1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlb.h> 52 #include <asm/mmu_context.h> 53 54 #include "internal.h" 55 56 #ifndef arch_mmap_check 57 #define arch_mmap_check(addr, len, flags) (0) 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 69 #endif 70 71 static bool ignore_rlimit_data; 72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 73 74 static void unmap_region(struct mm_struct *mm, 75 struct vm_area_struct *vma, struct vm_area_struct *prev, 76 unsigned long start, unsigned long end); 77 78 /* description of effects of mapping type and prot in current implementation. 79 * this is due to the limited x86 page protection hardware. The expected 80 * behavior is in parens: 81 * 82 * map_type prot 83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 85 * w: (no) no w: (no) no w: (yes) yes w: (no) no 86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 87 * 88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 89 * w: (no) no w: (no) no w: (copy) copy w: (no) no 90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 91 * 92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 93 * MAP_PRIVATE: 94 * r: (no) no 95 * w: (no) no 96 * x: (yes) yes 97 */ 98 pgprot_t protection_map[16] __ro_after_init = { 99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 101 }; 102 103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 105 { 106 return prot; 107 } 108 #endif 109 110 pgprot_t vm_get_page_prot(unsigned long vm_flags) 111 { 112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 114 pgprot_val(arch_vm_get_page_prot(vm_flags))); 115 116 return arch_filter_pgprot(ret); 117 } 118 EXPORT_SYMBOL(vm_get_page_prot); 119 120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 121 { 122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 123 } 124 125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 126 void vma_set_page_prot(struct vm_area_struct *vma) 127 { 128 unsigned long vm_flags = vma->vm_flags; 129 pgprot_t vm_page_prot; 130 131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 132 if (vma_wants_writenotify(vma, vm_page_prot)) { 133 vm_flags &= ~VM_SHARED; 134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 135 } 136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 138 } 139 140 /* 141 * Requires inode->i_mapping->i_mmap_rwsem 142 */ 143 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 144 struct file *file, struct address_space *mapping) 145 { 146 if (vma->vm_flags & VM_DENYWRITE) 147 atomic_inc(&file_inode(file)->i_writecount); 148 if (vma->vm_flags & VM_SHARED) 149 mapping_unmap_writable(mapping); 150 151 flush_dcache_mmap_lock(mapping); 152 vma_interval_tree_remove(vma, &mapping->i_mmap); 153 flush_dcache_mmap_unlock(mapping); 154 } 155 156 /* 157 * Unlink a file-based vm structure from its interval tree, to hide 158 * vma from rmap and vmtruncate before freeing its page tables. 159 */ 160 void unlink_file_vma(struct vm_area_struct *vma) 161 { 162 struct file *file = vma->vm_file; 163 164 if (file) { 165 struct address_space *mapping = file->f_mapping; 166 i_mmap_lock_write(mapping); 167 __remove_shared_vm_struct(vma, file, mapping); 168 i_mmap_unlock_write(mapping); 169 } 170 } 171 172 /* 173 * Close a vm structure and free it, returning the next. 174 */ 175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 176 { 177 struct vm_area_struct *next = vma->vm_next; 178 179 might_sleep(); 180 if (vma->vm_ops && vma->vm_ops->close) 181 vma->vm_ops->close(vma); 182 if (vma->vm_file) 183 fput(vma->vm_file); 184 mpol_put(vma_policy(vma)); 185 kmem_cache_free(vm_area_cachep, vma); 186 return next; 187 } 188 189 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf); 190 191 SYSCALL_DEFINE1(brk, unsigned long, brk) 192 { 193 unsigned long retval; 194 unsigned long newbrk, oldbrk; 195 struct mm_struct *mm = current->mm; 196 struct vm_area_struct *next; 197 unsigned long min_brk; 198 bool populate; 199 LIST_HEAD(uf); 200 201 if (down_write_killable(&mm->mmap_sem)) 202 return -EINTR; 203 204 #ifdef CONFIG_COMPAT_BRK 205 /* 206 * CONFIG_COMPAT_BRK can still be overridden by setting 207 * randomize_va_space to 2, which will still cause mm->start_brk 208 * to be arbitrarily shifted 209 */ 210 if (current->brk_randomized) 211 min_brk = mm->start_brk; 212 else 213 min_brk = mm->end_data; 214 #else 215 min_brk = mm->start_brk; 216 #endif 217 if (brk < min_brk) 218 goto out; 219 220 /* 221 * Check against rlimit here. If this check is done later after the test 222 * of oldbrk with newbrk then it can escape the test and let the data 223 * segment grow beyond its set limit the in case where the limit is 224 * not page aligned -Ram Gupta 225 */ 226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 227 mm->end_data, mm->start_data)) 228 goto out; 229 230 newbrk = PAGE_ALIGN(brk); 231 oldbrk = PAGE_ALIGN(mm->brk); 232 if (oldbrk == newbrk) 233 goto set_brk; 234 235 /* Always allow shrinking brk. */ 236 if (brk <= mm->brk) { 237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf)) 238 goto set_brk; 239 goto out; 240 } 241 242 /* Check against existing mmap mappings. */ 243 next = find_vma(mm, oldbrk); 244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 245 goto out; 246 247 /* Ok, looks good - let it rip. */ 248 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0) 249 goto out; 250 251 set_brk: 252 mm->brk = brk; 253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 254 up_write(&mm->mmap_sem); 255 userfaultfd_unmap_complete(mm, &uf); 256 if (populate) 257 mm_populate(oldbrk, newbrk - oldbrk); 258 return brk; 259 260 out: 261 retval = mm->brk; 262 up_write(&mm->mmap_sem); 263 return retval; 264 } 265 266 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 267 { 268 unsigned long max, prev_end, subtree_gap; 269 270 /* 271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 272 * allow two stack_guard_gaps between them here, and when choosing 273 * an unmapped area; whereas when expanding we only require one. 274 * That's a little inconsistent, but keeps the code here simpler. 275 */ 276 max = vm_start_gap(vma); 277 if (vma->vm_prev) { 278 prev_end = vm_end_gap(vma->vm_prev); 279 if (max > prev_end) 280 max -= prev_end; 281 else 282 max = 0; 283 } 284 if (vma->vm_rb.rb_left) { 285 subtree_gap = rb_entry(vma->vm_rb.rb_left, 286 struct vm_area_struct, vm_rb)->rb_subtree_gap; 287 if (subtree_gap > max) 288 max = subtree_gap; 289 } 290 if (vma->vm_rb.rb_right) { 291 subtree_gap = rb_entry(vma->vm_rb.rb_right, 292 struct vm_area_struct, vm_rb)->rb_subtree_gap; 293 if (subtree_gap > max) 294 max = subtree_gap; 295 } 296 return max; 297 } 298 299 #ifdef CONFIG_DEBUG_VM_RB 300 static int browse_rb(struct mm_struct *mm) 301 { 302 struct rb_root *root = &mm->mm_rb; 303 int i = 0, j, bug = 0; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) { 311 pr_emerg("vm_start %lx < prev %lx\n", 312 vma->vm_start, prev); 313 bug = 1; 314 } 315 if (vma->vm_start < pend) { 316 pr_emerg("vm_start %lx < pend %lx\n", 317 vma->vm_start, pend); 318 bug = 1; 319 } 320 if (vma->vm_start > vma->vm_end) { 321 pr_emerg("vm_start %lx > vm_end %lx\n", 322 vma->vm_start, vma->vm_end); 323 bug = 1; 324 } 325 spin_lock(&mm->page_table_lock); 326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 327 pr_emerg("free gap %lx, correct %lx\n", 328 vma->rb_subtree_gap, 329 vma_compute_subtree_gap(vma)); 330 bug = 1; 331 } 332 spin_unlock(&mm->page_table_lock); 333 i++; 334 pn = nd; 335 prev = vma->vm_start; 336 pend = vma->vm_end; 337 } 338 j = 0; 339 for (nd = pn; nd; nd = rb_prev(nd)) 340 j++; 341 if (i != j) { 342 pr_emerg("backwards %d, forwards %d\n", j, i); 343 bug = 1; 344 } 345 return bug ? -1 : i; 346 } 347 348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 349 { 350 struct rb_node *nd; 351 352 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 353 struct vm_area_struct *vma; 354 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 355 VM_BUG_ON_VMA(vma != ignore && 356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 357 vma); 358 } 359 } 360 361 static void validate_mm(struct mm_struct *mm) 362 { 363 int bug = 0; 364 int i = 0; 365 unsigned long highest_address = 0; 366 struct vm_area_struct *vma = mm->mmap; 367 368 while (vma) { 369 struct anon_vma *anon_vma = vma->anon_vma; 370 struct anon_vma_chain *avc; 371 372 if (anon_vma) { 373 anon_vma_lock_read(anon_vma); 374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 375 anon_vma_interval_tree_verify(avc); 376 anon_vma_unlock_read(anon_vma); 377 } 378 379 highest_address = vm_end_gap(vma); 380 vma = vma->vm_next; 381 i++; 382 } 383 if (i != mm->map_count) { 384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 385 bug = 1; 386 } 387 if (highest_address != mm->highest_vm_end) { 388 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 389 mm->highest_vm_end, highest_address); 390 bug = 1; 391 } 392 i = browse_rb(mm); 393 if (i != mm->map_count) { 394 if (i != -1) 395 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 396 bug = 1; 397 } 398 VM_BUG_ON_MM(bug, mm); 399 } 400 #else 401 #define validate_mm_rb(root, ignore) do { } while (0) 402 #define validate_mm(mm) do { } while (0) 403 #endif 404 405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 407 408 /* 409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 410 * vma->vm_prev->vm_end values changed, without modifying the vma's position 411 * in the rbtree. 412 */ 413 static void vma_gap_update(struct vm_area_struct *vma) 414 { 415 /* 416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 417 * function that does exacltly what we want. 418 */ 419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 420 } 421 422 static inline void vma_rb_insert(struct vm_area_struct *vma, 423 struct rb_root *root) 424 { 425 /* All rb_subtree_gap values must be consistent prior to insertion */ 426 validate_mm_rb(root, NULL); 427 428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 429 } 430 431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 432 { 433 /* 434 * Note rb_erase_augmented is a fairly large inline function, 435 * so make sure we instantiate it only once with our desired 436 * augmented rbtree callbacks. 437 */ 438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 439 } 440 441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 442 struct rb_root *root, 443 struct vm_area_struct *ignore) 444 { 445 /* 446 * All rb_subtree_gap values must be consistent prior to erase, 447 * with the possible exception of the "next" vma being erased if 448 * next->vm_start was reduced. 449 */ 450 validate_mm_rb(root, ignore); 451 452 __vma_rb_erase(vma, root); 453 } 454 455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 456 struct rb_root *root) 457 { 458 /* 459 * All rb_subtree_gap values must be consistent prior to erase, 460 * with the possible exception of the vma being erased. 461 */ 462 validate_mm_rb(root, vma); 463 464 __vma_rb_erase(vma, root); 465 } 466 467 /* 468 * vma has some anon_vma assigned, and is already inserted on that 469 * anon_vma's interval trees. 470 * 471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 472 * vma must be removed from the anon_vma's interval trees using 473 * anon_vma_interval_tree_pre_update_vma(). 474 * 475 * After the update, the vma will be reinserted using 476 * anon_vma_interval_tree_post_update_vma(). 477 * 478 * The entire update must be protected by exclusive mmap_sem and by 479 * the root anon_vma's mutex. 480 */ 481 static inline void 482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 483 { 484 struct anon_vma_chain *avc; 485 486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 488 } 489 490 static inline void 491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 492 { 493 struct anon_vma_chain *avc; 494 495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 497 } 498 499 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 500 unsigned long end, struct vm_area_struct **pprev, 501 struct rb_node ***rb_link, struct rb_node **rb_parent) 502 { 503 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 504 505 __rb_link = &mm->mm_rb.rb_node; 506 rb_prev = __rb_parent = NULL; 507 508 while (*__rb_link) { 509 struct vm_area_struct *vma_tmp; 510 511 __rb_parent = *__rb_link; 512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 513 514 if (vma_tmp->vm_end > addr) { 515 /* Fail if an existing vma overlaps the area */ 516 if (vma_tmp->vm_start < end) 517 return -ENOMEM; 518 __rb_link = &__rb_parent->rb_left; 519 } else { 520 rb_prev = __rb_parent; 521 __rb_link = &__rb_parent->rb_right; 522 } 523 } 524 525 *pprev = NULL; 526 if (rb_prev) 527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 528 *rb_link = __rb_link; 529 *rb_parent = __rb_parent; 530 return 0; 531 } 532 533 static unsigned long count_vma_pages_range(struct mm_struct *mm, 534 unsigned long addr, unsigned long end) 535 { 536 unsigned long nr_pages = 0; 537 struct vm_area_struct *vma; 538 539 /* Find first overlaping mapping */ 540 vma = find_vma_intersection(mm, addr, end); 541 if (!vma) 542 return 0; 543 544 nr_pages = (min(end, vma->vm_end) - 545 max(addr, vma->vm_start)) >> PAGE_SHIFT; 546 547 /* Iterate over the rest of the overlaps */ 548 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 549 unsigned long overlap_len; 550 551 if (vma->vm_start > end) 552 break; 553 554 overlap_len = min(end, vma->vm_end) - vma->vm_start; 555 nr_pages += overlap_len >> PAGE_SHIFT; 556 } 557 558 return nr_pages; 559 } 560 561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 562 struct rb_node **rb_link, struct rb_node *rb_parent) 563 { 564 /* Update tracking information for the gap following the new vma. */ 565 if (vma->vm_next) 566 vma_gap_update(vma->vm_next); 567 else 568 mm->highest_vm_end = vm_end_gap(vma); 569 570 /* 571 * vma->vm_prev wasn't known when we followed the rbtree to find the 572 * correct insertion point for that vma. As a result, we could not 573 * update the vma vm_rb parents rb_subtree_gap values on the way down. 574 * So, we first insert the vma with a zero rb_subtree_gap value 575 * (to be consistent with what we did on the way down), and then 576 * immediately update the gap to the correct value. Finally we 577 * rebalance the rbtree after all augmented values have been set. 578 */ 579 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 580 vma->rb_subtree_gap = 0; 581 vma_gap_update(vma); 582 vma_rb_insert(vma, &mm->mm_rb); 583 } 584 585 static void __vma_link_file(struct vm_area_struct *vma) 586 { 587 struct file *file; 588 589 file = vma->vm_file; 590 if (file) { 591 struct address_space *mapping = file->f_mapping; 592 593 if (vma->vm_flags & VM_DENYWRITE) 594 atomic_dec(&file_inode(file)->i_writecount); 595 if (vma->vm_flags & VM_SHARED) 596 atomic_inc(&mapping->i_mmap_writable); 597 598 flush_dcache_mmap_lock(mapping); 599 vma_interval_tree_insert(vma, &mapping->i_mmap); 600 flush_dcache_mmap_unlock(mapping); 601 } 602 } 603 604 static void 605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 606 struct vm_area_struct *prev, struct rb_node **rb_link, 607 struct rb_node *rb_parent) 608 { 609 __vma_link_list(mm, vma, prev, rb_parent); 610 __vma_link_rb(mm, vma, rb_link, rb_parent); 611 } 612 613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 614 struct vm_area_struct *prev, struct rb_node **rb_link, 615 struct rb_node *rb_parent) 616 { 617 struct address_space *mapping = NULL; 618 619 if (vma->vm_file) { 620 mapping = vma->vm_file->f_mapping; 621 i_mmap_lock_write(mapping); 622 } 623 624 __vma_link(mm, vma, prev, rb_link, rb_parent); 625 __vma_link_file(vma); 626 627 if (mapping) 628 i_mmap_unlock_write(mapping); 629 630 mm->map_count++; 631 validate_mm(mm); 632 } 633 634 /* 635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 636 * mm's list and rbtree. It has already been inserted into the interval tree. 637 */ 638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 639 { 640 struct vm_area_struct *prev; 641 struct rb_node **rb_link, *rb_parent; 642 643 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 644 &prev, &rb_link, &rb_parent)) 645 BUG(); 646 __vma_link(mm, vma, prev, rb_link, rb_parent); 647 mm->map_count++; 648 } 649 650 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 651 struct vm_area_struct *vma, 652 struct vm_area_struct *prev, 653 bool has_prev, 654 struct vm_area_struct *ignore) 655 { 656 struct vm_area_struct *next; 657 658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 659 next = vma->vm_next; 660 if (has_prev) 661 prev->vm_next = next; 662 else { 663 prev = vma->vm_prev; 664 if (prev) 665 prev->vm_next = next; 666 else 667 mm->mmap = next; 668 } 669 if (next) 670 next->vm_prev = prev; 671 672 /* Kill the cache */ 673 vmacache_invalidate(mm); 674 } 675 676 static inline void __vma_unlink_prev(struct mm_struct *mm, 677 struct vm_area_struct *vma, 678 struct vm_area_struct *prev) 679 { 680 __vma_unlink_common(mm, vma, prev, true, vma); 681 } 682 683 /* 684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 685 * is already present in an i_mmap tree without adjusting the tree. 686 * The following helper function should be used when such adjustments 687 * are necessary. The "insert" vma (if any) is to be inserted 688 * before we drop the necessary locks. 689 */ 690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 692 struct vm_area_struct *expand) 693 { 694 struct mm_struct *mm = vma->vm_mm; 695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 696 struct address_space *mapping = NULL; 697 struct rb_root_cached *root = NULL; 698 struct anon_vma *anon_vma = NULL; 699 struct file *file = vma->vm_file; 700 bool start_changed = false, end_changed = false; 701 long adjust_next = 0; 702 int remove_next = 0; 703 704 if (next && !insert) { 705 struct vm_area_struct *exporter = NULL, *importer = NULL; 706 707 if (end >= next->vm_end) { 708 /* 709 * vma expands, overlapping all the next, and 710 * perhaps the one after too (mprotect case 6). 711 * The only other cases that gets here are 712 * case 1, case 7 and case 8. 713 */ 714 if (next == expand) { 715 /* 716 * The only case where we don't expand "vma" 717 * and we expand "next" instead is case 8. 718 */ 719 VM_WARN_ON(end != next->vm_end); 720 /* 721 * remove_next == 3 means we're 722 * removing "vma" and that to do so we 723 * swapped "vma" and "next". 724 */ 725 remove_next = 3; 726 VM_WARN_ON(file != next->vm_file); 727 swap(vma, next); 728 } else { 729 VM_WARN_ON(expand != vma); 730 /* 731 * case 1, 6, 7, remove_next == 2 is case 6, 732 * remove_next == 1 is case 1 or 7. 733 */ 734 remove_next = 1 + (end > next->vm_end); 735 VM_WARN_ON(remove_next == 2 && 736 end != next->vm_next->vm_end); 737 VM_WARN_ON(remove_next == 1 && 738 end != next->vm_end); 739 /* trim end to next, for case 6 first pass */ 740 end = next->vm_end; 741 } 742 743 exporter = next; 744 importer = vma; 745 746 /* 747 * If next doesn't have anon_vma, import from vma after 748 * next, if the vma overlaps with it. 749 */ 750 if (remove_next == 2 && !next->anon_vma) 751 exporter = next->vm_next; 752 753 } else if (end > next->vm_start) { 754 /* 755 * vma expands, overlapping part of the next: 756 * mprotect case 5 shifting the boundary up. 757 */ 758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 759 exporter = next; 760 importer = vma; 761 VM_WARN_ON(expand != importer); 762 } else if (end < vma->vm_end) { 763 /* 764 * vma shrinks, and !insert tells it's not 765 * split_vma inserting another: so it must be 766 * mprotect case 4 shifting the boundary down. 767 */ 768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 769 exporter = vma; 770 importer = next; 771 VM_WARN_ON(expand != importer); 772 } 773 774 /* 775 * Easily overlooked: when mprotect shifts the boundary, 776 * make sure the expanding vma has anon_vma set if the 777 * shrinking vma had, to cover any anon pages imported. 778 */ 779 if (exporter && exporter->anon_vma && !importer->anon_vma) { 780 int error; 781 782 importer->anon_vma = exporter->anon_vma; 783 error = anon_vma_clone(importer, exporter); 784 if (error) 785 return error; 786 } 787 } 788 again: 789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 790 791 if (file) { 792 mapping = file->f_mapping; 793 root = &mapping->i_mmap; 794 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 795 796 if (adjust_next) 797 uprobe_munmap(next, next->vm_start, next->vm_end); 798 799 i_mmap_lock_write(mapping); 800 if (insert) { 801 /* 802 * Put into interval tree now, so instantiated pages 803 * are visible to arm/parisc __flush_dcache_page 804 * throughout; but we cannot insert into address 805 * space until vma start or end is updated. 806 */ 807 __vma_link_file(insert); 808 } 809 } 810 811 anon_vma = vma->anon_vma; 812 if (!anon_vma && adjust_next) 813 anon_vma = next->anon_vma; 814 if (anon_vma) { 815 VM_WARN_ON(adjust_next && next->anon_vma && 816 anon_vma != next->anon_vma); 817 anon_vma_lock_write(anon_vma); 818 anon_vma_interval_tree_pre_update_vma(vma); 819 if (adjust_next) 820 anon_vma_interval_tree_pre_update_vma(next); 821 } 822 823 if (root) { 824 flush_dcache_mmap_lock(mapping); 825 vma_interval_tree_remove(vma, root); 826 if (adjust_next) 827 vma_interval_tree_remove(next, root); 828 } 829 830 if (start != vma->vm_start) { 831 vma->vm_start = start; 832 start_changed = true; 833 } 834 if (end != vma->vm_end) { 835 vma->vm_end = end; 836 end_changed = true; 837 } 838 vma->vm_pgoff = pgoff; 839 if (adjust_next) { 840 next->vm_start += adjust_next << PAGE_SHIFT; 841 next->vm_pgoff += adjust_next; 842 } 843 844 if (root) { 845 if (adjust_next) 846 vma_interval_tree_insert(next, root); 847 vma_interval_tree_insert(vma, root); 848 flush_dcache_mmap_unlock(mapping); 849 } 850 851 if (remove_next) { 852 /* 853 * vma_merge has merged next into vma, and needs 854 * us to remove next before dropping the locks. 855 */ 856 if (remove_next != 3) 857 __vma_unlink_prev(mm, next, vma); 858 else 859 /* 860 * vma is not before next if they've been 861 * swapped. 862 * 863 * pre-swap() next->vm_start was reduced so 864 * tell validate_mm_rb to ignore pre-swap() 865 * "next" (which is stored in post-swap() 866 * "vma"). 867 */ 868 __vma_unlink_common(mm, next, NULL, false, vma); 869 if (file) 870 __remove_shared_vm_struct(next, file, mapping); 871 } else if (insert) { 872 /* 873 * split_vma has split insert from vma, and needs 874 * us to insert it before dropping the locks 875 * (it may either follow vma or precede it). 876 */ 877 __insert_vm_struct(mm, insert); 878 } else { 879 if (start_changed) 880 vma_gap_update(vma); 881 if (end_changed) { 882 if (!next) 883 mm->highest_vm_end = vm_end_gap(vma); 884 else if (!adjust_next) 885 vma_gap_update(next); 886 } 887 } 888 889 if (anon_vma) { 890 anon_vma_interval_tree_post_update_vma(vma); 891 if (adjust_next) 892 anon_vma_interval_tree_post_update_vma(next); 893 anon_vma_unlock_write(anon_vma); 894 } 895 if (mapping) 896 i_mmap_unlock_write(mapping); 897 898 if (root) { 899 uprobe_mmap(vma); 900 901 if (adjust_next) 902 uprobe_mmap(next); 903 } 904 905 if (remove_next) { 906 if (file) { 907 uprobe_munmap(next, next->vm_start, next->vm_end); 908 fput(file); 909 } 910 if (next->anon_vma) 911 anon_vma_merge(vma, next); 912 mm->map_count--; 913 mpol_put(vma_policy(next)); 914 kmem_cache_free(vm_area_cachep, next); 915 /* 916 * In mprotect's case 6 (see comments on vma_merge), 917 * we must remove another next too. It would clutter 918 * up the code too much to do both in one go. 919 */ 920 if (remove_next != 3) { 921 /* 922 * If "next" was removed and vma->vm_end was 923 * expanded (up) over it, in turn 924 * "next->vm_prev->vm_end" changed and the 925 * "vma->vm_next" gap must be updated. 926 */ 927 next = vma->vm_next; 928 } else { 929 /* 930 * For the scope of the comment "next" and 931 * "vma" considered pre-swap(): if "vma" was 932 * removed, next->vm_start was expanded (down) 933 * over it and the "next" gap must be updated. 934 * Because of the swap() the post-swap() "vma" 935 * actually points to pre-swap() "next" 936 * (post-swap() "next" as opposed is now a 937 * dangling pointer). 938 */ 939 next = vma; 940 } 941 if (remove_next == 2) { 942 remove_next = 1; 943 end = next->vm_end; 944 goto again; 945 } 946 else if (next) 947 vma_gap_update(next); 948 else { 949 /* 950 * If remove_next == 2 we obviously can't 951 * reach this path. 952 * 953 * If remove_next == 3 we can't reach this 954 * path because pre-swap() next is always not 955 * NULL. pre-swap() "next" is not being 956 * removed and its next->vm_end is not altered 957 * (and furthermore "end" already matches 958 * next->vm_end in remove_next == 3). 959 * 960 * We reach this only in the remove_next == 1 961 * case if the "next" vma that was removed was 962 * the highest vma of the mm. However in such 963 * case next->vm_end == "end" and the extended 964 * "vma" has vma->vm_end == next->vm_end so 965 * mm->highest_vm_end doesn't need any update 966 * in remove_next == 1 case. 967 */ 968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 969 } 970 } 971 if (insert && file) 972 uprobe_mmap(insert); 973 974 validate_mm(mm); 975 976 return 0; 977 } 978 979 /* 980 * If the vma has a ->close operation then the driver probably needs to release 981 * per-vma resources, so we don't attempt to merge those. 982 */ 983 static inline int is_mergeable_vma(struct vm_area_struct *vma, 984 struct file *file, unsigned long vm_flags, 985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 986 { 987 /* 988 * VM_SOFTDIRTY should not prevent from VMA merging, if we 989 * match the flags but dirty bit -- the caller should mark 990 * merged VMA as dirty. If dirty bit won't be excluded from 991 * comparison, we increase pressue on the memory system forcing 992 * the kernel to generate new VMAs when old one could be 993 * extended instead. 994 */ 995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 996 return 0; 997 if (vma->vm_file != file) 998 return 0; 999 if (vma->vm_ops && vma->vm_ops->close) 1000 return 0; 1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1002 return 0; 1003 return 1; 1004 } 1005 1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1007 struct anon_vma *anon_vma2, 1008 struct vm_area_struct *vma) 1009 { 1010 /* 1011 * The list_is_singular() test is to avoid merging VMA cloned from 1012 * parents. This can improve scalability caused by anon_vma lock. 1013 */ 1014 if ((!anon_vma1 || !anon_vma2) && (!vma || 1015 list_is_singular(&vma->anon_vma_chain))) 1016 return 1; 1017 return anon_vma1 == anon_vma2; 1018 } 1019 1020 /* 1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1022 * in front of (at a lower virtual address and file offset than) the vma. 1023 * 1024 * We cannot merge two vmas if they have differently assigned (non-NULL) 1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1026 * 1027 * We don't check here for the merged mmap wrapping around the end of pagecache 1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1029 * wrap, nor mmaps which cover the final page at index -1UL. 1030 */ 1031 static int 1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1033 struct anon_vma *anon_vma, struct file *file, 1034 pgoff_t vm_pgoff, 1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1036 { 1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1039 if (vma->vm_pgoff == vm_pgoff) 1040 return 1; 1041 } 1042 return 0; 1043 } 1044 1045 /* 1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1047 * beyond (at a higher virtual address and file offset than) the vma. 1048 * 1049 * We cannot merge two vmas if they have differently assigned (non-NULL) 1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1051 */ 1052 static int 1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1054 struct anon_vma *anon_vma, struct file *file, 1055 pgoff_t vm_pgoff, 1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1057 { 1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1060 pgoff_t vm_pglen; 1061 vm_pglen = vma_pages(vma); 1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1063 return 1; 1064 } 1065 return 0; 1066 } 1067 1068 /* 1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1070 * whether that can be merged with its predecessor or its successor. 1071 * Or both (it neatly fills a hole). 1072 * 1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1074 * certain not to be mapped by the time vma_merge is called; but when 1075 * called for mprotect, it is certain to be already mapped (either at 1076 * an offset within prev, or at the start of next), and the flags of 1077 * this area are about to be changed to vm_flags - and the no-change 1078 * case has already been eliminated. 1079 * 1080 * The following mprotect cases have to be considered, where AAAA is 1081 * the area passed down from mprotect_fixup, never extending beyond one 1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1083 * 1084 * AAAA AAAA AAAA AAAA 1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1086 * cannot merge might become might become might become 1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1089 * mremap move: PPPPXXXXXXXX 8 1090 * AAAA 1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1092 * might become case 1 below case 2 below case 3 below 1093 * 1094 * It is important for case 8 that the the vma NNNN overlapping the 1095 * region AAAA is never going to extended over XXXX. Instead XXXX must 1096 * be extended in region AAAA and NNNN must be removed. This way in 1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1098 * rmap_locks, the properties of the merged vma will be already 1099 * correct for the whole merged range. Some of those properties like 1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1101 * be correct for the whole merged range immediately after the 1102 * rmap_locks are released. Otherwise if XXXX would be removed and 1103 * NNNN would be extended over the XXXX range, remove_migration_ptes 1104 * or other rmap walkers (if working on addresses beyond the "end" 1105 * parameter) may establish ptes with the wrong permissions of NNNN 1106 * instead of the right permissions of XXXX. 1107 */ 1108 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1109 struct vm_area_struct *prev, unsigned long addr, 1110 unsigned long end, unsigned long vm_flags, 1111 struct anon_vma *anon_vma, struct file *file, 1112 pgoff_t pgoff, struct mempolicy *policy, 1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1114 { 1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1116 struct vm_area_struct *area, *next; 1117 int err; 1118 1119 /* 1120 * We later require that vma->vm_flags == vm_flags, 1121 * so this tests vma->vm_flags & VM_SPECIAL, too. 1122 */ 1123 if (vm_flags & VM_SPECIAL) 1124 return NULL; 1125 1126 if (prev) 1127 next = prev->vm_next; 1128 else 1129 next = mm->mmap; 1130 area = next; 1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1132 next = next->vm_next; 1133 1134 /* verify some invariant that must be enforced by the caller */ 1135 VM_WARN_ON(prev && addr <= prev->vm_start); 1136 VM_WARN_ON(area && end > area->vm_end); 1137 VM_WARN_ON(addr >= end); 1138 1139 /* 1140 * Can it merge with the predecessor? 1141 */ 1142 if (prev && prev->vm_end == addr && 1143 mpol_equal(vma_policy(prev), policy) && 1144 can_vma_merge_after(prev, vm_flags, 1145 anon_vma, file, pgoff, 1146 vm_userfaultfd_ctx)) { 1147 /* 1148 * OK, it can. Can we now merge in the successor as well? 1149 */ 1150 if (next && end == next->vm_start && 1151 mpol_equal(policy, vma_policy(next)) && 1152 can_vma_merge_before(next, vm_flags, 1153 anon_vma, file, 1154 pgoff+pglen, 1155 vm_userfaultfd_ctx) && 1156 is_mergeable_anon_vma(prev->anon_vma, 1157 next->anon_vma, NULL)) { 1158 /* cases 1, 6 */ 1159 err = __vma_adjust(prev, prev->vm_start, 1160 next->vm_end, prev->vm_pgoff, NULL, 1161 prev); 1162 } else /* cases 2, 5, 7 */ 1163 err = __vma_adjust(prev, prev->vm_start, 1164 end, prev->vm_pgoff, NULL, prev); 1165 if (err) 1166 return NULL; 1167 khugepaged_enter_vma_merge(prev, vm_flags); 1168 return prev; 1169 } 1170 1171 /* 1172 * Can this new request be merged in front of next? 1173 */ 1174 if (next && end == next->vm_start && 1175 mpol_equal(policy, vma_policy(next)) && 1176 can_vma_merge_before(next, vm_flags, 1177 anon_vma, file, pgoff+pglen, 1178 vm_userfaultfd_ctx)) { 1179 if (prev && addr < prev->vm_end) /* case 4 */ 1180 err = __vma_adjust(prev, prev->vm_start, 1181 addr, prev->vm_pgoff, NULL, next); 1182 else { /* cases 3, 8 */ 1183 err = __vma_adjust(area, addr, next->vm_end, 1184 next->vm_pgoff - pglen, NULL, next); 1185 /* 1186 * In case 3 area is already equal to next and 1187 * this is a noop, but in case 8 "area" has 1188 * been removed and next was expanded over it. 1189 */ 1190 area = next; 1191 } 1192 if (err) 1193 return NULL; 1194 khugepaged_enter_vma_merge(area, vm_flags); 1195 return area; 1196 } 1197 1198 return NULL; 1199 } 1200 1201 /* 1202 * Rough compatbility check to quickly see if it's even worth looking 1203 * at sharing an anon_vma. 1204 * 1205 * They need to have the same vm_file, and the flags can only differ 1206 * in things that mprotect may change. 1207 * 1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1209 * we can merge the two vma's. For example, we refuse to merge a vma if 1210 * there is a vm_ops->close() function, because that indicates that the 1211 * driver is doing some kind of reference counting. But that doesn't 1212 * really matter for the anon_vma sharing case. 1213 */ 1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1215 { 1216 return a->vm_end == b->vm_start && 1217 mpol_equal(vma_policy(a), vma_policy(b)) && 1218 a->vm_file == b->vm_file && 1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1221 } 1222 1223 /* 1224 * Do some basic sanity checking to see if we can re-use the anon_vma 1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1226 * the same as 'old', the other will be the new one that is trying 1227 * to share the anon_vma. 1228 * 1229 * NOTE! This runs with mm_sem held for reading, so it is possible that 1230 * the anon_vma of 'old' is concurrently in the process of being set up 1231 * by another page fault trying to merge _that_. But that's ok: if it 1232 * is being set up, that automatically means that it will be a singleton 1233 * acceptable for merging, so we can do all of this optimistically. But 1234 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1235 * 1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1238 * is to return an anon_vma that is "complex" due to having gone through 1239 * a fork). 1240 * 1241 * We also make sure that the two vma's are compatible (adjacent, 1242 * and with the same memory policies). That's all stable, even with just 1243 * a read lock on the mm_sem. 1244 */ 1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1246 { 1247 if (anon_vma_compatible(a, b)) { 1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1249 1250 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1251 return anon_vma; 1252 } 1253 return NULL; 1254 } 1255 1256 /* 1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1258 * neighbouring vmas for a suitable anon_vma, before it goes off 1259 * to allocate a new anon_vma. It checks because a repetitive 1260 * sequence of mprotects and faults may otherwise lead to distinct 1261 * anon_vmas being allocated, preventing vma merge in subsequent 1262 * mprotect. 1263 */ 1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1265 { 1266 struct anon_vma *anon_vma; 1267 struct vm_area_struct *near; 1268 1269 near = vma->vm_next; 1270 if (!near) 1271 goto try_prev; 1272 1273 anon_vma = reusable_anon_vma(near, vma, near); 1274 if (anon_vma) 1275 return anon_vma; 1276 try_prev: 1277 near = vma->vm_prev; 1278 if (!near) 1279 goto none; 1280 1281 anon_vma = reusable_anon_vma(near, near, vma); 1282 if (anon_vma) 1283 return anon_vma; 1284 none: 1285 /* 1286 * There's no absolute need to look only at touching neighbours: 1287 * we could search further afield for "compatible" anon_vmas. 1288 * But it would probably just be a waste of time searching, 1289 * or lead to too many vmas hanging off the same anon_vma. 1290 * We're trying to allow mprotect remerging later on, 1291 * not trying to minimize memory used for anon_vmas. 1292 */ 1293 return NULL; 1294 } 1295 1296 /* 1297 * If a hint addr is less than mmap_min_addr change hint to be as 1298 * low as possible but still greater than mmap_min_addr 1299 */ 1300 static inline unsigned long round_hint_to_min(unsigned long hint) 1301 { 1302 hint &= PAGE_MASK; 1303 if (((void *)hint != NULL) && 1304 (hint < mmap_min_addr)) 1305 return PAGE_ALIGN(mmap_min_addr); 1306 return hint; 1307 } 1308 1309 static inline int mlock_future_check(struct mm_struct *mm, 1310 unsigned long flags, 1311 unsigned long len) 1312 { 1313 unsigned long locked, lock_limit; 1314 1315 /* mlock MCL_FUTURE? */ 1316 if (flags & VM_LOCKED) { 1317 locked = len >> PAGE_SHIFT; 1318 locked += mm->locked_vm; 1319 lock_limit = rlimit(RLIMIT_MEMLOCK); 1320 lock_limit >>= PAGE_SHIFT; 1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1322 return -EAGAIN; 1323 } 1324 return 0; 1325 } 1326 1327 /* 1328 * The caller must hold down_write(¤t->mm->mmap_sem). 1329 */ 1330 unsigned long do_mmap(struct file *file, unsigned long addr, 1331 unsigned long len, unsigned long prot, 1332 unsigned long flags, vm_flags_t vm_flags, 1333 unsigned long pgoff, unsigned long *populate, 1334 struct list_head *uf) 1335 { 1336 struct mm_struct *mm = current->mm; 1337 int pkey = 0; 1338 1339 *populate = 0; 1340 1341 if (!len) 1342 return -EINVAL; 1343 1344 /* 1345 * Does the application expect PROT_READ to imply PROT_EXEC? 1346 * 1347 * (the exception is when the underlying filesystem is noexec 1348 * mounted, in which case we dont add PROT_EXEC.) 1349 */ 1350 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1351 if (!(file && path_noexec(&file->f_path))) 1352 prot |= PROT_EXEC; 1353 1354 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1355 if (flags & MAP_FIXED_NOREPLACE) 1356 flags |= MAP_FIXED; 1357 1358 if (!(flags & MAP_FIXED)) 1359 addr = round_hint_to_min(addr); 1360 1361 /* Careful about overflows.. */ 1362 len = PAGE_ALIGN(len); 1363 if (!len) 1364 return -ENOMEM; 1365 1366 /* offset overflow? */ 1367 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1368 return -EOVERFLOW; 1369 1370 /* Too many mappings? */ 1371 if (mm->map_count > sysctl_max_map_count) 1372 return -ENOMEM; 1373 1374 /* Obtain the address to map to. we verify (or select) it and ensure 1375 * that it represents a valid section of the address space. 1376 */ 1377 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1378 if (offset_in_page(addr)) 1379 return addr; 1380 1381 if (flags & MAP_FIXED_NOREPLACE) { 1382 struct vm_area_struct *vma = find_vma(mm, addr); 1383 1384 if (vma && vma->vm_start <= addr) 1385 return -EEXIST; 1386 } 1387 1388 if (prot == PROT_EXEC) { 1389 pkey = execute_only_pkey(mm); 1390 if (pkey < 0) 1391 pkey = 0; 1392 } 1393 1394 /* Do simple checking here so the lower-level routines won't have 1395 * to. we assume access permissions have been handled by the open 1396 * of the memory object, so we don't do any here. 1397 */ 1398 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1399 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1400 1401 if (flags & MAP_LOCKED) 1402 if (!can_do_mlock()) 1403 return -EPERM; 1404 1405 if (mlock_future_check(mm, vm_flags, len)) 1406 return -EAGAIN; 1407 1408 if (file) { 1409 struct inode *inode = file_inode(file); 1410 unsigned long flags_mask; 1411 1412 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1413 1414 switch (flags & MAP_TYPE) { 1415 case MAP_SHARED: 1416 /* 1417 * Force use of MAP_SHARED_VALIDATE with non-legacy 1418 * flags. E.g. MAP_SYNC is dangerous to use with 1419 * MAP_SHARED as you don't know which consistency model 1420 * you will get. We silently ignore unsupported flags 1421 * with MAP_SHARED to preserve backward compatibility. 1422 */ 1423 flags &= LEGACY_MAP_MASK; 1424 /* fall through */ 1425 case MAP_SHARED_VALIDATE: 1426 if (flags & ~flags_mask) 1427 return -EOPNOTSUPP; 1428 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1429 return -EACCES; 1430 1431 /* 1432 * Make sure we don't allow writing to an append-only 1433 * file.. 1434 */ 1435 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1436 return -EACCES; 1437 1438 /* 1439 * Make sure there are no mandatory locks on the file. 1440 */ 1441 if (locks_verify_locked(file)) 1442 return -EAGAIN; 1443 1444 vm_flags |= VM_SHARED | VM_MAYSHARE; 1445 if (!(file->f_mode & FMODE_WRITE)) 1446 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1447 1448 /* fall through */ 1449 case MAP_PRIVATE: 1450 if (!(file->f_mode & FMODE_READ)) 1451 return -EACCES; 1452 if (path_noexec(&file->f_path)) { 1453 if (vm_flags & VM_EXEC) 1454 return -EPERM; 1455 vm_flags &= ~VM_MAYEXEC; 1456 } 1457 1458 if (!file->f_op->mmap) 1459 return -ENODEV; 1460 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1461 return -EINVAL; 1462 break; 1463 1464 default: 1465 return -EINVAL; 1466 } 1467 } else { 1468 switch (flags & MAP_TYPE) { 1469 case MAP_SHARED: 1470 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1471 return -EINVAL; 1472 /* 1473 * Ignore pgoff. 1474 */ 1475 pgoff = 0; 1476 vm_flags |= VM_SHARED | VM_MAYSHARE; 1477 break; 1478 case MAP_PRIVATE: 1479 /* 1480 * Set pgoff according to addr for anon_vma. 1481 */ 1482 pgoff = addr >> PAGE_SHIFT; 1483 break; 1484 default: 1485 return -EINVAL; 1486 } 1487 } 1488 1489 /* 1490 * Set 'VM_NORESERVE' if we should not account for the 1491 * memory use of this mapping. 1492 */ 1493 if (flags & MAP_NORESERVE) { 1494 /* We honor MAP_NORESERVE if allowed to overcommit */ 1495 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1496 vm_flags |= VM_NORESERVE; 1497 1498 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1499 if (file && is_file_hugepages(file)) 1500 vm_flags |= VM_NORESERVE; 1501 } 1502 1503 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1504 if (!IS_ERR_VALUE(addr) && 1505 ((vm_flags & VM_LOCKED) || 1506 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1507 *populate = len; 1508 return addr; 1509 } 1510 1511 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1512 unsigned long prot, unsigned long flags, 1513 unsigned long fd, unsigned long pgoff) 1514 { 1515 struct file *file = NULL; 1516 unsigned long retval; 1517 1518 if (!(flags & MAP_ANONYMOUS)) { 1519 audit_mmap_fd(fd, flags); 1520 file = fget(fd); 1521 if (!file) 1522 return -EBADF; 1523 if (is_file_hugepages(file)) 1524 len = ALIGN(len, huge_page_size(hstate_file(file))); 1525 retval = -EINVAL; 1526 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1527 goto out_fput; 1528 } else if (flags & MAP_HUGETLB) { 1529 struct user_struct *user = NULL; 1530 struct hstate *hs; 1531 1532 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1533 if (!hs) 1534 return -EINVAL; 1535 1536 len = ALIGN(len, huge_page_size(hs)); 1537 /* 1538 * VM_NORESERVE is used because the reservations will be 1539 * taken when vm_ops->mmap() is called 1540 * A dummy user value is used because we are not locking 1541 * memory so no accounting is necessary 1542 */ 1543 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1544 VM_NORESERVE, 1545 &user, HUGETLB_ANONHUGE_INODE, 1546 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1547 if (IS_ERR(file)) 1548 return PTR_ERR(file); 1549 } 1550 1551 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1552 1553 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1554 out_fput: 1555 if (file) 1556 fput(file); 1557 return retval; 1558 } 1559 1560 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1561 unsigned long, prot, unsigned long, flags, 1562 unsigned long, fd, unsigned long, pgoff) 1563 { 1564 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1565 } 1566 1567 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1568 struct mmap_arg_struct { 1569 unsigned long addr; 1570 unsigned long len; 1571 unsigned long prot; 1572 unsigned long flags; 1573 unsigned long fd; 1574 unsigned long offset; 1575 }; 1576 1577 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1578 { 1579 struct mmap_arg_struct a; 1580 1581 if (copy_from_user(&a, arg, sizeof(a))) 1582 return -EFAULT; 1583 if (offset_in_page(a.offset)) 1584 return -EINVAL; 1585 1586 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1587 a.offset >> PAGE_SHIFT); 1588 } 1589 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1590 1591 /* 1592 * Some shared mappigns will want the pages marked read-only 1593 * to track write events. If so, we'll downgrade vm_page_prot 1594 * to the private version (using protection_map[] without the 1595 * VM_SHARED bit). 1596 */ 1597 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1598 { 1599 vm_flags_t vm_flags = vma->vm_flags; 1600 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1601 1602 /* If it was private or non-writable, the write bit is already clear */ 1603 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1604 return 0; 1605 1606 /* The backer wishes to know when pages are first written to? */ 1607 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1608 return 1; 1609 1610 /* The open routine did something to the protections that pgprot_modify 1611 * won't preserve? */ 1612 if (pgprot_val(vm_page_prot) != 1613 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1614 return 0; 1615 1616 /* Do we need to track softdirty? */ 1617 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1618 return 1; 1619 1620 /* Specialty mapping? */ 1621 if (vm_flags & VM_PFNMAP) 1622 return 0; 1623 1624 /* Can the mapping track the dirty pages? */ 1625 return vma->vm_file && vma->vm_file->f_mapping && 1626 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1627 } 1628 1629 /* 1630 * We account for memory if it's a private writeable mapping, 1631 * not hugepages and VM_NORESERVE wasn't set. 1632 */ 1633 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1634 { 1635 /* 1636 * hugetlb has its own accounting separate from the core VM 1637 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1638 */ 1639 if (file && is_file_hugepages(file)) 1640 return 0; 1641 1642 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1643 } 1644 1645 unsigned long mmap_region(struct file *file, unsigned long addr, 1646 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1647 struct list_head *uf) 1648 { 1649 struct mm_struct *mm = current->mm; 1650 struct vm_area_struct *vma, *prev; 1651 int error; 1652 struct rb_node **rb_link, *rb_parent; 1653 unsigned long charged = 0; 1654 1655 /* Check against address space limit. */ 1656 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1657 unsigned long nr_pages; 1658 1659 /* 1660 * MAP_FIXED may remove pages of mappings that intersects with 1661 * requested mapping. Account for the pages it would unmap. 1662 */ 1663 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1664 1665 if (!may_expand_vm(mm, vm_flags, 1666 (len >> PAGE_SHIFT) - nr_pages)) 1667 return -ENOMEM; 1668 } 1669 1670 /* Clear old maps */ 1671 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1672 &rb_parent)) { 1673 if (do_munmap(mm, addr, len, uf)) 1674 return -ENOMEM; 1675 } 1676 1677 /* 1678 * Private writable mapping: check memory availability 1679 */ 1680 if (accountable_mapping(file, vm_flags)) { 1681 charged = len >> PAGE_SHIFT; 1682 if (security_vm_enough_memory_mm(mm, charged)) 1683 return -ENOMEM; 1684 vm_flags |= VM_ACCOUNT; 1685 } 1686 1687 /* 1688 * Can we just expand an old mapping? 1689 */ 1690 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1691 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1692 if (vma) 1693 goto out; 1694 1695 /* 1696 * Determine the object being mapped and call the appropriate 1697 * specific mapper. the address has already been validated, but 1698 * not unmapped, but the maps are removed from the list. 1699 */ 1700 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1701 if (!vma) { 1702 error = -ENOMEM; 1703 goto unacct_error; 1704 } 1705 1706 vma->vm_mm = mm; 1707 vma->vm_start = addr; 1708 vma->vm_end = addr + len; 1709 vma->vm_flags = vm_flags; 1710 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1711 vma->vm_pgoff = pgoff; 1712 INIT_LIST_HEAD(&vma->anon_vma_chain); 1713 1714 if (file) { 1715 if (vm_flags & VM_DENYWRITE) { 1716 error = deny_write_access(file); 1717 if (error) 1718 goto free_vma; 1719 } 1720 if (vm_flags & VM_SHARED) { 1721 error = mapping_map_writable(file->f_mapping); 1722 if (error) 1723 goto allow_write_and_free_vma; 1724 } 1725 1726 /* ->mmap() can change vma->vm_file, but must guarantee that 1727 * vma_link() below can deny write-access if VM_DENYWRITE is set 1728 * and map writably if VM_SHARED is set. This usually means the 1729 * new file must not have been exposed to user-space, yet. 1730 */ 1731 vma->vm_file = get_file(file); 1732 error = call_mmap(file, vma); 1733 if (error) 1734 goto unmap_and_free_vma; 1735 1736 /* Can addr have changed?? 1737 * 1738 * Answer: Yes, several device drivers can do it in their 1739 * f_op->mmap method. -DaveM 1740 * Bug: If addr is changed, prev, rb_link, rb_parent should 1741 * be updated for vma_link() 1742 */ 1743 WARN_ON_ONCE(addr != vma->vm_start); 1744 1745 addr = vma->vm_start; 1746 vm_flags = vma->vm_flags; 1747 } else if (vm_flags & VM_SHARED) { 1748 error = shmem_zero_setup(vma); 1749 if (error) 1750 goto free_vma; 1751 } 1752 1753 vma_link(mm, vma, prev, rb_link, rb_parent); 1754 /* Once vma denies write, undo our temporary denial count */ 1755 if (file) { 1756 if (vm_flags & VM_SHARED) 1757 mapping_unmap_writable(file->f_mapping); 1758 if (vm_flags & VM_DENYWRITE) 1759 allow_write_access(file); 1760 } 1761 file = vma->vm_file; 1762 out: 1763 perf_event_mmap(vma); 1764 1765 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1766 if (vm_flags & VM_LOCKED) { 1767 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1768 vma == get_gate_vma(current->mm))) 1769 mm->locked_vm += (len >> PAGE_SHIFT); 1770 else 1771 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1772 } 1773 1774 if (file) 1775 uprobe_mmap(vma); 1776 1777 /* 1778 * New (or expanded) vma always get soft dirty status. 1779 * Otherwise user-space soft-dirty page tracker won't 1780 * be able to distinguish situation when vma area unmapped, 1781 * then new mapped in-place (which must be aimed as 1782 * a completely new data area). 1783 */ 1784 vma->vm_flags |= VM_SOFTDIRTY; 1785 1786 vma_set_page_prot(vma); 1787 1788 return addr; 1789 1790 unmap_and_free_vma: 1791 vma->vm_file = NULL; 1792 fput(file); 1793 1794 /* Undo any partial mapping done by a device driver. */ 1795 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1796 charged = 0; 1797 if (vm_flags & VM_SHARED) 1798 mapping_unmap_writable(file->f_mapping); 1799 allow_write_and_free_vma: 1800 if (vm_flags & VM_DENYWRITE) 1801 allow_write_access(file); 1802 free_vma: 1803 kmem_cache_free(vm_area_cachep, vma); 1804 unacct_error: 1805 if (charged) 1806 vm_unacct_memory(charged); 1807 return error; 1808 } 1809 1810 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1811 { 1812 /* 1813 * We implement the search by looking for an rbtree node that 1814 * immediately follows a suitable gap. That is, 1815 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1816 * - gap_end = vma->vm_start >= info->low_limit + length; 1817 * - gap_end - gap_start >= length 1818 */ 1819 1820 struct mm_struct *mm = current->mm; 1821 struct vm_area_struct *vma; 1822 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1823 1824 /* Adjust search length to account for worst case alignment overhead */ 1825 length = info->length + info->align_mask; 1826 if (length < info->length) 1827 return -ENOMEM; 1828 1829 /* Adjust search limits by the desired length */ 1830 if (info->high_limit < length) 1831 return -ENOMEM; 1832 high_limit = info->high_limit - length; 1833 1834 if (info->low_limit > high_limit) 1835 return -ENOMEM; 1836 low_limit = info->low_limit + length; 1837 1838 /* Check if rbtree root looks promising */ 1839 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1840 goto check_highest; 1841 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1842 if (vma->rb_subtree_gap < length) 1843 goto check_highest; 1844 1845 while (true) { 1846 /* Visit left subtree if it looks promising */ 1847 gap_end = vm_start_gap(vma); 1848 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1849 struct vm_area_struct *left = 1850 rb_entry(vma->vm_rb.rb_left, 1851 struct vm_area_struct, vm_rb); 1852 if (left->rb_subtree_gap >= length) { 1853 vma = left; 1854 continue; 1855 } 1856 } 1857 1858 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1859 check_current: 1860 /* Check if current node has a suitable gap */ 1861 if (gap_start > high_limit) 1862 return -ENOMEM; 1863 if (gap_end >= low_limit && 1864 gap_end > gap_start && gap_end - gap_start >= length) 1865 goto found; 1866 1867 /* Visit right subtree if it looks promising */ 1868 if (vma->vm_rb.rb_right) { 1869 struct vm_area_struct *right = 1870 rb_entry(vma->vm_rb.rb_right, 1871 struct vm_area_struct, vm_rb); 1872 if (right->rb_subtree_gap >= length) { 1873 vma = right; 1874 continue; 1875 } 1876 } 1877 1878 /* Go back up the rbtree to find next candidate node */ 1879 while (true) { 1880 struct rb_node *prev = &vma->vm_rb; 1881 if (!rb_parent(prev)) 1882 goto check_highest; 1883 vma = rb_entry(rb_parent(prev), 1884 struct vm_area_struct, vm_rb); 1885 if (prev == vma->vm_rb.rb_left) { 1886 gap_start = vm_end_gap(vma->vm_prev); 1887 gap_end = vm_start_gap(vma); 1888 goto check_current; 1889 } 1890 } 1891 } 1892 1893 check_highest: 1894 /* Check highest gap, which does not precede any rbtree node */ 1895 gap_start = mm->highest_vm_end; 1896 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1897 if (gap_start > high_limit) 1898 return -ENOMEM; 1899 1900 found: 1901 /* We found a suitable gap. Clip it with the original low_limit. */ 1902 if (gap_start < info->low_limit) 1903 gap_start = info->low_limit; 1904 1905 /* Adjust gap address to the desired alignment */ 1906 gap_start += (info->align_offset - gap_start) & info->align_mask; 1907 1908 VM_BUG_ON(gap_start + info->length > info->high_limit); 1909 VM_BUG_ON(gap_start + info->length > gap_end); 1910 return gap_start; 1911 } 1912 1913 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1914 { 1915 struct mm_struct *mm = current->mm; 1916 struct vm_area_struct *vma; 1917 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1918 1919 /* Adjust search length to account for worst case alignment overhead */ 1920 length = info->length + info->align_mask; 1921 if (length < info->length) 1922 return -ENOMEM; 1923 1924 /* 1925 * Adjust search limits by the desired length. 1926 * See implementation comment at top of unmapped_area(). 1927 */ 1928 gap_end = info->high_limit; 1929 if (gap_end < length) 1930 return -ENOMEM; 1931 high_limit = gap_end - length; 1932 1933 if (info->low_limit > high_limit) 1934 return -ENOMEM; 1935 low_limit = info->low_limit + length; 1936 1937 /* Check highest gap, which does not precede any rbtree node */ 1938 gap_start = mm->highest_vm_end; 1939 if (gap_start <= high_limit) 1940 goto found_highest; 1941 1942 /* Check if rbtree root looks promising */ 1943 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1944 return -ENOMEM; 1945 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1946 if (vma->rb_subtree_gap < length) 1947 return -ENOMEM; 1948 1949 while (true) { 1950 /* Visit right subtree if it looks promising */ 1951 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1952 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1953 struct vm_area_struct *right = 1954 rb_entry(vma->vm_rb.rb_right, 1955 struct vm_area_struct, vm_rb); 1956 if (right->rb_subtree_gap >= length) { 1957 vma = right; 1958 continue; 1959 } 1960 } 1961 1962 check_current: 1963 /* Check if current node has a suitable gap */ 1964 gap_end = vm_start_gap(vma); 1965 if (gap_end < low_limit) 1966 return -ENOMEM; 1967 if (gap_start <= high_limit && 1968 gap_end > gap_start && gap_end - gap_start >= length) 1969 goto found; 1970 1971 /* Visit left subtree if it looks promising */ 1972 if (vma->vm_rb.rb_left) { 1973 struct vm_area_struct *left = 1974 rb_entry(vma->vm_rb.rb_left, 1975 struct vm_area_struct, vm_rb); 1976 if (left->rb_subtree_gap >= length) { 1977 vma = left; 1978 continue; 1979 } 1980 } 1981 1982 /* Go back up the rbtree to find next candidate node */ 1983 while (true) { 1984 struct rb_node *prev = &vma->vm_rb; 1985 if (!rb_parent(prev)) 1986 return -ENOMEM; 1987 vma = rb_entry(rb_parent(prev), 1988 struct vm_area_struct, vm_rb); 1989 if (prev == vma->vm_rb.rb_right) { 1990 gap_start = vma->vm_prev ? 1991 vm_end_gap(vma->vm_prev) : 0; 1992 goto check_current; 1993 } 1994 } 1995 } 1996 1997 found: 1998 /* We found a suitable gap. Clip it with the original high_limit. */ 1999 if (gap_end > info->high_limit) 2000 gap_end = info->high_limit; 2001 2002 found_highest: 2003 /* Compute highest gap address at the desired alignment */ 2004 gap_end -= info->length; 2005 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2006 2007 VM_BUG_ON(gap_end < info->low_limit); 2008 VM_BUG_ON(gap_end < gap_start); 2009 return gap_end; 2010 } 2011 2012 /* Get an address range which is currently unmapped. 2013 * For shmat() with addr=0. 2014 * 2015 * Ugly calling convention alert: 2016 * Return value with the low bits set means error value, 2017 * ie 2018 * if (ret & ~PAGE_MASK) 2019 * error = ret; 2020 * 2021 * This function "knows" that -ENOMEM has the bits set. 2022 */ 2023 #ifndef HAVE_ARCH_UNMAPPED_AREA 2024 unsigned long 2025 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2026 unsigned long len, unsigned long pgoff, unsigned long flags) 2027 { 2028 struct mm_struct *mm = current->mm; 2029 struct vm_area_struct *vma, *prev; 2030 struct vm_unmapped_area_info info; 2031 2032 if (len > TASK_SIZE - mmap_min_addr) 2033 return -ENOMEM; 2034 2035 if (flags & MAP_FIXED) 2036 return addr; 2037 2038 if (addr) { 2039 addr = PAGE_ALIGN(addr); 2040 vma = find_vma_prev(mm, addr, &prev); 2041 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2042 (!vma || addr + len <= vm_start_gap(vma)) && 2043 (!prev || addr >= vm_end_gap(prev))) 2044 return addr; 2045 } 2046 2047 info.flags = 0; 2048 info.length = len; 2049 info.low_limit = mm->mmap_base; 2050 info.high_limit = TASK_SIZE; 2051 info.align_mask = 0; 2052 return vm_unmapped_area(&info); 2053 } 2054 #endif 2055 2056 /* 2057 * This mmap-allocator allocates new areas top-down from below the 2058 * stack's low limit (the base): 2059 */ 2060 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2061 unsigned long 2062 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 2063 const unsigned long len, const unsigned long pgoff, 2064 const unsigned long flags) 2065 { 2066 struct vm_area_struct *vma, *prev; 2067 struct mm_struct *mm = current->mm; 2068 unsigned long addr = addr0; 2069 struct vm_unmapped_area_info info; 2070 2071 /* requested length too big for entire address space */ 2072 if (len > TASK_SIZE - mmap_min_addr) 2073 return -ENOMEM; 2074 2075 if (flags & MAP_FIXED) 2076 return addr; 2077 2078 /* requesting a specific address */ 2079 if (addr) { 2080 addr = PAGE_ALIGN(addr); 2081 vma = find_vma_prev(mm, addr, &prev); 2082 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2083 (!vma || addr + len <= vm_start_gap(vma)) && 2084 (!prev || addr >= vm_end_gap(prev))) 2085 return addr; 2086 } 2087 2088 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2089 info.length = len; 2090 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2091 info.high_limit = mm->mmap_base; 2092 info.align_mask = 0; 2093 addr = vm_unmapped_area(&info); 2094 2095 /* 2096 * A failed mmap() very likely causes application failure, 2097 * so fall back to the bottom-up function here. This scenario 2098 * can happen with large stack limits and large mmap() 2099 * allocations. 2100 */ 2101 if (offset_in_page(addr)) { 2102 VM_BUG_ON(addr != -ENOMEM); 2103 info.flags = 0; 2104 info.low_limit = TASK_UNMAPPED_BASE; 2105 info.high_limit = TASK_SIZE; 2106 addr = vm_unmapped_area(&info); 2107 } 2108 2109 return addr; 2110 } 2111 #endif 2112 2113 unsigned long 2114 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2115 unsigned long pgoff, unsigned long flags) 2116 { 2117 unsigned long (*get_area)(struct file *, unsigned long, 2118 unsigned long, unsigned long, unsigned long); 2119 2120 unsigned long error = arch_mmap_check(addr, len, flags); 2121 if (error) 2122 return error; 2123 2124 /* Careful about overflows.. */ 2125 if (len > TASK_SIZE) 2126 return -ENOMEM; 2127 2128 get_area = current->mm->get_unmapped_area; 2129 if (file) { 2130 if (file->f_op->get_unmapped_area) 2131 get_area = file->f_op->get_unmapped_area; 2132 } else if (flags & MAP_SHARED) { 2133 /* 2134 * mmap_region() will call shmem_zero_setup() to create a file, 2135 * so use shmem's get_unmapped_area in case it can be huge. 2136 * do_mmap_pgoff() will clear pgoff, so match alignment. 2137 */ 2138 pgoff = 0; 2139 get_area = shmem_get_unmapped_area; 2140 } 2141 2142 addr = get_area(file, addr, len, pgoff, flags); 2143 if (IS_ERR_VALUE(addr)) 2144 return addr; 2145 2146 if (addr > TASK_SIZE - len) 2147 return -ENOMEM; 2148 if (offset_in_page(addr)) 2149 return -EINVAL; 2150 2151 error = security_mmap_addr(addr); 2152 return error ? error : addr; 2153 } 2154 2155 EXPORT_SYMBOL(get_unmapped_area); 2156 2157 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2158 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2159 { 2160 struct rb_node *rb_node; 2161 struct vm_area_struct *vma; 2162 2163 /* Check the cache first. */ 2164 vma = vmacache_find(mm, addr); 2165 if (likely(vma)) 2166 return vma; 2167 2168 rb_node = mm->mm_rb.rb_node; 2169 2170 while (rb_node) { 2171 struct vm_area_struct *tmp; 2172 2173 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2174 2175 if (tmp->vm_end > addr) { 2176 vma = tmp; 2177 if (tmp->vm_start <= addr) 2178 break; 2179 rb_node = rb_node->rb_left; 2180 } else 2181 rb_node = rb_node->rb_right; 2182 } 2183 2184 if (vma) 2185 vmacache_update(addr, vma); 2186 return vma; 2187 } 2188 2189 EXPORT_SYMBOL(find_vma); 2190 2191 /* 2192 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2193 */ 2194 struct vm_area_struct * 2195 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2196 struct vm_area_struct **pprev) 2197 { 2198 struct vm_area_struct *vma; 2199 2200 vma = find_vma(mm, addr); 2201 if (vma) { 2202 *pprev = vma->vm_prev; 2203 } else { 2204 struct rb_node *rb_node = mm->mm_rb.rb_node; 2205 *pprev = NULL; 2206 while (rb_node) { 2207 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2208 rb_node = rb_node->rb_right; 2209 } 2210 } 2211 return vma; 2212 } 2213 2214 /* 2215 * Verify that the stack growth is acceptable and 2216 * update accounting. This is shared with both the 2217 * grow-up and grow-down cases. 2218 */ 2219 static int acct_stack_growth(struct vm_area_struct *vma, 2220 unsigned long size, unsigned long grow) 2221 { 2222 struct mm_struct *mm = vma->vm_mm; 2223 unsigned long new_start; 2224 2225 /* address space limit tests */ 2226 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2227 return -ENOMEM; 2228 2229 /* Stack limit test */ 2230 if (size > rlimit(RLIMIT_STACK)) 2231 return -ENOMEM; 2232 2233 /* mlock limit tests */ 2234 if (vma->vm_flags & VM_LOCKED) { 2235 unsigned long locked; 2236 unsigned long limit; 2237 locked = mm->locked_vm + grow; 2238 limit = rlimit(RLIMIT_MEMLOCK); 2239 limit >>= PAGE_SHIFT; 2240 if (locked > limit && !capable(CAP_IPC_LOCK)) 2241 return -ENOMEM; 2242 } 2243 2244 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2245 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2246 vma->vm_end - size; 2247 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2248 return -EFAULT; 2249 2250 /* 2251 * Overcommit.. This must be the final test, as it will 2252 * update security statistics. 2253 */ 2254 if (security_vm_enough_memory_mm(mm, grow)) 2255 return -ENOMEM; 2256 2257 return 0; 2258 } 2259 2260 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2261 /* 2262 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2263 * vma is the last one with address > vma->vm_end. Have to extend vma. 2264 */ 2265 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2266 { 2267 struct mm_struct *mm = vma->vm_mm; 2268 struct vm_area_struct *next; 2269 unsigned long gap_addr; 2270 int error = 0; 2271 2272 if (!(vma->vm_flags & VM_GROWSUP)) 2273 return -EFAULT; 2274 2275 /* Guard against exceeding limits of the address space. */ 2276 address &= PAGE_MASK; 2277 if (address >= (TASK_SIZE & PAGE_MASK)) 2278 return -ENOMEM; 2279 address += PAGE_SIZE; 2280 2281 /* Enforce stack_guard_gap */ 2282 gap_addr = address + stack_guard_gap; 2283 2284 /* Guard against overflow */ 2285 if (gap_addr < address || gap_addr > TASK_SIZE) 2286 gap_addr = TASK_SIZE; 2287 2288 next = vma->vm_next; 2289 if (next && next->vm_start < gap_addr && 2290 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2291 if (!(next->vm_flags & VM_GROWSUP)) 2292 return -ENOMEM; 2293 /* Check that both stack segments have the same anon_vma? */ 2294 } 2295 2296 /* We must make sure the anon_vma is allocated. */ 2297 if (unlikely(anon_vma_prepare(vma))) 2298 return -ENOMEM; 2299 2300 /* 2301 * vma->vm_start/vm_end cannot change under us because the caller 2302 * is required to hold the mmap_sem in read mode. We need the 2303 * anon_vma lock to serialize against concurrent expand_stacks. 2304 */ 2305 anon_vma_lock_write(vma->anon_vma); 2306 2307 /* Somebody else might have raced and expanded it already */ 2308 if (address > vma->vm_end) { 2309 unsigned long size, grow; 2310 2311 size = address - vma->vm_start; 2312 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2313 2314 error = -ENOMEM; 2315 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2316 error = acct_stack_growth(vma, size, grow); 2317 if (!error) { 2318 /* 2319 * vma_gap_update() doesn't support concurrent 2320 * updates, but we only hold a shared mmap_sem 2321 * lock here, so we need to protect against 2322 * concurrent vma expansions. 2323 * anon_vma_lock_write() doesn't help here, as 2324 * we don't guarantee that all growable vmas 2325 * in a mm share the same root anon vma. 2326 * So, we reuse mm->page_table_lock to guard 2327 * against concurrent vma expansions. 2328 */ 2329 spin_lock(&mm->page_table_lock); 2330 if (vma->vm_flags & VM_LOCKED) 2331 mm->locked_vm += grow; 2332 vm_stat_account(mm, vma->vm_flags, grow); 2333 anon_vma_interval_tree_pre_update_vma(vma); 2334 vma->vm_end = address; 2335 anon_vma_interval_tree_post_update_vma(vma); 2336 if (vma->vm_next) 2337 vma_gap_update(vma->vm_next); 2338 else 2339 mm->highest_vm_end = vm_end_gap(vma); 2340 spin_unlock(&mm->page_table_lock); 2341 2342 perf_event_mmap(vma); 2343 } 2344 } 2345 } 2346 anon_vma_unlock_write(vma->anon_vma); 2347 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2348 validate_mm(mm); 2349 return error; 2350 } 2351 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2352 2353 /* 2354 * vma is the first one with address < vma->vm_start. Have to extend vma. 2355 */ 2356 int expand_downwards(struct vm_area_struct *vma, 2357 unsigned long address) 2358 { 2359 struct mm_struct *mm = vma->vm_mm; 2360 struct vm_area_struct *prev; 2361 int error; 2362 2363 address &= PAGE_MASK; 2364 error = security_mmap_addr(address); 2365 if (error) 2366 return error; 2367 2368 /* Enforce stack_guard_gap */ 2369 prev = vma->vm_prev; 2370 /* Check that both stack segments have the same anon_vma? */ 2371 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2372 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2373 if (address - prev->vm_end < stack_guard_gap) 2374 return -ENOMEM; 2375 } 2376 2377 /* We must make sure the anon_vma is allocated. */ 2378 if (unlikely(anon_vma_prepare(vma))) 2379 return -ENOMEM; 2380 2381 /* 2382 * vma->vm_start/vm_end cannot change under us because the caller 2383 * is required to hold the mmap_sem in read mode. We need the 2384 * anon_vma lock to serialize against concurrent expand_stacks. 2385 */ 2386 anon_vma_lock_write(vma->anon_vma); 2387 2388 /* Somebody else might have raced and expanded it already */ 2389 if (address < vma->vm_start) { 2390 unsigned long size, grow; 2391 2392 size = vma->vm_end - address; 2393 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2394 2395 error = -ENOMEM; 2396 if (grow <= vma->vm_pgoff) { 2397 error = acct_stack_growth(vma, size, grow); 2398 if (!error) { 2399 /* 2400 * vma_gap_update() doesn't support concurrent 2401 * updates, but we only hold a shared mmap_sem 2402 * lock here, so we need to protect against 2403 * concurrent vma expansions. 2404 * anon_vma_lock_write() doesn't help here, as 2405 * we don't guarantee that all growable vmas 2406 * in a mm share the same root anon vma. 2407 * So, we reuse mm->page_table_lock to guard 2408 * against concurrent vma expansions. 2409 */ 2410 spin_lock(&mm->page_table_lock); 2411 if (vma->vm_flags & VM_LOCKED) 2412 mm->locked_vm += grow; 2413 vm_stat_account(mm, vma->vm_flags, grow); 2414 anon_vma_interval_tree_pre_update_vma(vma); 2415 vma->vm_start = address; 2416 vma->vm_pgoff -= grow; 2417 anon_vma_interval_tree_post_update_vma(vma); 2418 vma_gap_update(vma); 2419 spin_unlock(&mm->page_table_lock); 2420 2421 perf_event_mmap(vma); 2422 } 2423 } 2424 } 2425 anon_vma_unlock_write(vma->anon_vma); 2426 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2427 validate_mm(mm); 2428 return error; 2429 } 2430 2431 /* enforced gap between the expanding stack and other mappings. */ 2432 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2433 2434 static int __init cmdline_parse_stack_guard_gap(char *p) 2435 { 2436 unsigned long val; 2437 char *endptr; 2438 2439 val = simple_strtoul(p, &endptr, 10); 2440 if (!*endptr) 2441 stack_guard_gap = val << PAGE_SHIFT; 2442 2443 return 0; 2444 } 2445 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2446 2447 #ifdef CONFIG_STACK_GROWSUP 2448 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2449 { 2450 return expand_upwards(vma, address); 2451 } 2452 2453 struct vm_area_struct * 2454 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2455 { 2456 struct vm_area_struct *vma, *prev; 2457 2458 addr &= PAGE_MASK; 2459 vma = find_vma_prev(mm, addr, &prev); 2460 if (vma && (vma->vm_start <= addr)) 2461 return vma; 2462 if (!prev || expand_stack(prev, addr)) 2463 return NULL; 2464 if (prev->vm_flags & VM_LOCKED) 2465 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2466 return prev; 2467 } 2468 #else 2469 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2470 { 2471 return expand_downwards(vma, address); 2472 } 2473 2474 struct vm_area_struct * 2475 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2476 { 2477 struct vm_area_struct *vma; 2478 unsigned long start; 2479 2480 addr &= PAGE_MASK; 2481 vma = find_vma(mm, addr); 2482 if (!vma) 2483 return NULL; 2484 if (vma->vm_start <= addr) 2485 return vma; 2486 if (!(vma->vm_flags & VM_GROWSDOWN)) 2487 return NULL; 2488 start = vma->vm_start; 2489 if (expand_stack(vma, addr)) 2490 return NULL; 2491 if (vma->vm_flags & VM_LOCKED) 2492 populate_vma_page_range(vma, addr, start, NULL); 2493 return vma; 2494 } 2495 #endif 2496 2497 EXPORT_SYMBOL_GPL(find_extend_vma); 2498 2499 /* 2500 * Ok - we have the memory areas we should free on the vma list, 2501 * so release them, and do the vma updates. 2502 * 2503 * Called with the mm semaphore held. 2504 */ 2505 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2506 { 2507 unsigned long nr_accounted = 0; 2508 2509 /* Update high watermark before we lower total_vm */ 2510 update_hiwater_vm(mm); 2511 do { 2512 long nrpages = vma_pages(vma); 2513 2514 if (vma->vm_flags & VM_ACCOUNT) 2515 nr_accounted += nrpages; 2516 vm_stat_account(mm, vma->vm_flags, -nrpages); 2517 vma = remove_vma(vma); 2518 } while (vma); 2519 vm_unacct_memory(nr_accounted); 2520 validate_mm(mm); 2521 } 2522 2523 /* 2524 * Get rid of page table information in the indicated region. 2525 * 2526 * Called with the mm semaphore held. 2527 */ 2528 static void unmap_region(struct mm_struct *mm, 2529 struct vm_area_struct *vma, struct vm_area_struct *prev, 2530 unsigned long start, unsigned long end) 2531 { 2532 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2533 struct mmu_gather tlb; 2534 2535 lru_add_drain(); 2536 tlb_gather_mmu(&tlb, mm, start, end); 2537 update_hiwater_rss(mm); 2538 unmap_vmas(&tlb, vma, start, end); 2539 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2540 next ? next->vm_start : USER_PGTABLES_CEILING); 2541 tlb_finish_mmu(&tlb, start, end); 2542 } 2543 2544 /* 2545 * Create a list of vma's touched by the unmap, removing them from the mm's 2546 * vma list as we go.. 2547 */ 2548 static void 2549 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2550 struct vm_area_struct *prev, unsigned long end) 2551 { 2552 struct vm_area_struct **insertion_point; 2553 struct vm_area_struct *tail_vma = NULL; 2554 2555 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2556 vma->vm_prev = NULL; 2557 do { 2558 vma_rb_erase(vma, &mm->mm_rb); 2559 mm->map_count--; 2560 tail_vma = vma; 2561 vma = vma->vm_next; 2562 } while (vma && vma->vm_start < end); 2563 *insertion_point = vma; 2564 if (vma) { 2565 vma->vm_prev = prev; 2566 vma_gap_update(vma); 2567 } else 2568 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2569 tail_vma->vm_next = NULL; 2570 2571 /* Kill the cache */ 2572 vmacache_invalidate(mm); 2573 } 2574 2575 /* 2576 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2577 * has already been checked or doesn't make sense to fail. 2578 */ 2579 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2580 unsigned long addr, int new_below) 2581 { 2582 struct vm_area_struct *new; 2583 int err; 2584 2585 if (vma->vm_ops && vma->vm_ops->split) { 2586 err = vma->vm_ops->split(vma, addr); 2587 if (err) 2588 return err; 2589 } 2590 2591 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2592 if (!new) 2593 return -ENOMEM; 2594 2595 /* most fields are the same, copy all, and then fixup */ 2596 *new = *vma; 2597 2598 INIT_LIST_HEAD(&new->anon_vma_chain); 2599 2600 if (new_below) 2601 new->vm_end = addr; 2602 else { 2603 new->vm_start = addr; 2604 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2605 } 2606 2607 err = vma_dup_policy(vma, new); 2608 if (err) 2609 goto out_free_vma; 2610 2611 err = anon_vma_clone(new, vma); 2612 if (err) 2613 goto out_free_mpol; 2614 2615 if (new->vm_file) 2616 get_file(new->vm_file); 2617 2618 if (new->vm_ops && new->vm_ops->open) 2619 new->vm_ops->open(new); 2620 2621 if (new_below) 2622 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2623 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2624 else 2625 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2626 2627 /* Success. */ 2628 if (!err) 2629 return 0; 2630 2631 /* Clean everything up if vma_adjust failed. */ 2632 if (new->vm_ops && new->vm_ops->close) 2633 new->vm_ops->close(new); 2634 if (new->vm_file) 2635 fput(new->vm_file); 2636 unlink_anon_vmas(new); 2637 out_free_mpol: 2638 mpol_put(vma_policy(new)); 2639 out_free_vma: 2640 kmem_cache_free(vm_area_cachep, new); 2641 return err; 2642 } 2643 2644 /* 2645 * Split a vma into two pieces at address 'addr', a new vma is allocated 2646 * either for the first part or the tail. 2647 */ 2648 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2649 unsigned long addr, int new_below) 2650 { 2651 if (mm->map_count >= sysctl_max_map_count) 2652 return -ENOMEM; 2653 2654 return __split_vma(mm, vma, addr, new_below); 2655 } 2656 2657 /* Munmap is split into 2 main parts -- this part which finds 2658 * what needs doing, and the areas themselves, which do the 2659 * work. This now handles partial unmappings. 2660 * Jeremy Fitzhardinge <jeremy@goop.org> 2661 */ 2662 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2663 struct list_head *uf) 2664 { 2665 unsigned long end; 2666 struct vm_area_struct *vma, *prev, *last; 2667 2668 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2669 return -EINVAL; 2670 2671 len = PAGE_ALIGN(len); 2672 if (len == 0) 2673 return -EINVAL; 2674 2675 /* Find the first overlapping VMA */ 2676 vma = find_vma(mm, start); 2677 if (!vma) 2678 return 0; 2679 prev = vma->vm_prev; 2680 /* we have start < vma->vm_end */ 2681 2682 /* if it doesn't overlap, we have nothing.. */ 2683 end = start + len; 2684 if (vma->vm_start >= end) 2685 return 0; 2686 2687 /* 2688 * If we need to split any vma, do it now to save pain later. 2689 * 2690 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2691 * unmapped vm_area_struct will remain in use: so lower split_vma 2692 * places tmp vma above, and higher split_vma places tmp vma below. 2693 */ 2694 if (start > vma->vm_start) { 2695 int error; 2696 2697 /* 2698 * Make sure that map_count on return from munmap() will 2699 * not exceed its limit; but let map_count go just above 2700 * its limit temporarily, to help free resources as expected. 2701 */ 2702 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2703 return -ENOMEM; 2704 2705 error = __split_vma(mm, vma, start, 0); 2706 if (error) 2707 return error; 2708 prev = vma; 2709 } 2710 2711 /* Does it split the last one? */ 2712 last = find_vma(mm, end); 2713 if (last && end > last->vm_start) { 2714 int error = __split_vma(mm, last, end, 1); 2715 if (error) 2716 return error; 2717 } 2718 vma = prev ? prev->vm_next : mm->mmap; 2719 2720 if (unlikely(uf)) { 2721 /* 2722 * If userfaultfd_unmap_prep returns an error the vmas 2723 * will remain splitted, but userland will get a 2724 * highly unexpected error anyway. This is no 2725 * different than the case where the first of the two 2726 * __split_vma fails, but we don't undo the first 2727 * split, despite we could. This is unlikely enough 2728 * failure that it's not worth optimizing it for. 2729 */ 2730 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2731 if (error) 2732 return error; 2733 } 2734 2735 /* 2736 * unlock any mlock()ed ranges before detaching vmas 2737 */ 2738 if (mm->locked_vm) { 2739 struct vm_area_struct *tmp = vma; 2740 while (tmp && tmp->vm_start < end) { 2741 if (tmp->vm_flags & VM_LOCKED) { 2742 mm->locked_vm -= vma_pages(tmp); 2743 munlock_vma_pages_all(tmp); 2744 } 2745 tmp = tmp->vm_next; 2746 } 2747 } 2748 2749 /* 2750 * Remove the vma's, and unmap the actual pages 2751 */ 2752 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2753 unmap_region(mm, vma, prev, start, end); 2754 2755 arch_unmap(mm, vma, start, end); 2756 2757 /* Fix up all other VM information */ 2758 remove_vma_list(mm, vma); 2759 2760 return 0; 2761 } 2762 2763 int vm_munmap(unsigned long start, size_t len) 2764 { 2765 int ret; 2766 struct mm_struct *mm = current->mm; 2767 LIST_HEAD(uf); 2768 2769 if (down_write_killable(&mm->mmap_sem)) 2770 return -EINTR; 2771 2772 ret = do_munmap(mm, start, len, &uf); 2773 up_write(&mm->mmap_sem); 2774 userfaultfd_unmap_complete(mm, &uf); 2775 return ret; 2776 } 2777 EXPORT_SYMBOL(vm_munmap); 2778 2779 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2780 { 2781 profile_munmap(addr); 2782 return vm_munmap(addr, len); 2783 } 2784 2785 2786 /* 2787 * Emulation of deprecated remap_file_pages() syscall. 2788 */ 2789 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2790 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2791 { 2792 2793 struct mm_struct *mm = current->mm; 2794 struct vm_area_struct *vma; 2795 unsigned long populate = 0; 2796 unsigned long ret = -EINVAL; 2797 struct file *file; 2798 2799 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2800 current->comm, current->pid); 2801 2802 if (prot) 2803 return ret; 2804 start = start & PAGE_MASK; 2805 size = size & PAGE_MASK; 2806 2807 if (start + size <= start) 2808 return ret; 2809 2810 /* Does pgoff wrap? */ 2811 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2812 return ret; 2813 2814 if (down_write_killable(&mm->mmap_sem)) 2815 return -EINTR; 2816 2817 vma = find_vma(mm, start); 2818 2819 if (!vma || !(vma->vm_flags & VM_SHARED)) 2820 goto out; 2821 2822 if (start < vma->vm_start) 2823 goto out; 2824 2825 if (start + size > vma->vm_end) { 2826 struct vm_area_struct *next; 2827 2828 for (next = vma->vm_next; next; next = next->vm_next) { 2829 /* hole between vmas ? */ 2830 if (next->vm_start != next->vm_prev->vm_end) 2831 goto out; 2832 2833 if (next->vm_file != vma->vm_file) 2834 goto out; 2835 2836 if (next->vm_flags != vma->vm_flags) 2837 goto out; 2838 2839 if (start + size <= next->vm_end) 2840 break; 2841 } 2842 2843 if (!next) 2844 goto out; 2845 } 2846 2847 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2848 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2849 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2850 2851 flags &= MAP_NONBLOCK; 2852 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2853 if (vma->vm_flags & VM_LOCKED) { 2854 struct vm_area_struct *tmp; 2855 flags |= MAP_LOCKED; 2856 2857 /* drop PG_Mlocked flag for over-mapped range */ 2858 for (tmp = vma; tmp->vm_start >= start + size; 2859 tmp = tmp->vm_next) { 2860 /* 2861 * Split pmd and munlock page on the border 2862 * of the range. 2863 */ 2864 vma_adjust_trans_huge(tmp, start, start + size, 0); 2865 2866 munlock_vma_pages_range(tmp, 2867 max(tmp->vm_start, start), 2868 min(tmp->vm_end, start + size)); 2869 } 2870 } 2871 2872 file = get_file(vma->vm_file); 2873 ret = do_mmap_pgoff(vma->vm_file, start, size, 2874 prot, flags, pgoff, &populate, NULL); 2875 fput(file); 2876 out: 2877 up_write(&mm->mmap_sem); 2878 if (populate) 2879 mm_populate(ret, populate); 2880 if (!IS_ERR_VALUE(ret)) 2881 ret = 0; 2882 return ret; 2883 } 2884 2885 static inline void verify_mm_writelocked(struct mm_struct *mm) 2886 { 2887 #ifdef CONFIG_DEBUG_VM 2888 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2889 WARN_ON(1); 2890 up_read(&mm->mmap_sem); 2891 } 2892 #endif 2893 } 2894 2895 /* 2896 * this is really a simplified "do_mmap". it only handles 2897 * anonymous maps. eventually we may be able to do some 2898 * brk-specific accounting here. 2899 */ 2900 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf) 2901 { 2902 struct mm_struct *mm = current->mm; 2903 struct vm_area_struct *vma, *prev; 2904 unsigned long len; 2905 struct rb_node **rb_link, *rb_parent; 2906 pgoff_t pgoff = addr >> PAGE_SHIFT; 2907 int error; 2908 2909 len = PAGE_ALIGN(request); 2910 if (len < request) 2911 return -ENOMEM; 2912 if (!len) 2913 return 0; 2914 2915 /* Until we need other flags, refuse anything except VM_EXEC. */ 2916 if ((flags & (~VM_EXEC)) != 0) 2917 return -EINVAL; 2918 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2919 2920 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2921 if (offset_in_page(error)) 2922 return error; 2923 2924 error = mlock_future_check(mm, mm->def_flags, len); 2925 if (error) 2926 return error; 2927 2928 /* 2929 * mm->mmap_sem is required to protect against another thread 2930 * changing the mappings in case we sleep. 2931 */ 2932 verify_mm_writelocked(mm); 2933 2934 /* 2935 * Clear old maps. this also does some error checking for us 2936 */ 2937 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2938 &rb_parent)) { 2939 if (do_munmap(mm, addr, len, uf)) 2940 return -ENOMEM; 2941 } 2942 2943 /* Check against address space limits *after* clearing old maps... */ 2944 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2945 return -ENOMEM; 2946 2947 if (mm->map_count > sysctl_max_map_count) 2948 return -ENOMEM; 2949 2950 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2951 return -ENOMEM; 2952 2953 /* Can we just expand an old private anonymous mapping? */ 2954 vma = vma_merge(mm, prev, addr, addr + len, flags, 2955 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2956 if (vma) 2957 goto out; 2958 2959 /* 2960 * create a vma struct for an anonymous mapping 2961 */ 2962 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2963 if (!vma) { 2964 vm_unacct_memory(len >> PAGE_SHIFT); 2965 return -ENOMEM; 2966 } 2967 2968 INIT_LIST_HEAD(&vma->anon_vma_chain); 2969 vma->vm_mm = mm; 2970 vma->vm_start = addr; 2971 vma->vm_end = addr + len; 2972 vma->vm_pgoff = pgoff; 2973 vma->vm_flags = flags; 2974 vma->vm_page_prot = vm_get_page_prot(flags); 2975 vma_link(mm, vma, prev, rb_link, rb_parent); 2976 out: 2977 perf_event_mmap(vma); 2978 mm->total_vm += len >> PAGE_SHIFT; 2979 mm->data_vm += len >> PAGE_SHIFT; 2980 if (flags & VM_LOCKED) 2981 mm->locked_vm += (len >> PAGE_SHIFT); 2982 vma->vm_flags |= VM_SOFTDIRTY; 2983 return 0; 2984 } 2985 2986 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf) 2987 { 2988 return do_brk_flags(addr, len, 0, uf); 2989 } 2990 2991 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags) 2992 { 2993 struct mm_struct *mm = current->mm; 2994 int ret; 2995 bool populate; 2996 LIST_HEAD(uf); 2997 2998 if (down_write_killable(&mm->mmap_sem)) 2999 return -EINTR; 3000 3001 ret = do_brk_flags(addr, len, flags, &uf); 3002 populate = ((mm->def_flags & VM_LOCKED) != 0); 3003 up_write(&mm->mmap_sem); 3004 userfaultfd_unmap_complete(mm, &uf); 3005 if (populate && !ret) 3006 mm_populate(addr, len); 3007 return ret; 3008 } 3009 EXPORT_SYMBOL(vm_brk_flags); 3010 3011 int vm_brk(unsigned long addr, unsigned long len) 3012 { 3013 return vm_brk_flags(addr, len, 0); 3014 } 3015 EXPORT_SYMBOL(vm_brk); 3016 3017 /* Release all mmaps. */ 3018 void exit_mmap(struct mm_struct *mm) 3019 { 3020 struct mmu_gather tlb; 3021 struct vm_area_struct *vma; 3022 unsigned long nr_accounted = 0; 3023 3024 /* mm's last user has gone, and its about to be pulled down */ 3025 mmu_notifier_release(mm); 3026 3027 if (mm->locked_vm) { 3028 vma = mm->mmap; 3029 while (vma) { 3030 if (vma->vm_flags & VM_LOCKED) 3031 munlock_vma_pages_all(vma); 3032 vma = vma->vm_next; 3033 } 3034 } 3035 3036 arch_exit_mmap(mm); 3037 3038 vma = mm->mmap; 3039 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3040 return; 3041 3042 lru_add_drain(); 3043 flush_cache_mm(mm); 3044 tlb_gather_mmu(&tlb, mm, 0, -1); 3045 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3046 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3047 unmap_vmas(&tlb, vma, 0, -1); 3048 3049 if (unlikely(mm_is_oom_victim(mm))) { 3050 /* 3051 * Wait for oom_reap_task() to stop working on this 3052 * mm. Because MMF_OOM_SKIP is already set before 3053 * calling down_read(), oom_reap_task() will not run 3054 * on this "mm" post up_write(). 3055 * 3056 * mm_is_oom_victim() cannot be set from under us 3057 * either because victim->mm is already set to NULL 3058 * under task_lock before calling mmput and oom_mm is 3059 * set not NULL by the OOM killer only if victim->mm 3060 * is found not NULL while holding the task_lock. 3061 */ 3062 set_bit(MMF_OOM_SKIP, &mm->flags); 3063 down_write(&mm->mmap_sem); 3064 up_write(&mm->mmap_sem); 3065 } 3066 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3067 tlb_finish_mmu(&tlb, 0, -1); 3068 3069 /* 3070 * Walk the list again, actually closing and freeing it, 3071 * with preemption enabled, without holding any MM locks. 3072 */ 3073 while (vma) { 3074 if (vma->vm_flags & VM_ACCOUNT) 3075 nr_accounted += vma_pages(vma); 3076 vma = remove_vma(vma); 3077 } 3078 vm_unacct_memory(nr_accounted); 3079 } 3080 3081 /* Insert vm structure into process list sorted by address 3082 * and into the inode's i_mmap tree. If vm_file is non-NULL 3083 * then i_mmap_rwsem is taken here. 3084 */ 3085 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3086 { 3087 struct vm_area_struct *prev; 3088 struct rb_node **rb_link, *rb_parent; 3089 3090 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3091 &prev, &rb_link, &rb_parent)) 3092 return -ENOMEM; 3093 if ((vma->vm_flags & VM_ACCOUNT) && 3094 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3095 return -ENOMEM; 3096 3097 /* 3098 * The vm_pgoff of a purely anonymous vma should be irrelevant 3099 * until its first write fault, when page's anon_vma and index 3100 * are set. But now set the vm_pgoff it will almost certainly 3101 * end up with (unless mremap moves it elsewhere before that 3102 * first wfault), so /proc/pid/maps tells a consistent story. 3103 * 3104 * By setting it to reflect the virtual start address of the 3105 * vma, merges and splits can happen in a seamless way, just 3106 * using the existing file pgoff checks and manipulations. 3107 * Similarly in do_mmap_pgoff and in do_brk. 3108 */ 3109 if (vma_is_anonymous(vma)) { 3110 BUG_ON(vma->anon_vma); 3111 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3112 } 3113 3114 vma_link(mm, vma, prev, rb_link, rb_parent); 3115 return 0; 3116 } 3117 3118 /* 3119 * Copy the vma structure to a new location in the same mm, 3120 * prior to moving page table entries, to effect an mremap move. 3121 */ 3122 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3123 unsigned long addr, unsigned long len, pgoff_t pgoff, 3124 bool *need_rmap_locks) 3125 { 3126 struct vm_area_struct *vma = *vmap; 3127 unsigned long vma_start = vma->vm_start; 3128 struct mm_struct *mm = vma->vm_mm; 3129 struct vm_area_struct *new_vma, *prev; 3130 struct rb_node **rb_link, *rb_parent; 3131 bool faulted_in_anon_vma = true; 3132 3133 /* 3134 * If anonymous vma has not yet been faulted, update new pgoff 3135 * to match new location, to increase its chance of merging. 3136 */ 3137 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3138 pgoff = addr >> PAGE_SHIFT; 3139 faulted_in_anon_vma = false; 3140 } 3141 3142 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3143 return NULL; /* should never get here */ 3144 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3145 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3146 vma->vm_userfaultfd_ctx); 3147 if (new_vma) { 3148 /* 3149 * Source vma may have been merged into new_vma 3150 */ 3151 if (unlikely(vma_start >= new_vma->vm_start && 3152 vma_start < new_vma->vm_end)) { 3153 /* 3154 * The only way we can get a vma_merge with 3155 * self during an mremap is if the vma hasn't 3156 * been faulted in yet and we were allowed to 3157 * reset the dst vma->vm_pgoff to the 3158 * destination address of the mremap to allow 3159 * the merge to happen. mremap must change the 3160 * vm_pgoff linearity between src and dst vmas 3161 * (in turn preventing a vma_merge) to be 3162 * safe. It is only safe to keep the vm_pgoff 3163 * linear if there are no pages mapped yet. 3164 */ 3165 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3166 *vmap = vma = new_vma; 3167 } 3168 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3169 } else { 3170 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3171 if (!new_vma) 3172 goto out; 3173 *new_vma = *vma; 3174 new_vma->vm_start = addr; 3175 new_vma->vm_end = addr + len; 3176 new_vma->vm_pgoff = pgoff; 3177 if (vma_dup_policy(vma, new_vma)) 3178 goto out_free_vma; 3179 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3180 if (anon_vma_clone(new_vma, vma)) 3181 goto out_free_mempol; 3182 if (new_vma->vm_file) 3183 get_file(new_vma->vm_file); 3184 if (new_vma->vm_ops && new_vma->vm_ops->open) 3185 new_vma->vm_ops->open(new_vma); 3186 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3187 *need_rmap_locks = false; 3188 } 3189 return new_vma; 3190 3191 out_free_mempol: 3192 mpol_put(vma_policy(new_vma)); 3193 out_free_vma: 3194 kmem_cache_free(vm_area_cachep, new_vma); 3195 out: 3196 return NULL; 3197 } 3198 3199 /* 3200 * Return true if the calling process may expand its vm space by the passed 3201 * number of pages 3202 */ 3203 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3204 { 3205 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3206 return false; 3207 3208 if (is_data_mapping(flags) && 3209 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3210 /* Workaround for Valgrind */ 3211 if (rlimit(RLIMIT_DATA) == 0 && 3212 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3213 return true; 3214 3215 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3216 current->comm, current->pid, 3217 (mm->data_vm + npages) << PAGE_SHIFT, 3218 rlimit(RLIMIT_DATA), 3219 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3220 3221 if (!ignore_rlimit_data) 3222 return false; 3223 } 3224 3225 return true; 3226 } 3227 3228 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3229 { 3230 mm->total_vm += npages; 3231 3232 if (is_exec_mapping(flags)) 3233 mm->exec_vm += npages; 3234 else if (is_stack_mapping(flags)) 3235 mm->stack_vm += npages; 3236 else if (is_data_mapping(flags)) 3237 mm->data_vm += npages; 3238 } 3239 3240 static int special_mapping_fault(struct vm_fault *vmf); 3241 3242 /* 3243 * Having a close hook prevents vma merging regardless of flags. 3244 */ 3245 static void special_mapping_close(struct vm_area_struct *vma) 3246 { 3247 } 3248 3249 static const char *special_mapping_name(struct vm_area_struct *vma) 3250 { 3251 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3252 } 3253 3254 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3255 { 3256 struct vm_special_mapping *sm = new_vma->vm_private_data; 3257 3258 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3259 return -EFAULT; 3260 3261 if (sm->mremap) 3262 return sm->mremap(sm, new_vma); 3263 3264 return 0; 3265 } 3266 3267 static const struct vm_operations_struct special_mapping_vmops = { 3268 .close = special_mapping_close, 3269 .fault = special_mapping_fault, 3270 .mremap = special_mapping_mremap, 3271 .name = special_mapping_name, 3272 }; 3273 3274 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3275 .close = special_mapping_close, 3276 .fault = special_mapping_fault, 3277 }; 3278 3279 static int special_mapping_fault(struct vm_fault *vmf) 3280 { 3281 struct vm_area_struct *vma = vmf->vma; 3282 pgoff_t pgoff; 3283 struct page **pages; 3284 3285 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3286 pages = vma->vm_private_data; 3287 } else { 3288 struct vm_special_mapping *sm = vma->vm_private_data; 3289 3290 if (sm->fault) 3291 return sm->fault(sm, vmf->vma, vmf); 3292 3293 pages = sm->pages; 3294 } 3295 3296 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3297 pgoff--; 3298 3299 if (*pages) { 3300 struct page *page = *pages; 3301 get_page(page); 3302 vmf->page = page; 3303 return 0; 3304 } 3305 3306 return VM_FAULT_SIGBUS; 3307 } 3308 3309 static struct vm_area_struct *__install_special_mapping( 3310 struct mm_struct *mm, 3311 unsigned long addr, unsigned long len, 3312 unsigned long vm_flags, void *priv, 3313 const struct vm_operations_struct *ops) 3314 { 3315 int ret; 3316 struct vm_area_struct *vma; 3317 3318 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3319 if (unlikely(vma == NULL)) 3320 return ERR_PTR(-ENOMEM); 3321 3322 INIT_LIST_HEAD(&vma->anon_vma_chain); 3323 vma->vm_mm = mm; 3324 vma->vm_start = addr; 3325 vma->vm_end = addr + len; 3326 3327 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3328 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3329 3330 vma->vm_ops = ops; 3331 vma->vm_private_data = priv; 3332 3333 ret = insert_vm_struct(mm, vma); 3334 if (ret) 3335 goto out; 3336 3337 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3338 3339 perf_event_mmap(vma); 3340 3341 return vma; 3342 3343 out: 3344 kmem_cache_free(vm_area_cachep, vma); 3345 return ERR_PTR(ret); 3346 } 3347 3348 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3349 const struct vm_special_mapping *sm) 3350 { 3351 return vma->vm_private_data == sm && 3352 (vma->vm_ops == &special_mapping_vmops || 3353 vma->vm_ops == &legacy_special_mapping_vmops); 3354 } 3355 3356 /* 3357 * Called with mm->mmap_sem held for writing. 3358 * Insert a new vma covering the given region, with the given flags. 3359 * Its pages are supplied by the given array of struct page *. 3360 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3361 * The region past the last page supplied will always produce SIGBUS. 3362 * The array pointer and the pages it points to are assumed to stay alive 3363 * for as long as this mapping might exist. 3364 */ 3365 struct vm_area_struct *_install_special_mapping( 3366 struct mm_struct *mm, 3367 unsigned long addr, unsigned long len, 3368 unsigned long vm_flags, const struct vm_special_mapping *spec) 3369 { 3370 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3371 &special_mapping_vmops); 3372 } 3373 3374 int install_special_mapping(struct mm_struct *mm, 3375 unsigned long addr, unsigned long len, 3376 unsigned long vm_flags, struct page **pages) 3377 { 3378 struct vm_area_struct *vma = __install_special_mapping( 3379 mm, addr, len, vm_flags, (void *)pages, 3380 &legacy_special_mapping_vmops); 3381 3382 return PTR_ERR_OR_ZERO(vma); 3383 } 3384 3385 static DEFINE_MUTEX(mm_all_locks_mutex); 3386 3387 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3388 { 3389 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3390 /* 3391 * The LSB of head.next can't change from under us 3392 * because we hold the mm_all_locks_mutex. 3393 */ 3394 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3395 /* 3396 * We can safely modify head.next after taking the 3397 * anon_vma->root->rwsem. If some other vma in this mm shares 3398 * the same anon_vma we won't take it again. 3399 * 3400 * No need of atomic instructions here, head.next 3401 * can't change from under us thanks to the 3402 * anon_vma->root->rwsem. 3403 */ 3404 if (__test_and_set_bit(0, (unsigned long *) 3405 &anon_vma->root->rb_root.rb_root.rb_node)) 3406 BUG(); 3407 } 3408 } 3409 3410 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3411 { 3412 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3413 /* 3414 * AS_MM_ALL_LOCKS can't change from under us because 3415 * we hold the mm_all_locks_mutex. 3416 * 3417 * Operations on ->flags have to be atomic because 3418 * even if AS_MM_ALL_LOCKS is stable thanks to the 3419 * mm_all_locks_mutex, there may be other cpus 3420 * changing other bitflags in parallel to us. 3421 */ 3422 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3423 BUG(); 3424 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3425 } 3426 } 3427 3428 /* 3429 * This operation locks against the VM for all pte/vma/mm related 3430 * operations that could ever happen on a certain mm. This includes 3431 * vmtruncate, try_to_unmap, and all page faults. 3432 * 3433 * The caller must take the mmap_sem in write mode before calling 3434 * mm_take_all_locks(). The caller isn't allowed to release the 3435 * mmap_sem until mm_drop_all_locks() returns. 3436 * 3437 * mmap_sem in write mode is required in order to block all operations 3438 * that could modify pagetables and free pages without need of 3439 * altering the vma layout. It's also needed in write mode to avoid new 3440 * anon_vmas to be associated with existing vmas. 3441 * 3442 * A single task can't take more than one mm_take_all_locks() in a row 3443 * or it would deadlock. 3444 * 3445 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3446 * mapping->flags avoid to take the same lock twice, if more than one 3447 * vma in this mm is backed by the same anon_vma or address_space. 3448 * 3449 * We take locks in following order, accordingly to comment at beginning 3450 * of mm/rmap.c: 3451 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3452 * hugetlb mapping); 3453 * - all i_mmap_rwsem locks; 3454 * - all anon_vma->rwseml 3455 * 3456 * We can take all locks within these types randomly because the VM code 3457 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3458 * mm_all_locks_mutex. 3459 * 3460 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3461 * that may have to take thousand of locks. 3462 * 3463 * mm_take_all_locks() can fail if it's interrupted by signals. 3464 */ 3465 int mm_take_all_locks(struct mm_struct *mm) 3466 { 3467 struct vm_area_struct *vma; 3468 struct anon_vma_chain *avc; 3469 3470 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3471 3472 mutex_lock(&mm_all_locks_mutex); 3473 3474 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3475 if (signal_pending(current)) 3476 goto out_unlock; 3477 if (vma->vm_file && vma->vm_file->f_mapping && 3478 is_vm_hugetlb_page(vma)) 3479 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3480 } 3481 3482 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3483 if (signal_pending(current)) 3484 goto out_unlock; 3485 if (vma->vm_file && vma->vm_file->f_mapping && 3486 !is_vm_hugetlb_page(vma)) 3487 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3488 } 3489 3490 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3491 if (signal_pending(current)) 3492 goto out_unlock; 3493 if (vma->anon_vma) 3494 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3495 vm_lock_anon_vma(mm, avc->anon_vma); 3496 } 3497 3498 return 0; 3499 3500 out_unlock: 3501 mm_drop_all_locks(mm); 3502 return -EINTR; 3503 } 3504 3505 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3506 { 3507 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3508 /* 3509 * The LSB of head.next can't change to 0 from under 3510 * us because we hold the mm_all_locks_mutex. 3511 * 3512 * We must however clear the bitflag before unlocking 3513 * the vma so the users using the anon_vma->rb_root will 3514 * never see our bitflag. 3515 * 3516 * No need of atomic instructions here, head.next 3517 * can't change from under us until we release the 3518 * anon_vma->root->rwsem. 3519 */ 3520 if (!__test_and_clear_bit(0, (unsigned long *) 3521 &anon_vma->root->rb_root.rb_root.rb_node)) 3522 BUG(); 3523 anon_vma_unlock_write(anon_vma); 3524 } 3525 } 3526 3527 static void vm_unlock_mapping(struct address_space *mapping) 3528 { 3529 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3530 /* 3531 * AS_MM_ALL_LOCKS can't change to 0 from under us 3532 * because we hold the mm_all_locks_mutex. 3533 */ 3534 i_mmap_unlock_write(mapping); 3535 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3536 &mapping->flags)) 3537 BUG(); 3538 } 3539 } 3540 3541 /* 3542 * The mmap_sem cannot be released by the caller until 3543 * mm_drop_all_locks() returns. 3544 */ 3545 void mm_drop_all_locks(struct mm_struct *mm) 3546 { 3547 struct vm_area_struct *vma; 3548 struct anon_vma_chain *avc; 3549 3550 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3551 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3552 3553 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3554 if (vma->anon_vma) 3555 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3556 vm_unlock_anon_vma(avc->anon_vma); 3557 if (vma->vm_file && vma->vm_file->f_mapping) 3558 vm_unlock_mapping(vma->vm_file->f_mapping); 3559 } 3560 3561 mutex_unlock(&mm_all_locks_mutex); 3562 } 3563 3564 /* 3565 * initialise the percpu counter for VM 3566 */ 3567 void __init mmap_init(void) 3568 { 3569 int ret; 3570 3571 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3572 VM_BUG_ON(ret); 3573 } 3574 3575 /* 3576 * Initialise sysctl_user_reserve_kbytes. 3577 * 3578 * This is intended to prevent a user from starting a single memory hogging 3579 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3580 * mode. 3581 * 3582 * The default value is min(3% of free memory, 128MB) 3583 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3584 */ 3585 static int init_user_reserve(void) 3586 { 3587 unsigned long free_kbytes; 3588 3589 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3590 3591 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3592 return 0; 3593 } 3594 subsys_initcall(init_user_reserve); 3595 3596 /* 3597 * Initialise sysctl_admin_reserve_kbytes. 3598 * 3599 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3600 * to log in and kill a memory hogging process. 3601 * 3602 * Systems with more than 256MB will reserve 8MB, enough to recover 3603 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3604 * only reserve 3% of free pages by default. 3605 */ 3606 static int init_admin_reserve(void) 3607 { 3608 unsigned long free_kbytes; 3609 3610 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3611 3612 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3613 return 0; 3614 } 3615 subsys_initcall(init_admin_reserve); 3616 3617 /* 3618 * Reinititalise user and admin reserves if memory is added or removed. 3619 * 3620 * The default user reserve max is 128MB, and the default max for the 3621 * admin reserve is 8MB. These are usually, but not always, enough to 3622 * enable recovery from a memory hogging process using login/sshd, a shell, 3623 * and tools like top. It may make sense to increase or even disable the 3624 * reserve depending on the existence of swap or variations in the recovery 3625 * tools. So, the admin may have changed them. 3626 * 3627 * If memory is added and the reserves have been eliminated or increased above 3628 * the default max, then we'll trust the admin. 3629 * 3630 * If memory is removed and there isn't enough free memory, then we 3631 * need to reset the reserves. 3632 * 3633 * Otherwise keep the reserve set by the admin. 3634 */ 3635 static int reserve_mem_notifier(struct notifier_block *nb, 3636 unsigned long action, void *data) 3637 { 3638 unsigned long tmp, free_kbytes; 3639 3640 switch (action) { 3641 case MEM_ONLINE: 3642 /* Default max is 128MB. Leave alone if modified by operator. */ 3643 tmp = sysctl_user_reserve_kbytes; 3644 if (0 < tmp && tmp < (1UL << 17)) 3645 init_user_reserve(); 3646 3647 /* Default max is 8MB. Leave alone if modified by operator. */ 3648 tmp = sysctl_admin_reserve_kbytes; 3649 if (0 < tmp && tmp < (1UL << 13)) 3650 init_admin_reserve(); 3651 3652 break; 3653 case MEM_OFFLINE: 3654 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3655 3656 if (sysctl_user_reserve_kbytes > free_kbytes) { 3657 init_user_reserve(); 3658 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3659 sysctl_user_reserve_kbytes); 3660 } 3661 3662 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3663 init_admin_reserve(); 3664 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3665 sysctl_admin_reserve_kbytes); 3666 } 3667 break; 3668 default: 3669 break; 3670 } 3671 return NOTIFY_OK; 3672 } 3673 3674 static struct notifier_block reserve_mem_nb = { 3675 .notifier_call = reserve_mem_notifier, 3676 }; 3677 3678 static int __meminit init_reserve_notifier(void) 3679 { 3680 if (register_hotmemory_notifier(&reserve_mem_nb)) 3681 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3682 3683 return 0; 3684 } 3685 subsys_initcall(init_reserve_notifier); 3686