1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/notifier.h> 41 #include <linux/memory.h> 42 #include <linux/printk.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/moduleparam.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/uaccess.h> 48 #include <asm/cacheflush.h> 49 #include <asm/tlb.h> 50 #include <asm/mmu_context.h> 51 52 #include "internal.h" 53 54 #ifndef arch_mmap_check 55 #define arch_mmap_check(addr, len, flags) (0) 56 #endif 57 58 #ifndef arch_rebalance_pgtables 59 #define arch_rebalance_pgtables(addr, len) (addr) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data = true; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 */ 95 pgprot_t protection_map[16] = { 96 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 97 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 98 }; 99 100 pgprot_t vm_get_page_prot(unsigned long vm_flags) 101 { 102 return __pgprot(pgprot_val(protection_map[vm_flags & 103 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 104 pgprot_val(arch_vm_get_page_prot(vm_flags))); 105 } 106 EXPORT_SYMBOL(vm_get_page_prot); 107 108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 109 { 110 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 111 } 112 113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 114 void vma_set_page_prot(struct vm_area_struct *vma) 115 { 116 unsigned long vm_flags = vma->vm_flags; 117 118 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 119 if (vma_wants_writenotify(vma)) { 120 vm_flags &= ~VM_SHARED; 121 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 122 vm_flags); 123 } 124 } 125 126 /* 127 * Requires inode->i_mapping->i_mmap_rwsem 128 */ 129 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 130 struct file *file, struct address_space *mapping) 131 { 132 if (vma->vm_flags & VM_DENYWRITE) 133 atomic_inc(&file_inode(file)->i_writecount); 134 if (vma->vm_flags & VM_SHARED) 135 mapping_unmap_writable(mapping); 136 137 flush_dcache_mmap_lock(mapping); 138 vma_interval_tree_remove(vma, &mapping->i_mmap); 139 flush_dcache_mmap_unlock(mapping); 140 } 141 142 /* 143 * Unlink a file-based vm structure from its interval tree, to hide 144 * vma from rmap and vmtruncate before freeing its page tables. 145 */ 146 void unlink_file_vma(struct vm_area_struct *vma) 147 { 148 struct file *file = vma->vm_file; 149 150 if (file) { 151 struct address_space *mapping = file->f_mapping; 152 i_mmap_lock_write(mapping); 153 __remove_shared_vm_struct(vma, file, mapping); 154 i_mmap_unlock_write(mapping); 155 } 156 } 157 158 /* 159 * Close a vm structure and free it, returning the next. 160 */ 161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 162 { 163 struct vm_area_struct *next = vma->vm_next; 164 165 might_sleep(); 166 if (vma->vm_ops && vma->vm_ops->close) 167 vma->vm_ops->close(vma); 168 if (vma->vm_file) 169 fput(vma->vm_file); 170 mpol_put(vma_policy(vma)); 171 kmem_cache_free(vm_area_cachep, vma); 172 return next; 173 } 174 175 static unsigned long do_brk(unsigned long addr, unsigned long len); 176 177 SYSCALL_DEFINE1(brk, unsigned long, brk) 178 { 179 unsigned long retval; 180 unsigned long newbrk, oldbrk; 181 struct mm_struct *mm = current->mm; 182 unsigned long min_brk; 183 bool populate; 184 185 down_write(&mm->mmap_sem); 186 187 #ifdef CONFIG_COMPAT_BRK 188 /* 189 * CONFIG_COMPAT_BRK can still be overridden by setting 190 * randomize_va_space to 2, which will still cause mm->start_brk 191 * to be arbitrarily shifted 192 */ 193 if (current->brk_randomized) 194 min_brk = mm->start_brk; 195 else 196 min_brk = mm->end_data; 197 #else 198 min_brk = mm->start_brk; 199 #endif 200 if (brk < min_brk) 201 goto out; 202 203 /* 204 * Check against rlimit here. If this check is done later after the test 205 * of oldbrk with newbrk then it can escape the test and let the data 206 * segment grow beyond its set limit the in case where the limit is 207 * not page aligned -Ram Gupta 208 */ 209 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 210 mm->end_data, mm->start_data)) 211 goto out; 212 213 newbrk = PAGE_ALIGN(brk); 214 oldbrk = PAGE_ALIGN(mm->brk); 215 if (oldbrk == newbrk) 216 goto set_brk; 217 218 /* Always allow shrinking brk. */ 219 if (brk <= mm->brk) { 220 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 221 goto set_brk; 222 goto out; 223 } 224 225 /* Check against existing mmap mappings. */ 226 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 227 goto out; 228 229 /* Ok, looks good - let it rip. */ 230 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 231 goto out; 232 233 set_brk: 234 mm->brk = brk; 235 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 236 up_write(&mm->mmap_sem); 237 if (populate) 238 mm_populate(oldbrk, newbrk - oldbrk); 239 return brk; 240 241 out: 242 retval = mm->brk; 243 up_write(&mm->mmap_sem); 244 return retval; 245 } 246 247 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 248 { 249 unsigned long max, subtree_gap; 250 max = vma->vm_start; 251 if (vma->vm_prev) 252 max -= vma->vm_prev->vm_end; 253 if (vma->vm_rb.rb_left) { 254 subtree_gap = rb_entry(vma->vm_rb.rb_left, 255 struct vm_area_struct, vm_rb)->rb_subtree_gap; 256 if (subtree_gap > max) 257 max = subtree_gap; 258 } 259 if (vma->vm_rb.rb_right) { 260 subtree_gap = rb_entry(vma->vm_rb.rb_right, 261 struct vm_area_struct, vm_rb)->rb_subtree_gap; 262 if (subtree_gap > max) 263 max = subtree_gap; 264 } 265 return max; 266 } 267 268 #ifdef CONFIG_DEBUG_VM_RB 269 static int browse_rb(struct mm_struct *mm) 270 { 271 struct rb_root *root = &mm->mm_rb; 272 int i = 0, j, bug = 0; 273 struct rb_node *nd, *pn = NULL; 274 unsigned long prev = 0, pend = 0; 275 276 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 277 struct vm_area_struct *vma; 278 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 279 if (vma->vm_start < prev) { 280 pr_emerg("vm_start %lx < prev %lx\n", 281 vma->vm_start, prev); 282 bug = 1; 283 } 284 if (vma->vm_start < pend) { 285 pr_emerg("vm_start %lx < pend %lx\n", 286 vma->vm_start, pend); 287 bug = 1; 288 } 289 if (vma->vm_start > vma->vm_end) { 290 pr_emerg("vm_start %lx > vm_end %lx\n", 291 vma->vm_start, vma->vm_end); 292 bug = 1; 293 } 294 spin_lock(&mm->page_table_lock); 295 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 296 pr_emerg("free gap %lx, correct %lx\n", 297 vma->rb_subtree_gap, 298 vma_compute_subtree_gap(vma)); 299 bug = 1; 300 } 301 spin_unlock(&mm->page_table_lock); 302 i++; 303 pn = nd; 304 prev = vma->vm_start; 305 pend = vma->vm_end; 306 } 307 j = 0; 308 for (nd = pn; nd; nd = rb_prev(nd)) 309 j++; 310 if (i != j) { 311 pr_emerg("backwards %d, forwards %d\n", j, i); 312 bug = 1; 313 } 314 return bug ? -1 : i; 315 } 316 317 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 318 { 319 struct rb_node *nd; 320 321 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 322 struct vm_area_struct *vma; 323 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 324 VM_BUG_ON_VMA(vma != ignore && 325 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 326 vma); 327 } 328 } 329 330 static void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 unsigned long highest_address = 0; 335 struct vm_area_struct *vma = mm->mmap; 336 337 while (vma) { 338 struct anon_vma *anon_vma = vma->anon_vma; 339 struct anon_vma_chain *avc; 340 341 if (anon_vma) { 342 anon_vma_lock_read(anon_vma); 343 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 344 anon_vma_interval_tree_verify(avc); 345 anon_vma_unlock_read(anon_vma); 346 } 347 348 highest_address = vma->vm_end; 349 vma = vma->vm_next; 350 i++; 351 } 352 if (i != mm->map_count) { 353 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 354 bug = 1; 355 } 356 if (highest_address != mm->highest_vm_end) { 357 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 358 mm->highest_vm_end, highest_address); 359 bug = 1; 360 } 361 i = browse_rb(mm); 362 if (i != mm->map_count) { 363 if (i != -1) 364 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 365 bug = 1; 366 } 367 VM_BUG_ON_MM(bug, mm); 368 } 369 #else 370 #define validate_mm_rb(root, ignore) do { } while (0) 371 #define validate_mm(mm) do { } while (0) 372 #endif 373 374 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 375 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 376 377 /* 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position 380 * in the rbtree. 381 */ 382 static void vma_gap_update(struct vm_area_struct *vma) 383 { 384 /* 385 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 386 * function that does exacltly what we want. 387 */ 388 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 389 } 390 391 static inline void vma_rb_insert(struct vm_area_struct *vma, 392 struct rb_root *root) 393 { 394 /* All rb_subtree_gap values must be consistent prior to insertion */ 395 validate_mm_rb(root, NULL); 396 397 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 398 } 399 400 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 401 { 402 /* 403 * All rb_subtree_gap values must be consistent prior to erase, 404 * with the possible exception of the vma being erased. 405 */ 406 validate_mm_rb(root, vma); 407 408 /* 409 * Note rb_erase_augmented is a fairly large inline function, 410 * so make sure we instantiate it only once with our desired 411 * augmented rbtree callbacks. 412 */ 413 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 414 } 415 416 /* 417 * vma has some anon_vma assigned, and is already inserted on that 418 * anon_vma's interval trees. 419 * 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 421 * vma must be removed from the anon_vma's interval trees using 422 * anon_vma_interval_tree_pre_update_vma(). 423 * 424 * After the update, the vma will be reinserted using 425 * anon_vma_interval_tree_post_update_vma(). 426 * 427 * The entire update must be protected by exclusive mmap_sem and by 428 * the root anon_vma's mutex. 429 */ 430 static inline void 431 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 432 { 433 struct anon_vma_chain *avc; 434 435 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 436 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 437 } 438 439 static inline void 440 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 441 { 442 struct anon_vma_chain *avc; 443 444 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 445 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 446 } 447 448 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 449 unsigned long end, struct vm_area_struct **pprev, 450 struct rb_node ***rb_link, struct rb_node **rb_parent) 451 { 452 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 453 454 __rb_link = &mm->mm_rb.rb_node; 455 rb_prev = __rb_parent = NULL; 456 457 while (*__rb_link) { 458 struct vm_area_struct *vma_tmp; 459 460 __rb_parent = *__rb_link; 461 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 462 463 if (vma_tmp->vm_end > addr) { 464 /* Fail if an existing vma overlaps the area */ 465 if (vma_tmp->vm_start < end) 466 return -ENOMEM; 467 __rb_link = &__rb_parent->rb_left; 468 } else { 469 rb_prev = __rb_parent; 470 __rb_link = &__rb_parent->rb_right; 471 } 472 } 473 474 *pprev = NULL; 475 if (rb_prev) 476 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 477 *rb_link = __rb_link; 478 *rb_parent = __rb_parent; 479 return 0; 480 } 481 482 static unsigned long count_vma_pages_range(struct mm_struct *mm, 483 unsigned long addr, unsigned long end) 484 { 485 unsigned long nr_pages = 0; 486 struct vm_area_struct *vma; 487 488 /* Find first overlaping mapping */ 489 vma = find_vma_intersection(mm, addr, end); 490 if (!vma) 491 return 0; 492 493 nr_pages = (min(end, vma->vm_end) - 494 max(addr, vma->vm_start)) >> PAGE_SHIFT; 495 496 /* Iterate over the rest of the overlaps */ 497 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 498 unsigned long overlap_len; 499 500 if (vma->vm_start > end) 501 break; 502 503 overlap_len = min(end, vma->vm_end) - vma->vm_start; 504 nr_pages += overlap_len >> PAGE_SHIFT; 505 } 506 507 return nr_pages; 508 } 509 510 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 511 struct rb_node **rb_link, struct rb_node *rb_parent) 512 { 513 /* Update tracking information for the gap following the new vma. */ 514 if (vma->vm_next) 515 vma_gap_update(vma->vm_next); 516 else 517 mm->highest_vm_end = vma->vm_end; 518 519 /* 520 * vma->vm_prev wasn't known when we followed the rbtree to find the 521 * correct insertion point for that vma. As a result, we could not 522 * update the vma vm_rb parents rb_subtree_gap values on the way down. 523 * So, we first insert the vma with a zero rb_subtree_gap value 524 * (to be consistent with what we did on the way down), and then 525 * immediately update the gap to the correct value. Finally we 526 * rebalance the rbtree after all augmented values have been set. 527 */ 528 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 529 vma->rb_subtree_gap = 0; 530 vma_gap_update(vma); 531 vma_rb_insert(vma, &mm->mm_rb); 532 } 533 534 static void __vma_link_file(struct vm_area_struct *vma) 535 { 536 struct file *file; 537 538 file = vma->vm_file; 539 if (file) { 540 struct address_space *mapping = file->f_mapping; 541 542 if (vma->vm_flags & VM_DENYWRITE) 543 atomic_dec(&file_inode(file)->i_writecount); 544 if (vma->vm_flags & VM_SHARED) 545 atomic_inc(&mapping->i_mmap_writable); 546 547 flush_dcache_mmap_lock(mapping); 548 vma_interval_tree_insert(vma, &mapping->i_mmap); 549 flush_dcache_mmap_unlock(mapping); 550 } 551 } 552 553 static void 554 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 555 struct vm_area_struct *prev, struct rb_node **rb_link, 556 struct rb_node *rb_parent) 557 { 558 __vma_link_list(mm, vma, prev, rb_parent); 559 __vma_link_rb(mm, vma, rb_link, rb_parent); 560 } 561 562 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 563 struct vm_area_struct *prev, struct rb_node **rb_link, 564 struct rb_node *rb_parent) 565 { 566 struct address_space *mapping = NULL; 567 568 if (vma->vm_file) { 569 mapping = vma->vm_file->f_mapping; 570 i_mmap_lock_write(mapping); 571 } 572 573 __vma_link(mm, vma, prev, rb_link, rb_parent); 574 __vma_link_file(vma); 575 576 if (mapping) 577 i_mmap_unlock_write(mapping); 578 579 mm->map_count++; 580 validate_mm(mm); 581 } 582 583 /* 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 585 * mm's list and rbtree. It has already been inserted into the interval tree. 586 */ 587 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 588 { 589 struct vm_area_struct *prev; 590 struct rb_node **rb_link, *rb_parent; 591 592 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 593 &prev, &rb_link, &rb_parent)) 594 BUG(); 595 __vma_link(mm, vma, prev, rb_link, rb_parent); 596 mm->map_count++; 597 } 598 599 static inline void 600 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 601 struct vm_area_struct *prev) 602 { 603 struct vm_area_struct *next; 604 605 vma_rb_erase(vma, &mm->mm_rb); 606 prev->vm_next = next = vma->vm_next; 607 if (next) 608 next->vm_prev = prev; 609 610 /* Kill the cache */ 611 vmacache_invalidate(mm); 612 } 613 614 /* 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 616 * is already present in an i_mmap tree without adjusting the tree. 617 * The following helper function should be used when such adjustments 618 * are necessary. The "insert" vma (if any) is to be inserted 619 * before we drop the necessary locks. 620 */ 621 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 622 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 623 { 624 struct mm_struct *mm = vma->vm_mm; 625 struct vm_area_struct *next = vma->vm_next; 626 struct vm_area_struct *importer = NULL; 627 struct address_space *mapping = NULL; 628 struct rb_root *root = NULL; 629 struct anon_vma *anon_vma = NULL; 630 struct file *file = vma->vm_file; 631 bool start_changed = false, end_changed = false; 632 long adjust_next = 0; 633 int remove_next = 0; 634 635 if (next && !insert) { 636 struct vm_area_struct *exporter = NULL; 637 638 if (end >= next->vm_end) { 639 /* 640 * vma expands, overlapping all the next, and 641 * perhaps the one after too (mprotect case 6). 642 */ 643 again: remove_next = 1 + (end > next->vm_end); 644 end = next->vm_end; 645 exporter = next; 646 importer = vma; 647 } else if (end > next->vm_start) { 648 /* 649 * vma expands, overlapping part of the next: 650 * mprotect case 5 shifting the boundary up. 651 */ 652 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 653 exporter = next; 654 importer = vma; 655 } else if (end < vma->vm_end) { 656 /* 657 * vma shrinks, and !insert tells it's not 658 * split_vma inserting another: so it must be 659 * mprotect case 4 shifting the boundary down. 660 */ 661 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 662 exporter = vma; 663 importer = next; 664 } 665 666 /* 667 * Easily overlooked: when mprotect shifts the boundary, 668 * make sure the expanding vma has anon_vma set if the 669 * shrinking vma had, to cover any anon pages imported. 670 */ 671 if (exporter && exporter->anon_vma && !importer->anon_vma) { 672 int error; 673 674 importer->anon_vma = exporter->anon_vma; 675 error = anon_vma_clone(importer, exporter); 676 if (error) 677 return error; 678 } 679 } 680 681 if (file) { 682 mapping = file->f_mapping; 683 root = &mapping->i_mmap; 684 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 685 686 if (adjust_next) 687 uprobe_munmap(next, next->vm_start, next->vm_end); 688 689 i_mmap_lock_write(mapping); 690 if (insert) { 691 /* 692 * Put into interval tree now, so instantiated pages 693 * are visible to arm/parisc __flush_dcache_page 694 * throughout; but we cannot insert into address 695 * space until vma start or end is updated. 696 */ 697 __vma_link_file(insert); 698 } 699 } 700 701 vma_adjust_trans_huge(vma, start, end, adjust_next); 702 703 anon_vma = vma->anon_vma; 704 if (!anon_vma && adjust_next) 705 anon_vma = next->anon_vma; 706 if (anon_vma) { 707 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 708 anon_vma != next->anon_vma, next); 709 anon_vma_lock_write(anon_vma); 710 anon_vma_interval_tree_pre_update_vma(vma); 711 if (adjust_next) 712 anon_vma_interval_tree_pre_update_vma(next); 713 } 714 715 if (root) { 716 flush_dcache_mmap_lock(mapping); 717 vma_interval_tree_remove(vma, root); 718 if (adjust_next) 719 vma_interval_tree_remove(next, root); 720 } 721 722 if (start != vma->vm_start) { 723 vma->vm_start = start; 724 start_changed = true; 725 } 726 if (end != vma->vm_end) { 727 vma->vm_end = end; 728 end_changed = true; 729 } 730 vma->vm_pgoff = pgoff; 731 if (adjust_next) { 732 next->vm_start += adjust_next << PAGE_SHIFT; 733 next->vm_pgoff += adjust_next; 734 } 735 736 if (root) { 737 if (adjust_next) 738 vma_interval_tree_insert(next, root); 739 vma_interval_tree_insert(vma, root); 740 flush_dcache_mmap_unlock(mapping); 741 } 742 743 if (remove_next) { 744 /* 745 * vma_merge has merged next into vma, and needs 746 * us to remove next before dropping the locks. 747 */ 748 __vma_unlink(mm, next, vma); 749 if (file) 750 __remove_shared_vm_struct(next, file, mapping); 751 } else if (insert) { 752 /* 753 * split_vma has split insert from vma, and needs 754 * us to insert it before dropping the locks 755 * (it may either follow vma or precede it). 756 */ 757 __insert_vm_struct(mm, insert); 758 } else { 759 if (start_changed) 760 vma_gap_update(vma); 761 if (end_changed) { 762 if (!next) 763 mm->highest_vm_end = end; 764 else if (!adjust_next) 765 vma_gap_update(next); 766 } 767 } 768 769 if (anon_vma) { 770 anon_vma_interval_tree_post_update_vma(vma); 771 if (adjust_next) 772 anon_vma_interval_tree_post_update_vma(next); 773 anon_vma_unlock_write(anon_vma); 774 } 775 if (mapping) 776 i_mmap_unlock_write(mapping); 777 778 if (root) { 779 uprobe_mmap(vma); 780 781 if (adjust_next) 782 uprobe_mmap(next); 783 } 784 785 if (remove_next) { 786 if (file) { 787 uprobe_munmap(next, next->vm_start, next->vm_end); 788 fput(file); 789 } 790 if (next->anon_vma) 791 anon_vma_merge(vma, next); 792 mm->map_count--; 793 mpol_put(vma_policy(next)); 794 kmem_cache_free(vm_area_cachep, next); 795 /* 796 * In mprotect's case 6 (see comments on vma_merge), 797 * we must remove another next too. It would clutter 798 * up the code too much to do both in one go. 799 */ 800 next = vma->vm_next; 801 if (remove_next == 2) 802 goto again; 803 else if (next) 804 vma_gap_update(next); 805 else 806 mm->highest_vm_end = end; 807 } 808 if (insert && file) 809 uprobe_mmap(insert); 810 811 validate_mm(mm); 812 813 return 0; 814 } 815 816 /* 817 * If the vma has a ->close operation then the driver probably needs to release 818 * per-vma resources, so we don't attempt to merge those. 819 */ 820 static inline int is_mergeable_vma(struct vm_area_struct *vma, 821 struct file *file, unsigned long vm_flags, 822 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 823 { 824 /* 825 * VM_SOFTDIRTY should not prevent from VMA merging, if we 826 * match the flags but dirty bit -- the caller should mark 827 * merged VMA as dirty. If dirty bit won't be excluded from 828 * comparison, we increase pressue on the memory system forcing 829 * the kernel to generate new VMAs when old one could be 830 * extended instead. 831 */ 832 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 833 return 0; 834 if (vma->vm_file != file) 835 return 0; 836 if (vma->vm_ops && vma->vm_ops->close) 837 return 0; 838 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 839 return 0; 840 return 1; 841 } 842 843 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 844 struct anon_vma *anon_vma2, 845 struct vm_area_struct *vma) 846 { 847 /* 848 * The list_is_singular() test is to avoid merging VMA cloned from 849 * parents. This can improve scalability caused by anon_vma lock. 850 */ 851 if ((!anon_vma1 || !anon_vma2) && (!vma || 852 list_is_singular(&vma->anon_vma_chain))) 853 return 1; 854 return anon_vma1 == anon_vma2; 855 } 856 857 /* 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 859 * in front of (at a lower virtual address and file offset than) the vma. 860 * 861 * We cannot merge two vmas if they have differently assigned (non-NULL) 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 863 * 864 * We don't check here for the merged mmap wrapping around the end of pagecache 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 866 * wrap, nor mmaps which cover the final page at index -1UL. 867 */ 868 static int 869 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 870 struct anon_vma *anon_vma, struct file *file, 871 pgoff_t vm_pgoff, 872 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 873 { 874 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 875 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 876 if (vma->vm_pgoff == vm_pgoff) 877 return 1; 878 } 879 return 0; 880 } 881 882 /* 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 884 * beyond (at a higher virtual address and file offset than) the vma. 885 * 886 * We cannot merge two vmas if they have differently assigned (non-NULL) 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 888 */ 889 static int 890 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 891 struct anon_vma *anon_vma, struct file *file, 892 pgoff_t vm_pgoff, 893 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 894 { 895 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 896 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 897 pgoff_t vm_pglen; 898 vm_pglen = vma_pages(vma); 899 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 900 return 1; 901 } 902 return 0; 903 } 904 905 /* 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 907 * whether that can be merged with its predecessor or its successor. 908 * Or both (it neatly fills a hole). 909 * 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is 911 * certain not to be mapped by the time vma_merge is called; but when 912 * called for mprotect, it is certain to be already mapped (either at 913 * an offset within prev, or at the start of next), and the flags of 914 * this area are about to be changed to vm_flags - and the no-change 915 * case has already been eliminated. 916 * 917 * The following mprotect cases have to be considered, where AAAA is 918 * the area passed down from mprotect_fixup, never extending beyond one 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 920 * 921 * AAAA AAAA AAAA AAAA 922 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 923 * cannot merge might become might become might become 924 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 925 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 926 * mremap move: PPPPNNNNNNNN 8 927 * AAAA 928 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 929 * might become case 1 below case 2 below case 3 below 930 * 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 933 */ 934 struct vm_area_struct *vma_merge(struct mm_struct *mm, 935 struct vm_area_struct *prev, unsigned long addr, 936 unsigned long end, unsigned long vm_flags, 937 struct anon_vma *anon_vma, struct file *file, 938 pgoff_t pgoff, struct mempolicy *policy, 939 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 940 { 941 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 942 struct vm_area_struct *area, *next; 943 int err; 944 945 /* 946 * We later require that vma->vm_flags == vm_flags, 947 * so this tests vma->vm_flags & VM_SPECIAL, too. 948 */ 949 if (vm_flags & VM_SPECIAL) 950 return NULL; 951 952 if (prev) 953 next = prev->vm_next; 954 else 955 next = mm->mmap; 956 area = next; 957 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 958 next = next->vm_next; 959 960 /* 961 * Can it merge with the predecessor? 962 */ 963 if (prev && prev->vm_end == addr && 964 mpol_equal(vma_policy(prev), policy) && 965 can_vma_merge_after(prev, vm_flags, 966 anon_vma, file, pgoff, 967 vm_userfaultfd_ctx)) { 968 /* 969 * OK, it can. Can we now merge in the successor as well? 970 */ 971 if (next && end == next->vm_start && 972 mpol_equal(policy, vma_policy(next)) && 973 can_vma_merge_before(next, vm_flags, 974 anon_vma, file, 975 pgoff+pglen, 976 vm_userfaultfd_ctx) && 977 is_mergeable_anon_vma(prev->anon_vma, 978 next->anon_vma, NULL)) { 979 /* cases 1, 6 */ 980 err = vma_adjust(prev, prev->vm_start, 981 next->vm_end, prev->vm_pgoff, NULL); 982 } else /* cases 2, 5, 7 */ 983 err = vma_adjust(prev, prev->vm_start, 984 end, prev->vm_pgoff, NULL); 985 if (err) 986 return NULL; 987 khugepaged_enter_vma_merge(prev, vm_flags); 988 return prev; 989 } 990 991 /* 992 * Can this new request be merged in front of next? 993 */ 994 if (next && end == next->vm_start && 995 mpol_equal(policy, vma_policy(next)) && 996 can_vma_merge_before(next, vm_flags, 997 anon_vma, file, pgoff+pglen, 998 vm_userfaultfd_ctx)) { 999 if (prev && addr < prev->vm_end) /* case 4 */ 1000 err = vma_adjust(prev, prev->vm_start, 1001 addr, prev->vm_pgoff, NULL); 1002 else /* cases 3, 8 */ 1003 err = vma_adjust(area, addr, next->vm_end, 1004 next->vm_pgoff - pglen, NULL); 1005 if (err) 1006 return NULL; 1007 khugepaged_enter_vma_merge(area, vm_flags); 1008 return area; 1009 } 1010 1011 return NULL; 1012 } 1013 1014 /* 1015 * Rough compatbility check to quickly see if it's even worth looking 1016 * at sharing an anon_vma. 1017 * 1018 * They need to have the same vm_file, and the flags can only differ 1019 * in things that mprotect may change. 1020 * 1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1022 * we can merge the two vma's. For example, we refuse to merge a vma if 1023 * there is a vm_ops->close() function, because that indicates that the 1024 * driver is doing some kind of reference counting. But that doesn't 1025 * really matter for the anon_vma sharing case. 1026 */ 1027 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1028 { 1029 return a->vm_end == b->vm_start && 1030 mpol_equal(vma_policy(a), vma_policy(b)) && 1031 a->vm_file == b->vm_file && 1032 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1033 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1034 } 1035 1036 /* 1037 * Do some basic sanity checking to see if we can re-use the anon_vma 1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1039 * the same as 'old', the other will be the new one that is trying 1040 * to share the anon_vma. 1041 * 1042 * NOTE! This runs with mm_sem held for reading, so it is possible that 1043 * the anon_vma of 'old' is concurrently in the process of being set up 1044 * by another page fault trying to merge _that_. But that's ok: if it 1045 * is being set up, that automatically means that it will be a singleton 1046 * acceptable for merging, so we can do all of this optimistically. But 1047 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1048 * 1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1051 * is to return an anon_vma that is "complex" due to having gone through 1052 * a fork). 1053 * 1054 * We also make sure that the two vma's are compatible (adjacent, 1055 * and with the same memory policies). That's all stable, even with just 1056 * a read lock on the mm_sem. 1057 */ 1058 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1059 { 1060 if (anon_vma_compatible(a, b)) { 1061 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1062 1063 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1064 return anon_vma; 1065 } 1066 return NULL; 1067 } 1068 1069 /* 1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1071 * neighbouring vmas for a suitable anon_vma, before it goes off 1072 * to allocate a new anon_vma. It checks because a repetitive 1073 * sequence of mprotects and faults may otherwise lead to distinct 1074 * anon_vmas being allocated, preventing vma merge in subsequent 1075 * mprotect. 1076 */ 1077 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1078 { 1079 struct anon_vma *anon_vma; 1080 struct vm_area_struct *near; 1081 1082 near = vma->vm_next; 1083 if (!near) 1084 goto try_prev; 1085 1086 anon_vma = reusable_anon_vma(near, vma, near); 1087 if (anon_vma) 1088 return anon_vma; 1089 try_prev: 1090 near = vma->vm_prev; 1091 if (!near) 1092 goto none; 1093 1094 anon_vma = reusable_anon_vma(near, near, vma); 1095 if (anon_vma) 1096 return anon_vma; 1097 none: 1098 /* 1099 * There's no absolute need to look only at touching neighbours: 1100 * we could search further afield for "compatible" anon_vmas. 1101 * But it would probably just be a waste of time searching, 1102 * or lead to too many vmas hanging off the same anon_vma. 1103 * We're trying to allow mprotect remerging later on, 1104 * not trying to minimize memory used for anon_vmas. 1105 */ 1106 return NULL; 1107 } 1108 1109 /* 1110 * If a hint addr is less than mmap_min_addr change hint to be as 1111 * low as possible but still greater than mmap_min_addr 1112 */ 1113 static inline unsigned long round_hint_to_min(unsigned long hint) 1114 { 1115 hint &= PAGE_MASK; 1116 if (((void *)hint != NULL) && 1117 (hint < mmap_min_addr)) 1118 return PAGE_ALIGN(mmap_min_addr); 1119 return hint; 1120 } 1121 1122 static inline int mlock_future_check(struct mm_struct *mm, 1123 unsigned long flags, 1124 unsigned long len) 1125 { 1126 unsigned long locked, lock_limit; 1127 1128 /* mlock MCL_FUTURE? */ 1129 if (flags & VM_LOCKED) { 1130 locked = len >> PAGE_SHIFT; 1131 locked += mm->locked_vm; 1132 lock_limit = rlimit(RLIMIT_MEMLOCK); 1133 lock_limit >>= PAGE_SHIFT; 1134 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1135 return -EAGAIN; 1136 } 1137 return 0; 1138 } 1139 1140 /* 1141 * The caller must hold down_write(¤t->mm->mmap_sem). 1142 */ 1143 unsigned long do_mmap(struct file *file, unsigned long addr, 1144 unsigned long len, unsigned long prot, 1145 unsigned long flags, vm_flags_t vm_flags, 1146 unsigned long pgoff, unsigned long *populate) 1147 { 1148 struct mm_struct *mm = current->mm; 1149 int pkey = 0; 1150 1151 *populate = 0; 1152 1153 if (!len) 1154 return -EINVAL; 1155 1156 /* 1157 * Does the application expect PROT_READ to imply PROT_EXEC? 1158 * 1159 * (the exception is when the underlying filesystem is noexec 1160 * mounted, in which case we dont add PROT_EXEC.) 1161 */ 1162 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1163 if (!(file && path_noexec(&file->f_path))) 1164 prot |= PROT_EXEC; 1165 1166 if (!(flags & MAP_FIXED)) 1167 addr = round_hint_to_min(addr); 1168 1169 /* Careful about overflows.. */ 1170 len = PAGE_ALIGN(len); 1171 if (!len) 1172 return -ENOMEM; 1173 1174 /* offset overflow? */ 1175 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1176 return -EOVERFLOW; 1177 1178 /* Too many mappings? */ 1179 if (mm->map_count > sysctl_max_map_count) 1180 return -ENOMEM; 1181 1182 /* Obtain the address to map to. we verify (or select) it and ensure 1183 * that it represents a valid section of the address space. 1184 */ 1185 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1186 if (offset_in_page(addr)) 1187 return addr; 1188 1189 if (prot == PROT_EXEC) { 1190 pkey = execute_only_pkey(mm); 1191 if (pkey < 0) 1192 pkey = 0; 1193 } 1194 1195 /* Do simple checking here so the lower-level routines won't have 1196 * to. we assume access permissions have been handled by the open 1197 * of the memory object, so we don't do any here. 1198 */ 1199 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1200 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1201 1202 if (flags & MAP_LOCKED) 1203 if (!can_do_mlock()) 1204 return -EPERM; 1205 1206 if (mlock_future_check(mm, vm_flags, len)) 1207 return -EAGAIN; 1208 1209 if (file) { 1210 struct inode *inode = file_inode(file); 1211 1212 switch (flags & MAP_TYPE) { 1213 case MAP_SHARED: 1214 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1215 return -EACCES; 1216 1217 /* 1218 * Make sure we don't allow writing to an append-only 1219 * file.. 1220 */ 1221 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1222 return -EACCES; 1223 1224 /* 1225 * Make sure there are no mandatory locks on the file. 1226 */ 1227 if (locks_verify_locked(file)) 1228 return -EAGAIN; 1229 1230 vm_flags |= VM_SHARED | VM_MAYSHARE; 1231 if (!(file->f_mode & FMODE_WRITE)) 1232 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1233 1234 /* fall through */ 1235 case MAP_PRIVATE: 1236 if (!(file->f_mode & FMODE_READ)) 1237 return -EACCES; 1238 if (path_noexec(&file->f_path)) { 1239 if (vm_flags & VM_EXEC) 1240 return -EPERM; 1241 vm_flags &= ~VM_MAYEXEC; 1242 } 1243 1244 if (!file->f_op->mmap) 1245 return -ENODEV; 1246 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1247 return -EINVAL; 1248 break; 1249 1250 default: 1251 return -EINVAL; 1252 } 1253 } else { 1254 switch (flags & MAP_TYPE) { 1255 case MAP_SHARED: 1256 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1257 return -EINVAL; 1258 /* 1259 * Ignore pgoff. 1260 */ 1261 pgoff = 0; 1262 vm_flags |= VM_SHARED | VM_MAYSHARE; 1263 break; 1264 case MAP_PRIVATE: 1265 /* 1266 * Set pgoff according to addr for anon_vma. 1267 */ 1268 pgoff = addr >> PAGE_SHIFT; 1269 break; 1270 default: 1271 return -EINVAL; 1272 } 1273 } 1274 1275 /* 1276 * Set 'VM_NORESERVE' if we should not account for the 1277 * memory use of this mapping. 1278 */ 1279 if (flags & MAP_NORESERVE) { 1280 /* We honor MAP_NORESERVE if allowed to overcommit */ 1281 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1282 vm_flags |= VM_NORESERVE; 1283 1284 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1285 if (file && is_file_hugepages(file)) 1286 vm_flags |= VM_NORESERVE; 1287 } 1288 1289 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1290 if (!IS_ERR_VALUE(addr) && 1291 ((vm_flags & VM_LOCKED) || 1292 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1293 *populate = len; 1294 return addr; 1295 } 1296 1297 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1298 unsigned long, prot, unsigned long, flags, 1299 unsigned long, fd, unsigned long, pgoff) 1300 { 1301 struct file *file = NULL; 1302 unsigned long retval; 1303 1304 if (!(flags & MAP_ANONYMOUS)) { 1305 audit_mmap_fd(fd, flags); 1306 file = fget(fd); 1307 if (!file) 1308 return -EBADF; 1309 if (is_file_hugepages(file)) 1310 len = ALIGN(len, huge_page_size(hstate_file(file))); 1311 retval = -EINVAL; 1312 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1313 goto out_fput; 1314 } else if (flags & MAP_HUGETLB) { 1315 struct user_struct *user = NULL; 1316 struct hstate *hs; 1317 1318 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1319 if (!hs) 1320 return -EINVAL; 1321 1322 len = ALIGN(len, huge_page_size(hs)); 1323 /* 1324 * VM_NORESERVE is used because the reservations will be 1325 * taken when vm_ops->mmap() is called 1326 * A dummy user value is used because we are not locking 1327 * memory so no accounting is necessary 1328 */ 1329 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1330 VM_NORESERVE, 1331 &user, HUGETLB_ANONHUGE_INODE, 1332 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1333 if (IS_ERR(file)) 1334 return PTR_ERR(file); 1335 } 1336 1337 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1338 1339 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1340 out_fput: 1341 if (file) 1342 fput(file); 1343 return retval; 1344 } 1345 1346 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1347 struct mmap_arg_struct { 1348 unsigned long addr; 1349 unsigned long len; 1350 unsigned long prot; 1351 unsigned long flags; 1352 unsigned long fd; 1353 unsigned long offset; 1354 }; 1355 1356 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1357 { 1358 struct mmap_arg_struct a; 1359 1360 if (copy_from_user(&a, arg, sizeof(a))) 1361 return -EFAULT; 1362 if (offset_in_page(a.offset)) 1363 return -EINVAL; 1364 1365 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1366 a.offset >> PAGE_SHIFT); 1367 } 1368 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1369 1370 /* 1371 * Some shared mappigns will want the pages marked read-only 1372 * to track write events. If so, we'll downgrade vm_page_prot 1373 * to the private version (using protection_map[] without the 1374 * VM_SHARED bit). 1375 */ 1376 int vma_wants_writenotify(struct vm_area_struct *vma) 1377 { 1378 vm_flags_t vm_flags = vma->vm_flags; 1379 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1380 1381 /* If it was private or non-writable, the write bit is already clear */ 1382 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1383 return 0; 1384 1385 /* The backer wishes to know when pages are first written to? */ 1386 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1387 return 1; 1388 1389 /* The open routine did something to the protections that pgprot_modify 1390 * won't preserve? */ 1391 if (pgprot_val(vma->vm_page_prot) != 1392 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1393 return 0; 1394 1395 /* Do we need to track softdirty? */ 1396 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1397 return 1; 1398 1399 /* Specialty mapping? */ 1400 if (vm_flags & VM_PFNMAP) 1401 return 0; 1402 1403 /* Can the mapping track the dirty pages? */ 1404 return vma->vm_file && vma->vm_file->f_mapping && 1405 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1406 } 1407 1408 /* 1409 * We account for memory if it's a private writeable mapping, 1410 * not hugepages and VM_NORESERVE wasn't set. 1411 */ 1412 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1413 { 1414 /* 1415 * hugetlb has its own accounting separate from the core VM 1416 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1417 */ 1418 if (file && is_file_hugepages(file)) 1419 return 0; 1420 1421 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1422 } 1423 1424 unsigned long mmap_region(struct file *file, unsigned long addr, 1425 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1426 { 1427 struct mm_struct *mm = current->mm; 1428 struct vm_area_struct *vma, *prev; 1429 int error; 1430 struct rb_node **rb_link, *rb_parent; 1431 unsigned long charged = 0; 1432 1433 /* Check against address space limit. */ 1434 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1435 unsigned long nr_pages; 1436 1437 /* 1438 * MAP_FIXED may remove pages of mappings that intersects with 1439 * requested mapping. Account for the pages it would unmap. 1440 */ 1441 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1442 1443 if (!may_expand_vm(mm, vm_flags, 1444 (len >> PAGE_SHIFT) - nr_pages)) 1445 return -ENOMEM; 1446 } 1447 1448 /* Clear old maps */ 1449 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1450 &rb_parent)) { 1451 if (do_munmap(mm, addr, len)) 1452 return -ENOMEM; 1453 } 1454 1455 /* 1456 * Private writable mapping: check memory availability 1457 */ 1458 if (accountable_mapping(file, vm_flags)) { 1459 charged = len >> PAGE_SHIFT; 1460 if (security_vm_enough_memory_mm(mm, charged)) 1461 return -ENOMEM; 1462 vm_flags |= VM_ACCOUNT; 1463 } 1464 1465 /* 1466 * Can we just expand an old mapping? 1467 */ 1468 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1469 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1470 if (vma) 1471 goto out; 1472 1473 /* 1474 * Determine the object being mapped and call the appropriate 1475 * specific mapper. the address has already been validated, but 1476 * not unmapped, but the maps are removed from the list. 1477 */ 1478 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1479 if (!vma) { 1480 error = -ENOMEM; 1481 goto unacct_error; 1482 } 1483 1484 vma->vm_mm = mm; 1485 vma->vm_start = addr; 1486 vma->vm_end = addr + len; 1487 vma->vm_flags = vm_flags; 1488 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1489 vma->vm_pgoff = pgoff; 1490 INIT_LIST_HEAD(&vma->anon_vma_chain); 1491 1492 if (file) { 1493 if (vm_flags & VM_DENYWRITE) { 1494 error = deny_write_access(file); 1495 if (error) 1496 goto free_vma; 1497 } 1498 if (vm_flags & VM_SHARED) { 1499 error = mapping_map_writable(file->f_mapping); 1500 if (error) 1501 goto allow_write_and_free_vma; 1502 } 1503 1504 /* ->mmap() can change vma->vm_file, but must guarantee that 1505 * vma_link() below can deny write-access if VM_DENYWRITE is set 1506 * and map writably if VM_SHARED is set. This usually means the 1507 * new file must not have been exposed to user-space, yet. 1508 */ 1509 vma->vm_file = get_file(file); 1510 error = file->f_op->mmap(file, vma); 1511 if (error) 1512 goto unmap_and_free_vma; 1513 1514 /* Can addr have changed?? 1515 * 1516 * Answer: Yes, several device drivers can do it in their 1517 * f_op->mmap method. -DaveM 1518 * Bug: If addr is changed, prev, rb_link, rb_parent should 1519 * be updated for vma_link() 1520 */ 1521 WARN_ON_ONCE(addr != vma->vm_start); 1522 1523 addr = vma->vm_start; 1524 vm_flags = vma->vm_flags; 1525 } else if (vm_flags & VM_SHARED) { 1526 error = shmem_zero_setup(vma); 1527 if (error) 1528 goto free_vma; 1529 } 1530 1531 vma_link(mm, vma, prev, rb_link, rb_parent); 1532 /* Once vma denies write, undo our temporary denial count */ 1533 if (file) { 1534 if (vm_flags & VM_SHARED) 1535 mapping_unmap_writable(file->f_mapping); 1536 if (vm_flags & VM_DENYWRITE) 1537 allow_write_access(file); 1538 } 1539 file = vma->vm_file; 1540 out: 1541 perf_event_mmap(vma); 1542 1543 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1544 if (vm_flags & VM_LOCKED) { 1545 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1546 vma == get_gate_vma(current->mm))) 1547 mm->locked_vm += (len >> PAGE_SHIFT); 1548 else 1549 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1550 } 1551 1552 if (file) 1553 uprobe_mmap(vma); 1554 1555 /* 1556 * New (or expanded) vma always get soft dirty status. 1557 * Otherwise user-space soft-dirty page tracker won't 1558 * be able to distinguish situation when vma area unmapped, 1559 * then new mapped in-place (which must be aimed as 1560 * a completely new data area). 1561 */ 1562 vma->vm_flags |= VM_SOFTDIRTY; 1563 1564 vma_set_page_prot(vma); 1565 1566 return addr; 1567 1568 unmap_and_free_vma: 1569 vma->vm_file = NULL; 1570 fput(file); 1571 1572 /* Undo any partial mapping done by a device driver. */ 1573 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1574 charged = 0; 1575 if (vm_flags & VM_SHARED) 1576 mapping_unmap_writable(file->f_mapping); 1577 allow_write_and_free_vma: 1578 if (vm_flags & VM_DENYWRITE) 1579 allow_write_access(file); 1580 free_vma: 1581 kmem_cache_free(vm_area_cachep, vma); 1582 unacct_error: 1583 if (charged) 1584 vm_unacct_memory(charged); 1585 return error; 1586 } 1587 1588 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1589 { 1590 /* 1591 * We implement the search by looking for an rbtree node that 1592 * immediately follows a suitable gap. That is, 1593 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1594 * - gap_end = vma->vm_start >= info->low_limit + length; 1595 * - gap_end - gap_start >= length 1596 */ 1597 1598 struct mm_struct *mm = current->mm; 1599 struct vm_area_struct *vma; 1600 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1601 1602 /* Adjust search length to account for worst case alignment overhead */ 1603 length = info->length + info->align_mask; 1604 if (length < info->length) 1605 return -ENOMEM; 1606 1607 /* Adjust search limits by the desired length */ 1608 if (info->high_limit < length) 1609 return -ENOMEM; 1610 high_limit = info->high_limit - length; 1611 1612 if (info->low_limit > high_limit) 1613 return -ENOMEM; 1614 low_limit = info->low_limit + length; 1615 1616 /* Check if rbtree root looks promising */ 1617 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1618 goto check_highest; 1619 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1620 if (vma->rb_subtree_gap < length) 1621 goto check_highest; 1622 1623 while (true) { 1624 /* Visit left subtree if it looks promising */ 1625 gap_end = vma->vm_start; 1626 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1627 struct vm_area_struct *left = 1628 rb_entry(vma->vm_rb.rb_left, 1629 struct vm_area_struct, vm_rb); 1630 if (left->rb_subtree_gap >= length) { 1631 vma = left; 1632 continue; 1633 } 1634 } 1635 1636 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1637 check_current: 1638 /* Check if current node has a suitable gap */ 1639 if (gap_start > high_limit) 1640 return -ENOMEM; 1641 if (gap_end >= low_limit && gap_end - gap_start >= length) 1642 goto found; 1643 1644 /* Visit right subtree if it looks promising */ 1645 if (vma->vm_rb.rb_right) { 1646 struct vm_area_struct *right = 1647 rb_entry(vma->vm_rb.rb_right, 1648 struct vm_area_struct, vm_rb); 1649 if (right->rb_subtree_gap >= length) { 1650 vma = right; 1651 continue; 1652 } 1653 } 1654 1655 /* Go back up the rbtree to find next candidate node */ 1656 while (true) { 1657 struct rb_node *prev = &vma->vm_rb; 1658 if (!rb_parent(prev)) 1659 goto check_highest; 1660 vma = rb_entry(rb_parent(prev), 1661 struct vm_area_struct, vm_rb); 1662 if (prev == vma->vm_rb.rb_left) { 1663 gap_start = vma->vm_prev->vm_end; 1664 gap_end = vma->vm_start; 1665 goto check_current; 1666 } 1667 } 1668 } 1669 1670 check_highest: 1671 /* Check highest gap, which does not precede any rbtree node */ 1672 gap_start = mm->highest_vm_end; 1673 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1674 if (gap_start > high_limit) 1675 return -ENOMEM; 1676 1677 found: 1678 /* We found a suitable gap. Clip it with the original low_limit. */ 1679 if (gap_start < info->low_limit) 1680 gap_start = info->low_limit; 1681 1682 /* Adjust gap address to the desired alignment */ 1683 gap_start += (info->align_offset - gap_start) & info->align_mask; 1684 1685 VM_BUG_ON(gap_start + info->length > info->high_limit); 1686 VM_BUG_ON(gap_start + info->length > gap_end); 1687 return gap_start; 1688 } 1689 1690 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1691 { 1692 struct mm_struct *mm = current->mm; 1693 struct vm_area_struct *vma; 1694 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1695 1696 /* Adjust search length to account for worst case alignment overhead */ 1697 length = info->length + info->align_mask; 1698 if (length < info->length) 1699 return -ENOMEM; 1700 1701 /* 1702 * Adjust search limits by the desired length. 1703 * See implementation comment at top of unmapped_area(). 1704 */ 1705 gap_end = info->high_limit; 1706 if (gap_end < length) 1707 return -ENOMEM; 1708 high_limit = gap_end - length; 1709 1710 if (info->low_limit > high_limit) 1711 return -ENOMEM; 1712 low_limit = info->low_limit + length; 1713 1714 /* Check highest gap, which does not precede any rbtree node */ 1715 gap_start = mm->highest_vm_end; 1716 if (gap_start <= high_limit) 1717 goto found_highest; 1718 1719 /* Check if rbtree root looks promising */ 1720 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1721 return -ENOMEM; 1722 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1723 if (vma->rb_subtree_gap < length) 1724 return -ENOMEM; 1725 1726 while (true) { 1727 /* Visit right subtree if it looks promising */ 1728 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1729 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1730 struct vm_area_struct *right = 1731 rb_entry(vma->vm_rb.rb_right, 1732 struct vm_area_struct, vm_rb); 1733 if (right->rb_subtree_gap >= length) { 1734 vma = right; 1735 continue; 1736 } 1737 } 1738 1739 check_current: 1740 /* Check if current node has a suitable gap */ 1741 gap_end = vma->vm_start; 1742 if (gap_end < low_limit) 1743 return -ENOMEM; 1744 if (gap_start <= high_limit && gap_end - gap_start >= length) 1745 goto found; 1746 1747 /* Visit left subtree if it looks promising */ 1748 if (vma->vm_rb.rb_left) { 1749 struct vm_area_struct *left = 1750 rb_entry(vma->vm_rb.rb_left, 1751 struct vm_area_struct, vm_rb); 1752 if (left->rb_subtree_gap >= length) { 1753 vma = left; 1754 continue; 1755 } 1756 } 1757 1758 /* Go back up the rbtree to find next candidate node */ 1759 while (true) { 1760 struct rb_node *prev = &vma->vm_rb; 1761 if (!rb_parent(prev)) 1762 return -ENOMEM; 1763 vma = rb_entry(rb_parent(prev), 1764 struct vm_area_struct, vm_rb); 1765 if (prev == vma->vm_rb.rb_right) { 1766 gap_start = vma->vm_prev ? 1767 vma->vm_prev->vm_end : 0; 1768 goto check_current; 1769 } 1770 } 1771 } 1772 1773 found: 1774 /* We found a suitable gap. Clip it with the original high_limit. */ 1775 if (gap_end > info->high_limit) 1776 gap_end = info->high_limit; 1777 1778 found_highest: 1779 /* Compute highest gap address at the desired alignment */ 1780 gap_end -= info->length; 1781 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1782 1783 VM_BUG_ON(gap_end < info->low_limit); 1784 VM_BUG_ON(gap_end < gap_start); 1785 return gap_end; 1786 } 1787 1788 /* Get an address range which is currently unmapped. 1789 * For shmat() with addr=0. 1790 * 1791 * Ugly calling convention alert: 1792 * Return value with the low bits set means error value, 1793 * ie 1794 * if (ret & ~PAGE_MASK) 1795 * error = ret; 1796 * 1797 * This function "knows" that -ENOMEM has the bits set. 1798 */ 1799 #ifndef HAVE_ARCH_UNMAPPED_AREA 1800 unsigned long 1801 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1802 unsigned long len, unsigned long pgoff, unsigned long flags) 1803 { 1804 struct mm_struct *mm = current->mm; 1805 struct vm_area_struct *vma; 1806 struct vm_unmapped_area_info info; 1807 1808 if (len > TASK_SIZE - mmap_min_addr) 1809 return -ENOMEM; 1810 1811 if (flags & MAP_FIXED) 1812 return addr; 1813 1814 if (addr) { 1815 addr = PAGE_ALIGN(addr); 1816 vma = find_vma(mm, addr); 1817 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1818 (!vma || addr + len <= vma->vm_start)) 1819 return addr; 1820 } 1821 1822 info.flags = 0; 1823 info.length = len; 1824 info.low_limit = mm->mmap_base; 1825 info.high_limit = TASK_SIZE; 1826 info.align_mask = 0; 1827 return vm_unmapped_area(&info); 1828 } 1829 #endif 1830 1831 /* 1832 * This mmap-allocator allocates new areas top-down from below the 1833 * stack's low limit (the base): 1834 */ 1835 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1836 unsigned long 1837 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1838 const unsigned long len, const unsigned long pgoff, 1839 const unsigned long flags) 1840 { 1841 struct vm_area_struct *vma; 1842 struct mm_struct *mm = current->mm; 1843 unsigned long addr = addr0; 1844 struct vm_unmapped_area_info info; 1845 1846 /* requested length too big for entire address space */ 1847 if (len > TASK_SIZE - mmap_min_addr) 1848 return -ENOMEM; 1849 1850 if (flags & MAP_FIXED) 1851 return addr; 1852 1853 /* requesting a specific address */ 1854 if (addr) { 1855 addr = PAGE_ALIGN(addr); 1856 vma = find_vma(mm, addr); 1857 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1858 (!vma || addr + len <= vma->vm_start)) 1859 return addr; 1860 } 1861 1862 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1863 info.length = len; 1864 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1865 info.high_limit = mm->mmap_base; 1866 info.align_mask = 0; 1867 addr = vm_unmapped_area(&info); 1868 1869 /* 1870 * A failed mmap() very likely causes application failure, 1871 * so fall back to the bottom-up function here. This scenario 1872 * can happen with large stack limits and large mmap() 1873 * allocations. 1874 */ 1875 if (offset_in_page(addr)) { 1876 VM_BUG_ON(addr != -ENOMEM); 1877 info.flags = 0; 1878 info.low_limit = TASK_UNMAPPED_BASE; 1879 info.high_limit = TASK_SIZE; 1880 addr = vm_unmapped_area(&info); 1881 } 1882 1883 return addr; 1884 } 1885 #endif 1886 1887 unsigned long 1888 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1889 unsigned long pgoff, unsigned long flags) 1890 { 1891 unsigned long (*get_area)(struct file *, unsigned long, 1892 unsigned long, unsigned long, unsigned long); 1893 1894 unsigned long error = arch_mmap_check(addr, len, flags); 1895 if (error) 1896 return error; 1897 1898 /* Careful about overflows.. */ 1899 if (len > TASK_SIZE) 1900 return -ENOMEM; 1901 1902 get_area = current->mm->get_unmapped_area; 1903 if (file && file->f_op->get_unmapped_area) 1904 get_area = file->f_op->get_unmapped_area; 1905 addr = get_area(file, addr, len, pgoff, flags); 1906 if (IS_ERR_VALUE(addr)) 1907 return addr; 1908 1909 if (addr > TASK_SIZE - len) 1910 return -ENOMEM; 1911 if (offset_in_page(addr)) 1912 return -EINVAL; 1913 1914 addr = arch_rebalance_pgtables(addr, len); 1915 error = security_mmap_addr(addr); 1916 return error ? error : addr; 1917 } 1918 1919 EXPORT_SYMBOL(get_unmapped_area); 1920 1921 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1922 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1923 { 1924 struct rb_node *rb_node; 1925 struct vm_area_struct *vma; 1926 1927 /* Check the cache first. */ 1928 vma = vmacache_find(mm, addr); 1929 if (likely(vma)) 1930 return vma; 1931 1932 rb_node = mm->mm_rb.rb_node; 1933 1934 while (rb_node) { 1935 struct vm_area_struct *tmp; 1936 1937 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1938 1939 if (tmp->vm_end > addr) { 1940 vma = tmp; 1941 if (tmp->vm_start <= addr) 1942 break; 1943 rb_node = rb_node->rb_left; 1944 } else 1945 rb_node = rb_node->rb_right; 1946 } 1947 1948 if (vma) 1949 vmacache_update(addr, vma); 1950 return vma; 1951 } 1952 1953 EXPORT_SYMBOL(find_vma); 1954 1955 /* 1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1957 */ 1958 struct vm_area_struct * 1959 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1960 struct vm_area_struct **pprev) 1961 { 1962 struct vm_area_struct *vma; 1963 1964 vma = find_vma(mm, addr); 1965 if (vma) { 1966 *pprev = vma->vm_prev; 1967 } else { 1968 struct rb_node *rb_node = mm->mm_rb.rb_node; 1969 *pprev = NULL; 1970 while (rb_node) { 1971 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1972 rb_node = rb_node->rb_right; 1973 } 1974 } 1975 return vma; 1976 } 1977 1978 /* 1979 * Verify that the stack growth is acceptable and 1980 * update accounting. This is shared with both the 1981 * grow-up and grow-down cases. 1982 */ 1983 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1984 { 1985 struct mm_struct *mm = vma->vm_mm; 1986 struct rlimit *rlim = current->signal->rlim; 1987 unsigned long new_start, actual_size; 1988 1989 /* address space limit tests */ 1990 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1991 return -ENOMEM; 1992 1993 /* Stack limit test */ 1994 actual_size = size; 1995 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 1996 actual_size -= PAGE_SIZE; 1997 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1998 return -ENOMEM; 1999 2000 /* mlock limit tests */ 2001 if (vma->vm_flags & VM_LOCKED) { 2002 unsigned long locked; 2003 unsigned long limit; 2004 locked = mm->locked_vm + grow; 2005 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2006 limit >>= PAGE_SHIFT; 2007 if (locked > limit && !capable(CAP_IPC_LOCK)) 2008 return -ENOMEM; 2009 } 2010 2011 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2012 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2013 vma->vm_end - size; 2014 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2015 return -EFAULT; 2016 2017 /* 2018 * Overcommit.. This must be the final test, as it will 2019 * update security statistics. 2020 */ 2021 if (security_vm_enough_memory_mm(mm, grow)) 2022 return -ENOMEM; 2023 2024 return 0; 2025 } 2026 2027 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2028 /* 2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2030 * vma is the last one with address > vma->vm_end. Have to extend vma. 2031 */ 2032 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2033 { 2034 struct mm_struct *mm = vma->vm_mm; 2035 int error = 0; 2036 2037 if (!(vma->vm_flags & VM_GROWSUP)) 2038 return -EFAULT; 2039 2040 /* Guard against wrapping around to address 0. */ 2041 if (address < PAGE_ALIGN(address+4)) 2042 address = PAGE_ALIGN(address+4); 2043 else 2044 return -ENOMEM; 2045 2046 /* We must make sure the anon_vma is allocated. */ 2047 if (unlikely(anon_vma_prepare(vma))) 2048 return -ENOMEM; 2049 2050 /* 2051 * vma->vm_start/vm_end cannot change under us because the caller 2052 * is required to hold the mmap_sem in read mode. We need the 2053 * anon_vma lock to serialize against concurrent expand_stacks. 2054 */ 2055 anon_vma_lock_write(vma->anon_vma); 2056 2057 /* Somebody else might have raced and expanded it already */ 2058 if (address > vma->vm_end) { 2059 unsigned long size, grow; 2060 2061 size = address - vma->vm_start; 2062 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2063 2064 error = -ENOMEM; 2065 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2066 error = acct_stack_growth(vma, size, grow); 2067 if (!error) { 2068 /* 2069 * vma_gap_update() doesn't support concurrent 2070 * updates, but we only hold a shared mmap_sem 2071 * lock here, so we need to protect against 2072 * concurrent vma expansions. 2073 * anon_vma_lock_write() doesn't help here, as 2074 * we don't guarantee that all growable vmas 2075 * in a mm share the same root anon vma. 2076 * So, we reuse mm->page_table_lock to guard 2077 * against concurrent vma expansions. 2078 */ 2079 spin_lock(&mm->page_table_lock); 2080 if (vma->vm_flags & VM_LOCKED) 2081 mm->locked_vm += grow; 2082 vm_stat_account(mm, vma->vm_flags, grow); 2083 anon_vma_interval_tree_pre_update_vma(vma); 2084 vma->vm_end = address; 2085 anon_vma_interval_tree_post_update_vma(vma); 2086 if (vma->vm_next) 2087 vma_gap_update(vma->vm_next); 2088 else 2089 mm->highest_vm_end = address; 2090 spin_unlock(&mm->page_table_lock); 2091 2092 perf_event_mmap(vma); 2093 } 2094 } 2095 } 2096 anon_vma_unlock_write(vma->anon_vma); 2097 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2098 validate_mm(mm); 2099 return error; 2100 } 2101 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2102 2103 /* 2104 * vma is the first one with address < vma->vm_start. Have to extend vma. 2105 */ 2106 int expand_downwards(struct vm_area_struct *vma, 2107 unsigned long address) 2108 { 2109 struct mm_struct *mm = vma->vm_mm; 2110 int error; 2111 2112 address &= PAGE_MASK; 2113 error = security_mmap_addr(address); 2114 if (error) 2115 return error; 2116 2117 /* We must make sure the anon_vma is allocated. */ 2118 if (unlikely(anon_vma_prepare(vma))) 2119 return -ENOMEM; 2120 2121 /* 2122 * vma->vm_start/vm_end cannot change under us because the caller 2123 * is required to hold the mmap_sem in read mode. We need the 2124 * anon_vma lock to serialize against concurrent expand_stacks. 2125 */ 2126 anon_vma_lock_write(vma->anon_vma); 2127 2128 /* Somebody else might have raced and expanded it already */ 2129 if (address < vma->vm_start) { 2130 unsigned long size, grow; 2131 2132 size = vma->vm_end - address; 2133 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2134 2135 error = -ENOMEM; 2136 if (grow <= vma->vm_pgoff) { 2137 error = acct_stack_growth(vma, size, grow); 2138 if (!error) { 2139 /* 2140 * vma_gap_update() doesn't support concurrent 2141 * updates, but we only hold a shared mmap_sem 2142 * lock here, so we need to protect against 2143 * concurrent vma expansions. 2144 * anon_vma_lock_write() doesn't help here, as 2145 * we don't guarantee that all growable vmas 2146 * in a mm share the same root anon vma. 2147 * So, we reuse mm->page_table_lock to guard 2148 * against concurrent vma expansions. 2149 */ 2150 spin_lock(&mm->page_table_lock); 2151 if (vma->vm_flags & VM_LOCKED) 2152 mm->locked_vm += grow; 2153 vm_stat_account(mm, vma->vm_flags, grow); 2154 anon_vma_interval_tree_pre_update_vma(vma); 2155 vma->vm_start = address; 2156 vma->vm_pgoff -= grow; 2157 anon_vma_interval_tree_post_update_vma(vma); 2158 vma_gap_update(vma); 2159 spin_unlock(&mm->page_table_lock); 2160 2161 perf_event_mmap(vma); 2162 } 2163 } 2164 } 2165 anon_vma_unlock_write(vma->anon_vma); 2166 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2167 validate_mm(mm); 2168 return error; 2169 } 2170 2171 /* 2172 * Note how expand_stack() refuses to expand the stack all the way to 2173 * abut the next virtual mapping, *unless* that mapping itself is also 2174 * a stack mapping. We want to leave room for a guard page, after all 2175 * (the guard page itself is not added here, that is done by the 2176 * actual page faulting logic) 2177 * 2178 * This matches the behavior of the guard page logic (see mm/memory.c: 2179 * check_stack_guard_page()), which only allows the guard page to be 2180 * removed under these circumstances. 2181 */ 2182 #ifdef CONFIG_STACK_GROWSUP 2183 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2184 { 2185 struct vm_area_struct *next; 2186 2187 address &= PAGE_MASK; 2188 next = vma->vm_next; 2189 if (next && next->vm_start == address + PAGE_SIZE) { 2190 if (!(next->vm_flags & VM_GROWSUP)) 2191 return -ENOMEM; 2192 } 2193 return expand_upwards(vma, address); 2194 } 2195 2196 struct vm_area_struct * 2197 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2198 { 2199 struct vm_area_struct *vma, *prev; 2200 2201 addr &= PAGE_MASK; 2202 vma = find_vma_prev(mm, addr, &prev); 2203 if (vma && (vma->vm_start <= addr)) 2204 return vma; 2205 if (!prev || expand_stack(prev, addr)) 2206 return NULL; 2207 if (prev->vm_flags & VM_LOCKED) 2208 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2209 return prev; 2210 } 2211 #else 2212 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2213 { 2214 struct vm_area_struct *prev; 2215 2216 address &= PAGE_MASK; 2217 prev = vma->vm_prev; 2218 if (prev && prev->vm_end == address) { 2219 if (!(prev->vm_flags & VM_GROWSDOWN)) 2220 return -ENOMEM; 2221 } 2222 return expand_downwards(vma, address); 2223 } 2224 2225 struct vm_area_struct * 2226 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2227 { 2228 struct vm_area_struct *vma; 2229 unsigned long start; 2230 2231 addr &= PAGE_MASK; 2232 vma = find_vma(mm, addr); 2233 if (!vma) 2234 return NULL; 2235 if (vma->vm_start <= addr) 2236 return vma; 2237 if (!(vma->vm_flags & VM_GROWSDOWN)) 2238 return NULL; 2239 start = vma->vm_start; 2240 if (expand_stack(vma, addr)) 2241 return NULL; 2242 if (vma->vm_flags & VM_LOCKED) 2243 populate_vma_page_range(vma, addr, start, NULL); 2244 return vma; 2245 } 2246 #endif 2247 2248 EXPORT_SYMBOL_GPL(find_extend_vma); 2249 2250 /* 2251 * Ok - we have the memory areas we should free on the vma list, 2252 * so release them, and do the vma updates. 2253 * 2254 * Called with the mm semaphore held. 2255 */ 2256 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2257 { 2258 unsigned long nr_accounted = 0; 2259 2260 /* Update high watermark before we lower total_vm */ 2261 update_hiwater_vm(mm); 2262 do { 2263 long nrpages = vma_pages(vma); 2264 2265 if (vma->vm_flags & VM_ACCOUNT) 2266 nr_accounted += nrpages; 2267 vm_stat_account(mm, vma->vm_flags, -nrpages); 2268 vma = remove_vma(vma); 2269 } while (vma); 2270 vm_unacct_memory(nr_accounted); 2271 validate_mm(mm); 2272 } 2273 2274 /* 2275 * Get rid of page table information in the indicated region. 2276 * 2277 * Called with the mm semaphore held. 2278 */ 2279 static void unmap_region(struct mm_struct *mm, 2280 struct vm_area_struct *vma, struct vm_area_struct *prev, 2281 unsigned long start, unsigned long end) 2282 { 2283 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2284 struct mmu_gather tlb; 2285 2286 lru_add_drain(); 2287 tlb_gather_mmu(&tlb, mm, start, end); 2288 update_hiwater_rss(mm); 2289 unmap_vmas(&tlb, vma, start, end); 2290 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2291 next ? next->vm_start : USER_PGTABLES_CEILING); 2292 tlb_finish_mmu(&tlb, start, end); 2293 } 2294 2295 /* 2296 * Create a list of vma's touched by the unmap, removing them from the mm's 2297 * vma list as we go.. 2298 */ 2299 static void 2300 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2301 struct vm_area_struct *prev, unsigned long end) 2302 { 2303 struct vm_area_struct **insertion_point; 2304 struct vm_area_struct *tail_vma = NULL; 2305 2306 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2307 vma->vm_prev = NULL; 2308 do { 2309 vma_rb_erase(vma, &mm->mm_rb); 2310 mm->map_count--; 2311 tail_vma = vma; 2312 vma = vma->vm_next; 2313 } while (vma && vma->vm_start < end); 2314 *insertion_point = vma; 2315 if (vma) { 2316 vma->vm_prev = prev; 2317 vma_gap_update(vma); 2318 } else 2319 mm->highest_vm_end = prev ? prev->vm_end : 0; 2320 tail_vma->vm_next = NULL; 2321 2322 /* Kill the cache */ 2323 vmacache_invalidate(mm); 2324 } 2325 2326 /* 2327 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2328 * munmap path where it doesn't make sense to fail. 2329 */ 2330 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2331 unsigned long addr, int new_below) 2332 { 2333 struct vm_area_struct *new; 2334 int err; 2335 2336 if (is_vm_hugetlb_page(vma) && (addr & 2337 ~(huge_page_mask(hstate_vma(vma))))) 2338 return -EINVAL; 2339 2340 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2341 if (!new) 2342 return -ENOMEM; 2343 2344 /* most fields are the same, copy all, and then fixup */ 2345 *new = *vma; 2346 2347 INIT_LIST_HEAD(&new->anon_vma_chain); 2348 2349 if (new_below) 2350 new->vm_end = addr; 2351 else { 2352 new->vm_start = addr; 2353 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2354 } 2355 2356 err = vma_dup_policy(vma, new); 2357 if (err) 2358 goto out_free_vma; 2359 2360 err = anon_vma_clone(new, vma); 2361 if (err) 2362 goto out_free_mpol; 2363 2364 if (new->vm_file) 2365 get_file(new->vm_file); 2366 2367 if (new->vm_ops && new->vm_ops->open) 2368 new->vm_ops->open(new); 2369 2370 if (new_below) 2371 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2372 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2373 else 2374 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2375 2376 /* Success. */ 2377 if (!err) 2378 return 0; 2379 2380 /* Clean everything up if vma_adjust failed. */ 2381 if (new->vm_ops && new->vm_ops->close) 2382 new->vm_ops->close(new); 2383 if (new->vm_file) 2384 fput(new->vm_file); 2385 unlink_anon_vmas(new); 2386 out_free_mpol: 2387 mpol_put(vma_policy(new)); 2388 out_free_vma: 2389 kmem_cache_free(vm_area_cachep, new); 2390 return err; 2391 } 2392 2393 /* 2394 * Split a vma into two pieces at address 'addr', a new vma is allocated 2395 * either for the first part or the tail. 2396 */ 2397 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2398 unsigned long addr, int new_below) 2399 { 2400 if (mm->map_count >= sysctl_max_map_count) 2401 return -ENOMEM; 2402 2403 return __split_vma(mm, vma, addr, new_below); 2404 } 2405 2406 /* Munmap is split into 2 main parts -- this part which finds 2407 * what needs doing, and the areas themselves, which do the 2408 * work. This now handles partial unmappings. 2409 * Jeremy Fitzhardinge <jeremy@goop.org> 2410 */ 2411 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2412 { 2413 unsigned long end; 2414 struct vm_area_struct *vma, *prev, *last; 2415 2416 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2417 return -EINVAL; 2418 2419 len = PAGE_ALIGN(len); 2420 if (len == 0) 2421 return -EINVAL; 2422 2423 /* Find the first overlapping VMA */ 2424 vma = find_vma(mm, start); 2425 if (!vma) 2426 return 0; 2427 prev = vma->vm_prev; 2428 /* we have start < vma->vm_end */ 2429 2430 /* if it doesn't overlap, we have nothing.. */ 2431 end = start + len; 2432 if (vma->vm_start >= end) 2433 return 0; 2434 2435 /* 2436 * If we need to split any vma, do it now to save pain later. 2437 * 2438 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2439 * unmapped vm_area_struct will remain in use: so lower split_vma 2440 * places tmp vma above, and higher split_vma places tmp vma below. 2441 */ 2442 if (start > vma->vm_start) { 2443 int error; 2444 2445 /* 2446 * Make sure that map_count on return from munmap() will 2447 * not exceed its limit; but let map_count go just above 2448 * its limit temporarily, to help free resources as expected. 2449 */ 2450 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2451 return -ENOMEM; 2452 2453 error = __split_vma(mm, vma, start, 0); 2454 if (error) 2455 return error; 2456 prev = vma; 2457 } 2458 2459 /* Does it split the last one? */ 2460 last = find_vma(mm, end); 2461 if (last && end > last->vm_start) { 2462 int error = __split_vma(mm, last, end, 1); 2463 if (error) 2464 return error; 2465 } 2466 vma = prev ? prev->vm_next : mm->mmap; 2467 2468 /* 2469 * unlock any mlock()ed ranges before detaching vmas 2470 */ 2471 if (mm->locked_vm) { 2472 struct vm_area_struct *tmp = vma; 2473 while (tmp && tmp->vm_start < end) { 2474 if (tmp->vm_flags & VM_LOCKED) { 2475 mm->locked_vm -= vma_pages(tmp); 2476 munlock_vma_pages_all(tmp); 2477 } 2478 tmp = tmp->vm_next; 2479 } 2480 } 2481 2482 /* 2483 * Remove the vma's, and unmap the actual pages 2484 */ 2485 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2486 unmap_region(mm, vma, prev, start, end); 2487 2488 arch_unmap(mm, vma, start, end); 2489 2490 /* Fix up all other VM information */ 2491 remove_vma_list(mm, vma); 2492 2493 return 0; 2494 } 2495 2496 int vm_munmap(unsigned long start, size_t len) 2497 { 2498 int ret; 2499 struct mm_struct *mm = current->mm; 2500 2501 down_write(&mm->mmap_sem); 2502 ret = do_munmap(mm, start, len); 2503 up_write(&mm->mmap_sem); 2504 return ret; 2505 } 2506 EXPORT_SYMBOL(vm_munmap); 2507 2508 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2509 { 2510 profile_munmap(addr); 2511 return vm_munmap(addr, len); 2512 } 2513 2514 2515 /* 2516 * Emulation of deprecated remap_file_pages() syscall. 2517 */ 2518 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2519 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2520 { 2521 2522 struct mm_struct *mm = current->mm; 2523 struct vm_area_struct *vma; 2524 unsigned long populate = 0; 2525 unsigned long ret = -EINVAL; 2526 struct file *file; 2527 2528 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2529 current->comm, current->pid); 2530 2531 if (prot) 2532 return ret; 2533 start = start & PAGE_MASK; 2534 size = size & PAGE_MASK; 2535 2536 if (start + size <= start) 2537 return ret; 2538 2539 /* Does pgoff wrap? */ 2540 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2541 return ret; 2542 2543 down_write(&mm->mmap_sem); 2544 vma = find_vma(mm, start); 2545 2546 if (!vma || !(vma->vm_flags & VM_SHARED)) 2547 goto out; 2548 2549 if (start < vma->vm_start) 2550 goto out; 2551 2552 if (start + size > vma->vm_end) { 2553 struct vm_area_struct *next; 2554 2555 for (next = vma->vm_next; next; next = next->vm_next) { 2556 /* hole between vmas ? */ 2557 if (next->vm_start != next->vm_prev->vm_end) 2558 goto out; 2559 2560 if (next->vm_file != vma->vm_file) 2561 goto out; 2562 2563 if (next->vm_flags != vma->vm_flags) 2564 goto out; 2565 2566 if (start + size <= next->vm_end) 2567 break; 2568 } 2569 2570 if (!next) 2571 goto out; 2572 } 2573 2574 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2575 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2576 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2577 2578 flags &= MAP_NONBLOCK; 2579 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2580 if (vma->vm_flags & VM_LOCKED) { 2581 struct vm_area_struct *tmp; 2582 flags |= MAP_LOCKED; 2583 2584 /* drop PG_Mlocked flag for over-mapped range */ 2585 for (tmp = vma; tmp->vm_start >= start + size; 2586 tmp = tmp->vm_next) { 2587 munlock_vma_pages_range(tmp, 2588 max(tmp->vm_start, start), 2589 min(tmp->vm_end, start + size)); 2590 } 2591 } 2592 2593 file = get_file(vma->vm_file); 2594 ret = do_mmap_pgoff(vma->vm_file, start, size, 2595 prot, flags, pgoff, &populate); 2596 fput(file); 2597 out: 2598 up_write(&mm->mmap_sem); 2599 if (populate) 2600 mm_populate(ret, populate); 2601 if (!IS_ERR_VALUE(ret)) 2602 ret = 0; 2603 return ret; 2604 } 2605 2606 static inline void verify_mm_writelocked(struct mm_struct *mm) 2607 { 2608 #ifdef CONFIG_DEBUG_VM 2609 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2610 WARN_ON(1); 2611 up_read(&mm->mmap_sem); 2612 } 2613 #endif 2614 } 2615 2616 /* 2617 * this is really a simplified "do_mmap". it only handles 2618 * anonymous maps. eventually we may be able to do some 2619 * brk-specific accounting here. 2620 */ 2621 static unsigned long do_brk(unsigned long addr, unsigned long len) 2622 { 2623 struct mm_struct *mm = current->mm; 2624 struct vm_area_struct *vma, *prev; 2625 unsigned long flags; 2626 struct rb_node **rb_link, *rb_parent; 2627 pgoff_t pgoff = addr >> PAGE_SHIFT; 2628 int error; 2629 2630 len = PAGE_ALIGN(len); 2631 if (!len) 2632 return addr; 2633 2634 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2635 2636 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2637 if (offset_in_page(error)) 2638 return error; 2639 2640 error = mlock_future_check(mm, mm->def_flags, len); 2641 if (error) 2642 return error; 2643 2644 /* 2645 * mm->mmap_sem is required to protect against another thread 2646 * changing the mappings in case we sleep. 2647 */ 2648 verify_mm_writelocked(mm); 2649 2650 /* 2651 * Clear old maps. this also does some error checking for us 2652 */ 2653 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2654 &rb_parent)) { 2655 if (do_munmap(mm, addr, len)) 2656 return -ENOMEM; 2657 } 2658 2659 /* Check against address space limits *after* clearing old maps... */ 2660 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2661 return -ENOMEM; 2662 2663 if (mm->map_count > sysctl_max_map_count) 2664 return -ENOMEM; 2665 2666 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2667 return -ENOMEM; 2668 2669 /* Can we just expand an old private anonymous mapping? */ 2670 vma = vma_merge(mm, prev, addr, addr + len, flags, 2671 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2672 if (vma) 2673 goto out; 2674 2675 /* 2676 * create a vma struct for an anonymous mapping 2677 */ 2678 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2679 if (!vma) { 2680 vm_unacct_memory(len >> PAGE_SHIFT); 2681 return -ENOMEM; 2682 } 2683 2684 INIT_LIST_HEAD(&vma->anon_vma_chain); 2685 vma->vm_mm = mm; 2686 vma->vm_start = addr; 2687 vma->vm_end = addr + len; 2688 vma->vm_pgoff = pgoff; 2689 vma->vm_flags = flags; 2690 vma->vm_page_prot = vm_get_page_prot(flags); 2691 vma_link(mm, vma, prev, rb_link, rb_parent); 2692 out: 2693 perf_event_mmap(vma); 2694 mm->total_vm += len >> PAGE_SHIFT; 2695 mm->data_vm += len >> PAGE_SHIFT; 2696 if (flags & VM_LOCKED) 2697 mm->locked_vm += (len >> PAGE_SHIFT); 2698 vma->vm_flags |= VM_SOFTDIRTY; 2699 return addr; 2700 } 2701 2702 unsigned long vm_brk(unsigned long addr, unsigned long len) 2703 { 2704 struct mm_struct *mm = current->mm; 2705 unsigned long ret; 2706 bool populate; 2707 2708 down_write(&mm->mmap_sem); 2709 ret = do_brk(addr, len); 2710 populate = ((mm->def_flags & VM_LOCKED) != 0); 2711 up_write(&mm->mmap_sem); 2712 if (populate) 2713 mm_populate(addr, len); 2714 return ret; 2715 } 2716 EXPORT_SYMBOL(vm_brk); 2717 2718 /* Release all mmaps. */ 2719 void exit_mmap(struct mm_struct *mm) 2720 { 2721 struct mmu_gather tlb; 2722 struct vm_area_struct *vma; 2723 unsigned long nr_accounted = 0; 2724 2725 /* mm's last user has gone, and its about to be pulled down */ 2726 mmu_notifier_release(mm); 2727 2728 if (mm->locked_vm) { 2729 vma = mm->mmap; 2730 while (vma) { 2731 if (vma->vm_flags & VM_LOCKED) 2732 munlock_vma_pages_all(vma); 2733 vma = vma->vm_next; 2734 } 2735 } 2736 2737 arch_exit_mmap(mm); 2738 2739 vma = mm->mmap; 2740 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2741 return; 2742 2743 lru_add_drain(); 2744 flush_cache_mm(mm); 2745 tlb_gather_mmu(&tlb, mm, 0, -1); 2746 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2747 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2748 unmap_vmas(&tlb, vma, 0, -1); 2749 2750 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2751 tlb_finish_mmu(&tlb, 0, -1); 2752 2753 /* 2754 * Walk the list again, actually closing and freeing it, 2755 * with preemption enabled, without holding any MM locks. 2756 */ 2757 while (vma) { 2758 if (vma->vm_flags & VM_ACCOUNT) 2759 nr_accounted += vma_pages(vma); 2760 vma = remove_vma(vma); 2761 } 2762 vm_unacct_memory(nr_accounted); 2763 } 2764 2765 /* Insert vm structure into process list sorted by address 2766 * and into the inode's i_mmap tree. If vm_file is non-NULL 2767 * then i_mmap_rwsem is taken here. 2768 */ 2769 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2770 { 2771 struct vm_area_struct *prev; 2772 struct rb_node **rb_link, *rb_parent; 2773 2774 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2775 &prev, &rb_link, &rb_parent)) 2776 return -ENOMEM; 2777 if ((vma->vm_flags & VM_ACCOUNT) && 2778 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2779 return -ENOMEM; 2780 2781 /* 2782 * The vm_pgoff of a purely anonymous vma should be irrelevant 2783 * until its first write fault, when page's anon_vma and index 2784 * are set. But now set the vm_pgoff it will almost certainly 2785 * end up with (unless mremap moves it elsewhere before that 2786 * first wfault), so /proc/pid/maps tells a consistent story. 2787 * 2788 * By setting it to reflect the virtual start address of the 2789 * vma, merges and splits can happen in a seamless way, just 2790 * using the existing file pgoff checks and manipulations. 2791 * Similarly in do_mmap_pgoff and in do_brk. 2792 */ 2793 if (vma_is_anonymous(vma)) { 2794 BUG_ON(vma->anon_vma); 2795 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2796 } 2797 2798 vma_link(mm, vma, prev, rb_link, rb_parent); 2799 return 0; 2800 } 2801 2802 /* 2803 * Copy the vma structure to a new location in the same mm, 2804 * prior to moving page table entries, to effect an mremap move. 2805 */ 2806 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2807 unsigned long addr, unsigned long len, pgoff_t pgoff, 2808 bool *need_rmap_locks) 2809 { 2810 struct vm_area_struct *vma = *vmap; 2811 unsigned long vma_start = vma->vm_start; 2812 struct mm_struct *mm = vma->vm_mm; 2813 struct vm_area_struct *new_vma, *prev; 2814 struct rb_node **rb_link, *rb_parent; 2815 bool faulted_in_anon_vma = true; 2816 2817 /* 2818 * If anonymous vma has not yet been faulted, update new pgoff 2819 * to match new location, to increase its chance of merging. 2820 */ 2821 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2822 pgoff = addr >> PAGE_SHIFT; 2823 faulted_in_anon_vma = false; 2824 } 2825 2826 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2827 return NULL; /* should never get here */ 2828 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2829 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2830 vma->vm_userfaultfd_ctx); 2831 if (new_vma) { 2832 /* 2833 * Source vma may have been merged into new_vma 2834 */ 2835 if (unlikely(vma_start >= new_vma->vm_start && 2836 vma_start < new_vma->vm_end)) { 2837 /* 2838 * The only way we can get a vma_merge with 2839 * self during an mremap is if the vma hasn't 2840 * been faulted in yet and we were allowed to 2841 * reset the dst vma->vm_pgoff to the 2842 * destination address of the mremap to allow 2843 * the merge to happen. mremap must change the 2844 * vm_pgoff linearity between src and dst vmas 2845 * (in turn preventing a vma_merge) to be 2846 * safe. It is only safe to keep the vm_pgoff 2847 * linear if there are no pages mapped yet. 2848 */ 2849 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2850 *vmap = vma = new_vma; 2851 } 2852 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2853 } else { 2854 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2855 if (!new_vma) 2856 goto out; 2857 *new_vma = *vma; 2858 new_vma->vm_start = addr; 2859 new_vma->vm_end = addr + len; 2860 new_vma->vm_pgoff = pgoff; 2861 if (vma_dup_policy(vma, new_vma)) 2862 goto out_free_vma; 2863 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2864 if (anon_vma_clone(new_vma, vma)) 2865 goto out_free_mempol; 2866 if (new_vma->vm_file) 2867 get_file(new_vma->vm_file); 2868 if (new_vma->vm_ops && new_vma->vm_ops->open) 2869 new_vma->vm_ops->open(new_vma); 2870 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2871 *need_rmap_locks = false; 2872 } 2873 return new_vma; 2874 2875 out_free_mempol: 2876 mpol_put(vma_policy(new_vma)); 2877 out_free_vma: 2878 kmem_cache_free(vm_area_cachep, new_vma); 2879 out: 2880 return NULL; 2881 } 2882 2883 /* 2884 * Return true if the calling process may expand its vm space by the passed 2885 * number of pages 2886 */ 2887 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2888 { 2889 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2890 return false; 2891 2892 if (is_data_mapping(flags) && 2893 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2894 if (ignore_rlimit_data) 2895 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n", 2896 current->comm, current->pid, 2897 (mm->data_vm + npages) << PAGE_SHIFT, 2898 rlimit(RLIMIT_DATA)); 2899 else 2900 return false; 2901 } 2902 2903 return true; 2904 } 2905 2906 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2907 { 2908 mm->total_vm += npages; 2909 2910 if (is_exec_mapping(flags)) 2911 mm->exec_vm += npages; 2912 else if (is_stack_mapping(flags)) 2913 mm->stack_vm += npages; 2914 else if (is_data_mapping(flags)) 2915 mm->data_vm += npages; 2916 } 2917 2918 static int special_mapping_fault(struct vm_area_struct *vma, 2919 struct vm_fault *vmf); 2920 2921 /* 2922 * Having a close hook prevents vma merging regardless of flags. 2923 */ 2924 static void special_mapping_close(struct vm_area_struct *vma) 2925 { 2926 } 2927 2928 static const char *special_mapping_name(struct vm_area_struct *vma) 2929 { 2930 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2931 } 2932 2933 static const struct vm_operations_struct special_mapping_vmops = { 2934 .close = special_mapping_close, 2935 .fault = special_mapping_fault, 2936 .name = special_mapping_name, 2937 }; 2938 2939 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2940 .close = special_mapping_close, 2941 .fault = special_mapping_fault, 2942 }; 2943 2944 static int special_mapping_fault(struct vm_area_struct *vma, 2945 struct vm_fault *vmf) 2946 { 2947 pgoff_t pgoff; 2948 struct page **pages; 2949 2950 if (vma->vm_ops == &legacy_special_mapping_vmops) { 2951 pages = vma->vm_private_data; 2952 } else { 2953 struct vm_special_mapping *sm = vma->vm_private_data; 2954 2955 if (sm->fault) 2956 return sm->fault(sm, vma, vmf); 2957 2958 pages = sm->pages; 2959 } 2960 2961 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 2962 pgoff--; 2963 2964 if (*pages) { 2965 struct page *page = *pages; 2966 get_page(page); 2967 vmf->page = page; 2968 return 0; 2969 } 2970 2971 return VM_FAULT_SIGBUS; 2972 } 2973 2974 static struct vm_area_struct *__install_special_mapping( 2975 struct mm_struct *mm, 2976 unsigned long addr, unsigned long len, 2977 unsigned long vm_flags, void *priv, 2978 const struct vm_operations_struct *ops) 2979 { 2980 int ret; 2981 struct vm_area_struct *vma; 2982 2983 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2984 if (unlikely(vma == NULL)) 2985 return ERR_PTR(-ENOMEM); 2986 2987 INIT_LIST_HEAD(&vma->anon_vma_chain); 2988 vma->vm_mm = mm; 2989 vma->vm_start = addr; 2990 vma->vm_end = addr + len; 2991 2992 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2993 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2994 2995 vma->vm_ops = ops; 2996 vma->vm_private_data = priv; 2997 2998 ret = insert_vm_struct(mm, vma); 2999 if (ret) 3000 goto out; 3001 3002 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3003 3004 perf_event_mmap(vma); 3005 3006 return vma; 3007 3008 out: 3009 kmem_cache_free(vm_area_cachep, vma); 3010 return ERR_PTR(ret); 3011 } 3012 3013 /* 3014 * Called with mm->mmap_sem held for writing. 3015 * Insert a new vma covering the given region, with the given flags. 3016 * Its pages are supplied by the given array of struct page *. 3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3018 * The region past the last page supplied will always produce SIGBUS. 3019 * The array pointer and the pages it points to are assumed to stay alive 3020 * for as long as this mapping might exist. 3021 */ 3022 struct vm_area_struct *_install_special_mapping( 3023 struct mm_struct *mm, 3024 unsigned long addr, unsigned long len, 3025 unsigned long vm_flags, const struct vm_special_mapping *spec) 3026 { 3027 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3028 &special_mapping_vmops); 3029 } 3030 3031 int install_special_mapping(struct mm_struct *mm, 3032 unsigned long addr, unsigned long len, 3033 unsigned long vm_flags, struct page **pages) 3034 { 3035 struct vm_area_struct *vma = __install_special_mapping( 3036 mm, addr, len, vm_flags, (void *)pages, 3037 &legacy_special_mapping_vmops); 3038 3039 return PTR_ERR_OR_ZERO(vma); 3040 } 3041 3042 static DEFINE_MUTEX(mm_all_locks_mutex); 3043 3044 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3045 { 3046 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3047 /* 3048 * The LSB of head.next can't change from under us 3049 * because we hold the mm_all_locks_mutex. 3050 */ 3051 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3052 /* 3053 * We can safely modify head.next after taking the 3054 * anon_vma->root->rwsem. If some other vma in this mm shares 3055 * the same anon_vma we won't take it again. 3056 * 3057 * No need of atomic instructions here, head.next 3058 * can't change from under us thanks to the 3059 * anon_vma->root->rwsem. 3060 */ 3061 if (__test_and_set_bit(0, (unsigned long *) 3062 &anon_vma->root->rb_root.rb_node)) 3063 BUG(); 3064 } 3065 } 3066 3067 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3068 { 3069 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3070 /* 3071 * AS_MM_ALL_LOCKS can't change from under us because 3072 * we hold the mm_all_locks_mutex. 3073 * 3074 * Operations on ->flags have to be atomic because 3075 * even if AS_MM_ALL_LOCKS is stable thanks to the 3076 * mm_all_locks_mutex, there may be other cpus 3077 * changing other bitflags in parallel to us. 3078 */ 3079 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3080 BUG(); 3081 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3082 } 3083 } 3084 3085 /* 3086 * This operation locks against the VM for all pte/vma/mm related 3087 * operations that could ever happen on a certain mm. This includes 3088 * vmtruncate, try_to_unmap, and all page faults. 3089 * 3090 * The caller must take the mmap_sem in write mode before calling 3091 * mm_take_all_locks(). The caller isn't allowed to release the 3092 * mmap_sem until mm_drop_all_locks() returns. 3093 * 3094 * mmap_sem in write mode is required in order to block all operations 3095 * that could modify pagetables and free pages without need of 3096 * altering the vma layout. It's also needed in write mode to avoid new 3097 * anon_vmas to be associated with existing vmas. 3098 * 3099 * A single task can't take more than one mm_take_all_locks() in a row 3100 * or it would deadlock. 3101 * 3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3103 * mapping->flags avoid to take the same lock twice, if more than one 3104 * vma in this mm is backed by the same anon_vma or address_space. 3105 * 3106 * We take locks in following order, accordingly to comment at beginning 3107 * of mm/rmap.c: 3108 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3109 * hugetlb mapping); 3110 * - all i_mmap_rwsem locks; 3111 * - all anon_vma->rwseml 3112 * 3113 * We can take all locks within these types randomly because the VM code 3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3115 * mm_all_locks_mutex. 3116 * 3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3118 * that may have to take thousand of locks. 3119 * 3120 * mm_take_all_locks() can fail if it's interrupted by signals. 3121 */ 3122 int mm_take_all_locks(struct mm_struct *mm) 3123 { 3124 struct vm_area_struct *vma; 3125 struct anon_vma_chain *avc; 3126 3127 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3128 3129 mutex_lock(&mm_all_locks_mutex); 3130 3131 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3132 if (signal_pending(current)) 3133 goto out_unlock; 3134 if (vma->vm_file && vma->vm_file->f_mapping && 3135 is_vm_hugetlb_page(vma)) 3136 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3137 } 3138 3139 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3140 if (signal_pending(current)) 3141 goto out_unlock; 3142 if (vma->vm_file && vma->vm_file->f_mapping && 3143 !is_vm_hugetlb_page(vma)) 3144 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3145 } 3146 3147 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3148 if (signal_pending(current)) 3149 goto out_unlock; 3150 if (vma->anon_vma) 3151 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3152 vm_lock_anon_vma(mm, avc->anon_vma); 3153 } 3154 3155 return 0; 3156 3157 out_unlock: 3158 mm_drop_all_locks(mm); 3159 return -EINTR; 3160 } 3161 3162 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3163 { 3164 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3165 /* 3166 * The LSB of head.next can't change to 0 from under 3167 * us because we hold the mm_all_locks_mutex. 3168 * 3169 * We must however clear the bitflag before unlocking 3170 * the vma so the users using the anon_vma->rb_root will 3171 * never see our bitflag. 3172 * 3173 * No need of atomic instructions here, head.next 3174 * can't change from under us until we release the 3175 * anon_vma->root->rwsem. 3176 */ 3177 if (!__test_and_clear_bit(0, (unsigned long *) 3178 &anon_vma->root->rb_root.rb_node)) 3179 BUG(); 3180 anon_vma_unlock_write(anon_vma); 3181 } 3182 } 3183 3184 static void vm_unlock_mapping(struct address_space *mapping) 3185 { 3186 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3187 /* 3188 * AS_MM_ALL_LOCKS can't change to 0 from under us 3189 * because we hold the mm_all_locks_mutex. 3190 */ 3191 i_mmap_unlock_write(mapping); 3192 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3193 &mapping->flags)) 3194 BUG(); 3195 } 3196 } 3197 3198 /* 3199 * The mmap_sem cannot be released by the caller until 3200 * mm_drop_all_locks() returns. 3201 */ 3202 void mm_drop_all_locks(struct mm_struct *mm) 3203 { 3204 struct vm_area_struct *vma; 3205 struct anon_vma_chain *avc; 3206 3207 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3208 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3209 3210 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3211 if (vma->anon_vma) 3212 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3213 vm_unlock_anon_vma(avc->anon_vma); 3214 if (vma->vm_file && vma->vm_file->f_mapping) 3215 vm_unlock_mapping(vma->vm_file->f_mapping); 3216 } 3217 3218 mutex_unlock(&mm_all_locks_mutex); 3219 } 3220 3221 /* 3222 * initialise the VMA slab 3223 */ 3224 void __init mmap_init(void) 3225 { 3226 int ret; 3227 3228 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3229 VM_BUG_ON(ret); 3230 } 3231 3232 /* 3233 * Initialise sysctl_user_reserve_kbytes. 3234 * 3235 * This is intended to prevent a user from starting a single memory hogging 3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3237 * mode. 3238 * 3239 * The default value is min(3% of free memory, 128MB) 3240 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3241 */ 3242 static int init_user_reserve(void) 3243 { 3244 unsigned long free_kbytes; 3245 3246 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3247 3248 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3249 return 0; 3250 } 3251 subsys_initcall(init_user_reserve); 3252 3253 /* 3254 * Initialise sysctl_admin_reserve_kbytes. 3255 * 3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3257 * to log in and kill a memory hogging process. 3258 * 3259 * Systems with more than 256MB will reserve 8MB, enough to recover 3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3261 * only reserve 3% of free pages by default. 3262 */ 3263 static int init_admin_reserve(void) 3264 { 3265 unsigned long free_kbytes; 3266 3267 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3268 3269 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3270 return 0; 3271 } 3272 subsys_initcall(init_admin_reserve); 3273 3274 /* 3275 * Reinititalise user and admin reserves if memory is added or removed. 3276 * 3277 * The default user reserve max is 128MB, and the default max for the 3278 * admin reserve is 8MB. These are usually, but not always, enough to 3279 * enable recovery from a memory hogging process using login/sshd, a shell, 3280 * and tools like top. It may make sense to increase or even disable the 3281 * reserve depending on the existence of swap or variations in the recovery 3282 * tools. So, the admin may have changed them. 3283 * 3284 * If memory is added and the reserves have been eliminated or increased above 3285 * the default max, then we'll trust the admin. 3286 * 3287 * If memory is removed and there isn't enough free memory, then we 3288 * need to reset the reserves. 3289 * 3290 * Otherwise keep the reserve set by the admin. 3291 */ 3292 static int reserve_mem_notifier(struct notifier_block *nb, 3293 unsigned long action, void *data) 3294 { 3295 unsigned long tmp, free_kbytes; 3296 3297 switch (action) { 3298 case MEM_ONLINE: 3299 /* Default max is 128MB. Leave alone if modified by operator. */ 3300 tmp = sysctl_user_reserve_kbytes; 3301 if (0 < tmp && tmp < (1UL << 17)) 3302 init_user_reserve(); 3303 3304 /* Default max is 8MB. Leave alone if modified by operator. */ 3305 tmp = sysctl_admin_reserve_kbytes; 3306 if (0 < tmp && tmp < (1UL << 13)) 3307 init_admin_reserve(); 3308 3309 break; 3310 case MEM_OFFLINE: 3311 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3312 3313 if (sysctl_user_reserve_kbytes > free_kbytes) { 3314 init_user_reserve(); 3315 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3316 sysctl_user_reserve_kbytes); 3317 } 3318 3319 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3320 init_admin_reserve(); 3321 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3322 sysctl_admin_reserve_kbytes); 3323 } 3324 break; 3325 default: 3326 break; 3327 } 3328 return NOTIFY_OK; 3329 } 3330 3331 static struct notifier_block reserve_mem_nb = { 3332 .notifier_call = reserve_mem_notifier, 3333 }; 3334 3335 static int __meminit init_reserve_notifier(void) 3336 { 3337 if (register_hotmemory_notifier(&reserve_mem_nb)) 3338 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3339 3340 return 0; 3341 } 3342 subsys_initcall(init_reserve_notifier); 3343