1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 158 unsigned long start, unsigned long end, gfp_t gfp) 159 { 160 vmi->mas.index = start; 161 vmi->mas.last = end - 1; 162 mas_store_gfp(&vmi->mas, NULL, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 /* 170 * check_brk_limits() - Use platform specific check of range & verify mlock 171 * limits. 172 * @addr: The address to check 173 * @len: The size of increase. 174 * 175 * Return: 0 on success. 176 */ 177 static int check_brk_limits(unsigned long addr, unsigned long len) 178 { 179 unsigned long mapped_addr; 180 181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 182 if (IS_ERR_VALUE(mapped_addr)) 183 return mapped_addr; 184 185 return mlock_future_check(current->mm, current->mm->def_flags, len); 186 } 187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 188 unsigned long addr, unsigned long request, unsigned long flags); 189 SYSCALL_DEFINE1(brk, unsigned long, brk) 190 { 191 unsigned long newbrk, oldbrk, origbrk; 192 struct mm_struct *mm = current->mm; 193 struct vm_area_struct *brkvma, *next = NULL; 194 unsigned long min_brk; 195 bool populate; 196 bool downgraded = false; 197 LIST_HEAD(uf); 198 struct vma_iterator vmi; 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* 239 * Always allow shrinking brk. 240 * do_vma_munmap() may downgrade mmap_lock to read. 241 */ 242 if (brk <= mm->brk) { 243 int ret; 244 245 /* Search one past newbrk */ 246 vma_iter_init(&vmi, mm, newbrk); 247 brkvma = vma_find(&vmi, oldbrk); 248 if (!brkvma || brkvma->vm_start >= oldbrk) 249 goto out; /* mapping intersects with an existing non-brk vma. */ 250 /* 251 * mm->brk must be protected by write mmap_lock. 252 * do_vma_munmap() may downgrade the lock, so update it 253 * before calling do_vma_munmap(). 254 */ 255 mm->brk = brk; 256 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true); 257 if (ret == 1) { 258 downgraded = true; 259 goto success; 260 } else if (!ret) 261 goto success; 262 263 mm->brk = origbrk; 264 goto out; 265 } 266 267 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 268 goto out; 269 270 /* 271 * Only check if the next VMA is within the stack_guard_gap of the 272 * expansion area 273 */ 274 vma_iter_init(&vmi, mm, oldbrk); 275 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 276 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 277 goto out; 278 279 brkvma = vma_prev_limit(&vmi, mm->start_brk); 280 /* Ok, looks good - let it rip. */ 281 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 282 goto out; 283 284 mm->brk = brk; 285 286 success: 287 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 288 if (downgraded) 289 mmap_read_unlock(mm); 290 else 291 mmap_write_unlock(mm); 292 userfaultfd_unmap_complete(mm, &uf); 293 if (populate) 294 mm_populate(oldbrk, newbrk - oldbrk); 295 return brk; 296 297 out: 298 mmap_write_unlock(mm); 299 return origbrk; 300 } 301 302 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 303 extern void mt_validate(struct maple_tree *mt); 304 extern void mt_dump(const struct maple_tree *mt); 305 306 /* Validate the maple tree */ 307 static void validate_mm_mt(struct mm_struct *mm) 308 { 309 struct maple_tree *mt = &mm->mm_mt; 310 struct vm_area_struct *vma_mt; 311 312 MA_STATE(mas, mt, 0, 0); 313 314 mt_validate(&mm->mm_mt); 315 mas_for_each(&mas, vma_mt, ULONG_MAX) { 316 if ((vma_mt->vm_start != mas.index) || 317 (vma_mt->vm_end - 1 != mas.last)) { 318 pr_emerg("issue in %s\n", current->comm); 319 dump_stack(); 320 dump_vma(vma_mt); 321 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt, 322 mas.index, mas.last); 323 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt, 324 vma_mt->vm_start, vma_mt->vm_end); 325 326 mt_dump(mas.tree); 327 if (vma_mt->vm_end != mas.last + 1) { 328 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n", 329 mm, vma_mt->vm_start, vma_mt->vm_end, 330 mas.index, mas.last); 331 mt_dump(mas.tree); 332 } 333 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm); 334 if (vma_mt->vm_start != mas.index) { 335 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n", 336 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end); 337 mt_dump(mas.tree); 338 } 339 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm); 340 } 341 } 342 } 343 344 static void validate_mm(struct mm_struct *mm) 345 { 346 int bug = 0; 347 int i = 0; 348 struct vm_area_struct *vma; 349 MA_STATE(mas, &mm->mm_mt, 0, 0); 350 351 validate_mm_mt(mm); 352 353 mas_for_each(&mas, vma, ULONG_MAX) { 354 #ifdef CONFIG_DEBUG_VM_RB 355 struct anon_vma *anon_vma = vma->anon_vma; 356 struct anon_vma_chain *avc; 357 358 if (anon_vma) { 359 anon_vma_lock_read(anon_vma); 360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 361 anon_vma_interval_tree_verify(avc); 362 anon_vma_unlock_read(anon_vma); 363 } 364 #endif 365 i++; 366 } 367 if (i != mm->map_count) { 368 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i); 369 bug = 1; 370 } 371 VM_BUG_ON_MM(bug, mm); 372 } 373 374 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 375 #define validate_mm_mt(root) do { } while (0) 376 #define validate_mm(mm) do { } while (0) 377 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 378 379 /* 380 * vma has some anon_vma assigned, and is already inserted on that 381 * anon_vma's interval trees. 382 * 383 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 384 * vma must be removed from the anon_vma's interval trees using 385 * anon_vma_interval_tree_pre_update_vma(). 386 * 387 * After the update, the vma will be reinserted using 388 * anon_vma_interval_tree_post_update_vma(). 389 * 390 * The entire update must be protected by exclusive mmap_lock and by 391 * the root anon_vma's mutex. 392 */ 393 static inline void 394 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 395 { 396 struct anon_vma_chain *avc; 397 398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 399 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 400 } 401 402 static inline void 403 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 404 { 405 struct anon_vma_chain *avc; 406 407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 408 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 409 } 410 411 static unsigned long count_vma_pages_range(struct mm_struct *mm, 412 unsigned long addr, unsigned long end) 413 { 414 VMA_ITERATOR(vmi, mm, addr); 415 struct vm_area_struct *vma; 416 unsigned long nr_pages = 0; 417 418 for_each_vma_range(vmi, vma, end) { 419 unsigned long vm_start = max(addr, vma->vm_start); 420 unsigned long vm_end = min(end, vma->vm_end); 421 422 nr_pages += PHYS_PFN(vm_end - vm_start); 423 } 424 425 return nr_pages; 426 } 427 428 static void __vma_link_file(struct vm_area_struct *vma, 429 struct address_space *mapping) 430 { 431 if (vma->vm_flags & VM_SHARED) 432 mapping_allow_writable(mapping); 433 434 flush_dcache_mmap_lock(mapping); 435 vma_interval_tree_insert(vma, &mapping->i_mmap); 436 flush_dcache_mmap_unlock(mapping); 437 } 438 439 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 440 { 441 VMA_ITERATOR(vmi, mm, 0); 442 struct address_space *mapping = NULL; 443 444 if (vma_iter_prealloc(&vmi)) 445 return -ENOMEM; 446 447 if (vma->vm_file) { 448 mapping = vma->vm_file->f_mapping; 449 i_mmap_lock_write(mapping); 450 } 451 452 vma_iter_store(&vmi, vma); 453 454 if (mapping) { 455 __vma_link_file(vma, mapping); 456 i_mmap_unlock_write(mapping); 457 } 458 459 mm->map_count++; 460 validate_mm(mm); 461 return 0; 462 } 463 464 /* 465 * init_multi_vma_prep() - Initializer for struct vma_prepare 466 * @vp: The vma_prepare struct 467 * @vma: The vma that will be altered once locked 468 * @next: The next vma if it is to be adjusted 469 * @remove: The first vma to be removed 470 * @remove2: The second vma to be removed 471 */ 472 static inline void init_multi_vma_prep(struct vma_prepare *vp, 473 struct vm_area_struct *vma, struct vm_area_struct *next, 474 struct vm_area_struct *remove, struct vm_area_struct *remove2) 475 { 476 memset(vp, 0, sizeof(struct vma_prepare)); 477 vp->vma = vma; 478 vp->anon_vma = vma->anon_vma; 479 vp->remove = remove; 480 vp->remove2 = remove2; 481 vp->adj_next = next; 482 if (!vp->anon_vma && next) 483 vp->anon_vma = next->anon_vma; 484 485 vp->file = vma->vm_file; 486 if (vp->file) 487 vp->mapping = vma->vm_file->f_mapping; 488 489 } 490 491 /* 492 * init_vma_prep() - Initializer wrapper for vma_prepare struct 493 * @vp: The vma_prepare struct 494 * @vma: The vma that will be altered once locked 495 */ 496 static inline void init_vma_prep(struct vma_prepare *vp, 497 struct vm_area_struct *vma) 498 { 499 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 500 } 501 502 503 /* 504 * vma_prepare() - Helper function for handling locking VMAs prior to altering 505 * @vp: The initialized vma_prepare struct 506 */ 507 static inline void vma_prepare(struct vma_prepare *vp) 508 { 509 vma_start_write(vp->vma); 510 if (vp->adj_next) 511 vma_start_write(vp->adj_next); 512 /* vp->insert is always a newly created VMA, no need for locking */ 513 if (vp->remove) 514 vma_start_write(vp->remove); 515 if (vp->remove2) 516 vma_start_write(vp->remove2); 517 518 if (vp->file) { 519 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 520 521 if (vp->adj_next) 522 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 523 vp->adj_next->vm_end); 524 525 i_mmap_lock_write(vp->mapping); 526 if (vp->insert && vp->insert->vm_file) { 527 /* 528 * Put into interval tree now, so instantiated pages 529 * are visible to arm/parisc __flush_dcache_page 530 * throughout; but we cannot insert into address 531 * space until vma start or end is updated. 532 */ 533 __vma_link_file(vp->insert, 534 vp->insert->vm_file->f_mapping); 535 } 536 } 537 538 if (vp->anon_vma) { 539 anon_vma_lock_write(vp->anon_vma); 540 anon_vma_interval_tree_pre_update_vma(vp->vma); 541 if (vp->adj_next) 542 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 543 } 544 545 if (vp->file) { 546 flush_dcache_mmap_lock(vp->mapping); 547 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 548 if (vp->adj_next) 549 vma_interval_tree_remove(vp->adj_next, 550 &vp->mapping->i_mmap); 551 } 552 553 } 554 555 /* 556 * vma_complete- Helper function for handling the unlocking after altering VMAs, 557 * or for inserting a VMA. 558 * 559 * @vp: The vma_prepare struct 560 * @vmi: The vma iterator 561 * @mm: The mm_struct 562 */ 563 static inline void vma_complete(struct vma_prepare *vp, 564 struct vma_iterator *vmi, struct mm_struct *mm) 565 { 566 if (vp->file) { 567 if (vp->adj_next) 568 vma_interval_tree_insert(vp->adj_next, 569 &vp->mapping->i_mmap); 570 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 571 flush_dcache_mmap_unlock(vp->mapping); 572 } 573 574 if (vp->remove && vp->file) { 575 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 576 if (vp->remove2) 577 __remove_shared_vm_struct(vp->remove2, vp->file, 578 vp->mapping); 579 } else if (vp->insert) { 580 /* 581 * split_vma has split insert from vma, and needs 582 * us to insert it before dropping the locks 583 * (it may either follow vma or precede it). 584 */ 585 vma_iter_store(vmi, vp->insert); 586 mm->map_count++; 587 } 588 589 if (vp->anon_vma) { 590 anon_vma_interval_tree_post_update_vma(vp->vma); 591 if (vp->adj_next) 592 anon_vma_interval_tree_post_update_vma(vp->adj_next); 593 anon_vma_unlock_write(vp->anon_vma); 594 } 595 596 if (vp->file) { 597 i_mmap_unlock_write(vp->mapping); 598 uprobe_mmap(vp->vma); 599 600 if (vp->adj_next) 601 uprobe_mmap(vp->adj_next); 602 } 603 604 if (vp->remove) { 605 again: 606 vma_mark_detached(vp->remove, true); 607 if (vp->file) { 608 uprobe_munmap(vp->remove, vp->remove->vm_start, 609 vp->remove->vm_end); 610 fput(vp->file); 611 } 612 if (vp->remove->anon_vma) 613 anon_vma_merge(vp->vma, vp->remove); 614 mm->map_count--; 615 mpol_put(vma_policy(vp->remove)); 616 if (!vp->remove2) 617 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 618 vm_area_free(vp->remove); 619 620 /* 621 * In mprotect's case 6 (see comments on vma_merge), 622 * we are removing both mid and next vmas 623 */ 624 if (vp->remove2) { 625 vp->remove = vp->remove2; 626 vp->remove2 = NULL; 627 goto again; 628 } 629 } 630 if (vp->insert && vp->file) 631 uprobe_mmap(vp->insert); 632 } 633 634 /* 635 * dup_anon_vma() - Helper function to duplicate anon_vma 636 * @dst: The destination VMA 637 * @src: The source VMA 638 * 639 * Returns: 0 on success. 640 */ 641 static inline int dup_anon_vma(struct vm_area_struct *dst, 642 struct vm_area_struct *src) 643 { 644 /* 645 * Easily overlooked: when mprotect shifts the boundary, make sure the 646 * expanding vma has anon_vma set if the shrinking vma had, to cover any 647 * anon pages imported. 648 */ 649 if (src->anon_vma && !dst->anon_vma) { 650 dst->anon_vma = src->anon_vma; 651 return anon_vma_clone(dst, src); 652 } 653 654 return 0; 655 } 656 657 /* 658 * vma_expand - Expand an existing VMA 659 * 660 * @vmi: The vma iterator 661 * @vma: The vma to expand 662 * @start: The start of the vma 663 * @end: The exclusive end of the vma 664 * @pgoff: The page offset of vma 665 * @next: The current of next vma. 666 * 667 * Expand @vma to @start and @end. Can expand off the start and end. Will 668 * expand over @next if it's different from @vma and @end == @next->vm_end. 669 * Checking if the @vma can expand and merge with @next needs to be handled by 670 * the caller. 671 * 672 * Returns: 0 on success 673 */ 674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 675 unsigned long start, unsigned long end, pgoff_t pgoff, 676 struct vm_area_struct *next) 677 { 678 bool remove_next = false; 679 struct vma_prepare vp; 680 681 if (next && (vma != next) && (end == next->vm_end)) { 682 int ret; 683 684 remove_next = true; 685 ret = dup_anon_vma(vma, next); 686 if (ret) 687 return ret; 688 } 689 690 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 691 /* Not merging but overwriting any part of next is not handled. */ 692 VM_WARN_ON(next && !vp.remove && 693 next != vma && end > next->vm_start); 694 /* Only handles expanding */ 695 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 696 697 if (vma_iter_prealloc(vmi)) 698 goto nomem; 699 700 vma_prepare(&vp); 701 vma_adjust_trans_huge(vma, start, end, 0); 702 /* VMA iterator points to previous, so set to start if necessary */ 703 if (vma_iter_addr(vmi) != start) 704 vma_iter_set(vmi, start); 705 706 vma->vm_start = start; 707 vma->vm_end = end; 708 vma->vm_pgoff = pgoff; 709 /* Note: mas must be pointing to the expanding VMA */ 710 vma_iter_store(vmi, vma); 711 712 vma_complete(&vp, vmi, vma->vm_mm); 713 validate_mm(vma->vm_mm); 714 return 0; 715 716 nomem: 717 return -ENOMEM; 718 } 719 720 /* 721 * vma_shrink() - Reduce an existing VMAs memory area 722 * @vmi: The vma iterator 723 * @vma: The VMA to modify 724 * @start: The new start 725 * @end: The new end 726 * 727 * Returns: 0 on success, -ENOMEM otherwise 728 */ 729 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 730 unsigned long start, unsigned long end, pgoff_t pgoff) 731 { 732 struct vma_prepare vp; 733 734 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 735 736 if (vma_iter_prealloc(vmi)) 737 return -ENOMEM; 738 739 init_vma_prep(&vp, vma); 740 vma_prepare(&vp); 741 vma_adjust_trans_huge(vma, start, end, 0); 742 743 if (vma->vm_start < start) 744 vma_iter_clear(vmi, vma->vm_start, start); 745 746 if (vma->vm_end > end) 747 vma_iter_clear(vmi, end, vma->vm_end); 748 749 vma->vm_start = start; 750 vma->vm_end = end; 751 vma->vm_pgoff = pgoff; 752 vma_complete(&vp, vmi, vma->vm_mm); 753 validate_mm(vma->vm_mm); 754 return 0; 755 } 756 757 /* 758 * If the vma has a ->close operation then the driver probably needs to release 759 * per-vma resources, so we don't attempt to merge those if the caller indicates 760 * the current vma may be removed as part of the merge. 761 */ 762 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 763 struct file *file, unsigned long vm_flags, 764 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 765 struct anon_vma_name *anon_name, bool may_remove_vma) 766 { 767 /* 768 * VM_SOFTDIRTY should not prevent from VMA merging, if we 769 * match the flags but dirty bit -- the caller should mark 770 * merged VMA as dirty. If dirty bit won't be excluded from 771 * comparison, we increase pressure on the memory system forcing 772 * the kernel to generate new VMAs when old one could be 773 * extended instead. 774 */ 775 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 776 return false; 777 if (vma->vm_file != file) 778 return false; 779 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 780 return false; 781 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 782 return false; 783 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 784 return false; 785 return true; 786 } 787 788 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 789 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 790 { 791 /* 792 * The list_is_singular() test is to avoid merging VMA cloned from 793 * parents. This can improve scalability caused by anon_vma lock. 794 */ 795 if ((!anon_vma1 || !anon_vma2) && (!vma || 796 list_is_singular(&vma->anon_vma_chain))) 797 return true; 798 return anon_vma1 == anon_vma2; 799 } 800 801 /* 802 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 803 * in front of (at a lower virtual address and file offset than) the vma. 804 * 805 * We cannot merge two vmas if they have differently assigned (non-NULL) 806 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 807 * 808 * We don't check here for the merged mmap wrapping around the end of pagecache 809 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 810 * wrap, nor mmaps which cover the final page at index -1UL. 811 * 812 * We assume the vma may be removed as part of the merge. 813 */ 814 static bool 815 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 816 struct anon_vma *anon_vma, struct file *file, 817 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 818 struct anon_vma_name *anon_name) 819 { 820 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 821 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 822 if (vma->vm_pgoff == vm_pgoff) 823 return true; 824 } 825 return false; 826 } 827 828 /* 829 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 830 * beyond (at a higher virtual address and file offset than) the vma. 831 * 832 * We cannot merge two vmas if they have differently assigned (non-NULL) 833 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 834 * 835 * We assume that vma is not removed as part of the merge. 836 */ 837 static bool 838 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 839 struct anon_vma *anon_vma, struct file *file, 840 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 841 struct anon_vma_name *anon_name) 842 { 843 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 844 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 845 pgoff_t vm_pglen; 846 vm_pglen = vma_pages(vma); 847 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 848 return true; 849 } 850 return false; 851 } 852 853 /* 854 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 855 * figure out whether that can be merged with its predecessor or its 856 * successor. Or both (it neatly fills a hole). 857 * 858 * In most cases - when called for mmap, brk or mremap - [addr,end) is 859 * certain not to be mapped by the time vma_merge is called; but when 860 * called for mprotect, it is certain to be already mapped (either at 861 * an offset within prev, or at the start of next), and the flags of 862 * this area are about to be changed to vm_flags - and the no-change 863 * case has already been eliminated. 864 * 865 * The following mprotect cases have to be considered, where **** is 866 * the area passed down from mprotect_fixup, never extending beyond one 867 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 868 * at the same address as **** and is of the same or larger span, and 869 * NNNN the next vma after ****: 870 * 871 * **** **** **** 872 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 873 * cannot merge might become might become 874 * PPNNNNNNNNNN PPPPPPPPPPCC 875 * mmap, brk or case 4 below case 5 below 876 * mremap move: 877 * **** **** 878 * PPPP NNNN PPPPCCCCNNNN 879 * might become might become 880 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 881 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 882 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 883 * 884 * It is important for case 8 that the vma CCCC overlapping the 885 * region **** is never going to extended over NNNN. Instead NNNN must 886 * be extended in region **** and CCCC must be removed. This way in 887 * all cases where vma_merge succeeds, the moment vma_merge drops the 888 * rmap_locks, the properties of the merged vma will be already 889 * correct for the whole merged range. Some of those properties like 890 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 891 * be correct for the whole merged range immediately after the 892 * rmap_locks are released. Otherwise if NNNN would be removed and 893 * CCCC would be extended over the NNNN range, remove_migration_ptes 894 * or other rmap walkers (if working on addresses beyond the "end" 895 * parameter) may establish ptes with the wrong permissions of CCCC 896 * instead of the right permissions of NNNN. 897 * 898 * In the code below: 899 * PPPP is represented by *prev 900 * CCCC is represented by *curr or not represented at all (NULL) 901 * NNNN is represented by *next or not represented at all (NULL) 902 * **** is not represented - it will be merged and the vma containing the 903 * area is returned, or the function will return NULL 904 */ 905 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 906 struct vm_area_struct *prev, unsigned long addr, 907 unsigned long end, unsigned long vm_flags, 908 struct anon_vma *anon_vma, struct file *file, 909 pgoff_t pgoff, struct mempolicy *policy, 910 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 911 struct anon_vma_name *anon_name) 912 { 913 struct vm_area_struct *curr, *next, *res; 914 struct vm_area_struct *vma, *adjust, *remove, *remove2; 915 struct vma_prepare vp; 916 pgoff_t vma_pgoff; 917 int err = 0; 918 bool merge_prev = false; 919 bool merge_next = false; 920 bool vma_expanded = false; 921 unsigned long vma_start = addr; 922 unsigned long vma_end = end; 923 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 924 long adj_start = 0; 925 926 validate_mm(mm); 927 /* 928 * We later require that vma->vm_flags == vm_flags, 929 * so this tests vma->vm_flags & VM_SPECIAL, too. 930 */ 931 if (vm_flags & VM_SPECIAL) 932 return NULL; 933 934 /* Does the input range span an existing VMA? (cases 5 - 8) */ 935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 936 937 if (!curr || /* cases 1 - 4 */ 938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 939 next = vma_lookup(mm, end); 940 else 941 next = NULL; /* case 5 */ 942 943 if (prev) { 944 vma_start = prev->vm_start; 945 vma_pgoff = prev->vm_pgoff; 946 947 /* Can we merge the predecessor? */ 948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 949 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 950 pgoff, vm_userfaultfd_ctx, anon_name)) { 951 merge_prev = true; 952 vma_prev(vmi); 953 } 954 } 955 956 /* Can we merge the successor? */ 957 if (next && mpol_equal(policy, vma_policy(next)) && 958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 959 vm_userfaultfd_ctx, anon_name)) { 960 merge_next = true; 961 } 962 963 /* Verify some invariant that must be enforced by the caller. */ 964 VM_WARN_ON(prev && addr <= prev->vm_start); 965 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 966 VM_WARN_ON(addr >= end); 967 968 if (!merge_prev && !merge_next) 969 return NULL; /* Not mergeable. */ 970 971 res = vma = prev; 972 remove = remove2 = adjust = NULL; 973 974 /* Can we merge both the predecessor and the successor? */ 975 if (merge_prev && merge_next && 976 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 977 remove = next; /* case 1 */ 978 vma_end = next->vm_end; 979 err = dup_anon_vma(prev, next); 980 if (curr) { /* case 6 */ 981 remove = curr; 982 remove2 = next; 983 if (!next->anon_vma) 984 err = dup_anon_vma(prev, curr); 985 } 986 } else if (merge_prev) { /* case 2 */ 987 if (curr) { 988 err = dup_anon_vma(prev, curr); 989 if (end == curr->vm_end) { /* case 7 */ 990 remove = curr; 991 } else { /* case 5 */ 992 adjust = curr; 993 adj_start = (end - curr->vm_start); 994 } 995 } 996 } else { /* merge_next */ 997 res = next; 998 if (prev && addr < prev->vm_end) { /* case 4 */ 999 vma_end = addr; 1000 adjust = next; 1001 adj_start = -(prev->vm_end - addr); 1002 err = dup_anon_vma(next, prev); 1003 } else { 1004 /* 1005 * Note that cases 3 and 8 are the ONLY ones where prev 1006 * is permitted to be (but is not necessarily) NULL. 1007 */ 1008 vma = next; /* case 3 */ 1009 vma_start = addr; 1010 vma_end = next->vm_end; 1011 vma_pgoff = next->vm_pgoff - pglen; 1012 if (curr) { /* case 8 */ 1013 vma_pgoff = curr->vm_pgoff; 1014 remove = curr; 1015 err = dup_anon_vma(next, curr); 1016 } 1017 } 1018 } 1019 1020 /* Error in anon_vma clone. */ 1021 if (err) 1022 return NULL; 1023 1024 if (vma_iter_prealloc(vmi)) 1025 return NULL; 1026 1027 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1028 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1029 vp.anon_vma != adjust->anon_vma); 1030 1031 vma_prepare(&vp); 1032 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1033 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1034 vma_expanded = true; 1035 1036 vma->vm_start = vma_start; 1037 vma->vm_end = vma_end; 1038 vma->vm_pgoff = vma_pgoff; 1039 1040 if (vma_expanded) 1041 vma_iter_store(vmi, vma); 1042 1043 if (adj_start) { 1044 adjust->vm_start += adj_start; 1045 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1046 if (adj_start < 0) { 1047 WARN_ON(vma_expanded); 1048 vma_iter_store(vmi, next); 1049 } 1050 } 1051 1052 vma_complete(&vp, vmi, mm); 1053 vma_iter_free(vmi); 1054 validate_mm(mm); 1055 khugepaged_enter_vma(res, vm_flags); 1056 1057 return res; 1058 } 1059 1060 /* 1061 * Rough compatibility check to quickly see if it's even worth looking 1062 * at sharing an anon_vma. 1063 * 1064 * They need to have the same vm_file, and the flags can only differ 1065 * in things that mprotect may change. 1066 * 1067 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1068 * we can merge the two vma's. For example, we refuse to merge a vma if 1069 * there is a vm_ops->close() function, because that indicates that the 1070 * driver is doing some kind of reference counting. But that doesn't 1071 * really matter for the anon_vma sharing case. 1072 */ 1073 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1074 { 1075 return a->vm_end == b->vm_start && 1076 mpol_equal(vma_policy(a), vma_policy(b)) && 1077 a->vm_file == b->vm_file && 1078 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1079 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1080 } 1081 1082 /* 1083 * Do some basic sanity checking to see if we can re-use the anon_vma 1084 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1085 * the same as 'old', the other will be the new one that is trying 1086 * to share the anon_vma. 1087 * 1088 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1089 * the anon_vma of 'old' is concurrently in the process of being set up 1090 * by another page fault trying to merge _that_. But that's ok: if it 1091 * is being set up, that automatically means that it will be a singleton 1092 * acceptable for merging, so we can do all of this optimistically. But 1093 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1094 * 1095 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1096 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1097 * is to return an anon_vma that is "complex" due to having gone through 1098 * a fork). 1099 * 1100 * We also make sure that the two vma's are compatible (adjacent, 1101 * and with the same memory policies). That's all stable, even with just 1102 * a read lock on the mmap_lock. 1103 */ 1104 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1105 { 1106 if (anon_vma_compatible(a, b)) { 1107 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1108 1109 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1110 return anon_vma; 1111 } 1112 return NULL; 1113 } 1114 1115 /* 1116 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1117 * neighbouring vmas for a suitable anon_vma, before it goes off 1118 * to allocate a new anon_vma. It checks because a repetitive 1119 * sequence of mprotects and faults may otherwise lead to distinct 1120 * anon_vmas being allocated, preventing vma merge in subsequent 1121 * mprotect. 1122 */ 1123 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1124 { 1125 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1126 struct anon_vma *anon_vma = NULL; 1127 struct vm_area_struct *prev, *next; 1128 1129 /* Try next first. */ 1130 next = mas_walk(&mas); 1131 if (next) { 1132 anon_vma = reusable_anon_vma(next, vma, next); 1133 if (anon_vma) 1134 return anon_vma; 1135 } 1136 1137 prev = mas_prev(&mas, 0); 1138 VM_BUG_ON_VMA(prev != vma, vma); 1139 prev = mas_prev(&mas, 0); 1140 /* Try prev next. */ 1141 if (prev) 1142 anon_vma = reusable_anon_vma(prev, prev, vma); 1143 1144 /* 1145 * We might reach here with anon_vma == NULL if we can't find 1146 * any reusable anon_vma. 1147 * There's no absolute need to look only at touching neighbours: 1148 * we could search further afield for "compatible" anon_vmas. 1149 * But it would probably just be a waste of time searching, 1150 * or lead to too many vmas hanging off the same anon_vma. 1151 * We're trying to allow mprotect remerging later on, 1152 * not trying to minimize memory used for anon_vmas. 1153 */ 1154 return anon_vma; 1155 } 1156 1157 /* 1158 * If a hint addr is less than mmap_min_addr change hint to be as 1159 * low as possible but still greater than mmap_min_addr 1160 */ 1161 static inline unsigned long round_hint_to_min(unsigned long hint) 1162 { 1163 hint &= PAGE_MASK; 1164 if (((void *)hint != NULL) && 1165 (hint < mmap_min_addr)) 1166 return PAGE_ALIGN(mmap_min_addr); 1167 return hint; 1168 } 1169 1170 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1171 unsigned long len) 1172 { 1173 unsigned long locked, lock_limit; 1174 1175 /* mlock MCL_FUTURE? */ 1176 if (flags & VM_LOCKED) { 1177 locked = len >> PAGE_SHIFT; 1178 locked += mm->locked_vm; 1179 lock_limit = rlimit(RLIMIT_MEMLOCK); 1180 lock_limit >>= PAGE_SHIFT; 1181 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1182 return -EAGAIN; 1183 } 1184 return 0; 1185 } 1186 1187 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1188 { 1189 if (S_ISREG(inode->i_mode)) 1190 return MAX_LFS_FILESIZE; 1191 1192 if (S_ISBLK(inode->i_mode)) 1193 return MAX_LFS_FILESIZE; 1194 1195 if (S_ISSOCK(inode->i_mode)) 1196 return MAX_LFS_FILESIZE; 1197 1198 /* Special "we do even unsigned file positions" case */ 1199 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1200 return 0; 1201 1202 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1203 return ULONG_MAX; 1204 } 1205 1206 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1207 unsigned long pgoff, unsigned long len) 1208 { 1209 u64 maxsize = file_mmap_size_max(file, inode); 1210 1211 if (maxsize && len > maxsize) 1212 return false; 1213 maxsize -= len; 1214 if (pgoff > maxsize >> PAGE_SHIFT) 1215 return false; 1216 return true; 1217 } 1218 1219 /* 1220 * The caller must write-lock current->mm->mmap_lock. 1221 */ 1222 unsigned long do_mmap(struct file *file, unsigned long addr, 1223 unsigned long len, unsigned long prot, 1224 unsigned long flags, unsigned long pgoff, 1225 unsigned long *populate, struct list_head *uf) 1226 { 1227 struct mm_struct *mm = current->mm; 1228 vm_flags_t vm_flags; 1229 int pkey = 0; 1230 1231 validate_mm(mm); 1232 *populate = 0; 1233 1234 if (!len) 1235 return -EINVAL; 1236 1237 /* 1238 * Does the application expect PROT_READ to imply PROT_EXEC? 1239 * 1240 * (the exception is when the underlying filesystem is noexec 1241 * mounted, in which case we dont add PROT_EXEC.) 1242 */ 1243 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1244 if (!(file && path_noexec(&file->f_path))) 1245 prot |= PROT_EXEC; 1246 1247 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1248 if (flags & MAP_FIXED_NOREPLACE) 1249 flags |= MAP_FIXED; 1250 1251 if (!(flags & MAP_FIXED)) 1252 addr = round_hint_to_min(addr); 1253 1254 /* Careful about overflows.. */ 1255 len = PAGE_ALIGN(len); 1256 if (!len) 1257 return -ENOMEM; 1258 1259 /* offset overflow? */ 1260 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1261 return -EOVERFLOW; 1262 1263 /* Too many mappings? */ 1264 if (mm->map_count > sysctl_max_map_count) 1265 return -ENOMEM; 1266 1267 /* Obtain the address to map to. we verify (or select) it and ensure 1268 * that it represents a valid section of the address space. 1269 */ 1270 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1271 if (IS_ERR_VALUE(addr)) 1272 return addr; 1273 1274 if (flags & MAP_FIXED_NOREPLACE) { 1275 if (find_vma_intersection(mm, addr, addr + len)) 1276 return -EEXIST; 1277 } 1278 1279 if (prot == PROT_EXEC) { 1280 pkey = execute_only_pkey(mm); 1281 if (pkey < 0) 1282 pkey = 0; 1283 } 1284 1285 /* Do simple checking here so the lower-level routines won't have 1286 * to. we assume access permissions have been handled by the open 1287 * of the memory object, so we don't do any here. 1288 */ 1289 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1290 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1291 1292 if (flags & MAP_LOCKED) 1293 if (!can_do_mlock()) 1294 return -EPERM; 1295 1296 if (mlock_future_check(mm, vm_flags, len)) 1297 return -EAGAIN; 1298 1299 if (file) { 1300 struct inode *inode = file_inode(file); 1301 unsigned long flags_mask; 1302 1303 if (!file_mmap_ok(file, inode, pgoff, len)) 1304 return -EOVERFLOW; 1305 1306 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1307 1308 switch (flags & MAP_TYPE) { 1309 case MAP_SHARED: 1310 /* 1311 * Force use of MAP_SHARED_VALIDATE with non-legacy 1312 * flags. E.g. MAP_SYNC is dangerous to use with 1313 * MAP_SHARED as you don't know which consistency model 1314 * you will get. We silently ignore unsupported flags 1315 * with MAP_SHARED to preserve backward compatibility. 1316 */ 1317 flags &= LEGACY_MAP_MASK; 1318 fallthrough; 1319 case MAP_SHARED_VALIDATE: 1320 if (flags & ~flags_mask) 1321 return -EOPNOTSUPP; 1322 if (prot & PROT_WRITE) { 1323 if (!(file->f_mode & FMODE_WRITE)) 1324 return -EACCES; 1325 if (IS_SWAPFILE(file->f_mapping->host)) 1326 return -ETXTBSY; 1327 } 1328 1329 /* 1330 * Make sure we don't allow writing to an append-only 1331 * file.. 1332 */ 1333 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1334 return -EACCES; 1335 1336 vm_flags |= VM_SHARED | VM_MAYSHARE; 1337 if (!(file->f_mode & FMODE_WRITE)) 1338 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1339 fallthrough; 1340 case MAP_PRIVATE: 1341 if (!(file->f_mode & FMODE_READ)) 1342 return -EACCES; 1343 if (path_noexec(&file->f_path)) { 1344 if (vm_flags & VM_EXEC) 1345 return -EPERM; 1346 vm_flags &= ~VM_MAYEXEC; 1347 } 1348 1349 if (!file->f_op->mmap) 1350 return -ENODEV; 1351 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1352 return -EINVAL; 1353 break; 1354 1355 default: 1356 return -EINVAL; 1357 } 1358 } else { 1359 switch (flags & MAP_TYPE) { 1360 case MAP_SHARED: 1361 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1362 return -EINVAL; 1363 /* 1364 * Ignore pgoff. 1365 */ 1366 pgoff = 0; 1367 vm_flags |= VM_SHARED | VM_MAYSHARE; 1368 break; 1369 case MAP_PRIVATE: 1370 /* 1371 * Set pgoff according to addr for anon_vma. 1372 */ 1373 pgoff = addr >> PAGE_SHIFT; 1374 break; 1375 default: 1376 return -EINVAL; 1377 } 1378 } 1379 1380 /* 1381 * Set 'VM_NORESERVE' if we should not account for the 1382 * memory use of this mapping. 1383 */ 1384 if (flags & MAP_NORESERVE) { 1385 /* We honor MAP_NORESERVE if allowed to overcommit */ 1386 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1387 vm_flags |= VM_NORESERVE; 1388 1389 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1390 if (file && is_file_hugepages(file)) 1391 vm_flags |= VM_NORESERVE; 1392 } 1393 1394 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1395 if (!IS_ERR_VALUE(addr) && 1396 ((vm_flags & VM_LOCKED) || 1397 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1398 *populate = len; 1399 return addr; 1400 } 1401 1402 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1403 unsigned long prot, unsigned long flags, 1404 unsigned long fd, unsigned long pgoff) 1405 { 1406 struct file *file = NULL; 1407 unsigned long retval; 1408 1409 if (!(flags & MAP_ANONYMOUS)) { 1410 audit_mmap_fd(fd, flags); 1411 file = fget(fd); 1412 if (!file) 1413 return -EBADF; 1414 if (is_file_hugepages(file)) { 1415 len = ALIGN(len, huge_page_size(hstate_file(file))); 1416 } else if (unlikely(flags & MAP_HUGETLB)) { 1417 retval = -EINVAL; 1418 goto out_fput; 1419 } 1420 } else if (flags & MAP_HUGETLB) { 1421 struct hstate *hs; 1422 1423 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1424 if (!hs) 1425 return -EINVAL; 1426 1427 len = ALIGN(len, huge_page_size(hs)); 1428 /* 1429 * VM_NORESERVE is used because the reservations will be 1430 * taken when vm_ops->mmap() is called 1431 */ 1432 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1433 VM_NORESERVE, 1434 HUGETLB_ANONHUGE_INODE, 1435 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1436 if (IS_ERR(file)) 1437 return PTR_ERR(file); 1438 } 1439 1440 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1441 out_fput: 1442 if (file) 1443 fput(file); 1444 return retval; 1445 } 1446 1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1448 unsigned long, prot, unsigned long, flags, 1449 unsigned long, fd, unsigned long, pgoff) 1450 { 1451 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1452 } 1453 1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1455 struct mmap_arg_struct { 1456 unsigned long addr; 1457 unsigned long len; 1458 unsigned long prot; 1459 unsigned long flags; 1460 unsigned long fd; 1461 unsigned long offset; 1462 }; 1463 1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1465 { 1466 struct mmap_arg_struct a; 1467 1468 if (copy_from_user(&a, arg, sizeof(a))) 1469 return -EFAULT; 1470 if (offset_in_page(a.offset)) 1471 return -EINVAL; 1472 1473 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1474 a.offset >> PAGE_SHIFT); 1475 } 1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1477 1478 /* 1479 * Some shared mappings will want the pages marked read-only 1480 * to track write events. If so, we'll downgrade vm_page_prot 1481 * to the private version (using protection_map[] without the 1482 * VM_SHARED bit). 1483 */ 1484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1485 { 1486 vm_flags_t vm_flags = vma->vm_flags; 1487 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1488 1489 /* If it was private or non-writable, the write bit is already clear */ 1490 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1491 return 0; 1492 1493 /* The backer wishes to know when pages are first written to? */ 1494 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1495 return 1; 1496 1497 /* The open routine did something to the protections that pgprot_modify 1498 * won't preserve? */ 1499 if (pgprot_val(vm_page_prot) != 1500 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1501 return 0; 1502 1503 /* 1504 * Do we need to track softdirty? hugetlb does not support softdirty 1505 * tracking yet. 1506 */ 1507 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1508 return 1; 1509 1510 /* Do we need write faults for uffd-wp tracking? */ 1511 if (userfaultfd_wp(vma)) 1512 return 1; 1513 1514 /* Specialty mapping? */ 1515 if (vm_flags & VM_PFNMAP) 1516 return 0; 1517 1518 /* Can the mapping track the dirty pages? */ 1519 return vma->vm_file && vma->vm_file->f_mapping && 1520 mapping_can_writeback(vma->vm_file->f_mapping); 1521 } 1522 1523 /* 1524 * We account for memory if it's a private writeable mapping, 1525 * not hugepages and VM_NORESERVE wasn't set. 1526 */ 1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1528 { 1529 /* 1530 * hugetlb has its own accounting separate from the core VM 1531 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1532 */ 1533 if (file && is_file_hugepages(file)) 1534 return 0; 1535 1536 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1537 } 1538 1539 /** 1540 * unmapped_area() - Find an area between the low_limit and the high_limit with 1541 * the correct alignment and offset, all from @info. Note: current->mm is used 1542 * for the search. 1543 * 1544 * @info: The unmapped area information including the range [low_limit - 1545 * high_limit), the alignment offset and mask. 1546 * 1547 * Return: A memory address or -ENOMEM. 1548 */ 1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1550 { 1551 unsigned long length, gap; 1552 unsigned long low_limit, high_limit; 1553 struct vm_area_struct *tmp; 1554 1555 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1556 1557 /* Adjust search length to account for worst case alignment overhead */ 1558 length = info->length + info->align_mask; 1559 if (length < info->length) 1560 return -ENOMEM; 1561 1562 low_limit = info->low_limit; 1563 if (low_limit < mmap_min_addr) 1564 low_limit = mmap_min_addr; 1565 high_limit = info->high_limit; 1566 retry: 1567 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1568 return -ENOMEM; 1569 1570 gap = mas.index; 1571 gap += (info->align_offset - gap) & info->align_mask; 1572 tmp = mas_next(&mas, ULONG_MAX); 1573 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1574 if (vm_start_gap(tmp) < gap + length - 1) { 1575 low_limit = tmp->vm_end; 1576 mas_reset(&mas); 1577 goto retry; 1578 } 1579 } else { 1580 tmp = mas_prev(&mas, 0); 1581 if (tmp && vm_end_gap(tmp) > gap) { 1582 low_limit = vm_end_gap(tmp); 1583 mas_reset(&mas); 1584 goto retry; 1585 } 1586 } 1587 1588 return gap; 1589 } 1590 1591 /** 1592 * unmapped_area_topdown() - Find an area between the low_limit and the 1593 * high_limit with the correct alignment and offset at the highest available 1594 * address, all from @info. Note: current->mm is used for the search. 1595 * 1596 * @info: The unmapped area information including the range [low_limit - 1597 * high_limit), the alignment offset and mask. 1598 * 1599 * Return: A memory address or -ENOMEM. 1600 */ 1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1602 { 1603 unsigned long length, gap, gap_end; 1604 unsigned long low_limit, high_limit; 1605 struct vm_area_struct *tmp; 1606 1607 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1608 /* Adjust search length to account for worst case alignment overhead */ 1609 length = info->length + info->align_mask; 1610 if (length < info->length) 1611 return -ENOMEM; 1612 1613 low_limit = info->low_limit; 1614 if (low_limit < mmap_min_addr) 1615 low_limit = mmap_min_addr; 1616 high_limit = info->high_limit; 1617 retry: 1618 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1619 return -ENOMEM; 1620 1621 gap = mas.last + 1 - info->length; 1622 gap -= (gap - info->align_offset) & info->align_mask; 1623 gap_end = mas.last; 1624 tmp = mas_next(&mas, ULONG_MAX); 1625 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1626 if (vm_start_gap(tmp) <= gap_end) { 1627 high_limit = vm_start_gap(tmp); 1628 mas_reset(&mas); 1629 goto retry; 1630 } 1631 } else { 1632 tmp = mas_prev(&mas, 0); 1633 if (tmp && vm_end_gap(tmp) > gap) { 1634 high_limit = tmp->vm_start; 1635 mas_reset(&mas); 1636 goto retry; 1637 } 1638 } 1639 1640 return gap; 1641 } 1642 1643 /* 1644 * Search for an unmapped address range. 1645 * 1646 * We are looking for a range that: 1647 * - does not intersect with any VMA; 1648 * - is contained within the [low_limit, high_limit) interval; 1649 * - is at least the desired size. 1650 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1651 */ 1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1653 { 1654 unsigned long addr; 1655 1656 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1657 addr = unmapped_area_topdown(info); 1658 else 1659 addr = unmapped_area(info); 1660 1661 trace_vm_unmapped_area(addr, info); 1662 return addr; 1663 } 1664 1665 /* Get an address range which is currently unmapped. 1666 * For shmat() with addr=0. 1667 * 1668 * Ugly calling convention alert: 1669 * Return value with the low bits set means error value, 1670 * ie 1671 * if (ret & ~PAGE_MASK) 1672 * error = ret; 1673 * 1674 * This function "knows" that -ENOMEM has the bits set. 1675 */ 1676 unsigned long 1677 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1678 unsigned long len, unsigned long pgoff, 1679 unsigned long flags) 1680 { 1681 struct mm_struct *mm = current->mm; 1682 struct vm_area_struct *vma, *prev; 1683 struct vm_unmapped_area_info info; 1684 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1685 1686 if (len > mmap_end - mmap_min_addr) 1687 return -ENOMEM; 1688 1689 if (flags & MAP_FIXED) 1690 return addr; 1691 1692 if (addr) { 1693 addr = PAGE_ALIGN(addr); 1694 vma = find_vma_prev(mm, addr, &prev); 1695 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1696 (!vma || addr + len <= vm_start_gap(vma)) && 1697 (!prev || addr >= vm_end_gap(prev))) 1698 return addr; 1699 } 1700 1701 info.flags = 0; 1702 info.length = len; 1703 info.low_limit = mm->mmap_base; 1704 info.high_limit = mmap_end; 1705 info.align_mask = 0; 1706 info.align_offset = 0; 1707 return vm_unmapped_area(&info); 1708 } 1709 1710 #ifndef HAVE_ARCH_UNMAPPED_AREA 1711 unsigned long 1712 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1713 unsigned long len, unsigned long pgoff, 1714 unsigned long flags) 1715 { 1716 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1717 } 1718 #endif 1719 1720 /* 1721 * This mmap-allocator allocates new areas top-down from below the 1722 * stack's low limit (the base): 1723 */ 1724 unsigned long 1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1726 unsigned long len, unsigned long pgoff, 1727 unsigned long flags) 1728 { 1729 struct vm_area_struct *vma, *prev; 1730 struct mm_struct *mm = current->mm; 1731 struct vm_unmapped_area_info info; 1732 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1733 1734 /* requested length too big for entire address space */ 1735 if (len > mmap_end - mmap_min_addr) 1736 return -ENOMEM; 1737 1738 if (flags & MAP_FIXED) 1739 return addr; 1740 1741 /* requesting a specific address */ 1742 if (addr) { 1743 addr = PAGE_ALIGN(addr); 1744 vma = find_vma_prev(mm, addr, &prev); 1745 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1746 (!vma || addr + len <= vm_start_gap(vma)) && 1747 (!prev || addr >= vm_end_gap(prev))) 1748 return addr; 1749 } 1750 1751 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1752 info.length = len; 1753 info.low_limit = PAGE_SIZE; 1754 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1755 info.align_mask = 0; 1756 info.align_offset = 0; 1757 addr = vm_unmapped_area(&info); 1758 1759 /* 1760 * A failed mmap() very likely causes application failure, 1761 * so fall back to the bottom-up function here. This scenario 1762 * can happen with large stack limits and large mmap() 1763 * allocations. 1764 */ 1765 if (offset_in_page(addr)) { 1766 VM_BUG_ON(addr != -ENOMEM); 1767 info.flags = 0; 1768 info.low_limit = TASK_UNMAPPED_BASE; 1769 info.high_limit = mmap_end; 1770 addr = vm_unmapped_area(&info); 1771 } 1772 1773 return addr; 1774 } 1775 1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1777 unsigned long 1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1779 unsigned long len, unsigned long pgoff, 1780 unsigned long flags) 1781 { 1782 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1783 } 1784 #endif 1785 1786 unsigned long 1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1788 unsigned long pgoff, unsigned long flags) 1789 { 1790 unsigned long (*get_area)(struct file *, unsigned long, 1791 unsigned long, unsigned long, unsigned long); 1792 1793 unsigned long error = arch_mmap_check(addr, len, flags); 1794 if (error) 1795 return error; 1796 1797 /* Careful about overflows.. */ 1798 if (len > TASK_SIZE) 1799 return -ENOMEM; 1800 1801 get_area = current->mm->get_unmapped_area; 1802 if (file) { 1803 if (file->f_op->get_unmapped_area) 1804 get_area = file->f_op->get_unmapped_area; 1805 } else if (flags & MAP_SHARED) { 1806 /* 1807 * mmap_region() will call shmem_zero_setup() to create a file, 1808 * so use shmem's get_unmapped_area in case it can be huge. 1809 * do_mmap() will clear pgoff, so match alignment. 1810 */ 1811 pgoff = 0; 1812 get_area = shmem_get_unmapped_area; 1813 } 1814 1815 addr = get_area(file, addr, len, pgoff, flags); 1816 if (IS_ERR_VALUE(addr)) 1817 return addr; 1818 1819 if (addr > TASK_SIZE - len) 1820 return -ENOMEM; 1821 if (offset_in_page(addr)) 1822 return -EINVAL; 1823 1824 error = security_mmap_addr(addr); 1825 return error ? error : addr; 1826 } 1827 1828 EXPORT_SYMBOL(get_unmapped_area); 1829 1830 /** 1831 * find_vma_intersection() - Look up the first VMA which intersects the interval 1832 * @mm: The process address space. 1833 * @start_addr: The inclusive start user address. 1834 * @end_addr: The exclusive end user address. 1835 * 1836 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1837 * start_addr < end_addr. 1838 */ 1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1840 unsigned long start_addr, 1841 unsigned long end_addr) 1842 { 1843 unsigned long index = start_addr; 1844 1845 mmap_assert_locked(mm); 1846 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1847 } 1848 EXPORT_SYMBOL(find_vma_intersection); 1849 1850 /** 1851 * find_vma() - Find the VMA for a given address, or the next VMA. 1852 * @mm: The mm_struct to check 1853 * @addr: The address 1854 * 1855 * Returns: The VMA associated with addr, or the next VMA. 1856 * May return %NULL in the case of no VMA at addr or above. 1857 */ 1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1859 { 1860 unsigned long index = addr; 1861 1862 mmap_assert_locked(mm); 1863 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1864 } 1865 EXPORT_SYMBOL(find_vma); 1866 1867 /** 1868 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1869 * set %pprev to the previous VMA, if any. 1870 * @mm: The mm_struct to check 1871 * @addr: The address 1872 * @pprev: The pointer to set to the previous VMA 1873 * 1874 * Note that RCU lock is missing here since the external mmap_lock() is used 1875 * instead. 1876 * 1877 * Returns: The VMA associated with @addr, or the next vma. 1878 * May return %NULL in the case of no vma at addr or above. 1879 */ 1880 struct vm_area_struct * 1881 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1882 struct vm_area_struct **pprev) 1883 { 1884 struct vm_area_struct *vma; 1885 MA_STATE(mas, &mm->mm_mt, addr, addr); 1886 1887 vma = mas_walk(&mas); 1888 *pprev = mas_prev(&mas, 0); 1889 if (!vma) 1890 vma = mas_next(&mas, ULONG_MAX); 1891 return vma; 1892 } 1893 1894 /* 1895 * Verify that the stack growth is acceptable and 1896 * update accounting. This is shared with both the 1897 * grow-up and grow-down cases. 1898 */ 1899 static int acct_stack_growth(struct vm_area_struct *vma, 1900 unsigned long size, unsigned long grow) 1901 { 1902 struct mm_struct *mm = vma->vm_mm; 1903 unsigned long new_start; 1904 1905 /* address space limit tests */ 1906 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1907 return -ENOMEM; 1908 1909 /* Stack limit test */ 1910 if (size > rlimit(RLIMIT_STACK)) 1911 return -ENOMEM; 1912 1913 /* mlock limit tests */ 1914 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1915 return -ENOMEM; 1916 1917 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1918 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1919 vma->vm_end - size; 1920 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1921 return -EFAULT; 1922 1923 /* 1924 * Overcommit.. This must be the final test, as it will 1925 * update security statistics. 1926 */ 1927 if (security_vm_enough_memory_mm(mm, grow)) 1928 return -ENOMEM; 1929 1930 return 0; 1931 } 1932 1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1934 /* 1935 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1936 * vma is the last one with address > vma->vm_end. Have to extend vma. 1937 */ 1938 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1939 { 1940 struct mm_struct *mm = vma->vm_mm; 1941 struct vm_area_struct *next; 1942 unsigned long gap_addr; 1943 int error = 0; 1944 MA_STATE(mas, &mm->mm_mt, 0, 0); 1945 1946 if (!(vma->vm_flags & VM_GROWSUP)) 1947 return -EFAULT; 1948 1949 /* Guard against exceeding limits of the address space. */ 1950 address &= PAGE_MASK; 1951 if (address >= (TASK_SIZE & PAGE_MASK)) 1952 return -ENOMEM; 1953 address += PAGE_SIZE; 1954 1955 /* Enforce stack_guard_gap */ 1956 gap_addr = address + stack_guard_gap; 1957 1958 /* Guard against overflow */ 1959 if (gap_addr < address || gap_addr > TASK_SIZE) 1960 gap_addr = TASK_SIZE; 1961 1962 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1963 if (next && vma_is_accessible(next)) { 1964 if (!(next->vm_flags & VM_GROWSUP)) 1965 return -ENOMEM; 1966 /* Check that both stack segments have the same anon_vma? */ 1967 } 1968 1969 if (mas_preallocate(&mas, GFP_KERNEL)) 1970 return -ENOMEM; 1971 1972 /* We must make sure the anon_vma is allocated. */ 1973 if (unlikely(anon_vma_prepare(vma))) { 1974 mas_destroy(&mas); 1975 return -ENOMEM; 1976 } 1977 1978 /* 1979 * vma->vm_start/vm_end cannot change under us because the caller 1980 * is required to hold the mmap_lock in read mode. We need the 1981 * anon_vma lock to serialize against concurrent expand_stacks. 1982 */ 1983 anon_vma_lock_write(vma->anon_vma); 1984 1985 /* Somebody else might have raced and expanded it already */ 1986 if (address > vma->vm_end) { 1987 unsigned long size, grow; 1988 1989 size = address - vma->vm_start; 1990 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1991 1992 error = -ENOMEM; 1993 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1994 error = acct_stack_growth(vma, size, grow); 1995 if (!error) { 1996 /* 1997 * We only hold a shared mmap_lock lock here, so 1998 * we need to protect against concurrent vma 1999 * expansions. anon_vma_lock_write() doesn't 2000 * help here, as we don't guarantee that all 2001 * growable vmas in a mm share the same root 2002 * anon vma. So, we reuse mm->page_table_lock 2003 * to guard against concurrent vma expansions. 2004 */ 2005 spin_lock(&mm->page_table_lock); 2006 if (vma->vm_flags & VM_LOCKED) 2007 mm->locked_vm += grow; 2008 vm_stat_account(mm, vma->vm_flags, grow); 2009 anon_vma_interval_tree_pre_update_vma(vma); 2010 vma->vm_end = address; 2011 /* Overwrite old entry in mtree. */ 2012 mas_set_range(&mas, vma->vm_start, address - 1); 2013 mas_store_prealloc(&mas, vma); 2014 anon_vma_interval_tree_post_update_vma(vma); 2015 spin_unlock(&mm->page_table_lock); 2016 2017 perf_event_mmap(vma); 2018 } 2019 } 2020 } 2021 anon_vma_unlock_write(vma->anon_vma); 2022 khugepaged_enter_vma(vma, vma->vm_flags); 2023 mas_destroy(&mas); 2024 return error; 2025 } 2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2027 2028 /* 2029 * vma is the first one with address < vma->vm_start. Have to extend vma. 2030 */ 2031 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2032 { 2033 struct mm_struct *mm = vma->vm_mm; 2034 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2035 struct vm_area_struct *prev; 2036 int error = 0; 2037 2038 address &= PAGE_MASK; 2039 if (address < mmap_min_addr) 2040 return -EPERM; 2041 2042 /* Enforce stack_guard_gap */ 2043 prev = mas_prev(&mas, 0); 2044 /* Check that both stack segments have the same anon_vma? */ 2045 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2046 vma_is_accessible(prev)) { 2047 if (address - prev->vm_end < stack_guard_gap) 2048 return -ENOMEM; 2049 } 2050 2051 if (mas_preallocate(&mas, GFP_KERNEL)) 2052 return -ENOMEM; 2053 2054 /* We must make sure the anon_vma is allocated. */ 2055 if (unlikely(anon_vma_prepare(vma))) { 2056 mas_destroy(&mas); 2057 return -ENOMEM; 2058 } 2059 2060 /* 2061 * vma->vm_start/vm_end cannot change under us because the caller 2062 * is required to hold the mmap_lock in read mode. We need the 2063 * anon_vma lock to serialize against concurrent expand_stacks. 2064 */ 2065 anon_vma_lock_write(vma->anon_vma); 2066 2067 /* Somebody else might have raced and expanded it already */ 2068 if (address < vma->vm_start) { 2069 unsigned long size, grow; 2070 2071 size = vma->vm_end - address; 2072 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2073 2074 error = -ENOMEM; 2075 if (grow <= vma->vm_pgoff) { 2076 error = acct_stack_growth(vma, size, grow); 2077 if (!error) { 2078 /* 2079 * We only hold a shared mmap_lock lock here, so 2080 * we need to protect against concurrent vma 2081 * expansions. anon_vma_lock_write() doesn't 2082 * help here, as we don't guarantee that all 2083 * growable vmas in a mm share the same root 2084 * anon vma. So, we reuse mm->page_table_lock 2085 * to guard against concurrent vma expansions. 2086 */ 2087 spin_lock(&mm->page_table_lock); 2088 if (vma->vm_flags & VM_LOCKED) 2089 mm->locked_vm += grow; 2090 vm_stat_account(mm, vma->vm_flags, grow); 2091 anon_vma_interval_tree_pre_update_vma(vma); 2092 vma->vm_start = address; 2093 vma->vm_pgoff -= grow; 2094 /* Overwrite old entry in mtree. */ 2095 mas_set_range(&mas, address, vma->vm_end - 1); 2096 mas_store_prealloc(&mas, vma); 2097 anon_vma_interval_tree_post_update_vma(vma); 2098 spin_unlock(&mm->page_table_lock); 2099 2100 perf_event_mmap(vma); 2101 } 2102 } 2103 } 2104 anon_vma_unlock_write(vma->anon_vma); 2105 khugepaged_enter_vma(vma, vma->vm_flags); 2106 mas_destroy(&mas); 2107 return error; 2108 } 2109 2110 /* enforced gap between the expanding stack and other mappings. */ 2111 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2112 2113 static int __init cmdline_parse_stack_guard_gap(char *p) 2114 { 2115 unsigned long val; 2116 char *endptr; 2117 2118 val = simple_strtoul(p, &endptr, 10); 2119 if (!*endptr) 2120 stack_guard_gap = val << PAGE_SHIFT; 2121 2122 return 1; 2123 } 2124 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2125 2126 #ifdef CONFIG_STACK_GROWSUP 2127 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2128 { 2129 return expand_upwards(vma, address); 2130 } 2131 2132 struct vm_area_struct * 2133 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2134 { 2135 struct vm_area_struct *vma, *prev; 2136 2137 addr &= PAGE_MASK; 2138 vma = find_vma_prev(mm, addr, &prev); 2139 if (vma && (vma->vm_start <= addr)) 2140 return vma; 2141 if (!prev || expand_stack(prev, addr)) 2142 return NULL; 2143 if (prev->vm_flags & VM_LOCKED) 2144 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2145 return prev; 2146 } 2147 #else 2148 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2149 { 2150 return expand_downwards(vma, address); 2151 } 2152 2153 struct vm_area_struct * 2154 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2155 { 2156 struct vm_area_struct *vma; 2157 unsigned long start; 2158 2159 addr &= PAGE_MASK; 2160 vma = find_vma(mm, addr); 2161 if (!vma) 2162 return NULL; 2163 if (vma->vm_start <= addr) 2164 return vma; 2165 if (!(vma->vm_flags & VM_GROWSDOWN)) 2166 return NULL; 2167 start = vma->vm_start; 2168 if (expand_stack(vma, addr)) 2169 return NULL; 2170 if (vma->vm_flags & VM_LOCKED) 2171 populate_vma_page_range(vma, addr, start, NULL); 2172 return vma; 2173 } 2174 #endif 2175 2176 EXPORT_SYMBOL_GPL(find_extend_vma); 2177 2178 /* 2179 * Ok - we have the memory areas we should free on a maple tree so release them, 2180 * and do the vma updates. 2181 * 2182 * Called with the mm semaphore held. 2183 */ 2184 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2185 { 2186 unsigned long nr_accounted = 0; 2187 struct vm_area_struct *vma; 2188 2189 /* Update high watermark before we lower total_vm */ 2190 update_hiwater_vm(mm); 2191 mas_for_each(mas, vma, ULONG_MAX) { 2192 long nrpages = vma_pages(vma); 2193 2194 if (vma->vm_flags & VM_ACCOUNT) 2195 nr_accounted += nrpages; 2196 vm_stat_account(mm, vma->vm_flags, -nrpages); 2197 remove_vma(vma, false); 2198 } 2199 vm_unacct_memory(nr_accounted); 2200 validate_mm(mm); 2201 } 2202 2203 /* 2204 * Get rid of page table information in the indicated region. 2205 * 2206 * Called with the mm semaphore held. 2207 */ 2208 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2209 struct vm_area_struct *vma, struct vm_area_struct *prev, 2210 struct vm_area_struct *next, 2211 unsigned long start, unsigned long end, bool mm_wr_locked) 2212 { 2213 struct mmu_gather tlb; 2214 2215 lru_add_drain(); 2216 tlb_gather_mmu(&tlb, mm); 2217 update_hiwater_rss(mm); 2218 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked); 2219 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2220 next ? next->vm_start : USER_PGTABLES_CEILING, 2221 mm_wr_locked); 2222 tlb_finish_mmu(&tlb); 2223 } 2224 2225 /* 2226 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2227 * has already been checked or doesn't make sense to fail. 2228 * VMA Iterator will point to the end VMA. 2229 */ 2230 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2231 unsigned long addr, int new_below) 2232 { 2233 struct vma_prepare vp; 2234 struct vm_area_struct *new; 2235 int err; 2236 2237 validate_mm_mt(vma->vm_mm); 2238 2239 WARN_ON(vma->vm_start >= addr); 2240 WARN_ON(vma->vm_end <= addr); 2241 2242 if (vma->vm_ops && vma->vm_ops->may_split) { 2243 err = vma->vm_ops->may_split(vma, addr); 2244 if (err) 2245 return err; 2246 } 2247 2248 new = vm_area_dup(vma); 2249 if (!new) 2250 return -ENOMEM; 2251 2252 err = -ENOMEM; 2253 if (vma_iter_prealloc(vmi)) 2254 goto out_free_vma; 2255 2256 if (new_below) { 2257 new->vm_end = addr; 2258 } else { 2259 new->vm_start = addr; 2260 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2261 } 2262 2263 err = vma_dup_policy(vma, new); 2264 if (err) 2265 goto out_free_vmi; 2266 2267 err = anon_vma_clone(new, vma); 2268 if (err) 2269 goto out_free_mpol; 2270 2271 if (new->vm_file) 2272 get_file(new->vm_file); 2273 2274 if (new->vm_ops && new->vm_ops->open) 2275 new->vm_ops->open(new); 2276 2277 init_vma_prep(&vp, vma); 2278 vp.insert = new; 2279 vma_prepare(&vp); 2280 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2281 2282 if (new_below) { 2283 vma->vm_start = addr; 2284 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2285 } else { 2286 vma->vm_end = addr; 2287 } 2288 2289 /* vma_complete stores the new vma */ 2290 vma_complete(&vp, vmi, vma->vm_mm); 2291 2292 /* Success. */ 2293 if (new_below) 2294 vma_next(vmi); 2295 validate_mm_mt(vma->vm_mm); 2296 return 0; 2297 2298 out_free_mpol: 2299 mpol_put(vma_policy(new)); 2300 out_free_vmi: 2301 vma_iter_free(vmi); 2302 out_free_vma: 2303 vm_area_free(new); 2304 validate_mm_mt(vma->vm_mm); 2305 return err; 2306 } 2307 2308 /* 2309 * Split a vma into two pieces at address 'addr', a new vma is allocated 2310 * either for the first part or the tail. 2311 */ 2312 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2313 unsigned long addr, int new_below) 2314 { 2315 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2316 return -ENOMEM; 2317 2318 return __split_vma(vmi, vma, addr, new_below); 2319 } 2320 2321 static inline int munmap_sidetree(struct vm_area_struct *vma, 2322 struct ma_state *mas_detach) 2323 { 2324 vma_start_write(vma); 2325 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1); 2326 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL)) 2327 return -ENOMEM; 2328 2329 vma_mark_detached(vma, true); 2330 if (vma->vm_flags & VM_LOCKED) 2331 vma->vm_mm->locked_vm -= vma_pages(vma); 2332 2333 return 0; 2334 } 2335 2336 /* 2337 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2338 * @vmi: The vma iterator 2339 * @vma: The starting vm_area_struct 2340 * @mm: The mm_struct 2341 * @start: The aligned start address to munmap. 2342 * @end: The aligned end address to munmap. 2343 * @uf: The userfaultfd list_head 2344 * @downgrade: Set to true to attempt a write downgrade of the mmap_lock 2345 * 2346 * If @downgrade is true, check return code for potential release of the lock. 2347 */ 2348 static int 2349 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2350 struct mm_struct *mm, unsigned long start, 2351 unsigned long end, struct list_head *uf, bool downgrade) 2352 { 2353 struct vm_area_struct *prev, *next = NULL; 2354 struct maple_tree mt_detach; 2355 int count = 0; 2356 int error = -ENOMEM; 2357 MA_STATE(mas_detach, &mt_detach, 0, 0); 2358 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2359 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2360 2361 /* 2362 * If we need to split any vma, do it now to save pain later. 2363 * 2364 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2365 * unmapped vm_area_struct will remain in use: so lower split_vma 2366 * places tmp vma above, and higher split_vma places tmp vma below. 2367 */ 2368 2369 /* Does it split the first one? */ 2370 if (start > vma->vm_start) { 2371 2372 /* 2373 * Make sure that map_count on return from munmap() will 2374 * not exceed its limit; but let map_count go just above 2375 * its limit temporarily, to help free resources as expected. 2376 */ 2377 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2378 goto map_count_exceeded; 2379 2380 error = __split_vma(vmi, vma, start, 0); 2381 if (error) 2382 goto start_split_failed; 2383 2384 vma = vma_iter_load(vmi); 2385 } 2386 2387 prev = vma_prev(vmi); 2388 if (unlikely((!prev))) 2389 vma_iter_set(vmi, start); 2390 2391 /* 2392 * Detach a range of VMAs from the mm. Using next as a temp variable as 2393 * it is always overwritten. 2394 */ 2395 for_each_vma_range(*vmi, next, end) { 2396 /* Does it split the end? */ 2397 if (next->vm_end > end) { 2398 error = __split_vma(vmi, next, end, 0); 2399 if (error) 2400 goto end_split_failed; 2401 } 2402 error = munmap_sidetree(next, &mas_detach); 2403 if (error) 2404 goto munmap_sidetree_failed; 2405 2406 count++; 2407 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2408 BUG_ON(next->vm_start < start); 2409 BUG_ON(next->vm_start > end); 2410 #endif 2411 } 2412 2413 next = vma_next(vmi); 2414 if (unlikely(uf)) { 2415 /* 2416 * If userfaultfd_unmap_prep returns an error the vmas 2417 * will remain split, but userland will get a 2418 * highly unexpected error anyway. This is no 2419 * different than the case where the first of the two 2420 * __split_vma fails, but we don't undo the first 2421 * split, despite we could. This is unlikely enough 2422 * failure that it's not worth optimizing it for. 2423 */ 2424 error = userfaultfd_unmap_prep(mm, start, end, uf); 2425 2426 if (error) 2427 goto userfaultfd_error; 2428 } 2429 2430 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2431 /* Make sure no VMAs are about to be lost. */ 2432 { 2433 MA_STATE(test, &mt_detach, start, end - 1); 2434 struct vm_area_struct *vma_mas, *vma_test; 2435 int test_count = 0; 2436 2437 vma_iter_set(vmi, start); 2438 rcu_read_lock(); 2439 vma_test = mas_find(&test, end - 1); 2440 for_each_vma_range(*vmi, vma_mas, end) { 2441 BUG_ON(vma_mas != vma_test); 2442 test_count++; 2443 vma_test = mas_next(&test, end - 1); 2444 } 2445 rcu_read_unlock(); 2446 BUG_ON(count != test_count); 2447 } 2448 #endif 2449 /* Point of no return */ 2450 vma_iter_set(vmi, start); 2451 if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL)) 2452 return -ENOMEM; 2453 2454 mm->map_count -= count; 2455 /* 2456 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2457 * VM_GROWSUP VMA. Such VMAs can change their size under 2458 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2459 */ 2460 if (downgrade) { 2461 if (next && (next->vm_flags & VM_GROWSDOWN)) 2462 downgrade = false; 2463 else if (prev && (prev->vm_flags & VM_GROWSUP)) 2464 downgrade = false; 2465 else 2466 mmap_write_downgrade(mm); 2467 } 2468 2469 /* 2470 * We can free page tables without write-locking mmap_lock because VMAs 2471 * were isolated before we downgraded mmap_lock. 2472 */ 2473 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade); 2474 /* Statistics and freeing VMAs */ 2475 mas_set(&mas_detach, start); 2476 remove_mt(mm, &mas_detach); 2477 __mt_destroy(&mt_detach); 2478 2479 2480 validate_mm(mm); 2481 return downgrade ? 1 : 0; 2482 2483 userfaultfd_error: 2484 munmap_sidetree_failed: 2485 end_split_failed: 2486 __mt_destroy(&mt_detach); 2487 start_split_failed: 2488 map_count_exceeded: 2489 return error; 2490 } 2491 2492 /* 2493 * do_vmi_munmap() - munmap a given range. 2494 * @vmi: The vma iterator 2495 * @mm: The mm_struct 2496 * @start: The start address to munmap 2497 * @len: The length of the range to munmap 2498 * @uf: The userfaultfd list_head 2499 * @downgrade: set to true if the user wants to attempt to write_downgrade the 2500 * mmap_lock 2501 * 2502 * This function takes a @mas that is either pointing to the previous VMA or set 2503 * to MA_START and sets it up to remove the mapping(s). The @len will be 2504 * aligned and any arch_unmap work will be preformed. 2505 * 2506 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise. 2507 */ 2508 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2509 unsigned long start, size_t len, struct list_head *uf, 2510 bool downgrade) 2511 { 2512 unsigned long end; 2513 struct vm_area_struct *vma; 2514 2515 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2516 return -EINVAL; 2517 2518 end = start + PAGE_ALIGN(len); 2519 if (end == start) 2520 return -EINVAL; 2521 2522 /* arch_unmap() might do unmaps itself. */ 2523 arch_unmap(mm, start, end); 2524 2525 /* Find the first overlapping VMA */ 2526 vma = vma_find(vmi, end); 2527 if (!vma) 2528 return 0; 2529 2530 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade); 2531 } 2532 2533 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2534 * @mm: The mm_struct 2535 * @start: The start address to munmap 2536 * @len: The length to be munmapped. 2537 * @uf: The userfaultfd list_head 2538 */ 2539 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2540 struct list_head *uf) 2541 { 2542 VMA_ITERATOR(vmi, mm, start); 2543 2544 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2545 } 2546 2547 unsigned long mmap_region(struct file *file, unsigned long addr, 2548 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2549 struct list_head *uf) 2550 { 2551 struct mm_struct *mm = current->mm; 2552 struct vm_area_struct *vma = NULL; 2553 struct vm_area_struct *next, *prev, *merge; 2554 pgoff_t pglen = len >> PAGE_SHIFT; 2555 unsigned long charged = 0; 2556 unsigned long end = addr + len; 2557 unsigned long merge_start = addr, merge_end = end; 2558 pgoff_t vm_pgoff; 2559 int error; 2560 VMA_ITERATOR(vmi, mm, addr); 2561 2562 /* Check against address space limit. */ 2563 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2564 unsigned long nr_pages; 2565 2566 /* 2567 * MAP_FIXED may remove pages of mappings that intersects with 2568 * requested mapping. Account for the pages it would unmap. 2569 */ 2570 nr_pages = count_vma_pages_range(mm, addr, end); 2571 2572 if (!may_expand_vm(mm, vm_flags, 2573 (len >> PAGE_SHIFT) - nr_pages)) 2574 return -ENOMEM; 2575 } 2576 2577 /* Unmap any existing mapping in the area */ 2578 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2579 return -ENOMEM; 2580 2581 /* 2582 * Private writable mapping: check memory availability 2583 */ 2584 if (accountable_mapping(file, vm_flags)) { 2585 charged = len >> PAGE_SHIFT; 2586 if (security_vm_enough_memory_mm(mm, charged)) 2587 return -ENOMEM; 2588 vm_flags |= VM_ACCOUNT; 2589 } 2590 2591 next = vma_next(&vmi); 2592 prev = vma_prev(&vmi); 2593 if (vm_flags & VM_SPECIAL) 2594 goto cannot_expand; 2595 2596 /* Attempt to expand an old mapping */ 2597 /* Check next */ 2598 if (next && next->vm_start == end && !vma_policy(next) && 2599 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2600 NULL_VM_UFFD_CTX, NULL)) { 2601 merge_end = next->vm_end; 2602 vma = next; 2603 vm_pgoff = next->vm_pgoff - pglen; 2604 } 2605 2606 /* Check prev */ 2607 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2608 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2609 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2610 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2611 NULL_VM_UFFD_CTX, NULL))) { 2612 merge_start = prev->vm_start; 2613 vma = prev; 2614 vm_pgoff = prev->vm_pgoff; 2615 } 2616 2617 2618 /* Actually expand, if possible */ 2619 if (vma && 2620 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2621 khugepaged_enter_vma(vma, vm_flags); 2622 goto expanded; 2623 } 2624 2625 cannot_expand: 2626 /* 2627 * Determine the object being mapped and call the appropriate 2628 * specific mapper. the address has already been validated, but 2629 * not unmapped, but the maps are removed from the list. 2630 */ 2631 vma = vm_area_alloc(mm); 2632 if (!vma) { 2633 error = -ENOMEM; 2634 goto unacct_error; 2635 } 2636 2637 vma_iter_set(&vmi, addr); 2638 vma->vm_start = addr; 2639 vma->vm_end = end; 2640 vm_flags_init(vma, vm_flags); 2641 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2642 vma->vm_pgoff = pgoff; 2643 2644 if (file) { 2645 if (vm_flags & VM_SHARED) { 2646 error = mapping_map_writable(file->f_mapping); 2647 if (error) 2648 goto free_vma; 2649 } 2650 2651 vma->vm_file = get_file(file); 2652 error = call_mmap(file, vma); 2653 if (error) 2654 goto unmap_and_free_vma; 2655 2656 /* 2657 * Expansion is handled above, merging is handled below. 2658 * Drivers should not alter the address of the VMA. 2659 */ 2660 error = -EINVAL; 2661 if (WARN_ON((addr != vma->vm_start))) 2662 goto close_and_free_vma; 2663 2664 vma_iter_set(&vmi, addr); 2665 /* 2666 * If vm_flags changed after call_mmap(), we should try merge 2667 * vma again as we may succeed this time. 2668 */ 2669 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2670 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2671 vma->vm_end, vma->vm_flags, NULL, 2672 vma->vm_file, vma->vm_pgoff, NULL, 2673 NULL_VM_UFFD_CTX, NULL); 2674 if (merge) { 2675 /* 2676 * ->mmap() can change vma->vm_file and fput 2677 * the original file. So fput the vma->vm_file 2678 * here or we would add an extra fput for file 2679 * and cause general protection fault 2680 * ultimately. 2681 */ 2682 fput(vma->vm_file); 2683 vm_area_free(vma); 2684 vma = merge; 2685 /* Update vm_flags to pick up the change. */ 2686 vm_flags = vma->vm_flags; 2687 goto unmap_writable; 2688 } 2689 } 2690 2691 vm_flags = vma->vm_flags; 2692 } else if (vm_flags & VM_SHARED) { 2693 error = shmem_zero_setup(vma); 2694 if (error) 2695 goto free_vma; 2696 } else { 2697 vma_set_anonymous(vma); 2698 } 2699 2700 if (map_deny_write_exec(vma, vma->vm_flags)) { 2701 error = -EACCES; 2702 goto close_and_free_vma; 2703 } 2704 2705 /* Allow architectures to sanity-check the vm_flags */ 2706 error = -EINVAL; 2707 if (!arch_validate_flags(vma->vm_flags)) 2708 goto close_and_free_vma; 2709 2710 error = -ENOMEM; 2711 if (vma_iter_prealloc(&vmi)) 2712 goto close_and_free_vma; 2713 2714 if (vma->vm_file) 2715 i_mmap_lock_write(vma->vm_file->f_mapping); 2716 2717 vma_iter_store(&vmi, vma); 2718 mm->map_count++; 2719 if (vma->vm_file) { 2720 if (vma->vm_flags & VM_SHARED) 2721 mapping_allow_writable(vma->vm_file->f_mapping); 2722 2723 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2724 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2725 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2726 i_mmap_unlock_write(vma->vm_file->f_mapping); 2727 } 2728 2729 /* 2730 * vma_merge() calls khugepaged_enter_vma() either, the below 2731 * call covers the non-merge case. 2732 */ 2733 khugepaged_enter_vma(vma, vma->vm_flags); 2734 2735 /* Once vma denies write, undo our temporary denial count */ 2736 unmap_writable: 2737 if (file && vm_flags & VM_SHARED) 2738 mapping_unmap_writable(file->f_mapping); 2739 file = vma->vm_file; 2740 ksm_add_vma(vma); 2741 expanded: 2742 perf_event_mmap(vma); 2743 2744 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2745 if (vm_flags & VM_LOCKED) { 2746 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2747 is_vm_hugetlb_page(vma) || 2748 vma == get_gate_vma(current->mm)) 2749 vm_flags_clear(vma, VM_LOCKED_MASK); 2750 else 2751 mm->locked_vm += (len >> PAGE_SHIFT); 2752 } 2753 2754 if (file) 2755 uprobe_mmap(vma); 2756 2757 /* 2758 * New (or expanded) vma always get soft dirty status. 2759 * Otherwise user-space soft-dirty page tracker won't 2760 * be able to distinguish situation when vma area unmapped, 2761 * then new mapped in-place (which must be aimed as 2762 * a completely new data area). 2763 */ 2764 vm_flags_set(vma, VM_SOFTDIRTY); 2765 2766 vma_set_page_prot(vma); 2767 2768 validate_mm(mm); 2769 return addr; 2770 2771 close_and_free_vma: 2772 if (file && vma->vm_ops && vma->vm_ops->close) 2773 vma->vm_ops->close(vma); 2774 2775 if (file || vma->vm_file) { 2776 unmap_and_free_vma: 2777 fput(vma->vm_file); 2778 vma->vm_file = NULL; 2779 2780 /* Undo any partial mapping done by a device driver. */ 2781 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start, 2782 vma->vm_end, true); 2783 } 2784 if (file && (vm_flags & VM_SHARED)) 2785 mapping_unmap_writable(file->f_mapping); 2786 free_vma: 2787 vm_area_free(vma); 2788 unacct_error: 2789 if (charged) 2790 vm_unacct_memory(charged); 2791 validate_mm(mm); 2792 return error; 2793 } 2794 2795 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2796 { 2797 int ret; 2798 struct mm_struct *mm = current->mm; 2799 LIST_HEAD(uf); 2800 VMA_ITERATOR(vmi, mm, start); 2801 2802 if (mmap_write_lock_killable(mm)) 2803 return -EINTR; 2804 2805 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade); 2806 /* 2807 * Returning 1 indicates mmap_lock is downgraded. 2808 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2809 * it to 0 before return. 2810 */ 2811 if (ret == 1) { 2812 mmap_read_unlock(mm); 2813 ret = 0; 2814 } else 2815 mmap_write_unlock(mm); 2816 2817 userfaultfd_unmap_complete(mm, &uf); 2818 return ret; 2819 } 2820 2821 int vm_munmap(unsigned long start, size_t len) 2822 { 2823 return __vm_munmap(start, len, false); 2824 } 2825 EXPORT_SYMBOL(vm_munmap); 2826 2827 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2828 { 2829 addr = untagged_addr(addr); 2830 return __vm_munmap(addr, len, true); 2831 } 2832 2833 2834 /* 2835 * Emulation of deprecated remap_file_pages() syscall. 2836 */ 2837 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2838 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2839 { 2840 2841 struct mm_struct *mm = current->mm; 2842 struct vm_area_struct *vma; 2843 unsigned long populate = 0; 2844 unsigned long ret = -EINVAL; 2845 struct file *file; 2846 2847 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2848 current->comm, current->pid); 2849 2850 if (prot) 2851 return ret; 2852 start = start & PAGE_MASK; 2853 size = size & PAGE_MASK; 2854 2855 if (start + size <= start) 2856 return ret; 2857 2858 /* Does pgoff wrap? */ 2859 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2860 return ret; 2861 2862 if (mmap_write_lock_killable(mm)) 2863 return -EINTR; 2864 2865 vma = vma_lookup(mm, start); 2866 2867 if (!vma || !(vma->vm_flags & VM_SHARED)) 2868 goto out; 2869 2870 if (start + size > vma->vm_end) { 2871 VMA_ITERATOR(vmi, mm, vma->vm_end); 2872 struct vm_area_struct *next, *prev = vma; 2873 2874 for_each_vma_range(vmi, next, start + size) { 2875 /* hole between vmas ? */ 2876 if (next->vm_start != prev->vm_end) 2877 goto out; 2878 2879 if (next->vm_file != vma->vm_file) 2880 goto out; 2881 2882 if (next->vm_flags != vma->vm_flags) 2883 goto out; 2884 2885 if (start + size <= next->vm_end) 2886 break; 2887 2888 prev = next; 2889 } 2890 2891 if (!next) 2892 goto out; 2893 } 2894 2895 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2896 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2897 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2898 2899 flags &= MAP_NONBLOCK; 2900 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2901 if (vma->vm_flags & VM_LOCKED) 2902 flags |= MAP_LOCKED; 2903 2904 file = get_file(vma->vm_file); 2905 ret = do_mmap(vma->vm_file, start, size, 2906 prot, flags, pgoff, &populate, NULL); 2907 fput(file); 2908 out: 2909 mmap_write_unlock(mm); 2910 if (populate) 2911 mm_populate(ret, populate); 2912 if (!IS_ERR_VALUE(ret)) 2913 ret = 0; 2914 return ret; 2915 } 2916 2917 /* 2918 * do_vma_munmap() - Unmap a full or partial vma. 2919 * @vmi: The vma iterator pointing at the vma 2920 * @vma: The first vma to be munmapped 2921 * @start: the start of the address to unmap 2922 * @end: The end of the address to unmap 2923 * @uf: The userfaultfd list_head 2924 * @downgrade: Attempt to downgrade or not 2925 * 2926 * Returns: 0 on success and not downgraded, 1 on success and downgraded. 2927 * unmaps a VMA mapping when the vma iterator is already in position. 2928 * Does not handle alignment. 2929 */ 2930 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2931 unsigned long start, unsigned long end, 2932 struct list_head *uf, bool downgrade) 2933 { 2934 struct mm_struct *mm = vma->vm_mm; 2935 int ret; 2936 2937 arch_unmap(mm, start, end); 2938 ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade); 2939 validate_mm_mt(mm); 2940 return ret; 2941 } 2942 2943 /* 2944 * do_brk_flags() - Increase the brk vma if the flags match. 2945 * @vmi: The vma iterator 2946 * @addr: The start address 2947 * @len: The length of the increase 2948 * @vma: The vma, 2949 * @flags: The VMA Flags 2950 * 2951 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2952 * do not match then create a new anonymous VMA. Eventually we may be able to 2953 * do some brk-specific accounting here. 2954 */ 2955 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2956 unsigned long addr, unsigned long len, unsigned long flags) 2957 { 2958 struct mm_struct *mm = current->mm; 2959 struct vma_prepare vp; 2960 2961 validate_mm_mt(mm); 2962 /* 2963 * Check against address space limits by the changed size 2964 * Note: This happens *after* clearing old mappings in some code paths. 2965 */ 2966 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2967 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2968 return -ENOMEM; 2969 2970 if (mm->map_count > sysctl_max_map_count) 2971 return -ENOMEM; 2972 2973 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2974 return -ENOMEM; 2975 2976 /* 2977 * Expand the existing vma if possible; Note that singular lists do not 2978 * occur after forking, so the expand will only happen on new VMAs. 2979 */ 2980 if (vma && vma->vm_end == addr && !vma_policy(vma) && 2981 can_vma_merge_after(vma, flags, NULL, NULL, 2982 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 2983 if (vma_iter_prealloc(vmi)) 2984 goto unacct_fail; 2985 2986 init_vma_prep(&vp, vma); 2987 vma_prepare(&vp); 2988 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 2989 vma->vm_end = addr + len; 2990 vm_flags_set(vma, VM_SOFTDIRTY); 2991 vma_iter_store(vmi, vma); 2992 2993 vma_complete(&vp, vmi, mm); 2994 khugepaged_enter_vma(vma, flags); 2995 goto out; 2996 } 2997 2998 /* create a vma struct for an anonymous mapping */ 2999 vma = vm_area_alloc(mm); 3000 if (!vma) 3001 goto unacct_fail; 3002 3003 vma_set_anonymous(vma); 3004 vma->vm_start = addr; 3005 vma->vm_end = addr + len; 3006 vma->vm_pgoff = addr >> PAGE_SHIFT; 3007 vm_flags_init(vma, flags); 3008 vma->vm_page_prot = vm_get_page_prot(flags); 3009 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3010 goto mas_store_fail; 3011 3012 mm->map_count++; 3013 ksm_add_vma(vma); 3014 out: 3015 perf_event_mmap(vma); 3016 mm->total_vm += len >> PAGE_SHIFT; 3017 mm->data_vm += len >> PAGE_SHIFT; 3018 if (flags & VM_LOCKED) 3019 mm->locked_vm += (len >> PAGE_SHIFT); 3020 vm_flags_set(vma, VM_SOFTDIRTY); 3021 validate_mm(mm); 3022 return 0; 3023 3024 mas_store_fail: 3025 vm_area_free(vma); 3026 unacct_fail: 3027 vm_unacct_memory(len >> PAGE_SHIFT); 3028 return -ENOMEM; 3029 } 3030 3031 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3032 { 3033 struct mm_struct *mm = current->mm; 3034 struct vm_area_struct *vma = NULL; 3035 unsigned long len; 3036 int ret; 3037 bool populate; 3038 LIST_HEAD(uf); 3039 VMA_ITERATOR(vmi, mm, addr); 3040 3041 len = PAGE_ALIGN(request); 3042 if (len < request) 3043 return -ENOMEM; 3044 if (!len) 3045 return 0; 3046 3047 if (mmap_write_lock_killable(mm)) 3048 return -EINTR; 3049 3050 /* Until we need other flags, refuse anything except VM_EXEC. */ 3051 if ((flags & (~VM_EXEC)) != 0) 3052 return -EINVAL; 3053 3054 ret = check_brk_limits(addr, len); 3055 if (ret) 3056 goto limits_failed; 3057 3058 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3059 if (ret) 3060 goto munmap_failed; 3061 3062 vma = vma_prev(&vmi); 3063 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3064 populate = ((mm->def_flags & VM_LOCKED) != 0); 3065 mmap_write_unlock(mm); 3066 userfaultfd_unmap_complete(mm, &uf); 3067 if (populate && !ret) 3068 mm_populate(addr, len); 3069 return ret; 3070 3071 munmap_failed: 3072 limits_failed: 3073 mmap_write_unlock(mm); 3074 return ret; 3075 } 3076 EXPORT_SYMBOL(vm_brk_flags); 3077 3078 int vm_brk(unsigned long addr, unsigned long len) 3079 { 3080 return vm_brk_flags(addr, len, 0); 3081 } 3082 EXPORT_SYMBOL(vm_brk); 3083 3084 /* Release all mmaps. */ 3085 void exit_mmap(struct mm_struct *mm) 3086 { 3087 struct mmu_gather tlb; 3088 struct vm_area_struct *vma; 3089 unsigned long nr_accounted = 0; 3090 MA_STATE(mas, &mm->mm_mt, 0, 0); 3091 int count = 0; 3092 3093 /* mm's last user has gone, and its about to be pulled down */ 3094 mmu_notifier_release(mm); 3095 3096 mmap_read_lock(mm); 3097 arch_exit_mmap(mm); 3098 3099 vma = mas_find(&mas, ULONG_MAX); 3100 if (!vma) { 3101 /* Can happen if dup_mmap() received an OOM */ 3102 mmap_read_unlock(mm); 3103 return; 3104 } 3105 3106 lru_add_drain(); 3107 flush_cache_mm(mm); 3108 tlb_gather_mmu_fullmm(&tlb, mm); 3109 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3110 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3111 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false); 3112 mmap_read_unlock(mm); 3113 3114 /* 3115 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3116 * because the memory has been already freed. 3117 */ 3118 set_bit(MMF_OOM_SKIP, &mm->flags); 3119 mmap_write_lock(mm); 3120 mt_clear_in_rcu(&mm->mm_mt); 3121 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3122 USER_PGTABLES_CEILING, true); 3123 tlb_finish_mmu(&tlb); 3124 3125 /* 3126 * Walk the list again, actually closing and freeing it, with preemption 3127 * enabled, without holding any MM locks besides the unreachable 3128 * mmap_write_lock. 3129 */ 3130 do { 3131 if (vma->vm_flags & VM_ACCOUNT) 3132 nr_accounted += vma_pages(vma); 3133 remove_vma(vma, true); 3134 count++; 3135 cond_resched(); 3136 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3137 3138 BUG_ON(count != mm->map_count); 3139 3140 trace_exit_mmap(mm); 3141 __mt_destroy(&mm->mm_mt); 3142 mmap_write_unlock(mm); 3143 vm_unacct_memory(nr_accounted); 3144 } 3145 3146 /* Insert vm structure into process list sorted by address 3147 * and into the inode's i_mmap tree. If vm_file is non-NULL 3148 * then i_mmap_rwsem is taken here. 3149 */ 3150 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3151 { 3152 unsigned long charged = vma_pages(vma); 3153 3154 3155 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3156 return -ENOMEM; 3157 3158 if ((vma->vm_flags & VM_ACCOUNT) && 3159 security_vm_enough_memory_mm(mm, charged)) 3160 return -ENOMEM; 3161 3162 /* 3163 * The vm_pgoff of a purely anonymous vma should be irrelevant 3164 * until its first write fault, when page's anon_vma and index 3165 * are set. But now set the vm_pgoff it will almost certainly 3166 * end up with (unless mremap moves it elsewhere before that 3167 * first wfault), so /proc/pid/maps tells a consistent story. 3168 * 3169 * By setting it to reflect the virtual start address of the 3170 * vma, merges and splits can happen in a seamless way, just 3171 * using the existing file pgoff checks and manipulations. 3172 * Similarly in do_mmap and in do_brk_flags. 3173 */ 3174 if (vma_is_anonymous(vma)) { 3175 BUG_ON(vma->anon_vma); 3176 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3177 } 3178 3179 if (vma_link(mm, vma)) { 3180 vm_unacct_memory(charged); 3181 return -ENOMEM; 3182 } 3183 3184 return 0; 3185 } 3186 3187 /* 3188 * Copy the vma structure to a new location in the same mm, 3189 * prior to moving page table entries, to effect an mremap move. 3190 */ 3191 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3192 unsigned long addr, unsigned long len, pgoff_t pgoff, 3193 bool *need_rmap_locks) 3194 { 3195 struct vm_area_struct *vma = *vmap; 3196 unsigned long vma_start = vma->vm_start; 3197 struct mm_struct *mm = vma->vm_mm; 3198 struct vm_area_struct *new_vma, *prev; 3199 bool faulted_in_anon_vma = true; 3200 VMA_ITERATOR(vmi, mm, addr); 3201 3202 validate_mm_mt(mm); 3203 /* 3204 * If anonymous vma has not yet been faulted, update new pgoff 3205 * to match new location, to increase its chance of merging. 3206 */ 3207 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3208 pgoff = addr >> PAGE_SHIFT; 3209 faulted_in_anon_vma = false; 3210 } 3211 3212 new_vma = find_vma_prev(mm, addr, &prev); 3213 if (new_vma && new_vma->vm_start < addr + len) 3214 return NULL; /* should never get here */ 3215 3216 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3217 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3218 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3219 if (new_vma) { 3220 /* 3221 * Source vma may have been merged into new_vma 3222 */ 3223 if (unlikely(vma_start >= new_vma->vm_start && 3224 vma_start < new_vma->vm_end)) { 3225 /* 3226 * The only way we can get a vma_merge with 3227 * self during an mremap is if the vma hasn't 3228 * been faulted in yet and we were allowed to 3229 * reset the dst vma->vm_pgoff to the 3230 * destination address of the mremap to allow 3231 * the merge to happen. mremap must change the 3232 * vm_pgoff linearity between src and dst vmas 3233 * (in turn preventing a vma_merge) to be 3234 * safe. It is only safe to keep the vm_pgoff 3235 * linear if there are no pages mapped yet. 3236 */ 3237 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3238 *vmap = vma = new_vma; 3239 } 3240 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3241 } else { 3242 new_vma = vm_area_dup(vma); 3243 if (!new_vma) 3244 goto out; 3245 new_vma->vm_start = addr; 3246 new_vma->vm_end = addr + len; 3247 new_vma->vm_pgoff = pgoff; 3248 if (vma_dup_policy(vma, new_vma)) 3249 goto out_free_vma; 3250 if (anon_vma_clone(new_vma, vma)) 3251 goto out_free_mempol; 3252 if (new_vma->vm_file) 3253 get_file(new_vma->vm_file); 3254 if (new_vma->vm_ops && new_vma->vm_ops->open) 3255 new_vma->vm_ops->open(new_vma); 3256 vma_start_write(new_vma); 3257 if (vma_link(mm, new_vma)) 3258 goto out_vma_link; 3259 *need_rmap_locks = false; 3260 } 3261 validate_mm_mt(mm); 3262 return new_vma; 3263 3264 out_vma_link: 3265 if (new_vma->vm_ops && new_vma->vm_ops->close) 3266 new_vma->vm_ops->close(new_vma); 3267 3268 if (new_vma->vm_file) 3269 fput(new_vma->vm_file); 3270 3271 unlink_anon_vmas(new_vma); 3272 out_free_mempol: 3273 mpol_put(vma_policy(new_vma)); 3274 out_free_vma: 3275 vm_area_free(new_vma); 3276 out: 3277 validate_mm_mt(mm); 3278 return NULL; 3279 } 3280 3281 /* 3282 * Return true if the calling process may expand its vm space by the passed 3283 * number of pages 3284 */ 3285 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3286 { 3287 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3288 return false; 3289 3290 if (is_data_mapping(flags) && 3291 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3292 /* Workaround for Valgrind */ 3293 if (rlimit(RLIMIT_DATA) == 0 && 3294 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3295 return true; 3296 3297 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3298 current->comm, current->pid, 3299 (mm->data_vm + npages) << PAGE_SHIFT, 3300 rlimit(RLIMIT_DATA), 3301 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3302 3303 if (!ignore_rlimit_data) 3304 return false; 3305 } 3306 3307 return true; 3308 } 3309 3310 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3311 { 3312 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3313 3314 if (is_exec_mapping(flags)) 3315 mm->exec_vm += npages; 3316 else if (is_stack_mapping(flags)) 3317 mm->stack_vm += npages; 3318 else if (is_data_mapping(flags)) 3319 mm->data_vm += npages; 3320 } 3321 3322 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3323 3324 /* 3325 * Having a close hook prevents vma merging regardless of flags. 3326 */ 3327 static void special_mapping_close(struct vm_area_struct *vma) 3328 { 3329 } 3330 3331 static const char *special_mapping_name(struct vm_area_struct *vma) 3332 { 3333 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3334 } 3335 3336 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3337 { 3338 struct vm_special_mapping *sm = new_vma->vm_private_data; 3339 3340 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3341 return -EFAULT; 3342 3343 if (sm->mremap) 3344 return sm->mremap(sm, new_vma); 3345 3346 return 0; 3347 } 3348 3349 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3350 { 3351 /* 3352 * Forbid splitting special mappings - kernel has expectations over 3353 * the number of pages in mapping. Together with VM_DONTEXPAND 3354 * the size of vma should stay the same over the special mapping's 3355 * lifetime. 3356 */ 3357 return -EINVAL; 3358 } 3359 3360 static const struct vm_operations_struct special_mapping_vmops = { 3361 .close = special_mapping_close, 3362 .fault = special_mapping_fault, 3363 .mremap = special_mapping_mremap, 3364 .name = special_mapping_name, 3365 /* vDSO code relies that VVAR can't be accessed remotely */ 3366 .access = NULL, 3367 .may_split = special_mapping_split, 3368 }; 3369 3370 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3371 .close = special_mapping_close, 3372 .fault = special_mapping_fault, 3373 }; 3374 3375 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3376 { 3377 struct vm_area_struct *vma = vmf->vma; 3378 pgoff_t pgoff; 3379 struct page **pages; 3380 3381 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3382 pages = vma->vm_private_data; 3383 } else { 3384 struct vm_special_mapping *sm = vma->vm_private_data; 3385 3386 if (sm->fault) 3387 return sm->fault(sm, vmf->vma, vmf); 3388 3389 pages = sm->pages; 3390 } 3391 3392 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3393 pgoff--; 3394 3395 if (*pages) { 3396 struct page *page = *pages; 3397 get_page(page); 3398 vmf->page = page; 3399 return 0; 3400 } 3401 3402 return VM_FAULT_SIGBUS; 3403 } 3404 3405 static struct vm_area_struct *__install_special_mapping( 3406 struct mm_struct *mm, 3407 unsigned long addr, unsigned long len, 3408 unsigned long vm_flags, void *priv, 3409 const struct vm_operations_struct *ops) 3410 { 3411 int ret; 3412 struct vm_area_struct *vma; 3413 3414 validate_mm_mt(mm); 3415 vma = vm_area_alloc(mm); 3416 if (unlikely(vma == NULL)) 3417 return ERR_PTR(-ENOMEM); 3418 3419 vma->vm_start = addr; 3420 vma->vm_end = addr + len; 3421 3422 vm_flags_init(vma, (vm_flags | mm->def_flags | 3423 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3424 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3425 3426 vma->vm_ops = ops; 3427 vma->vm_private_data = priv; 3428 3429 ret = insert_vm_struct(mm, vma); 3430 if (ret) 3431 goto out; 3432 3433 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3434 3435 perf_event_mmap(vma); 3436 3437 validate_mm_mt(mm); 3438 return vma; 3439 3440 out: 3441 vm_area_free(vma); 3442 validate_mm_mt(mm); 3443 return ERR_PTR(ret); 3444 } 3445 3446 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3447 const struct vm_special_mapping *sm) 3448 { 3449 return vma->vm_private_data == sm && 3450 (vma->vm_ops == &special_mapping_vmops || 3451 vma->vm_ops == &legacy_special_mapping_vmops); 3452 } 3453 3454 /* 3455 * Called with mm->mmap_lock held for writing. 3456 * Insert a new vma covering the given region, with the given flags. 3457 * Its pages are supplied by the given array of struct page *. 3458 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3459 * The region past the last page supplied will always produce SIGBUS. 3460 * The array pointer and the pages it points to are assumed to stay alive 3461 * for as long as this mapping might exist. 3462 */ 3463 struct vm_area_struct *_install_special_mapping( 3464 struct mm_struct *mm, 3465 unsigned long addr, unsigned long len, 3466 unsigned long vm_flags, const struct vm_special_mapping *spec) 3467 { 3468 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3469 &special_mapping_vmops); 3470 } 3471 3472 int install_special_mapping(struct mm_struct *mm, 3473 unsigned long addr, unsigned long len, 3474 unsigned long vm_flags, struct page **pages) 3475 { 3476 struct vm_area_struct *vma = __install_special_mapping( 3477 mm, addr, len, vm_flags, (void *)pages, 3478 &legacy_special_mapping_vmops); 3479 3480 return PTR_ERR_OR_ZERO(vma); 3481 } 3482 3483 static DEFINE_MUTEX(mm_all_locks_mutex); 3484 3485 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3486 { 3487 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3488 /* 3489 * The LSB of head.next can't change from under us 3490 * because we hold the mm_all_locks_mutex. 3491 */ 3492 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3493 /* 3494 * We can safely modify head.next after taking the 3495 * anon_vma->root->rwsem. If some other vma in this mm shares 3496 * the same anon_vma we won't take it again. 3497 * 3498 * No need of atomic instructions here, head.next 3499 * can't change from under us thanks to the 3500 * anon_vma->root->rwsem. 3501 */ 3502 if (__test_and_set_bit(0, (unsigned long *) 3503 &anon_vma->root->rb_root.rb_root.rb_node)) 3504 BUG(); 3505 } 3506 } 3507 3508 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3509 { 3510 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3511 /* 3512 * AS_MM_ALL_LOCKS can't change from under us because 3513 * we hold the mm_all_locks_mutex. 3514 * 3515 * Operations on ->flags have to be atomic because 3516 * even if AS_MM_ALL_LOCKS is stable thanks to the 3517 * mm_all_locks_mutex, there may be other cpus 3518 * changing other bitflags in parallel to us. 3519 */ 3520 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3521 BUG(); 3522 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3523 } 3524 } 3525 3526 /* 3527 * This operation locks against the VM for all pte/vma/mm related 3528 * operations that could ever happen on a certain mm. This includes 3529 * vmtruncate, try_to_unmap, and all page faults. 3530 * 3531 * The caller must take the mmap_lock in write mode before calling 3532 * mm_take_all_locks(). The caller isn't allowed to release the 3533 * mmap_lock until mm_drop_all_locks() returns. 3534 * 3535 * mmap_lock in write mode is required in order to block all operations 3536 * that could modify pagetables and free pages without need of 3537 * altering the vma layout. It's also needed in write mode to avoid new 3538 * anon_vmas to be associated with existing vmas. 3539 * 3540 * A single task can't take more than one mm_take_all_locks() in a row 3541 * or it would deadlock. 3542 * 3543 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3544 * mapping->flags avoid to take the same lock twice, if more than one 3545 * vma in this mm is backed by the same anon_vma or address_space. 3546 * 3547 * We take locks in following order, accordingly to comment at beginning 3548 * of mm/rmap.c: 3549 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3550 * hugetlb mapping); 3551 * - all vmas marked locked 3552 * - all i_mmap_rwsem locks; 3553 * - all anon_vma->rwseml 3554 * 3555 * We can take all locks within these types randomly because the VM code 3556 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3557 * mm_all_locks_mutex. 3558 * 3559 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3560 * that may have to take thousand of locks. 3561 * 3562 * mm_take_all_locks() can fail if it's interrupted by signals. 3563 */ 3564 int mm_take_all_locks(struct mm_struct *mm) 3565 { 3566 struct vm_area_struct *vma; 3567 struct anon_vma_chain *avc; 3568 MA_STATE(mas, &mm->mm_mt, 0, 0); 3569 3570 mmap_assert_write_locked(mm); 3571 3572 mutex_lock(&mm_all_locks_mutex); 3573 3574 mas_for_each(&mas, vma, ULONG_MAX) { 3575 if (signal_pending(current)) 3576 goto out_unlock; 3577 vma_start_write(vma); 3578 } 3579 3580 mas_set(&mas, 0); 3581 mas_for_each(&mas, vma, ULONG_MAX) { 3582 if (signal_pending(current)) 3583 goto out_unlock; 3584 if (vma->vm_file && vma->vm_file->f_mapping && 3585 is_vm_hugetlb_page(vma)) 3586 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3587 } 3588 3589 mas_set(&mas, 0); 3590 mas_for_each(&mas, vma, ULONG_MAX) { 3591 if (signal_pending(current)) 3592 goto out_unlock; 3593 if (vma->vm_file && vma->vm_file->f_mapping && 3594 !is_vm_hugetlb_page(vma)) 3595 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3596 } 3597 3598 mas_set(&mas, 0); 3599 mas_for_each(&mas, vma, ULONG_MAX) { 3600 if (signal_pending(current)) 3601 goto out_unlock; 3602 if (vma->anon_vma) 3603 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3604 vm_lock_anon_vma(mm, avc->anon_vma); 3605 } 3606 3607 return 0; 3608 3609 out_unlock: 3610 mm_drop_all_locks(mm); 3611 return -EINTR; 3612 } 3613 3614 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3615 { 3616 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3617 /* 3618 * The LSB of head.next can't change to 0 from under 3619 * us because we hold the mm_all_locks_mutex. 3620 * 3621 * We must however clear the bitflag before unlocking 3622 * the vma so the users using the anon_vma->rb_root will 3623 * never see our bitflag. 3624 * 3625 * No need of atomic instructions here, head.next 3626 * can't change from under us until we release the 3627 * anon_vma->root->rwsem. 3628 */ 3629 if (!__test_and_clear_bit(0, (unsigned long *) 3630 &anon_vma->root->rb_root.rb_root.rb_node)) 3631 BUG(); 3632 anon_vma_unlock_write(anon_vma); 3633 } 3634 } 3635 3636 static void vm_unlock_mapping(struct address_space *mapping) 3637 { 3638 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3639 /* 3640 * AS_MM_ALL_LOCKS can't change to 0 from under us 3641 * because we hold the mm_all_locks_mutex. 3642 */ 3643 i_mmap_unlock_write(mapping); 3644 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3645 &mapping->flags)) 3646 BUG(); 3647 } 3648 } 3649 3650 /* 3651 * The mmap_lock cannot be released by the caller until 3652 * mm_drop_all_locks() returns. 3653 */ 3654 void mm_drop_all_locks(struct mm_struct *mm) 3655 { 3656 struct vm_area_struct *vma; 3657 struct anon_vma_chain *avc; 3658 MA_STATE(mas, &mm->mm_mt, 0, 0); 3659 3660 mmap_assert_write_locked(mm); 3661 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3662 3663 mas_for_each(&mas, vma, ULONG_MAX) { 3664 if (vma->anon_vma) 3665 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3666 vm_unlock_anon_vma(avc->anon_vma); 3667 if (vma->vm_file && vma->vm_file->f_mapping) 3668 vm_unlock_mapping(vma->vm_file->f_mapping); 3669 } 3670 vma_end_write_all(mm); 3671 3672 mutex_unlock(&mm_all_locks_mutex); 3673 } 3674 3675 /* 3676 * initialise the percpu counter for VM 3677 */ 3678 void __init mmap_init(void) 3679 { 3680 int ret; 3681 3682 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3683 VM_BUG_ON(ret); 3684 } 3685 3686 /* 3687 * Initialise sysctl_user_reserve_kbytes. 3688 * 3689 * This is intended to prevent a user from starting a single memory hogging 3690 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3691 * mode. 3692 * 3693 * The default value is min(3% of free memory, 128MB) 3694 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3695 */ 3696 static int init_user_reserve(void) 3697 { 3698 unsigned long free_kbytes; 3699 3700 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3701 3702 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3703 return 0; 3704 } 3705 subsys_initcall(init_user_reserve); 3706 3707 /* 3708 * Initialise sysctl_admin_reserve_kbytes. 3709 * 3710 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3711 * to log in and kill a memory hogging process. 3712 * 3713 * Systems with more than 256MB will reserve 8MB, enough to recover 3714 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3715 * only reserve 3% of free pages by default. 3716 */ 3717 static int init_admin_reserve(void) 3718 { 3719 unsigned long free_kbytes; 3720 3721 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3722 3723 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3724 return 0; 3725 } 3726 subsys_initcall(init_admin_reserve); 3727 3728 /* 3729 * Reinititalise user and admin reserves if memory is added or removed. 3730 * 3731 * The default user reserve max is 128MB, and the default max for the 3732 * admin reserve is 8MB. These are usually, but not always, enough to 3733 * enable recovery from a memory hogging process using login/sshd, a shell, 3734 * and tools like top. It may make sense to increase or even disable the 3735 * reserve depending on the existence of swap or variations in the recovery 3736 * tools. So, the admin may have changed them. 3737 * 3738 * If memory is added and the reserves have been eliminated or increased above 3739 * the default max, then we'll trust the admin. 3740 * 3741 * If memory is removed and there isn't enough free memory, then we 3742 * need to reset the reserves. 3743 * 3744 * Otherwise keep the reserve set by the admin. 3745 */ 3746 static int reserve_mem_notifier(struct notifier_block *nb, 3747 unsigned long action, void *data) 3748 { 3749 unsigned long tmp, free_kbytes; 3750 3751 switch (action) { 3752 case MEM_ONLINE: 3753 /* Default max is 128MB. Leave alone if modified by operator. */ 3754 tmp = sysctl_user_reserve_kbytes; 3755 if (0 < tmp && tmp < (1UL << 17)) 3756 init_user_reserve(); 3757 3758 /* Default max is 8MB. Leave alone if modified by operator. */ 3759 tmp = sysctl_admin_reserve_kbytes; 3760 if (0 < tmp && tmp < (1UL << 13)) 3761 init_admin_reserve(); 3762 3763 break; 3764 case MEM_OFFLINE: 3765 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3766 3767 if (sysctl_user_reserve_kbytes > free_kbytes) { 3768 init_user_reserve(); 3769 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3770 sysctl_user_reserve_kbytes); 3771 } 3772 3773 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3774 init_admin_reserve(); 3775 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3776 sysctl_admin_reserve_kbytes); 3777 } 3778 break; 3779 default: 3780 break; 3781 } 3782 return NOTIFY_OK; 3783 } 3784 3785 static int __meminit init_reserve_notifier(void) 3786 { 3787 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3788 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3789 3790 return 0; 3791 } 3792 subsys_initcall(init_reserve_notifier); 3793