_end) {
1701 		unsigned long size, grow;
1702 
1703 		size = address - vma->vm_start;
1704 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1705 
1706 		error = acct_stack_growth(vma, size, grow);
1707 		if (!error)
1708 			vma->vm_end = address;
1709 	}
1710 	anon_vma_unlock(vma);
1711 	return error;
1712 }
1713 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1714 
1715 /*
1716  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1717  */
1718 static int expand_downwards(struct vm_area_struct *vma,
1719 				   unsigned long address)
1720 {
1721 	int error;
1722 
1723 	/*
1724 	 * We must make sure the anon_vma is allocated
1725 	 * so that the anon_vma locking is not a noop.
1726 	 */
1727 	if (unlikely(anon_vma_prepare(vma)))
1728 		return -ENOMEM;
1729 
1730 	address &= PAGE_MASK;
1731 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1732 	if (error)
1733 		return error;
1734 
1735 	anon_vma_lock(vma);
1736 
1737 	/*
1738 	 * vma->vm_start/vm_end cannot change under us because the caller
1739 	 * is required to hold the mmap_sem in read mode.  We need the
1740 	 * anon_vma lock to serialize against concurrent expand_stacks.
1741 	 */
1742 
1743 	/* Somebody else might have raced and expanded it already */
1744 	if (address < vma->vm_start) {
1745 		unsigned long size, grow;
1746 
1747 		size = vma->vm_end - address;
1748 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1749 
1750 		error = acct_stack_growth(vma, size, grow);
1751 		if (!error) {
1752 			vma->vm_start = address;
1753 			vma->vm_pgoff -= grow;
1754 		}
1755 	}
1756 	anon_vma_unlock(vma);
1757 	return error;
1758 }
1759 
1760 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1761 {
1762 	return expand_downwards(vma, address);
1763 }
1764 
1765 #ifdef CONFIG_STACK_GROWSUP
1766 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1767 {
1768 	return expand_upwards(vma, address);
1769 }
1770 
1771 struct vm_area_struct *
1772 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1773 {
1774 	struct vm_area_struct *vma, *prev;
1775 
1776 	addr &= PAGE_MASK;
1777 	vma = find_vma_prev(mm, addr, &prev);
1778 	if (vma && (vma->vm_start <= addr))
1779 		return vma;
1780 	if (!prev || expand_stack(prev, addr))
1781 		return NULL;
1782 	if (prev->vm_flags & VM_LOCKED) {
1783 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1784 	}
1785 	return prev;
1786 }
1787 #else
1788 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1789 {
1790 	return expand_downwards(vma, address);
1791 }
1792 
1793 struct vm_area_struct *
1794 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1795 {
1796 	struct vm_area_struct * vma;
1797 	unsigned long start;
1798 
1799 	addr &= PAGE_MASK;
1800 	vma = find_vma(mm,addr);
1801 	if (!vma)
1802 		return NULL;
1803 	if (vma->vm_start <= addr)
1804 		return vma;
1805 	if (!(vma->vm_flags & VM_GROWSDOWN))
1806 		return NULL;
1807 	start = vma->vm_start;
1808 	if (expand_stack(vma, addr))
1809 		return NULL;
1810 	if (vma->vm_flags & VM_LOCKED) {
1811 		mlock_vma_pages_range(vma, addr, start);
1812 	}
1813 	return vma;
1814 }
1815 #endif
1816 
1817 /*
1818  * Ok - we have the memory areas we should free on the vma list,
1819  * so release them, and do the vma updates.
1820  *
1821  * Called with the mm semaphore held.
1822  */
1823 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1824 {
1825 	/* Update high watermark before we lower total_vm */
1826 	update_hiwater_vm(mm);
1827 	do {
1828 		long nrpages = vma_pages(vma);
1829 
1830 		mm->total_vm -= nrpages;
1831 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1832 		vma = remove_vma(vma);
1833 	} while (vma);
1834 	validate_mm(mm);
1835 }
1836 
1837 /*
1838  * Get rid of page table information in the indicated region.
1839  *
1840  * Called with the mm semaphore held.
1841  */
1842 static void unmap_region(struct mm_struct *mm,
1843 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1844 		unsigned long start, unsigned long end)
1845 {
1846 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1847 	struct mmu_gather *tlb;
1848 	unsigned long nr_accounted = 0;
1849 
1850 	lru_add_drain();
1851 	tlb = tlb_gather_mmu(mm, 0);
1852 	update_hiwater_rss(mm);
1853 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1854 	vm_unacct_memory(nr_accounted);
1855 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1856 				 next? next->vm_start: 0);
1857 	tlb_finish_mmu(tlb, start, end);
1858 }
1859 
1860 /*
1861  * Create a list of vma's touched by the unmap, removing them from the mm's
1862  * vma list as we go..
1863  */
1864 static void
1865 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1866 	struct vm_area_struct *prev, unsigned long end)
1867 {
1868 	struct vm_area_struct **insertion_point;
1869 	struct vm_area_struct *tail_vma = NULL;
1870 	unsigned long addr;
1871 
1872 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1873 	do {
1874 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1875 		mm->map_count--;
1876 		tail_vma = vma;
1877 		vma = vma->vm_next;
1878 	} while (vma && vma->vm_start < end);
1879 	*insertion_point = vma;
1880 	tail_vma->vm_next = NULL;
1881 	if (mm->unmap_area == arch_unmap_area)
1882 		addr = prev ? prev->vm_end : mm->mmap_base;
1883 	else
1884 		addr = vma ?  vma->vm_start : mm->mmap_base;
1885 	mm->unmap_area(mm, addr);
1886 	mm->mmap_cache = NULL;		/* Kill the cache. */
1887 }
1888 
1889 /*
1890  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1891  * munmap path where it doesn't make sense to fail.
1892  */
1893 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1894 	      unsigned long addr, int new_below)
1895 {
1896 	struct mempolicy *pol;
1897 	struct vm_area_struct *new;
1898 	int err = -ENOMEM;
1899 
1900 	if (is_vm_hugetlb_page(vma) && (addr &
1901 					~(huge_page_mask(hstate_vma(vma)))))
1902 		return -EINVAL;
1903 
1904 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1905 	if (!new)
1906 		goto out_err;
1907 
1908 	/* most fields are the same, copy all, and then fixup */
1909 	*new = *vma;
1910 
1911 	INIT_LIST_HEAD(&new->anon_vma_chain);
1912 
1913 	if (new_below)
1914 		new->vm_end = addr;
1915 	else {
1916 		new->vm_start = addr;
1917 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1918 	}
1919 
1920 	pol = mpol_dup(vma_policy(vma));
1921 	if (IS_ERR(pol)) {
1922 		err = PTR_ERR(pol);
1923 		goto out_free_vma;
1924 	}
1925 	vma_set_policy(new, pol);
1926 
1927 	if (anon_vma_clone(new, vma))
1928 		goto out_free_mpol;
1929 
1930 	if (new->vm_file) {
1931 		get_file(new->vm_file);
1932 		if (vma->vm_flags & VM_EXECUTABLE)
1933 			added_exe_file_vma(mm);
1934 	}
1935 
1936 	if (new->vm_ops && new->vm_ops->open)
1937 		new->vm_ops->open(new);
1938 
1939 	if (new_below)
1940 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1941 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1942 	else
1943 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1944 
1945 	/* Success. */
1946 	if (!err)
1947 		return 0;
1948 
1949 	/* Clean everything up if vma_adjust failed. */
1950 	new->vm_ops->close(new);
1951 	if (new->vm_file) {
1952 		if (vma->vm_flags & VM_EXECUTABLE)
1953 			removed_exe_file_vma(mm);
1954 		fput(new->vm_file);
1955 	}
1956  out_free_mpol:
1957 	mpol_put(pol);
1958  out_free_vma:
1959 	kmem_cache_free(vm_area_cachep, new);
1960  out_err:
1961 	return err;
1962 }
1963 
1964 /*
1965  * Split a vma into two pieces at address 'addr', a new vma is allocated
1966  * either for the first part or the tail.
1967  */
1968 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1969 	      unsigned long addr, int new_below)
1970 {
1971 	if (mm->map_count >= sysctl_max_map_count)
1972 		return -ENOMEM;
1973 
1974 	return __split_vma(mm, vma, addr, new_below);
1975 }
1976 
1977 /* Munmap is split into 2 main parts -- this part which finds
1978  * what needs doing, and the areas themselves, which do the
1979  * work.  This now handles partial unmappings.
1980  * Jeremy Fitzhardinge <jeremy@goop.org>
1981  */
1982 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1983 {
1984 	unsigned long end;
1985 	struct vm_area_struct *vma, *prev, *last;
1986 
1987 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1988 		return -EINVAL;
1989 
1990 	if ((len = PAGE_ALIGN(len)) == 0)
1991 		return -EINVAL;
1992 
1993 	/* Find the first overlapping VMA */
1994 	vma = find_vma_prev(mm, start, &prev);
1995 	if (!vma)
1996 		return 0;
1997 	/* we have  start < vma->vm_end  */
1998 
1999 	/* if it doesn't overlap, we have nothing.. */
2000 	end = start + len;
2001 	if (vma->vm_start >= end)
2002 		return 0;
2003 
2004 	/*
2005 	 * If we need to split any vma, do it now to save pain later.
2006 	 *
2007 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2008 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2009 	 * places tmp vma above, and higher split_vma places tmp vma below.
2010 	 */
2011 	if (start > vma->vm_start) {
2012 		int error;
2013 
2014 		/*
2015 		 * Make sure that map_count on return from munmap() will
2016 		 * not exceed its limit; but let map_count go just above
2017 		 * its limit temporarily, to help free resources as expected.
2018 		 */
2019 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2020 			return -ENOMEM;
2021 
2022 		error = __split_vma(mm, vma, start, 0);
2023 		if (error)
2024 			return error;
2025 		prev = vma;
2026 	}
2027 
2028 	/* Does it split the last one? */
2029 	last = find_vma(mm, end);
2030 	if (last && end > last->vm_start) {
2031 		int error = __split_vma(mm, last, end, 1);
2032 		if (error)
2033 			return error;
2034 	}
2035 	vma = prev? prev->vm_next: mm->mmap;
2036 
2037 	/*
2038 	 * unlock any mlock()ed ranges before detaching vmas
2039 	 */
2040 	if (mm->locked_vm) {
2041 		struct vm_area_struct *tmp = vma;
2042 		while (tmp && tmp->vm_start < end) {
2043 			if (tmp->vm_flags & VM_LOCKED) {
2044 				mm->locked_vm -= vma_pages(tmp);
2045 				munlock_vma_pages_all(tmp);
2046 			}
2047 			tmp = tmp->vm_next;
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * Remove the vma's, and unmap the actual pages
2053 	 */
2054 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2055 	unmap_region(mm, vma, prev, start, end);
2056 
2057 	/* Fix up all other VM information */
2058 	remove_vma_list(mm, vma);
2059 
2060 	return 0;
2061 }
2062 
2063 EXPORT_SYMBOL(do_munmap);
2064 
2065 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2066 {
2067 	int ret;
2068 	struct mm_struct *mm = current->mm;
2069 
2070 	profile_munmap(addr);
2071 
2072 	down_write(&mm->mmap_sem);
2073 	ret = do_munmap(mm, addr, len);
2074 	up_write(&mm->mmap_sem);
2075 	return ret;
2076 }
2077 
2078 static inline void verify_mm_writelocked(struct mm_struct *mm)
2079 {
2080 #ifdef CONFIG_DEBUG_VM
2081 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2082 		WARN_ON(1);
2083 		up_read(&mm->mmap_sem);
2084 	}
2085 #endif
2086 }
2087 
2088 /*
2089  *  this is really a simplified "do_mmap".  it only handles
2090  *  anonymous maps.  eventually we may be able to do some
2091  *  brk-specific accounting here.
2092  */
2093 unsigned long do_brk(unsigned long addr, unsigned long len)
2094 {
2095 	struct mm_struct * mm = current->mm;
2096 	struct vm_area_struct * vma, * prev;
2097 	unsigned long flags;
2098 	struct rb_node ** rb_link, * rb_parent;
2099 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2100 	int error;
2101 
2102 	len = PAGE_ALIGN(len);
2103 	if (!len)
2104 		return addr;
2105 
2106 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2107 	if (error)
2108 		return error;
2109 
2110 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2111 
2112 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2113 	if (error & ~PAGE_MASK)
2114 		return error;
2115 
2116 	/*
2117 	 * mlock MCL_FUTURE?
2118 	 */
2119 	if (mm->def_flags & VM_LOCKED) {
2120 		unsigned long locked, lock_limit;
2121 		locked = len >> PAGE_SHIFT;
2122 		locked += mm->locked_vm;
2123 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2124 		lock_limit >>= PAGE_SHIFT;
2125 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2126 			return -EAGAIN;
2127 	}
2128 
2129 	/*
2130 	 * mm->mmap_sem is required to protect against another thread
2131 	 * changing the mappings in case we sleep.
2132 	 */
2133 	verify_mm_writelocked(mm);
2134 
2135 	/*
2136 	 * Clear old maps.  this also does some error checking for us
2137 	 */
2138  munmap_back:
2139 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2140 	if (vma && vma->vm_start < addr + len) {
2141 		if (do_munmap(mm, addr, len))
2142 			return -ENOMEM;
2143 		goto munmap_back;
2144 	}
2145 
2146 	/* Check against address space limits *after* clearing old maps... */
2147 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2148 		return -ENOMEM;
2149 
2150 	if (mm->map_count > sysctl_max_map_count)
2151 		return -ENOMEM;
2152 
2153 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2154 		return -ENOMEM;
2155 
2156 	/* Can we just expand an old private anonymous mapping? */
2157 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2158 					NULL, NULL, pgoff, NULL);
2159 	if (vma)
2160 		goto out;
2161 
2162 	/*
2163 	 * create a vma struct for an anonymous mapping
2164 	 */
2165 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2166 	if (!vma) {
2167 		vm_unacct_memory(len >> PAGE_SHIFT);
2168 		return -ENOMEM;
2169 	}
2170 
2171 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2172 	vma->vm_mm = mm;
2173 	vma->vm_start = addr;
2174 	vma->vm_end = addr + len;
2175 	vma->vm_pgoff = pgoff;
2176 	vma->vm_flags = flags;
2177 	vma->vm_page_prot = vm_get_page_prot(flags);
2178 	vma_link(mm, vma, prev, rb_link, rb_parent);
2179 out:
2180 	mm->total_vm += len >> PAGE_SHIFT;
2181 	if (flags & VM_LOCKED) {
2182 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2183 			mm->locked_vm += (len >> PAGE_SHIFT);
2184 	}
2185 	return addr;
2186 }
2187 
2188 EXPORT_SYMBOL(do_brk);
2189 
2190 /* Release all mmaps. */
2191 void exit_mmap(struct mm_struct *mm)
2192 {
2193 	struct mmu_gather *tlb;
2194 	struct vm_area_struct *vma;
2195 	unsigned long nr_accounted = 0;
2196 	unsigned long end;
2197 
2198 	/* mm's last user has gone, and its about to be pulled down */
2199 	mmu_notifier_release(mm);
2200 
2201 	if (mm->locked_vm) {
2202 		vma = mm->mmap;
2203 		while (vma) {
2204 			if (vma->vm_flags & VM_LOCKED)
2205 				munlock_vma_pages_all(vma);
2206 			vma = vma->vm_next;
2207 		}
2208 	}
2209 
2210 	arch_exit_mmap(mm);
2211 
2212 	vma = mm->mmap;
2213 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2214 		return;
2215 
2216 	lru_add_drain();
2217 	flush_cache_mm(mm);
2218 	tlb = tlb_gather_mmu(mm, 1);
2219 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2220 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2221 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2222 	vm_unacct_memory(nr_accounted);
2223 
2224 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2225 	tlb_finish_mmu(tlb, 0, end);
2226 
2227 	/*
2228 	 * Walk the list again, actually closing and freeing it,
2229 	 * with preemption enabled, without holding any MM locks.
2230 	 */
2231 	while (vma)
2232 		vma = remove_vma(vma);
2233 
2234 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2235 }
2236 
2237 /* Insert vm structure into process list sorted by address
2238  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2239  * then i_mmap_lock is taken here.
2240  */
2241 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2242 {
2243 	struct vm_area_struct * __vma, * prev;
2244 	struct rb_node ** rb_link, * rb_parent;
2245 
2246 	/*
2247 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2248 	 * until its first write fault, when page's anon_vma and index
2249 	 * are set.  But now set the vm_pgoff it will almost certainly
2250 	 * end up with (unless mremap moves it elsewhere before that
2251 	 * first wfault), so /proc/pid/maps tells a consistent story.
2252 	 *
2253 	 * By setting it to reflect the virtual start address of the
2254 	 * vma, merges and splits can happen in a seamless way, just
2255 	 * using the existing file pgoff checks and manipulations.
2256 	 * Similarly in do_mmap_pgoff and in do_brk.
2257 	 */
2258 	if (!vma->vm_file) {
2259 		BUG_ON(vma->anon_vma);
2260 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2261 	}
2262 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2263 	if (__vma && __vma->vm_start < vma->vm_end)
2264 		return -ENOMEM;
2265 	if ((vma->vm_flags & VM_ACCOUNT) &&
2266 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2267 		return -ENOMEM;
2268 	vma_link(mm, vma, prev, rb_link, rb_parent);
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Copy the vma structure to a new location in the same mm,
2274  * prior to moving page table entries, to effect an mremap move.
2275  */
2276 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2277 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2278 {
2279 	struct vm_area_struct *vma = *vmap;
2280 	unsigned long vma_start = vma->vm_start;
2281 	struct mm_struct *mm = vma->vm_mm;
2282 	struct vm_area_struct *new_vma, *prev;
2283 	struct rb_node **rb_link, *rb_parent;
2284 	struct mempolicy *pol;
2285 
2286 	/*
2287 	 * If anonymous vma has not yet been faulted, update new pgoff
2288 	 * to match new location, to increase its chance of merging.
2289 	 */
2290 	if (!vma->vm_file && !vma->anon_vma)
2291 		pgoff = addr >> PAGE_SHIFT;
2292 
2293 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2294 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2295 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2296 	if (new_vma) {
2297 		/*
2298 		 * Source vma may have been merged into new_vma
2299 		 */
2300 		if (vma_start >= new_vma->vm_start &&
2301 		    vma_start < new_vma->vm_end)
2302 			*vmap = new_vma;
2303 	} else {
2304 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2305 		if (new_vma) {
2306 			*new_vma = *vma;
2307 			pol = mpol_dup(vma_policy(vma));
2308 			if (IS_ERR(pol))
2309 				goto out_free_vma;
2310 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2311 			if (anon_vma_clone(new_vma, vma))
2312 				goto out_free_mempol;
2313 			vma_set_policy(new_vma, pol);
2314 			new_vma->vm_start = addr;
2315 			new_vma->vm_end = addr + len;
2316 			new_vma->vm_pgoff = pgoff;
2317 			if (new_vma->vm_file) {
2318 				get_file(new_vma->vm_file);
2319 				if (vma->vm_flags & VM_EXECUTABLE)
2320 					added_exe_file_vma(mm);
2321 			}
2322 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2323 				new_vma->vm_ops->open(new_vma);
2324 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2325 		}
2326 	}
2327 	return new_vma;
2328 
2329  out_free_mempol:
2330 	mpol_put(pol);
2331  out_free_vma:
2332 	kmem_cache_free(vm_area_cachep, new_vma);
2333 	return NULL;
2334 }
2335 
2336 /*
2337  * Return true if the calling process may expand its vm space by the passed
2338  * number of pages
2339  */
2340 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2341 {
2342 	unsigned long cur = mm->total_vm;	/* pages */
2343 	unsigned long lim;
2344 
2345 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2346 
2347 	if (cur + npages > lim)
2348 		return 0;
2349 	return 1;
2350 }
2351 
2352 
2353 static int special_mapping_fault(struct vm_area_struct *vma,
2354 				struct vm_fault *vmf)
2355 {
2356 	pgoff_t pgoff;
2357 	struct page **pages;
2358 
2359 	/*
2360 	 * special mappings have no vm_file, and in that case, the mm
2361 	 * uses vm_pgoff internally. So we have to subtract it from here.
2362 	 * We are allowed to do this because we are the mm; do not copy
2363 	 * this code into drivers!
2364 	 */
2365 	pgoff = vmf->pgoff - vma->vm_pgoff;
2366 
2367 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2368 		pgoff--;
2369 
2370 	if (*pages) {
2371 		struct page *page = *pages;
2372 		get_page(page);
2373 		vmf->page = page;
2374 		return 0;
2375 	}
2376 
2377 	return VM_FAULT_SIGBUS;
2378 }
2379 
2380 /*
2381  * Having a close hook prevents vma merging regardless of flags.
2382  */
2383 static void special_mapping_close(struct vm_area_struct *vma)
2384 {
2385 }
2386 
2387 static const struct vm_operations_struct special_mapping_vmops = {
2388 	.close = special_mapping_close,
2389 	.fault = special_mapping_fault,
2390 };
2391 
2392 /*
2393  * Called with mm->mmap_sem held for writing.
2394  * Insert a new vma covering the given region, with the given flags.
2395  * Its pages are supplied by the given array of struct page *.
2396  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2397  * The region past the last page supplied will always produce SIGBUS.
2398  * The array pointer and the pages it points to are assumed to stay alive
2399  * for as long as this mapping might exist.
2400  */
2401 int install_special_mapping(struct mm_struct *mm,
2402 			    unsigned long addr, unsigned long len,
2403 			    unsigned long vm_flags, struct page **pages)
2404 {
2405 	struct vm_area_struct *vma;
2406 
2407 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2408 	if (unlikely(vma == NULL))
2409 		return -ENOMEM;
2410 
2411 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2412 	vma->vm_mm = mm;
2413 	vma->vm_start = addr;
2414 	vma->vm_end = addr + len;
2415 
2416 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2417 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2418 
2419 	vma->vm_ops = &special_mapping_vmops;
2420 	vma->vm_private_data = pages;
2421 
2422 	if (unlikely(insert_vm_struct(mm, vma))) {
2423 		kmem_cache_free(vm_area_cachep, vma);
2424 		return -ENOMEM;
2425 	}
2426 
2427 	mm->total_vm += len >> PAGE_SHIFT;
2428 
2429 	perf_event_mmap(vma);
2430 
2431 	return 0;
2432 }
2433 
2434 static DEFINE_MUTEX(mm_all_locks_mutex);
2435 
2436 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2437 {
2438 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2439 		/*
2440 		 * The LSB of head.next can't change from under us
2441 		 * because we hold the mm_all_locks_mutex.
2442 		 */
2443 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2444 		/*
2445 		 * We can safely modify head.next after taking the
2446 		 * anon_vma->lock. If some other vma in this mm shares
2447 		 * the same anon_vma we won't take it again.
2448 		 *
2449 		 * No need of atomic instructions here, head.next
2450 		 * can't change from under us thanks to the
2451 		 * anon_vma->lock.
2452 		 */
2453 		if (__test_and_set_bit(0, (unsigned long *)
2454 				       &anon_vma->head.next))
2455 			BUG();
2456 	}
2457 }
2458 
2459 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2460 {
2461 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2462 		/*
2463 		 * AS_MM_ALL_LOCKS can't change from under us because
2464 		 * we hold the mm_all_locks_mutex.
2465 		 *
2466 		 * Operations on ->flags have to be atomic because
2467 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2468 		 * mm_all_locks_mutex, there may be other cpus
2469 		 * changing other bitflags in parallel to us.
2470 		 */
2471 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2472 			BUG();
2473 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2474 	}
2475 }
2476 
2477 /*
2478  * This operation locks against the VM for all pte/vma/mm related
2479  * operations that could ever happen on a certain mm. This includes
2480  * vmtruncate, try_to_unmap, and all page faults.
2481  *
2482  * The caller must take the mmap_sem in write mode before calling
2483  * mm_take_all_locks(). The caller isn't allowed to release the
2484  * mmap_sem until mm_drop_all_locks() returns.
2485  *
2486  * mmap_sem in write mode is required in order to block all operations
2487  * that could modify pagetables and free pages without need of
2488  * altering the vma layout (for example populate_range() with
2489  * nonlinear vmas). It's also needed in write mode to avoid new
2490  * anon_vmas to be associated with existing vmas.
2491  *
2492  * A single task can't take more than one mm_take_all_locks() in a row
2493  * or it would deadlock.
2494  *
2495  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2496  * mapping->flags avoid to take the same lock twice, if more than one
2497  * vma in this mm is backed by the same anon_vma or address_space.
2498  *
2499  * We can take all the locks in random order because the VM code
2500  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2501  * takes more than one of them in a row. Secondly we're protected
2502  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2503  *
2504  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2505  * that may have to take thousand of locks.
2506  *
2507  * mm_take_all_locks() can fail if it's interrupted by signals.
2508  */
2509 int mm_take_all_locks(struct mm_struct *mm)
2510 {
2511 	struct vm_area_struct *vma;
2512 	struct anon_vma_chain *avc;
2513 	int ret = -EINTR;
2514 
2515 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2516 
2517 	mutex_lock(&mm_all_locks_mutex);
2518 
2519 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2520 		if (signal_pending(current))
2521 			goto out_unlock;
2522 		if (vma->vm_file && vma->vm_file->f_mapping)
2523 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2524 	}
2525 
2526 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2527 		if (signal_pending(current))
2528 			goto out_unlock;
2529 		if (vma->anon_vma)
2530 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2531 				vm_lock_anon_vma(mm, avc->anon_vma);
2532 	}
2533 
2534 	ret = 0;
2535 
2536 out_unlock:
2537 	if (ret)
2538 		mm_drop_all_locks(mm);
2539 
2540 	return ret;
2541 }
2542 
2543 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2544 {
2545 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2546 		/*
2547 		 * The LSB of head.next can't change to 0 from under
2548 		 * us because we hold the mm_all_locks_mutex.
2549 		 *
2550 		 * We must however clear the bitflag before unlocking
2551 		 * the vma so the users using the anon_vma->head will
2552 		 * never see our bitflag.
2553 		 *
2554 		 * No need of atomic instructions here, head.next
2555 		 * can't change from under us until we release the
2556 		 * anon_vma->lock.
2557 		 */
2558 		if (!__test_and_clear_bit(0, (unsigned long *)
2559 					  &anon_vma->head.next))
2560 			BUG();
2561 		spin_unlock(&anon_vma->lock);
2562 	}
2563 }
2564 
2565 static void vm_unlock_mapping(struct address_space *mapping)
2566 {
2567 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2568 		/*
2569 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2570 		 * because we hold the mm_all_locks_mutex.
2571 		 */
2572 		spin_unlock(&mapping->i_mmap_lock);
2573 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2574 					&mapping->flags))
2575 			BUG();
2576 	}
2577 }
2578 
2579 /*
2580  * The mmap_sem cannot be released by the caller until
2581  * mm_drop_all_locks() returns.
2582  */
2583 void mm_drop_all_locks(struct mm_struct *mm)
2584 {
2585 	struct vm_area_struct *vma;
2586 	struct anon_vma_chain *avc;
2587 
2588 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2589 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2590 
2591 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2592 		if (vma->anon_vma)
2593 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2594 				vm_unlock_anon_vma(avc->anon_vma);
2595 		if (vma->vm_file && vma->vm_file->f_mapping)
2596 			vm_unlock_mapping(vma->vm_file->f_mapping);
2597 	}
2598 
2599 	mutex_unlock(&mm_all_locks_mutex);
2600 }
2601 
2602 /*
2603  * initialise the VMA slab
2604  */
2605 void __init mmap_init(void)
2606 {
2607 	int ret;
2608 
2609 	ret = percpu_counter_init(&vm_committed_as, 0);
2610 	VM_BUG_ON(ret);
2611 }
2612