1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlb.h> 35 #include <asm/mmu_context.h> 36 37 #include "internal.h" 38 39 #ifndef arch_mmap_check 40 #define arch_mmap_check(addr, len, flags) (0) 41 #endif 42 43 #ifndef arch_rebalance_pgtables 44 #define arch_rebalance_pgtables(addr, len) (addr) 45 #endif 46 47 static void unmap_region(struct mm_struct *mm, 48 struct vm_area_struct *vma, struct vm_area_struct *prev, 49 unsigned long start, unsigned long end); 50 51 /* 52 * WARNING: the debugging will use recursive algorithms so never enable this 53 * unless you know what you are doing. 54 */ 55 #undef DEBUG_MM_RB 56 57 /* description of effects of mapping type and prot in current implementation. 58 * this is due to the limited x86 page protection hardware. The expected 59 * behavior is in parens: 60 * 61 * map_type prot 62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 64 * w: (no) no w: (no) no w: (yes) yes w: (no) no 65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 66 * 67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 68 * w: (no) no w: (no) no w: (copy) copy w: (no) no 69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 70 * 71 */ 72 pgprot_t protection_map[16] = { 73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 75 }; 76 77 pgprot_t vm_get_page_prot(unsigned long vm_flags) 78 { 79 return __pgprot(pgprot_val(protection_map[vm_flags & 80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 81 pgprot_val(arch_vm_get_page_prot(vm_flags))); 82 } 83 EXPORT_SYMBOL(vm_get_page_prot); 84 85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 86 int sysctl_overcommit_ratio = 50; /* default is 50% */ 87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 88 struct percpu_counter vm_committed_as; 89 90 /* 91 * Check that a process has enough memory to allocate a new virtual 92 * mapping. 0 means there is enough memory for the allocation to 93 * succeed and -ENOMEM implies there is not. 94 * 95 * We currently support three overcommit policies, which are set via the 96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 97 * 98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 99 * Additional code 2002 Jul 20 by Robert Love. 100 * 101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 102 * 103 * Note this is a helper function intended to be used by LSMs which 104 * wish to use this logic. 105 */ 106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 107 { 108 unsigned long free, allowed; 109 110 vm_acct_memory(pages); 111 112 /* 113 * Sometimes we want to use more memory than we have 114 */ 115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 116 return 0; 117 118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 119 unsigned long n; 120 121 free = global_page_state(NR_FILE_PAGES); 122 free += nr_swap_pages; 123 124 /* 125 * Any slabs which are created with the 126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 127 * which are reclaimable, under pressure. The dentry 128 * cache and most inode caches should fall into this 129 */ 130 free += global_page_state(NR_SLAB_RECLAIMABLE); 131 132 /* 133 * Leave the last 3% for root 134 */ 135 if (!cap_sys_admin) 136 free -= free / 32; 137 138 if (free > pages) 139 return 0; 140 141 /* 142 * nr_free_pages() is very expensive on large systems, 143 * only call if we're about to fail. 144 */ 145 n = nr_free_pages(); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (n <= totalreserve_pages) 151 goto error; 152 else 153 n -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 n -= n / 32; 160 free += n; 161 162 if (free > pages) 163 return 0; 164 165 goto error; 166 } 167 168 allowed = (totalram_pages - hugetlb_total_pages()) 169 * sysctl_overcommit_ratio / 100; 170 /* 171 * Leave the last 3% for root 172 */ 173 if (!cap_sys_admin) 174 allowed -= allowed / 32; 175 allowed += total_swap_pages; 176 177 /* Don't let a single process grow too big: 178 leave 3% of the size of this process for other processes */ 179 if (mm) 180 allowed -= mm->total_vm / 32; 181 182 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 183 return 0; 184 error: 185 vm_unacct_memory(pages); 186 187 return -ENOMEM; 188 } 189 190 /* 191 * Requires inode->i_mapping->i_mmap_lock 192 */ 193 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 194 struct file *file, struct address_space *mapping) 195 { 196 if (vma->vm_flags & VM_DENYWRITE) 197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 198 if (vma->vm_flags & VM_SHARED) 199 mapping->i_mmap_writable--; 200 201 flush_dcache_mmap_lock(mapping); 202 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 203 list_del_init(&vma->shared.vm_set.list); 204 else 205 vma_prio_tree_remove(vma, &mapping->i_mmap); 206 flush_dcache_mmap_unlock(mapping); 207 } 208 209 /* 210 * Unlink a file-based vm structure from its prio_tree, to hide 211 * vma from rmap and vmtruncate before freeing its page tables. 212 */ 213 void unlink_file_vma(struct vm_area_struct *vma) 214 { 215 struct file *file = vma->vm_file; 216 217 if (file) { 218 struct address_space *mapping = file->f_mapping; 219 spin_lock(&mapping->i_mmap_lock); 220 __remove_shared_vm_struct(vma, file, mapping); 221 spin_unlock(&mapping->i_mmap_lock); 222 } 223 } 224 225 /* 226 * Close a vm structure and free it, returning the next. 227 */ 228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 229 { 230 struct vm_area_struct *next = vma->vm_next; 231 232 might_sleep(); 233 if (vma->vm_ops && vma->vm_ops->close) 234 vma->vm_ops->close(vma); 235 if (vma->vm_file) { 236 fput(vma->vm_file); 237 if (vma->vm_flags & VM_EXECUTABLE) 238 removed_exe_file_vma(vma->vm_mm); 239 } 240 mpol_put(vma_policy(vma)); 241 kmem_cache_free(vm_area_cachep, vma); 242 return next; 243 } 244 245 SYSCALL_DEFINE1(brk, unsigned long, brk) 246 { 247 unsigned long rlim, retval; 248 unsigned long newbrk, oldbrk; 249 struct mm_struct *mm = current->mm; 250 unsigned long min_brk; 251 252 down_write(&mm->mmap_sem); 253 254 #ifdef CONFIG_COMPAT_BRK 255 min_brk = mm->end_code; 256 #else 257 min_brk = mm->start_brk; 258 #endif 259 if (brk < min_brk) 260 goto out; 261 262 /* 263 * Check against rlimit here. If this check is done later after the test 264 * of oldbrk with newbrk then it can escape the test and let the data 265 * segment grow beyond its set limit the in case where the limit is 266 * not page aligned -Ram Gupta 267 */ 268 rlim = rlimit(RLIMIT_DATA); 269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 270 (mm->end_data - mm->start_data) > rlim) 271 goto out; 272 273 newbrk = PAGE_ALIGN(brk); 274 oldbrk = PAGE_ALIGN(mm->brk); 275 if (oldbrk == newbrk) 276 goto set_brk; 277 278 /* Always allow shrinking brk. */ 279 if (brk <= mm->brk) { 280 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 281 goto set_brk; 282 goto out; 283 } 284 285 /* Check against existing mmap mappings. */ 286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 287 goto out; 288 289 /* Ok, looks good - let it rip. */ 290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 291 goto out; 292 set_brk: 293 mm->brk = brk; 294 out: 295 retval = mm->brk; 296 up_write(&mm->mmap_sem); 297 return retval; 298 } 299 300 #ifdef DEBUG_MM_RB 301 static int browse_rb(struct rb_root *root) 302 { 303 int i = 0, j; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) 311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 312 if (vma->vm_start < pend) 313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 314 if (vma->vm_start > vma->vm_end) 315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 316 i++; 317 pn = nd; 318 prev = vma->vm_start; 319 pend = vma->vm_end; 320 } 321 j = 0; 322 for (nd = pn; nd; nd = rb_prev(nd)) { 323 j++; 324 } 325 if (i != j) 326 printk("backwards %d, forwards %d\n", j, i), i = 0; 327 return i; 328 } 329 330 void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 struct vm_area_struct *tmp = mm->mmap; 335 while (tmp) { 336 tmp = tmp->vm_next; 337 i++; 338 } 339 if (i != mm->map_count) 340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 341 i = browse_rb(&mm->mm_rb); 342 if (i != mm->map_count) 343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 344 BUG_ON(bug); 345 } 346 #else 347 #define validate_mm(mm) do { } while (0) 348 #endif 349 350 static struct vm_area_struct * 351 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 352 struct vm_area_struct **pprev, struct rb_node ***rb_link, 353 struct rb_node ** rb_parent) 354 { 355 struct vm_area_struct * vma; 356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 357 358 __rb_link = &mm->mm_rb.rb_node; 359 rb_prev = __rb_parent = NULL; 360 vma = NULL; 361 362 while (*__rb_link) { 363 struct vm_area_struct *vma_tmp; 364 365 __rb_parent = *__rb_link; 366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 367 368 if (vma_tmp->vm_end > addr) { 369 vma = vma_tmp; 370 if (vma_tmp->vm_start <= addr) 371 break; 372 __rb_link = &__rb_parent->rb_left; 373 } else { 374 rb_prev = __rb_parent; 375 __rb_link = &__rb_parent->rb_right; 376 } 377 } 378 379 *pprev = NULL; 380 if (rb_prev) 381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 382 *rb_link = __rb_link; 383 *rb_parent = __rb_parent; 384 return vma; 385 } 386 387 static inline void 388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct vm_area_struct *prev, struct rb_node *rb_parent) 390 { 391 if (prev) { 392 vma->vm_next = prev->vm_next; 393 prev->vm_next = vma; 394 } else { 395 mm->mmap = vma; 396 if (rb_parent) 397 vma->vm_next = rb_entry(rb_parent, 398 struct vm_area_struct, vm_rb); 399 else 400 vma->vm_next = NULL; 401 } 402 } 403 404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 405 struct rb_node **rb_link, struct rb_node *rb_parent) 406 { 407 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 408 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 409 } 410 411 static void __vma_link_file(struct vm_area_struct *vma) 412 { 413 struct file *file; 414 415 file = vma->vm_file; 416 if (file) { 417 struct address_space *mapping = file->f_mapping; 418 419 if (vma->vm_flags & VM_DENYWRITE) 420 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 421 if (vma->vm_flags & VM_SHARED) 422 mapping->i_mmap_writable++; 423 424 flush_dcache_mmap_lock(mapping); 425 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 426 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 427 else 428 vma_prio_tree_insert(vma, &mapping->i_mmap); 429 flush_dcache_mmap_unlock(mapping); 430 } 431 } 432 433 static void 434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 435 struct vm_area_struct *prev, struct rb_node **rb_link, 436 struct rb_node *rb_parent) 437 { 438 __vma_link_list(mm, vma, prev, rb_parent); 439 __vma_link_rb(mm, vma, rb_link, rb_parent); 440 } 441 442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 443 struct vm_area_struct *prev, struct rb_node **rb_link, 444 struct rb_node *rb_parent) 445 { 446 struct address_space *mapping = NULL; 447 448 if (vma->vm_file) 449 mapping = vma->vm_file->f_mapping; 450 451 if (mapping) { 452 spin_lock(&mapping->i_mmap_lock); 453 vma->vm_truncate_count = mapping->truncate_count; 454 } 455 456 __vma_link(mm, vma, prev, rb_link, rb_parent); 457 __vma_link_file(vma); 458 459 if (mapping) 460 spin_unlock(&mapping->i_mmap_lock); 461 462 mm->map_count++; 463 validate_mm(mm); 464 } 465 466 /* 467 * Helper for vma_adjust in the split_vma insert case: 468 * insert vm structure into list and rbtree and anon_vma, 469 * but it has already been inserted into prio_tree earlier. 470 */ 471 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 472 { 473 struct vm_area_struct *__vma, *prev; 474 struct rb_node **rb_link, *rb_parent; 475 476 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 477 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 478 __vma_link(mm, vma, prev, rb_link, rb_parent); 479 mm->map_count++; 480 } 481 482 static inline void 483 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 484 struct vm_area_struct *prev) 485 { 486 prev->vm_next = vma->vm_next; 487 rb_erase(&vma->vm_rb, &mm->mm_rb); 488 if (mm->mmap_cache == vma) 489 mm->mmap_cache = prev; 490 } 491 492 /* 493 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 494 * is already present in an i_mmap tree without adjusting the tree. 495 * The following helper function should be used when such adjustments 496 * are necessary. The "insert" vma (if any) is to be inserted 497 * before we drop the necessary locks. 498 */ 499 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 500 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 501 { 502 struct mm_struct *mm = vma->vm_mm; 503 struct vm_area_struct *next = vma->vm_next; 504 struct vm_area_struct *importer = NULL; 505 struct address_space *mapping = NULL; 506 struct prio_tree_root *root = NULL; 507 struct anon_vma *anon_vma = NULL; 508 struct file *file = vma->vm_file; 509 long adjust_next = 0; 510 int remove_next = 0; 511 512 if (next && !insert) { 513 struct vm_area_struct *exporter = NULL; 514 515 if (end >= next->vm_end) { 516 /* 517 * vma expands, overlapping all the next, and 518 * perhaps the one after too (mprotect case 6). 519 */ 520 again: remove_next = 1 + (end > next->vm_end); 521 end = next->vm_end; 522 exporter = next; 523 importer = vma; 524 } else if (end > next->vm_start) { 525 /* 526 * vma expands, overlapping part of the next: 527 * mprotect case 5 shifting the boundary up. 528 */ 529 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 530 exporter = next; 531 importer = vma; 532 } else if (end < vma->vm_end) { 533 /* 534 * vma shrinks, and !insert tells it's not 535 * split_vma inserting another: so it must be 536 * mprotect case 4 shifting the boundary down. 537 */ 538 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 539 exporter = vma; 540 importer = next; 541 } 542 543 /* 544 * Easily overlooked: when mprotect shifts the boundary, 545 * make sure the expanding vma has anon_vma set if the 546 * shrinking vma had, to cover any anon pages imported. 547 */ 548 if (exporter && exporter->anon_vma && !importer->anon_vma) { 549 if (anon_vma_clone(importer, exporter)) 550 return -ENOMEM; 551 importer->anon_vma = exporter->anon_vma; 552 } 553 } 554 555 if (file) { 556 mapping = file->f_mapping; 557 if (!(vma->vm_flags & VM_NONLINEAR)) 558 root = &mapping->i_mmap; 559 spin_lock(&mapping->i_mmap_lock); 560 if (importer && 561 vma->vm_truncate_count != next->vm_truncate_count) { 562 /* 563 * unmap_mapping_range might be in progress: 564 * ensure that the expanding vma is rescanned. 565 */ 566 importer->vm_truncate_count = 0; 567 } 568 if (insert) { 569 insert->vm_truncate_count = vma->vm_truncate_count; 570 /* 571 * Put into prio_tree now, so instantiated pages 572 * are visible to arm/parisc __flush_dcache_page 573 * throughout; but we cannot insert into address 574 * space until vma start or end is updated. 575 */ 576 __vma_link_file(insert); 577 } 578 } 579 580 /* 581 * When changing only vma->vm_end, we don't really need anon_vma 582 * lock. This is a fairly rare case by itself, but the anon_vma 583 * lock may be shared between many sibling processes. Skipping 584 * the lock for brk adjustments makes a difference sometimes. 585 */ 586 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { 587 anon_vma = vma->anon_vma; 588 anon_vma_lock(anon_vma); 589 } 590 591 if (root) { 592 flush_dcache_mmap_lock(mapping); 593 vma_prio_tree_remove(vma, root); 594 if (adjust_next) 595 vma_prio_tree_remove(next, root); 596 } 597 598 vma->vm_start = start; 599 vma->vm_end = end; 600 vma->vm_pgoff = pgoff; 601 if (adjust_next) { 602 next->vm_start += adjust_next << PAGE_SHIFT; 603 next->vm_pgoff += adjust_next; 604 } 605 606 if (root) { 607 if (adjust_next) 608 vma_prio_tree_insert(next, root); 609 vma_prio_tree_insert(vma, root); 610 flush_dcache_mmap_unlock(mapping); 611 } 612 613 if (remove_next) { 614 /* 615 * vma_merge has merged next into vma, and needs 616 * us to remove next before dropping the locks. 617 */ 618 __vma_unlink(mm, next, vma); 619 if (file) 620 __remove_shared_vm_struct(next, file, mapping); 621 } else if (insert) { 622 /* 623 * split_vma has split insert from vma, and needs 624 * us to insert it before dropping the locks 625 * (it may either follow vma or precede it). 626 */ 627 __insert_vm_struct(mm, insert); 628 } 629 630 if (anon_vma) 631 anon_vma_unlock(anon_vma); 632 if (mapping) 633 spin_unlock(&mapping->i_mmap_lock); 634 635 if (remove_next) { 636 if (file) { 637 fput(file); 638 if (next->vm_flags & VM_EXECUTABLE) 639 removed_exe_file_vma(mm); 640 } 641 if (next->anon_vma) 642 anon_vma_merge(vma, next); 643 mm->map_count--; 644 mpol_put(vma_policy(next)); 645 kmem_cache_free(vm_area_cachep, next); 646 /* 647 * In mprotect's case 6 (see comments on vma_merge), 648 * we must remove another next too. It would clutter 649 * up the code too much to do both in one go. 650 */ 651 if (remove_next == 2) { 652 next = vma->vm_next; 653 goto again; 654 } 655 } 656 657 validate_mm(mm); 658 659 return 0; 660 } 661 662 /* 663 * If the vma has a ->close operation then the driver probably needs to release 664 * per-vma resources, so we don't attempt to merge those. 665 */ 666 static inline int is_mergeable_vma(struct vm_area_struct *vma, 667 struct file *file, unsigned long vm_flags) 668 { 669 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 670 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 671 return 0; 672 if (vma->vm_file != file) 673 return 0; 674 if (vma->vm_ops && vma->vm_ops->close) 675 return 0; 676 return 1; 677 } 678 679 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 680 struct anon_vma *anon_vma2) 681 { 682 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 683 } 684 685 /* 686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 687 * in front of (at a lower virtual address and file offset than) the vma. 688 * 689 * We cannot merge two vmas if they have differently assigned (non-NULL) 690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 691 * 692 * We don't check here for the merged mmap wrapping around the end of pagecache 693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 694 * wrap, nor mmaps which cover the final page at index -1UL. 695 */ 696 static int 697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 699 { 700 if (is_mergeable_vma(vma, file, vm_flags) && 701 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 702 if (vma->vm_pgoff == vm_pgoff) 703 return 1; 704 } 705 return 0; 706 } 707 708 /* 709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 710 * beyond (at a higher virtual address and file offset than) the vma. 711 * 712 * We cannot merge two vmas if they have differently assigned (non-NULL) 713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 714 */ 715 static int 716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 718 { 719 if (is_mergeable_vma(vma, file, vm_flags) && 720 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 721 pgoff_t vm_pglen; 722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 724 return 1; 725 } 726 return 0; 727 } 728 729 /* 730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 731 * whether that can be merged with its predecessor or its successor. 732 * Or both (it neatly fills a hole). 733 * 734 * In most cases - when called for mmap, brk or mremap - [addr,end) is 735 * certain not to be mapped by the time vma_merge is called; but when 736 * called for mprotect, it is certain to be already mapped (either at 737 * an offset within prev, or at the start of next), and the flags of 738 * this area are about to be changed to vm_flags - and the no-change 739 * case has already been eliminated. 740 * 741 * The following mprotect cases have to be considered, where AAAA is 742 * the area passed down from mprotect_fixup, never extending beyond one 743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 744 * 745 * AAAA AAAA AAAA AAAA 746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 747 * cannot merge might become might become might become 748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 750 * mremap move: PPPPNNNNNNNN 8 751 * AAAA 752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 753 * might become case 1 below case 2 below case 3 below 754 * 755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 757 */ 758 struct vm_area_struct *vma_merge(struct mm_struct *mm, 759 struct vm_area_struct *prev, unsigned long addr, 760 unsigned long end, unsigned long vm_flags, 761 struct anon_vma *anon_vma, struct file *file, 762 pgoff_t pgoff, struct mempolicy *policy) 763 { 764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 765 struct vm_area_struct *area, *next; 766 int err; 767 768 /* 769 * We later require that vma->vm_flags == vm_flags, 770 * so this tests vma->vm_flags & VM_SPECIAL, too. 771 */ 772 if (vm_flags & VM_SPECIAL) 773 return NULL; 774 775 if (prev) 776 next = prev->vm_next; 777 else 778 next = mm->mmap; 779 area = next; 780 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 781 next = next->vm_next; 782 783 /* 784 * Can it merge with the predecessor? 785 */ 786 if (prev && prev->vm_end == addr && 787 mpol_equal(vma_policy(prev), policy) && 788 can_vma_merge_after(prev, vm_flags, 789 anon_vma, file, pgoff)) { 790 /* 791 * OK, it can. Can we now merge in the successor as well? 792 */ 793 if (next && end == next->vm_start && 794 mpol_equal(policy, vma_policy(next)) && 795 can_vma_merge_before(next, vm_flags, 796 anon_vma, file, pgoff+pglen) && 797 is_mergeable_anon_vma(prev->anon_vma, 798 next->anon_vma)) { 799 /* cases 1, 6 */ 800 err = vma_adjust(prev, prev->vm_start, 801 next->vm_end, prev->vm_pgoff, NULL); 802 } else /* cases 2, 5, 7 */ 803 err = vma_adjust(prev, prev->vm_start, 804 end, prev->vm_pgoff, NULL); 805 if (err) 806 return NULL; 807 return prev; 808 } 809 810 /* 811 * Can this new request be merged in front of next? 812 */ 813 if (next && end == next->vm_start && 814 mpol_equal(policy, vma_policy(next)) && 815 can_vma_merge_before(next, vm_flags, 816 anon_vma, file, pgoff+pglen)) { 817 if (prev && addr < prev->vm_end) /* case 4 */ 818 err = vma_adjust(prev, prev->vm_start, 819 addr, prev->vm_pgoff, NULL); 820 else /* cases 3, 8 */ 821 err = vma_adjust(area, addr, next->vm_end, 822 next->vm_pgoff - pglen, NULL); 823 if (err) 824 return NULL; 825 return area; 826 } 827 828 return NULL; 829 } 830 831 /* 832 * Rough compatbility check to quickly see if it's even worth looking 833 * at sharing an anon_vma. 834 * 835 * They need to have the same vm_file, and the flags can only differ 836 * in things that mprotect may change. 837 * 838 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 839 * we can merge the two vma's. For example, we refuse to merge a vma if 840 * there is a vm_ops->close() function, because that indicates that the 841 * driver is doing some kind of reference counting. But that doesn't 842 * really matter for the anon_vma sharing case. 843 */ 844 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 845 { 846 return a->vm_end == b->vm_start && 847 mpol_equal(vma_policy(a), vma_policy(b)) && 848 a->vm_file == b->vm_file && 849 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 850 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 851 } 852 853 /* 854 * Do some basic sanity checking to see if we can re-use the anon_vma 855 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 856 * the same as 'old', the other will be the new one that is trying 857 * to share the anon_vma. 858 * 859 * NOTE! This runs with mm_sem held for reading, so it is possible that 860 * the anon_vma of 'old' is concurrently in the process of being set up 861 * by another page fault trying to merge _that_. But that's ok: if it 862 * is being set up, that automatically means that it will be a singleton 863 * acceptable for merging, so we can do all of this optimistically. But 864 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 865 * 866 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 867 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 868 * is to return an anon_vma that is "complex" due to having gone through 869 * a fork). 870 * 871 * We also make sure that the two vma's are compatible (adjacent, 872 * and with the same memory policies). That's all stable, even with just 873 * a read lock on the mm_sem. 874 */ 875 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 876 { 877 if (anon_vma_compatible(a, b)) { 878 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 879 880 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 881 return anon_vma; 882 } 883 return NULL; 884 } 885 886 /* 887 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 888 * neighbouring vmas for a suitable anon_vma, before it goes off 889 * to allocate a new anon_vma. It checks because a repetitive 890 * sequence of mprotects and faults may otherwise lead to distinct 891 * anon_vmas being allocated, preventing vma merge in subsequent 892 * mprotect. 893 */ 894 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 895 { 896 struct anon_vma *anon_vma; 897 struct vm_area_struct *near; 898 899 near = vma->vm_next; 900 if (!near) 901 goto try_prev; 902 903 anon_vma = reusable_anon_vma(near, vma, near); 904 if (anon_vma) 905 return anon_vma; 906 try_prev: 907 /* 908 * It is potentially slow to have to call find_vma_prev here. 909 * But it's only on the first write fault on the vma, not 910 * every time, and we could devise a way to avoid it later 911 * (e.g. stash info in next's anon_vma_node when assigning 912 * an anon_vma, or when trying vma_merge). Another time. 913 */ 914 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 915 if (!near) 916 goto none; 917 918 anon_vma = reusable_anon_vma(near, near, vma); 919 if (anon_vma) 920 return anon_vma; 921 none: 922 /* 923 * There's no absolute need to look only at touching neighbours: 924 * we could search further afield for "compatible" anon_vmas. 925 * But it would probably just be a waste of time searching, 926 * or lead to too many vmas hanging off the same anon_vma. 927 * We're trying to allow mprotect remerging later on, 928 * not trying to minimize memory used for anon_vmas. 929 */ 930 return NULL; 931 } 932 933 #ifdef CONFIG_PROC_FS 934 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 935 struct file *file, long pages) 936 { 937 const unsigned long stack_flags 938 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 939 940 if (file) { 941 mm->shared_vm += pages; 942 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 943 mm->exec_vm += pages; 944 } else if (flags & stack_flags) 945 mm->stack_vm += pages; 946 if (flags & (VM_RESERVED|VM_IO)) 947 mm->reserved_vm += pages; 948 } 949 #endif /* CONFIG_PROC_FS */ 950 951 /* 952 * The caller must hold down_write(¤t->mm->mmap_sem). 953 */ 954 955 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 956 unsigned long len, unsigned long prot, 957 unsigned long flags, unsigned long pgoff) 958 { 959 struct mm_struct * mm = current->mm; 960 struct inode *inode; 961 unsigned int vm_flags; 962 int error; 963 unsigned long reqprot = prot; 964 965 /* 966 * Does the application expect PROT_READ to imply PROT_EXEC? 967 * 968 * (the exception is when the underlying filesystem is noexec 969 * mounted, in which case we dont add PROT_EXEC.) 970 */ 971 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 972 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 973 prot |= PROT_EXEC; 974 975 if (!len) 976 return -EINVAL; 977 978 if (!(flags & MAP_FIXED)) 979 addr = round_hint_to_min(addr); 980 981 /* Careful about overflows.. */ 982 len = PAGE_ALIGN(len); 983 if (!len) 984 return -ENOMEM; 985 986 /* offset overflow? */ 987 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 988 return -EOVERFLOW; 989 990 /* Too many mappings? */ 991 if (mm->map_count > sysctl_max_map_count) 992 return -ENOMEM; 993 994 /* Obtain the address to map to. we verify (or select) it and ensure 995 * that it represents a valid section of the address space. 996 */ 997 addr = get_unmapped_area(file, addr, len, pgoff, flags); 998 if (addr & ~PAGE_MASK) 999 return addr; 1000 1001 /* Do simple checking here so the lower-level routines won't have 1002 * to. we assume access permissions have been handled by the open 1003 * of the memory object, so we don't do any here. 1004 */ 1005 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1006 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1007 1008 if (flags & MAP_LOCKED) 1009 if (!can_do_mlock()) 1010 return -EPERM; 1011 1012 /* mlock MCL_FUTURE? */ 1013 if (vm_flags & VM_LOCKED) { 1014 unsigned long locked, lock_limit; 1015 locked = len >> PAGE_SHIFT; 1016 locked += mm->locked_vm; 1017 lock_limit = rlimit(RLIMIT_MEMLOCK); 1018 lock_limit >>= PAGE_SHIFT; 1019 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1020 return -EAGAIN; 1021 } 1022 1023 inode = file ? file->f_path.dentry->d_inode : NULL; 1024 1025 if (file) { 1026 switch (flags & MAP_TYPE) { 1027 case MAP_SHARED: 1028 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1029 return -EACCES; 1030 1031 /* 1032 * Make sure we don't allow writing to an append-only 1033 * file.. 1034 */ 1035 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1036 return -EACCES; 1037 1038 /* 1039 * Make sure there are no mandatory locks on the file. 1040 */ 1041 if (locks_verify_locked(inode)) 1042 return -EAGAIN; 1043 1044 vm_flags |= VM_SHARED | VM_MAYSHARE; 1045 if (!(file->f_mode & FMODE_WRITE)) 1046 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1047 1048 /* fall through */ 1049 case MAP_PRIVATE: 1050 if (!(file->f_mode & FMODE_READ)) 1051 return -EACCES; 1052 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1053 if (vm_flags & VM_EXEC) 1054 return -EPERM; 1055 vm_flags &= ~VM_MAYEXEC; 1056 } 1057 1058 if (!file->f_op || !file->f_op->mmap) 1059 return -ENODEV; 1060 break; 1061 1062 default: 1063 return -EINVAL; 1064 } 1065 } else { 1066 switch (flags & MAP_TYPE) { 1067 case MAP_SHARED: 1068 /* 1069 * Ignore pgoff. 1070 */ 1071 pgoff = 0; 1072 vm_flags |= VM_SHARED | VM_MAYSHARE; 1073 break; 1074 case MAP_PRIVATE: 1075 /* 1076 * Set pgoff according to addr for anon_vma. 1077 */ 1078 pgoff = addr >> PAGE_SHIFT; 1079 break; 1080 default: 1081 return -EINVAL; 1082 } 1083 } 1084 1085 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1086 if (error) 1087 return error; 1088 1089 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1090 } 1091 EXPORT_SYMBOL(do_mmap_pgoff); 1092 1093 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1094 unsigned long, prot, unsigned long, flags, 1095 unsigned long, fd, unsigned long, pgoff) 1096 { 1097 struct file *file = NULL; 1098 unsigned long retval = -EBADF; 1099 1100 if (!(flags & MAP_ANONYMOUS)) { 1101 if (unlikely(flags & MAP_HUGETLB)) 1102 return -EINVAL; 1103 file = fget(fd); 1104 if (!file) 1105 goto out; 1106 } else if (flags & MAP_HUGETLB) { 1107 struct user_struct *user = NULL; 1108 /* 1109 * VM_NORESERVE is used because the reservations will be 1110 * taken when vm_ops->mmap() is called 1111 * A dummy user value is used because we are not locking 1112 * memory so no accounting is necessary 1113 */ 1114 len = ALIGN(len, huge_page_size(&default_hstate)); 1115 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 1116 &user, HUGETLB_ANONHUGE_INODE); 1117 if (IS_ERR(file)) 1118 return PTR_ERR(file); 1119 } 1120 1121 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1122 1123 down_write(¤t->mm->mmap_sem); 1124 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1125 up_write(¤t->mm->mmap_sem); 1126 1127 if (file) 1128 fput(file); 1129 out: 1130 return retval; 1131 } 1132 1133 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1134 struct mmap_arg_struct { 1135 unsigned long addr; 1136 unsigned long len; 1137 unsigned long prot; 1138 unsigned long flags; 1139 unsigned long fd; 1140 unsigned long offset; 1141 }; 1142 1143 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1144 { 1145 struct mmap_arg_struct a; 1146 1147 if (copy_from_user(&a, arg, sizeof(a))) 1148 return -EFAULT; 1149 if (a.offset & ~PAGE_MASK) 1150 return -EINVAL; 1151 1152 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1153 a.offset >> PAGE_SHIFT); 1154 } 1155 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1156 1157 /* 1158 * Some shared mappigns will want the pages marked read-only 1159 * to track write events. If so, we'll downgrade vm_page_prot 1160 * to the private version (using protection_map[] without the 1161 * VM_SHARED bit). 1162 */ 1163 int vma_wants_writenotify(struct vm_area_struct *vma) 1164 { 1165 unsigned int vm_flags = vma->vm_flags; 1166 1167 /* If it was private or non-writable, the write bit is already clear */ 1168 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1169 return 0; 1170 1171 /* The backer wishes to know when pages are first written to? */ 1172 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1173 return 1; 1174 1175 /* The open routine did something to the protections already? */ 1176 if (pgprot_val(vma->vm_page_prot) != 1177 pgprot_val(vm_get_page_prot(vm_flags))) 1178 return 0; 1179 1180 /* Specialty mapping? */ 1181 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1182 return 0; 1183 1184 /* Can the mapping track the dirty pages? */ 1185 return vma->vm_file && vma->vm_file->f_mapping && 1186 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1187 } 1188 1189 /* 1190 * We account for memory if it's a private writeable mapping, 1191 * not hugepages and VM_NORESERVE wasn't set. 1192 */ 1193 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1194 { 1195 /* 1196 * hugetlb has its own accounting separate from the core VM 1197 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1198 */ 1199 if (file && is_file_hugepages(file)) 1200 return 0; 1201 1202 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1203 } 1204 1205 unsigned long mmap_region(struct file *file, unsigned long addr, 1206 unsigned long len, unsigned long flags, 1207 unsigned int vm_flags, unsigned long pgoff) 1208 { 1209 struct mm_struct *mm = current->mm; 1210 struct vm_area_struct *vma, *prev; 1211 int correct_wcount = 0; 1212 int error; 1213 struct rb_node **rb_link, *rb_parent; 1214 unsigned long charged = 0; 1215 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1216 1217 /* Clear old maps */ 1218 error = -ENOMEM; 1219 munmap_back: 1220 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1221 if (vma && vma->vm_start < addr + len) { 1222 if (do_munmap(mm, addr, len)) 1223 return -ENOMEM; 1224 goto munmap_back; 1225 } 1226 1227 /* Check against address space limit. */ 1228 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1229 return -ENOMEM; 1230 1231 /* 1232 * Set 'VM_NORESERVE' if we should not account for the 1233 * memory use of this mapping. 1234 */ 1235 if ((flags & MAP_NORESERVE)) { 1236 /* We honor MAP_NORESERVE if allowed to overcommit */ 1237 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1238 vm_flags |= VM_NORESERVE; 1239 1240 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1241 if (file && is_file_hugepages(file)) 1242 vm_flags |= VM_NORESERVE; 1243 } 1244 1245 /* 1246 * Private writable mapping: check memory availability 1247 */ 1248 if (accountable_mapping(file, vm_flags)) { 1249 charged = len >> PAGE_SHIFT; 1250 if (security_vm_enough_memory(charged)) 1251 return -ENOMEM; 1252 vm_flags |= VM_ACCOUNT; 1253 } 1254 1255 /* 1256 * Can we just expand an old mapping? 1257 */ 1258 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1259 if (vma) 1260 goto out; 1261 1262 /* 1263 * Determine the object being mapped and call the appropriate 1264 * specific mapper. the address has already been validated, but 1265 * not unmapped, but the maps are removed from the list. 1266 */ 1267 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1268 if (!vma) { 1269 error = -ENOMEM; 1270 goto unacct_error; 1271 } 1272 1273 vma->vm_mm = mm; 1274 vma->vm_start = addr; 1275 vma->vm_end = addr + len; 1276 vma->vm_flags = vm_flags; 1277 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1278 vma->vm_pgoff = pgoff; 1279 INIT_LIST_HEAD(&vma->anon_vma_chain); 1280 1281 if (file) { 1282 error = -EINVAL; 1283 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1284 goto free_vma; 1285 if (vm_flags & VM_DENYWRITE) { 1286 error = deny_write_access(file); 1287 if (error) 1288 goto free_vma; 1289 correct_wcount = 1; 1290 } 1291 vma->vm_file = file; 1292 get_file(file); 1293 error = file->f_op->mmap(file, vma); 1294 if (error) 1295 goto unmap_and_free_vma; 1296 if (vm_flags & VM_EXECUTABLE) 1297 added_exe_file_vma(mm); 1298 1299 /* Can addr have changed?? 1300 * 1301 * Answer: Yes, several device drivers can do it in their 1302 * f_op->mmap method. -DaveM 1303 */ 1304 addr = vma->vm_start; 1305 pgoff = vma->vm_pgoff; 1306 vm_flags = vma->vm_flags; 1307 } else if (vm_flags & VM_SHARED) { 1308 error = shmem_zero_setup(vma); 1309 if (error) 1310 goto free_vma; 1311 } 1312 1313 if (vma_wants_writenotify(vma)) { 1314 pgprot_t pprot = vma->vm_page_prot; 1315 1316 /* Can vma->vm_page_prot have changed?? 1317 * 1318 * Answer: Yes, drivers may have changed it in their 1319 * f_op->mmap method. 1320 * 1321 * Ensures that vmas marked as uncached stay that way. 1322 */ 1323 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1324 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1325 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1326 } 1327 1328 vma_link(mm, vma, prev, rb_link, rb_parent); 1329 file = vma->vm_file; 1330 1331 /* Once vma denies write, undo our temporary denial count */ 1332 if (correct_wcount) 1333 atomic_inc(&inode->i_writecount); 1334 out: 1335 perf_event_mmap(vma); 1336 1337 mm->total_vm += len >> PAGE_SHIFT; 1338 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1339 if (vm_flags & VM_LOCKED) { 1340 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1341 mm->locked_vm += (len >> PAGE_SHIFT); 1342 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1343 make_pages_present(addr, addr + len); 1344 return addr; 1345 1346 unmap_and_free_vma: 1347 if (correct_wcount) 1348 atomic_inc(&inode->i_writecount); 1349 vma->vm_file = NULL; 1350 fput(file); 1351 1352 /* Undo any partial mapping done by a device driver. */ 1353 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1354 charged = 0; 1355 free_vma: 1356 kmem_cache_free(vm_area_cachep, vma); 1357 unacct_error: 1358 if (charged) 1359 vm_unacct_memory(charged); 1360 return error; 1361 } 1362 1363 /* Get an address range which is currently unmapped. 1364 * For shmat() with addr=0. 1365 * 1366 * Ugly calling convention alert: 1367 * Return value with the low bits set means error value, 1368 * ie 1369 * if (ret & ~PAGE_MASK) 1370 * error = ret; 1371 * 1372 * This function "knows" that -ENOMEM has the bits set. 1373 */ 1374 #ifndef HAVE_ARCH_UNMAPPED_AREA 1375 unsigned long 1376 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1377 unsigned long len, unsigned long pgoff, unsigned long flags) 1378 { 1379 struct mm_struct *mm = current->mm; 1380 struct vm_area_struct *vma; 1381 unsigned long start_addr; 1382 1383 if (len > TASK_SIZE) 1384 return -ENOMEM; 1385 1386 if (flags & MAP_FIXED) 1387 return addr; 1388 1389 if (addr) { 1390 addr = PAGE_ALIGN(addr); 1391 vma = find_vma(mm, addr); 1392 if (TASK_SIZE - len >= addr && 1393 (!vma || addr + len <= vma->vm_start)) 1394 return addr; 1395 } 1396 if (len > mm->cached_hole_size) { 1397 start_addr = addr = mm->free_area_cache; 1398 } else { 1399 start_addr = addr = TASK_UNMAPPED_BASE; 1400 mm->cached_hole_size = 0; 1401 } 1402 1403 full_search: 1404 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1405 /* At this point: (!vma || addr < vma->vm_end). */ 1406 if (TASK_SIZE - len < addr) { 1407 /* 1408 * Start a new search - just in case we missed 1409 * some holes. 1410 */ 1411 if (start_addr != TASK_UNMAPPED_BASE) { 1412 addr = TASK_UNMAPPED_BASE; 1413 start_addr = addr; 1414 mm->cached_hole_size = 0; 1415 goto full_search; 1416 } 1417 return -ENOMEM; 1418 } 1419 if (!vma || addr + len <= vma->vm_start) { 1420 /* 1421 * Remember the place where we stopped the search: 1422 */ 1423 mm->free_area_cache = addr + len; 1424 return addr; 1425 } 1426 if (addr + mm->cached_hole_size < vma->vm_start) 1427 mm->cached_hole_size = vma->vm_start - addr; 1428 addr = vma->vm_end; 1429 } 1430 } 1431 #endif 1432 1433 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1434 { 1435 /* 1436 * Is this a new hole at the lowest possible address? 1437 */ 1438 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1439 mm->free_area_cache = addr; 1440 mm->cached_hole_size = ~0UL; 1441 } 1442 } 1443 1444 /* 1445 * This mmap-allocator allocates new areas top-down from below the 1446 * stack's low limit (the base): 1447 */ 1448 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1449 unsigned long 1450 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1451 const unsigned long len, const unsigned long pgoff, 1452 const unsigned long flags) 1453 { 1454 struct vm_area_struct *vma; 1455 struct mm_struct *mm = current->mm; 1456 unsigned long addr = addr0; 1457 1458 /* requested length too big for entire address space */ 1459 if (len > TASK_SIZE) 1460 return -ENOMEM; 1461 1462 if (flags & MAP_FIXED) 1463 return addr; 1464 1465 /* requesting a specific address */ 1466 if (addr) { 1467 addr = PAGE_ALIGN(addr); 1468 vma = find_vma(mm, addr); 1469 if (TASK_SIZE - len >= addr && 1470 (!vma || addr + len <= vma->vm_start)) 1471 return addr; 1472 } 1473 1474 /* check if free_area_cache is useful for us */ 1475 if (len <= mm->cached_hole_size) { 1476 mm->cached_hole_size = 0; 1477 mm->free_area_cache = mm->mmap_base; 1478 } 1479 1480 /* either no address requested or can't fit in requested address hole */ 1481 addr = mm->free_area_cache; 1482 1483 /* make sure it can fit in the remaining address space */ 1484 if (addr > len) { 1485 vma = find_vma(mm, addr-len); 1486 if (!vma || addr <= vma->vm_start) 1487 /* remember the address as a hint for next time */ 1488 return (mm->free_area_cache = addr-len); 1489 } 1490 1491 if (mm->mmap_base < len) 1492 goto bottomup; 1493 1494 addr = mm->mmap_base-len; 1495 1496 do { 1497 /* 1498 * Lookup failure means no vma is above this address, 1499 * else if new region fits below vma->vm_start, 1500 * return with success: 1501 */ 1502 vma = find_vma(mm, addr); 1503 if (!vma || addr+len <= vma->vm_start) 1504 /* remember the address as a hint for next time */ 1505 return (mm->free_area_cache = addr); 1506 1507 /* remember the largest hole we saw so far */ 1508 if (addr + mm->cached_hole_size < vma->vm_start) 1509 mm->cached_hole_size = vma->vm_start - addr; 1510 1511 /* try just below the current vma->vm_start */ 1512 addr = vma->vm_start-len; 1513 } while (len < vma->vm_start); 1514 1515 bottomup: 1516 /* 1517 * A failed mmap() very likely causes application failure, 1518 * so fall back to the bottom-up function here. This scenario 1519 * can happen with large stack limits and large mmap() 1520 * allocations. 1521 */ 1522 mm->cached_hole_size = ~0UL; 1523 mm->free_area_cache = TASK_UNMAPPED_BASE; 1524 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1525 /* 1526 * Restore the topdown base: 1527 */ 1528 mm->free_area_cache = mm->mmap_base; 1529 mm->cached_hole_size = ~0UL; 1530 1531 return addr; 1532 } 1533 #endif 1534 1535 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1536 { 1537 /* 1538 * Is this a new hole at the highest possible address? 1539 */ 1540 if (addr > mm->free_area_cache) 1541 mm->free_area_cache = addr; 1542 1543 /* dont allow allocations above current base */ 1544 if (mm->free_area_cache > mm->mmap_base) 1545 mm->free_area_cache = mm->mmap_base; 1546 } 1547 1548 unsigned long 1549 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1550 unsigned long pgoff, unsigned long flags) 1551 { 1552 unsigned long (*get_area)(struct file *, unsigned long, 1553 unsigned long, unsigned long, unsigned long); 1554 1555 unsigned long error = arch_mmap_check(addr, len, flags); 1556 if (error) 1557 return error; 1558 1559 /* Careful about overflows.. */ 1560 if (len > TASK_SIZE) 1561 return -ENOMEM; 1562 1563 get_area = current->mm->get_unmapped_area; 1564 if (file && file->f_op && file->f_op->get_unmapped_area) 1565 get_area = file->f_op->get_unmapped_area; 1566 addr = get_area(file, addr, len, pgoff, flags); 1567 if (IS_ERR_VALUE(addr)) 1568 return addr; 1569 1570 if (addr > TASK_SIZE - len) 1571 return -ENOMEM; 1572 if (addr & ~PAGE_MASK) 1573 return -EINVAL; 1574 1575 return arch_rebalance_pgtables(addr, len); 1576 } 1577 1578 EXPORT_SYMBOL(get_unmapped_area); 1579 1580 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1581 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1582 { 1583 struct vm_area_struct *vma = NULL; 1584 1585 if (mm) { 1586 /* Check the cache first. */ 1587 /* (Cache hit rate is typically around 35%.) */ 1588 vma = mm->mmap_cache; 1589 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1590 struct rb_node * rb_node; 1591 1592 rb_node = mm->mm_rb.rb_node; 1593 vma = NULL; 1594 1595 while (rb_node) { 1596 struct vm_area_struct * vma_tmp; 1597 1598 vma_tmp = rb_entry(rb_node, 1599 struct vm_area_struct, vm_rb); 1600 1601 if (vma_tmp->vm_end > addr) { 1602 vma = vma_tmp; 1603 if (vma_tmp->vm_start <= addr) 1604 break; 1605 rb_node = rb_node->rb_left; 1606 } else 1607 rb_node = rb_node->rb_right; 1608 } 1609 if (vma) 1610 mm->mmap_cache = vma; 1611 } 1612 } 1613 return vma; 1614 } 1615 1616 EXPORT_SYMBOL(find_vma); 1617 1618 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1619 struct vm_area_struct * 1620 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1621 struct vm_area_struct **pprev) 1622 { 1623 struct vm_area_struct *vma = NULL, *prev = NULL; 1624 struct rb_node *rb_node; 1625 if (!mm) 1626 goto out; 1627 1628 /* Guard against addr being lower than the first VMA */ 1629 vma = mm->mmap; 1630 1631 /* Go through the RB tree quickly. */ 1632 rb_node = mm->mm_rb.rb_node; 1633 1634 while (rb_node) { 1635 struct vm_area_struct *vma_tmp; 1636 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1637 1638 if (addr < vma_tmp->vm_end) { 1639 rb_node = rb_node->rb_left; 1640 } else { 1641 prev = vma_tmp; 1642 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1643 break; 1644 rb_node = rb_node->rb_right; 1645 } 1646 } 1647 1648 out: 1649 *pprev = prev; 1650 return prev ? prev->vm_next : vma; 1651 } 1652 1653 /* 1654 * Verify that the stack growth is acceptable and 1655 * update accounting. This is shared with both the 1656 * grow-up and grow-down cases. 1657 */ 1658 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1659 { 1660 struct mm_struct *mm = vma->vm_mm; 1661 struct rlimit *rlim = current->signal->rlim; 1662 unsigned long new_start; 1663 1664 /* address space limit tests */ 1665 if (!may_expand_vm(mm, grow)) 1666 return -ENOMEM; 1667 1668 /* Stack limit test */ 1669 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1670 return -ENOMEM; 1671 1672 /* mlock limit tests */ 1673 if (vma->vm_flags & VM_LOCKED) { 1674 unsigned long locked; 1675 unsigned long limit; 1676 locked = mm->locked_vm + grow; 1677 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1678 limit >>= PAGE_SHIFT; 1679 if (locked > limit && !capable(CAP_IPC_LOCK)) 1680 return -ENOMEM; 1681 } 1682 1683 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1684 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1685 vma->vm_end - size; 1686 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1687 return -EFAULT; 1688 1689 /* 1690 * Overcommit.. This must be the final test, as it will 1691 * update security statistics. 1692 */ 1693 if (security_vm_enough_memory_mm(mm, grow)) 1694 return -ENOMEM; 1695 1696 /* Ok, everything looks good - let it rip */ 1697 mm->total_vm += grow; 1698 if (vma->vm_flags & VM_LOCKED) 1699 mm->locked_vm += grow; 1700 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1701 return 0; 1702 } 1703 1704 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1705 /* 1706 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1707 * vma is the last one with address > vma->vm_end. Have to extend vma. 1708 */ 1709 #ifndef CONFIG_IA64 1710 static 1711 #endif 1712 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1713 { 1714 int error; 1715 1716 if (!(vma->vm_flags & VM_GROWSUP)) 1717 return -EFAULT; 1718 1719 /* 1720 * We must make sure the anon_vma is allocated 1721 * so that the anon_vma locking is not a noop. 1722 */ 1723 if (unlikely(anon_vma_prepare(vma))) 1724 return -ENOMEM; 1725 vma_lock_anon_vma(vma); 1726 1727 /* 1728 * vma->vm_start/vm_end cannot change under us because the caller 1729 * is required to hold the mmap_sem in read mode. We need the 1730 * anon_vma lock to serialize against concurrent expand_stacks. 1731 * Also guard against wrapping around to address 0. 1732 */ 1733 if (address < PAGE_ALIGN(address+4)) 1734 address = PAGE_ALIGN(address+4); 1735 else { 1736 vma_unlock_anon_vma(vma); 1737 return -ENOMEM; 1738 } 1739 error = 0; 1740 1741 /* Somebody else might have raced and expanded it already */ 1742 if (address > vma->vm_end) { 1743 unsigned long size, grow; 1744 1745 size = address - vma->vm_start; 1746 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1747 1748 error = acct_stack_growth(vma, size, grow); 1749 if (!error) { 1750 vma->vm_end = address; 1751 perf_event_mmap(vma); 1752 } 1753 } 1754 vma_unlock_anon_vma(vma); 1755 return error; 1756 } 1757 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1758 1759 /* 1760 * vma is the first one with address < vma->vm_start. Have to extend vma. 1761 */ 1762 static int expand_downwards(struct vm_area_struct *vma, 1763 unsigned long address) 1764 { 1765 int error; 1766 1767 /* 1768 * We must make sure the anon_vma is allocated 1769 * so that the anon_vma locking is not a noop. 1770 */ 1771 if (unlikely(anon_vma_prepare(vma))) 1772 return -ENOMEM; 1773 1774 address &= PAGE_MASK; 1775 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1776 if (error) 1777 return error; 1778 1779 vma_lock_anon_vma(vma); 1780 1781 /* 1782 * vma->vm_start/vm_end cannot change under us because the caller 1783 * is required to hold the mmap_sem in read mode. We need the 1784 * anon_vma lock to serialize against concurrent expand_stacks. 1785 */ 1786 1787 /* Somebody else might have raced and expanded it already */ 1788 if (address < vma->vm_start) { 1789 unsigned long size, grow; 1790 1791 size = vma->vm_end - address; 1792 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1793 1794 error = acct_stack_growth(vma, size, grow); 1795 if (!error) { 1796 vma->vm_start = address; 1797 vma->vm_pgoff -= grow; 1798 perf_event_mmap(vma); 1799 } 1800 } 1801 vma_unlock_anon_vma(vma); 1802 return error; 1803 } 1804 1805 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1806 { 1807 return expand_downwards(vma, address); 1808 } 1809 1810 #ifdef CONFIG_STACK_GROWSUP 1811 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1812 { 1813 return expand_upwards(vma, address); 1814 } 1815 1816 struct vm_area_struct * 1817 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1818 { 1819 struct vm_area_struct *vma, *prev; 1820 1821 addr &= PAGE_MASK; 1822 vma = find_vma_prev(mm, addr, &prev); 1823 if (vma && (vma->vm_start <= addr)) 1824 return vma; 1825 if (!prev || expand_stack(prev, addr)) 1826 return NULL; 1827 if (prev->vm_flags & VM_LOCKED) { 1828 mlock_vma_pages_range(prev, addr, prev->vm_end); 1829 } 1830 return prev; 1831 } 1832 #else 1833 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1834 { 1835 return expand_downwards(vma, address); 1836 } 1837 1838 struct vm_area_struct * 1839 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1840 { 1841 struct vm_area_struct * vma; 1842 unsigned long start; 1843 1844 addr &= PAGE_MASK; 1845 vma = find_vma(mm,addr); 1846 if (!vma) 1847 return NULL; 1848 if (vma->vm_start <= addr) 1849 return vma; 1850 if (!(vma->vm_flags & VM_GROWSDOWN)) 1851 return NULL; 1852 start = vma->vm_start; 1853 if (expand_stack(vma, addr)) 1854 return NULL; 1855 if (vma->vm_flags & VM_LOCKED) { 1856 mlock_vma_pages_range(vma, addr, start); 1857 } 1858 return vma; 1859 } 1860 #endif 1861 1862 /* 1863 * Ok - we have the memory areas we should free on the vma list, 1864 * so release them, and do the vma updates. 1865 * 1866 * Called with the mm semaphore held. 1867 */ 1868 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1869 { 1870 /* Update high watermark before we lower total_vm */ 1871 update_hiwater_vm(mm); 1872 do { 1873 long nrpages = vma_pages(vma); 1874 1875 mm->total_vm -= nrpages; 1876 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1877 vma = remove_vma(vma); 1878 } while (vma); 1879 validate_mm(mm); 1880 } 1881 1882 /* 1883 * Get rid of page table information in the indicated region. 1884 * 1885 * Called with the mm semaphore held. 1886 */ 1887 static void unmap_region(struct mm_struct *mm, 1888 struct vm_area_struct *vma, struct vm_area_struct *prev, 1889 unsigned long start, unsigned long end) 1890 { 1891 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1892 struct mmu_gather *tlb; 1893 unsigned long nr_accounted = 0; 1894 1895 lru_add_drain(); 1896 tlb = tlb_gather_mmu(mm, 0); 1897 update_hiwater_rss(mm); 1898 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1899 vm_unacct_memory(nr_accounted); 1900 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1901 next? next->vm_start: 0); 1902 tlb_finish_mmu(tlb, start, end); 1903 } 1904 1905 /* 1906 * Create a list of vma's touched by the unmap, removing them from the mm's 1907 * vma list as we go.. 1908 */ 1909 static void 1910 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1911 struct vm_area_struct *prev, unsigned long end) 1912 { 1913 struct vm_area_struct **insertion_point; 1914 struct vm_area_struct *tail_vma = NULL; 1915 unsigned long addr; 1916 1917 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1918 do { 1919 rb_erase(&vma->vm_rb, &mm->mm_rb); 1920 mm->map_count--; 1921 tail_vma = vma; 1922 vma = vma->vm_next; 1923 } while (vma && vma->vm_start < end); 1924 *insertion_point = vma; 1925 tail_vma->vm_next = NULL; 1926 if (mm->unmap_area == arch_unmap_area) 1927 addr = prev ? prev->vm_end : mm->mmap_base; 1928 else 1929 addr = vma ? vma->vm_start : mm->mmap_base; 1930 mm->unmap_area(mm, addr); 1931 mm->mmap_cache = NULL; /* Kill the cache. */ 1932 } 1933 1934 /* 1935 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1936 * munmap path where it doesn't make sense to fail. 1937 */ 1938 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1939 unsigned long addr, int new_below) 1940 { 1941 struct mempolicy *pol; 1942 struct vm_area_struct *new; 1943 int err = -ENOMEM; 1944 1945 if (is_vm_hugetlb_page(vma) && (addr & 1946 ~(huge_page_mask(hstate_vma(vma))))) 1947 return -EINVAL; 1948 1949 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1950 if (!new) 1951 goto out_err; 1952 1953 /* most fields are the same, copy all, and then fixup */ 1954 *new = *vma; 1955 1956 INIT_LIST_HEAD(&new->anon_vma_chain); 1957 1958 if (new_below) 1959 new->vm_end = addr; 1960 else { 1961 new->vm_start = addr; 1962 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1963 } 1964 1965 pol = mpol_dup(vma_policy(vma)); 1966 if (IS_ERR(pol)) { 1967 err = PTR_ERR(pol); 1968 goto out_free_vma; 1969 } 1970 vma_set_policy(new, pol); 1971 1972 if (anon_vma_clone(new, vma)) 1973 goto out_free_mpol; 1974 1975 if (new->vm_file) { 1976 get_file(new->vm_file); 1977 if (vma->vm_flags & VM_EXECUTABLE) 1978 added_exe_file_vma(mm); 1979 } 1980 1981 if (new->vm_ops && new->vm_ops->open) 1982 new->vm_ops->open(new); 1983 1984 if (new_below) 1985 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1986 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1987 else 1988 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1989 1990 /* Success. */ 1991 if (!err) 1992 return 0; 1993 1994 /* Clean everything up if vma_adjust failed. */ 1995 if (new->vm_ops && new->vm_ops->close) 1996 new->vm_ops->close(new); 1997 if (new->vm_file) { 1998 if (vma->vm_flags & VM_EXECUTABLE) 1999 removed_exe_file_vma(mm); 2000 fput(new->vm_file); 2001 } 2002 out_free_mpol: 2003 mpol_put(pol); 2004 out_free_vma: 2005 kmem_cache_free(vm_area_cachep, new); 2006 out_err: 2007 return err; 2008 } 2009 2010 /* 2011 * Split a vma into two pieces at address 'addr', a new vma is allocated 2012 * either for the first part or the tail. 2013 */ 2014 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2015 unsigned long addr, int new_below) 2016 { 2017 if (mm->map_count >= sysctl_max_map_count) 2018 return -ENOMEM; 2019 2020 return __split_vma(mm, vma, addr, new_below); 2021 } 2022 2023 /* Munmap is split into 2 main parts -- this part which finds 2024 * what needs doing, and the areas themselves, which do the 2025 * work. This now handles partial unmappings. 2026 * Jeremy Fitzhardinge <jeremy@goop.org> 2027 */ 2028 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2029 { 2030 unsigned long end; 2031 struct vm_area_struct *vma, *prev, *last; 2032 2033 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2034 return -EINVAL; 2035 2036 if ((len = PAGE_ALIGN(len)) == 0) 2037 return -EINVAL; 2038 2039 /* Find the first overlapping VMA */ 2040 vma = find_vma_prev(mm, start, &prev); 2041 if (!vma) 2042 return 0; 2043 /* we have start < vma->vm_end */ 2044 2045 /* if it doesn't overlap, we have nothing.. */ 2046 end = start + len; 2047 if (vma->vm_start >= end) 2048 return 0; 2049 2050 /* 2051 * If we need to split any vma, do it now to save pain later. 2052 * 2053 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2054 * unmapped vm_area_struct will remain in use: so lower split_vma 2055 * places tmp vma above, and higher split_vma places tmp vma below. 2056 */ 2057 if (start > vma->vm_start) { 2058 int error; 2059 2060 /* 2061 * Make sure that map_count on return from munmap() will 2062 * not exceed its limit; but let map_count go just above 2063 * its limit temporarily, to help free resources as expected. 2064 */ 2065 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2066 return -ENOMEM; 2067 2068 error = __split_vma(mm, vma, start, 0); 2069 if (error) 2070 return error; 2071 prev = vma; 2072 } 2073 2074 /* Does it split the last one? */ 2075 last = find_vma(mm, end); 2076 if (last && end > last->vm_start) { 2077 int error = __split_vma(mm, last, end, 1); 2078 if (error) 2079 return error; 2080 } 2081 vma = prev? prev->vm_next: mm->mmap; 2082 2083 /* 2084 * unlock any mlock()ed ranges before detaching vmas 2085 */ 2086 if (mm->locked_vm) { 2087 struct vm_area_struct *tmp = vma; 2088 while (tmp && tmp->vm_start < end) { 2089 if (tmp->vm_flags & VM_LOCKED) { 2090 mm->locked_vm -= vma_pages(tmp); 2091 munlock_vma_pages_all(tmp); 2092 } 2093 tmp = tmp->vm_next; 2094 } 2095 } 2096 2097 /* 2098 * Remove the vma's, and unmap the actual pages 2099 */ 2100 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2101 unmap_region(mm, vma, prev, start, end); 2102 2103 /* Fix up all other VM information */ 2104 remove_vma_list(mm, vma); 2105 2106 return 0; 2107 } 2108 2109 EXPORT_SYMBOL(do_munmap); 2110 2111 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2112 { 2113 int ret; 2114 struct mm_struct *mm = current->mm; 2115 2116 profile_munmap(addr); 2117 2118 down_write(&mm->mmap_sem); 2119 ret = do_munmap(mm, addr, len); 2120 up_write(&mm->mmap_sem); 2121 return ret; 2122 } 2123 2124 static inline void verify_mm_writelocked(struct mm_struct *mm) 2125 { 2126 #ifdef CONFIG_DEBUG_VM 2127 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2128 WARN_ON(1); 2129 up_read(&mm->mmap_sem); 2130 } 2131 #endif 2132 } 2133 2134 /* 2135 * this is really a simplified "do_mmap". it only handles 2136 * anonymous maps. eventually we may be able to do some 2137 * brk-specific accounting here. 2138 */ 2139 unsigned long do_brk(unsigned long addr, unsigned long len) 2140 { 2141 struct mm_struct * mm = current->mm; 2142 struct vm_area_struct * vma, * prev; 2143 unsigned long flags; 2144 struct rb_node ** rb_link, * rb_parent; 2145 pgoff_t pgoff = addr >> PAGE_SHIFT; 2146 int error; 2147 2148 len = PAGE_ALIGN(len); 2149 if (!len) 2150 return addr; 2151 2152 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2153 if (error) 2154 return error; 2155 2156 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2157 2158 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2159 if (error & ~PAGE_MASK) 2160 return error; 2161 2162 /* 2163 * mlock MCL_FUTURE? 2164 */ 2165 if (mm->def_flags & VM_LOCKED) { 2166 unsigned long locked, lock_limit; 2167 locked = len >> PAGE_SHIFT; 2168 locked += mm->locked_vm; 2169 lock_limit = rlimit(RLIMIT_MEMLOCK); 2170 lock_limit >>= PAGE_SHIFT; 2171 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2172 return -EAGAIN; 2173 } 2174 2175 /* 2176 * mm->mmap_sem is required to protect against another thread 2177 * changing the mappings in case we sleep. 2178 */ 2179 verify_mm_writelocked(mm); 2180 2181 /* 2182 * Clear old maps. this also does some error checking for us 2183 */ 2184 munmap_back: 2185 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2186 if (vma && vma->vm_start < addr + len) { 2187 if (do_munmap(mm, addr, len)) 2188 return -ENOMEM; 2189 goto munmap_back; 2190 } 2191 2192 /* Check against address space limits *after* clearing old maps... */ 2193 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2194 return -ENOMEM; 2195 2196 if (mm->map_count > sysctl_max_map_count) 2197 return -ENOMEM; 2198 2199 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2200 return -ENOMEM; 2201 2202 /* Can we just expand an old private anonymous mapping? */ 2203 vma = vma_merge(mm, prev, addr, addr + len, flags, 2204 NULL, NULL, pgoff, NULL); 2205 if (vma) 2206 goto out; 2207 2208 /* 2209 * create a vma struct for an anonymous mapping 2210 */ 2211 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2212 if (!vma) { 2213 vm_unacct_memory(len >> PAGE_SHIFT); 2214 return -ENOMEM; 2215 } 2216 2217 INIT_LIST_HEAD(&vma->anon_vma_chain); 2218 vma->vm_mm = mm; 2219 vma->vm_start = addr; 2220 vma->vm_end = addr + len; 2221 vma->vm_pgoff = pgoff; 2222 vma->vm_flags = flags; 2223 vma->vm_page_prot = vm_get_page_prot(flags); 2224 vma_link(mm, vma, prev, rb_link, rb_parent); 2225 out: 2226 perf_event_mmap(vma); 2227 mm->total_vm += len >> PAGE_SHIFT; 2228 if (flags & VM_LOCKED) { 2229 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2230 mm->locked_vm += (len >> PAGE_SHIFT); 2231 } 2232 return addr; 2233 } 2234 2235 EXPORT_SYMBOL(do_brk); 2236 2237 /* Release all mmaps. */ 2238 void exit_mmap(struct mm_struct *mm) 2239 { 2240 struct mmu_gather *tlb; 2241 struct vm_area_struct *vma; 2242 unsigned long nr_accounted = 0; 2243 unsigned long end; 2244 2245 /* mm's last user has gone, and its about to be pulled down */ 2246 mmu_notifier_release(mm); 2247 2248 if (mm->locked_vm) { 2249 vma = mm->mmap; 2250 while (vma) { 2251 if (vma->vm_flags & VM_LOCKED) 2252 munlock_vma_pages_all(vma); 2253 vma = vma->vm_next; 2254 } 2255 } 2256 2257 arch_exit_mmap(mm); 2258 2259 vma = mm->mmap; 2260 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2261 return; 2262 2263 lru_add_drain(); 2264 flush_cache_mm(mm); 2265 tlb = tlb_gather_mmu(mm, 1); 2266 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2267 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2268 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2269 vm_unacct_memory(nr_accounted); 2270 2271 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2272 tlb_finish_mmu(tlb, 0, end); 2273 2274 /* 2275 * Walk the list again, actually closing and freeing it, 2276 * with preemption enabled, without holding any MM locks. 2277 */ 2278 while (vma) 2279 vma = remove_vma(vma); 2280 2281 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2282 } 2283 2284 /* Insert vm structure into process list sorted by address 2285 * and into the inode's i_mmap tree. If vm_file is non-NULL 2286 * then i_mmap_lock is taken here. 2287 */ 2288 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2289 { 2290 struct vm_area_struct * __vma, * prev; 2291 struct rb_node ** rb_link, * rb_parent; 2292 2293 /* 2294 * The vm_pgoff of a purely anonymous vma should be irrelevant 2295 * until its first write fault, when page's anon_vma and index 2296 * are set. But now set the vm_pgoff it will almost certainly 2297 * end up with (unless mremap moves it elsewhere before that 2298 * first wfault), so /proc/pid/maps tells a consistent story. 2299 * 2300 * By setting it to reflect the virtual start address of the 2301 * vma, merges and splits can happen in a seamless way, just 2302 * using the existing file pgoff checks and manipulations. 2303 * Similarly in do_mmap_pgoff and in do_brk. 2304 */ 2305 if (!vma->vm_file) { 2306 BUG_ON(vma->anon_vma); 2307 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2308 } 2309 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2310 if (__vma && __vma->vm_start < vma->vm_end) 2311 return -ENOMEM; 2312 if ((vma->vm_flags & VM_ACCOUNT) && 2313 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2314 return -ENOMEM; 2315 vma_link(mm, vma, prev, rb_link, rb_parent); 2316 return 0; 2317 } 2318 2319 /* 2320 * Copy the vma structure to a new location in the same mm, 2321 * prior to moving page table entries, to effect an mremap move. 2322 */ 2323 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2324 unsigned long addr, unsigned long len, pgoff_t pgoff) 2325 { 2326 struct vm_area_struct *vma = *vmap; 2327 unsigned long vma_start = vma->vm_start; 2328 struct mm_struct *mm = vma->vm_mm; 2329 struct vm_area_struct *new_vma, *prev; 2330 struct rb_node **rb_link, *rb_parent; 2331 struct mempolicy *pol; 2332 2333 /* 2334 * If anonymous vma has not yet been faulted, update new pgoff 2335 * to match new location, to increase its chance of merging. 2336 */ 2337 if (!vma->vm_file && !vma->anon_vma) 2338 pgoff = addr >> PAGE_SHIFT; 2339 2340 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2341 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2342 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2343 if (new_vma) { 2344 /* 2345 * Source vma may have been merged into new_vma 2346 */ 2347 if (vma_start >= new_vma->vm_start && 2348 vma_start < new_vma->vm_end) 2349 *vmap = new_vma; 2350 } else { 2351 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2352 if (new_vma) { 2353 *new_vma = *vma; 2354 pol = mpol_dup(vma_policy(vma)); 2355 if (IS_ERR(pol)) 2356 goto out_free_vma; 2357 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2358 if (anon_vma_clone(new_vma, vma)) 2359 goto out_free_mempol; 2360 vma_set_policy(new_vma, pol); 2361 new_vma->vm_start = addr; 2362 new_vma->vm_end = addr + len; 2363 new_vma->vm_pgoff = pgoff; 2364 if (new_vma->vm_file) { 2365 get_file(new_vma->vm_file); 2366 if (vma->vm_flags & VM_EXECUTABLE) 2367 added_exe_file_vma(mm); 2368 } 2369 if (new_vma->vm_ops && new_vma->vm_ops->open) 2370 new_vma->vm_ops->open(new_vma); 2371 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2372 } 2373 } 2374 return new_vma; 2375 2376 out_free_mempol: 2377 mpol_put(pol); 2378 out_free_vma: 2379 kmem_cache_free(vm_area_cachep, new_vma); 2380 return NULL; 2381 } 2382 2383 /* 2384 * Return true if the calling process may expand its vm space by the passed 2385 * number of pages 2386 */ 2387 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2388 { 2389 unsigned long cur = mm->total_vm; /* pages */ 2390 unsigned long lim; 2391 2392 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2393 2394 if (cur + npages > lim) 2395 return 0; 2396 return 1; 2397 } 2398 2399 2400 static int special_mapping_fault(struct vm_area_struct *vma, 2401 struct vm_fault *vmf) 2402 { 2403 pgoff_t pgoff; 2404 struct page **pages; 2405 2406 /* 2407 * special mappings have no vm_file, and in that case, the mm 2408 * uses vm_pgoff internally. So we have to subtract it from here. 2409 * We are allowed to do this because we are the mm; do not copy 2410 * this code into drivers! 2411 */ 2412 pgoff = vmf->pgoff - vma->vm_pgoff; 2413 2414 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2415 pgoff--; 2416 2417 if (*pages) { 2418 struct page *page = *pages; 2419 get_page(page); 2420 vmf->page = page; 2421 return 0; 2422 } 2423 2424 return VM_FAULT_SIGBUS; 2425 } 2426 2427 /* 2428 * Having a close hook prevents vma merging regardless of flags. 2429 */ 2430 static void special_mapping_close(struct vm_area_struct *vma) 2431 { 2432 } 2433 2434 static const struct vm_operations_struct special_mapping_vmops = { 2435 .close = special_mapping_close, 2436 .fault = special_mapping_fault, 2437 }; 2438 2439 /* 2440 * Called with mm->mmap_sem held for writing. 2441 * Insert a new vma covering the given region, with the given flags. 2442 * Its pages are supplied by the given array of struct page *. 2443 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2444 * The region past the last page supplied will always produce SIGBUS. 2445 * The array pointer and the pages it points to are assumed to stay alive 2446 * for as long as this mapping might exist. 2447 */ 2448 int install_special_mapping(struct mm_struct *mm, 2449 unsigned long addr, unsigned long len, 2450 unsigned long vm_flags, struct page **pages) 2451 { 2452 struct vm_area_struct *vma; 2453 2454 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2455 if (unlikely(vma == NULL)) 2456 return -ENOMEM; 2457 2458 INIT_LIST_HEAD(&vma->anon_vma_chain); 2459 vma->vm_mm = mm; 2460 vma->vm_start = addr; 2461 vma->vm_end = addr + len; 2462 2463 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2464 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2465 2466 vma->vm_ops = &special_mapping_vmops; 2467 vma->vm_private_data = pages; 2468 2469 if (unlikely(insert_vm_struct(mm, vma))) { 2470 kmem_cache_free(vm_area_cachep, vma); 2471 return -ENOMEM; 2472 } 2473 2474 mm->total_vm += len >> PAGE_SHIFT; 2475 2476 perf_event_mmap(vma); 2477 2478 return 0; 2479 } 2480 2481 static DEFINE_MUTEX(mm_all_locks_mutex); 2482 2483 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2484 { 2485 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2486 /* 2487 * The LSB of head.next can't change from under us 2488 * because we hold the mm_all_locks_mutex. 2489 */ 2490 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); 2491 /* 2492 * We can safely modify head.next after taking the 2493 * anon_vma->root->lock. If some other vma in this mm shares 2494 * the same anon_vma we won't take it again. 2495 * 2496 * No need of atomic instructions here, head.next 2497 * can't change from under us thanks to the 2498 * anon_vma->root->lock. 2499 */ 2500 if (__test_and_set_bit(0, (unsigned long *) 2501 &anon_vma->root->head.next)) 2502 BUG(); 2503 } 2504 } 2505 2506 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2507 { 2508 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2509 /* 2510 * AS_MM_ALL_LOCKS can't change from under us because 2511 * we hold the mm_all_locks_mutex. 2512 * 2513 * Operations on ->flags have to be atomic because 2514 * even if AS_MM_ALL_LOCKS is stable thanks to the 2515 * mm_all_locks_mutex, there may be other cpus 2516 * changing other bitflags in parallel to us. 2517 */ 2518 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2519 BUG(); 2520 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2521 } 2522 } 2523 2524 /* 2525 * This operation locks against the VM for all pte/vma/mm related 2526 * operations that could ever happen on a certain mm. This includes 2527 * vmtruncate, try_to_unmap, and all page faults. 2528 * 2529 * The caller must take the mmap_sem in write mode before calling 2530 * mm_take_all_locks(). The caller isn't allowed to release the 2531 * mmap_sem until mm_drop_all_locks() returns. 2532 * 2533 * mmap_sem in write mode is required in order to block all operations 2534 * that could modify pagetables and free pages without need of 2535 * altering the vma layout (for example populate_range() with 2536 * nonlinear vmas). It's also needed in write mode to avoid new 2537 * anon_vmas to be associated with existing vmas. 2538 * 2539 * A single task can't take more than one mm_take_all_locks() in a row 2540 * or it would deadlock. 2541 * 2542 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2543 * mapping->flags avoid to take the same lock twice, if more than one 2544 * vma in this mm is backed by the same anon_vma or address_space. 2545 * 2546 * We can take all the locks in random order because the VM code 2547 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2548 * takes more than one of them in a row. Secondly we're protected 2549 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2550 * 2551 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2552 * that may have to take thousand of locks. 2553 * 2554 * mm_take_all_locks() can fail if it's interrupted by signals. 2555 */ 2556 int mm_take_all_locks(struct mm_struct *mm) 2557 { 2558 struct vm_area_struct *vma; 2559 struct anon_vma_chain *avc; 2560 int ret = -EINTR; 2561 2562 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2563 2564 mutex_lock(&mm_all_locks_mutex); 2565 2566 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2567 if (signal_pending(current)) 2568 goto out_unlock; 2569 if (vma->vm_file && vma->vm_file->f_mapping) 2570 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2571 } 2572 2573 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2574 if (signal_pending(current)) 2575 goto out_unlock; 2576 if (vma->anon_vma) 2577 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2578 vm_lock_anon_vma(mm, avc->anon_vma); 2579 } 2580 2581 ret = 0; 2582 2583 out_unlock: 2584 if (ret) 2585 mm_drop_all_locks(mm); 2586 2587 return ret; 2588 } 2589 2590 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2591 { 2592 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2593 /* 2594 * The LSB of head.next can't change to 0 from under 2595 * us because we hold the mm_all_locks_mutex. 2596 * 2597 * We must however clear the bitflag before unlocking 2598 * the vma so the users using the anon_vma->head will 2599 * never see our bitflag. 2600 * 2601 * No need of atomic instructions here, head.next 2602 * can't change from under us until we release the 2603 * anon_vma->root->lock. 2604 */ 2605 if (!__test_and_clear_bit(0, (unsigned long *) 2606 &anon_vma->root->head.next)) 2607 BUG(); 2608 anon_vma_unlock(anon_vma); 2609 } 2610 } 2611 2612 static void vm_unlock_mapping(struct address_space *mapping) 2613 { 2614 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2615 /* 2616 * AS_MM_ALL_LOCKS can't change to 0 from under us 2617 * because we hold the mm_all_locks_mutex. 2618 */ 2619 spin_unlock(&mapping->i_mmap_lock); 2620 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2621 &mapping->flags)) 2622 BUG(); 2623 } 2624 } 2625 2626 /* 2627 * The mmap_sem cannot be released by the caller until 2628 * mm_drop_all_locks() returns. 2629 */ 2630 void mm_drop_all_locks(struct mm_struct *mm) 2631 { 2632 struct vm_area_struct *vma; 2633 struct anon_vma_chain *avc; 2634 2635 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2636 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2637 2638 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2639 if (vma->anon_vma) 2640 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2641 vm_unlock_anon_vma(avc->anon_vma); 2642 if (vma->vm_file && vma->vm_file->f_mapping) 2643 vm_unlock_mapping(vma->vm_file->f_mapping); 2644 } 2645 2646 mutex_unlock(&mm_all_locks_mutex); 2647 } 2648 2649 /* 2650 * initialise the VMA slab 2651 */ 2652 void __init mmap_init(void) 2653 { 2654 int ret; 2655 2656 ret = percpu_counter_init(&vm_committed_as, 0); 2657 VM_BUG_ON(ret); 2658 } 2659