xref: /openbmc/linux/mm/mmap.c (revision 495311927ffbe3604e915aeafdf03325e9925b9d)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "internal.h"
38 
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)	(0)
41 #endif
42 
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)		(addr)
45 #endif
46 
47 static void unmap_region(struct mm_struct *mm,
48 		struct vm_area_struct *vma, struct vm_area_struct *prev,
49 		unsigned long start, unsigned long end);
50 
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56 
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type	prot
62  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66  *
67  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76 
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 	return __pgprot(pgprot_val(protection_map[vm_flags &
80 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84 
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;	/* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 
90 /*
91  * Check that a process has enough memory to allocate a new virtual
92  * mapping. 0 means there is enough memory for the allocation to
93  * succeed and -ENOMEM implies there is not.
94  *
95  * We currently support three overcommit policies, which are set via the
96  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97  *
98  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99  * Additional code 2002 Jul 20 by Robert Love.
100  *
101  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102  *
103  * Note this is a helper function intended to be used by LSMs which
104  * wish to use this logic.
105  */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 	unsigned long free, allowed;
109 
110 	vm_acct_memory(pages);
111 
112 	/*
113 	 * Sometimes we want to use more memory than we have
114 	 */
115 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 		return 0;
117 
118 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 		unsigned long n;
120 
121 		free = global_page_state(NR_FILE_PAGES);
122 		free += nr_swap_pages;
123 
124 		/*
125 		 * Any slabs which are created with the
126 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 		 * which are reclaimable, under pressure.  The dentry
128 		 * cache and most inode caches should fall into this
129 		 */
130 		free += global_page_state(NR_SLAB_RECLAIMABLE);
131 
132 		/*
133 		 * Leave the last 3% for root
134 		 */
135 		if (!cap_sys_admin)
136 			free -= free / 32;
137 
138 		if (free > pages)
139 			return 0;
140 
141 		/*
142 		 * nr_free_pages() is very expensive on large systems,
143 		 * only call if we're about to fail.
144 		 */
145 		n = nr_free_pages();
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (n <= totalreserve_pages)
151 			goto error;
152 		else
153 			n -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			n -= n / 32;
160 		free += n;
161 
162 		if (free > pages)
163 			return 0;
164 
165 		goto error;
166 	}
167 
168 	allowed = (totalram_pages - hugetlb_total_pages())
169 	       	* sysctl_overcommit_ratio / 100;
170 	/*
171 	 * Leave the last 3% for root
172 	 */
173 	if (!cap_sys_admin)
174 		allowed -= allowed / 32;
175 	allowed += total_swap_pages;
176 
177 	/* Don't let a single process grow too big:
178 	   leave 3% of the size of this process for other processes */
179 	if (mm)
180 		allowed -= mm->total_vm / 32;
181 
182 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 		return 0;
184 error:
185 	vm_unacct_memory(pages);
186 
187 	return -ENOMEM;
188 }
189 
190 /*
191  * Requires inode->i_mapping->i_mmap_lock
192  */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 		struct file *file, struct address_space *mapping)
195 {
196 	if (vma->vm_flags & VM_DENYWRITE)
197 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 	if (vma->vm_flags & VM_SHARED)
199 		mapping->i_mmap_writable--;
200 
201 	flush_dcache_mmap_lock(mapping);
202 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 		list_del_init(&vma->shared.vm_set.list);
204 	else
205 		vma_prio_tree_remove(vma, &mapping->i_mmap);
206 	flush_dcache_mmap_unlock(mapping);
207 }
208 
209 /*
210  * Unlink a file-based vm structure from its prio_tree, to hide
211  * vma from rmap and vmtruncate before freeing its page tables.
212  */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 	struct file *file = vma->vm_file;
216 
217 	if (file) {
218 		struct address_space *mapping = file->f_mapping;
219 		spin_lock(&mapping->i_mmap_lock);
220 		__remove_shared_vm_struct(vma, file, mapping);
221 		spin_unlock(&mapping->i_mmap_lock);
222 	}
223 }
224 
225 /*
226  * Close a vm structure and free it, returning the next.
227  */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 	struct vm_area_struct *next = vma->vm_next;
231 
232 	might_sleep();
233 	if (vma->vm_ops && vma->vm_ops->close)
234 		vma->vm_ops->close(vma);
235 	if (vma->vm_file) {
236 		fput(vma->vm_file);
237 		if (vma->vm_flags & VM_EXECUTABLE)
238 			removed_exe_file_vma(vma->vm_mm);
239 	}
240 	mpol_put(vma_policy(vma));
241 	kmem_cache_free(vm_area_cachep, vma);
242 	return next;
243 }
244 
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 	unsigned long rlim, retval;
248 	unsigned long newbrk, oldbrk;
249 	struct mm_struct *mm = current->mm;
250 	unsigned long min_brk;
251 
252 	down_write(&mm->mmap_sem);
253 
254 #ifdef CONFIG_COMPAT_BRK
255 	min_brk = mm->end_code;
256 #else
257 	min_brk = mm->start_brk;
258 #endif
259 	if (brk < min_brk)
260 		goto out;
261 
262 	/*
263 	 * Check against rlimit here. If this check is done later after the test
264 	 * of oldbrk with newbrk then it can escape the test and let the data
265 	 * segment grow beyond its set limit the in case where the limit is
266 	 * not page aligned -Ram Gupta
267 	 */
268 	rlim = rlimit(RLIMIT_DATA);
269 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 			(mm->end_data - mm->start_data) > rlim)
271 		goto out;
272 
273 	newbrk = PAGE_ALIGN(brk);
274 	oldbrk = PAGE_ALIGN(mm->brk);
275 	if (oldbrk == newbrk)
276 		goto set_brk;
277 
278 	/* Always allow shrinking brk. */
279 	if (brk <= mm->brk) {
280 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 			goto set_brk;
282 		goto out;
283 	}
284 
285 	/* Check against existing mmap mappings. */
286 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 		goto out;
288 
289 	/* Ok, looks good - let it rip. */
290 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 		goto out;
292 set_brk:
293 	mm->brk = brk;
294 out:
295 	retval = mm->brk;
296 	up_write(&mm->mmap_sem);
297 	return retval;
298 }
299 
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 	int i = 0, j;
304 	struct rb_node *nd, *pn = NULL;
305 	unsigned long prev = 0, pend = 0;
306 
307 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 		struct vm_area_struct *vma;
309 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 		if (vma->vm_start < prev)
311 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 		if (vma->vm_start < pend)
313 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 		if (vma->vm_start > vma->vm_end)
315 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 		i++;
317 		pn = nd;
318 		prev = vma->vm_start;
319 		pend = vma->vm_end;
320 	}
321 	j = 0;
322 	for (nd = pn; nd; nd = rb_prev(nd)) {
323 		j++;
324 	}
325 	if (i != j)
326 		printk("backwards %d, forwards %d\n", j, i), i = 0;
327 	return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	struct vm_area_struct *tmp = mm->mmap;
335 	while (tmp) {
336 		tmp = tmp->vm_next;
337 		i++;
338 	}
339 	if (i != mm->map_count)
340 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 	i = browse_rb(&mm->mm_rb);
342 	if (i != mm->map_count)
343 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 	BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349 
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 		struct rb_node ** rb_parent)
354 {
355 	struct vm_area_struct * vma;
356 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 
358 	__rb_link = &mm->mm_rb.rb_node;
359 	rb_prev = __rb_parent = NULL;
360 	vma = NULL;
361 
362 	while (*__rb_link) {
363 		struct vm_area_struct *vma_tmp;
364 
365 		__rb_parent = *__rb_link;
366 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 
368 		if (vma_tmp->vm_end > addr) {
369 			vma = vma_tmp;
370 			if (vma_tmp->vm_start <= addr)
371 				break;
372 			__rb_link = &__rb_parent->rb_left;
373 		} else {
374 			rb_prev = __rb_parent;
375 			__rb_link = &__rb_parent->rb_right;
376 		}
377 	}
378 
379 	*pprev = NULL;
380 	if (rb_prev)
381 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 	*rb_link = __rb_link;
383 	*rb_parent = __rb_parent;
384 	return vma;
385 }
386 
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 	if (prev) {
392 		vma->vm_next = prev->vm_next;
393 		prev->vm_next = vma;
394 	} else {
395 		mm->mmap = vma;
396 		if (rb_parent)
397 			vma->vm_next = rb_entry(rb_parent,
398 					struct vm_area_struct, vm_rb);
399 		else
400 			vma->vm_next = NULL;
401 	}
402 }
403 
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 		struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410 
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 	struct file *file;
414 
415 	file = vma->vm_file;
416 	if (file) {
417 		struct address_space *mapping = file->f_mapping;
418 
419 		if (vma->vm_flags & VM_DENYWRITE)
420 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 		if (vma->vm_flags & VM_SHARED)
422 			mapping->i_mmap_writable++;
423 
424 		flush_dcache_mmap_lock(mapping);
425 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 		else
428 			vma_prio_tree_insert(vma, &mapping->i_mmap);
429 		flush_dcache_mmap_unlock(mapping);
430 	}
431 }
432 
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 	struct vm_area_struct *prev, struct rb_node **rb_link,
436 	struct rb_node *rb_parent)
437 {
438 	__vma_link_list(mm, vma, prev, rb_parent);
439 	__vma_link_rb(mm, vma, rb_link, rb_parent);
440 }
441 
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 			struct vm_area_struct *prev, struct rb_node **rb_link,
444 			struct rb_node *rb_parent)
445 {
446 	struct address_space *mapping = NULL;
447 
448 	if (vma->vm_file)
449 		mapping = vma->vm_file->f_mapping;
450 
451 	if (mapping) {
452 		spin_lock(&mapping->i_mmap_lock);
453 		vma->vm_truncate_count = mapping->truncate_count;
454 	}
455 
456 	__vma_link(mm, vma, prev, rb_link, rb_parent);
457 	__vma_link_file(vma);
458 
459 	if (mapping)
460 		spin_unlock(&mapping->i_mmap_lock);
461 
462 	mm->map_count++;
463 	validate_mm(mm);
464 }
465 
466 /*
467  * Helper for vma_adjust in the split_vma insert case:
468  * insert vm structure into list and rbtree and anon_vma,
469  * but it has already been inserted into prio_tree earlier.
470  */
471 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
472 {
473 	struct vm_area_struct *__vma, *prev;
474 	struct rb_node **rb_link, *rb_parent;
475 
476 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
477 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
478 	__vma_link(mm, vma, prev, rb_link, rb_parent);
479 	mm->map_count++;
480 }
481 
482 static inline void
483 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
484 		struct vm_area_struct *prev)
485 {
486 	prev->vm_next = vma->vm_next;
487 	rb_erase(&vma->vm_rb, &mm->mm_rb);
488 	if (mm->mmap_cache == vma)
489 		mm->mmap_cache = prev;
490 }
491 
492 /*
493  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
494  * is already present in an i_mmap tree without adjusting the tree.
495  * The following helper function should be used when such adjustments
496  * are necessary.  The "insert" vma (if any) is to be inserted
497  * before we drop the necessary locks.
498  */
499 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
500 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
501 {
502 	struct mm_struct *mm = vma->vm_mm;
503 	struct vm_area_struct *next = vma->vm_next;
504 	struct vm_area_struct *importer = NULL;
505 	struct address_space *mapping = NULL;
506 	struct prio_tree_root *root = NULL;
507 	struct anon_vma *anon_vma = NULL;
508 	struct file *file = vma->vm_file;
509 	long adjust_next = 0;
510 	int remove_next = 0;
511 
512 	if (next && !insert) {
513 		struct vm_area_struct *exporter = NULL;
514 
515 		if (end >= next->vm_end) {
516 			/*
517 			 * vma expands, overlapping all the next, and
518 			 * perhaps the one after too (mprotect case 6).
519 			 */
520 again:			remove_next = 1 + (end > next->vm_end);
521 			end = next->vm_end;
522 			exporter = next;
523 			importer = vma;
524 		} else if (end > next->vm_start) {
525 			/*
526 			 * vma expands, overlapping part of the next:
527 			 * mprotect case 5 shifting the boundary up.
528 			 */
529 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 			exporter = next;
531 			importer = vma;
532 		} else if (end < vma->vm_end) {
533 			/*
534 			 * vma shrinks, and !insert tells it's not
535 			 * split_vma inserting another: so it must be
536 			 * mprotect case 4 shifting the boundary down.
537 			 */
538 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 			exporter = vma;
540 			importer = next;
541 		}
542 
543 		/*
544 		 * Easily overlooked: when mprotect shifts the boundary,
545 		 * make sure the expanding vma has anon_vma set if the
546 		 * shrinking vma had, to cover any anon pages imported.
547 		 */
548 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
549 			if (anon_vma_clone(importer, exporter))
550 				return -ENOMEM;
551 			importer->anon_vma = exporter->anon_vma;
552 		}
553 	}
554 
555 	if (file) {
556 		mapping = file->f_mapping;
557 		if (!(vma->vm_flags & VM_NONLINEAR))
558 			root = &mapping->i_mmap;
559 		spin_lock(&mapping->i_mmap_lock);
560 		if (importer &&
561 		    vma->vm_truncate_count != next->vm_truncate_count) {
562 			/*
563 			 * unmap_mapping_range might be in progress:
564 			 * ensure that the expanding vma is rescanned.
565 			 */
566 			importer->vm_truncate_count = 0;
567 		}
568 		if (insert) {
569 			insert->vm_truncate_count = vma->vm_truncate_count;
570 			/*
571 			 * Put into prio_tree now, so instantiated pages
572 			 * are visible to arm/parisc __flush_dcache_page
573 			 * throughout; but we cannot insert into address
574 			 * space until vma start or end is updated.
575 			 */
576 			__vma_link_file(insert);
577 		}
578 	}
579 
580 	/*
581 	 * When changing only vma->vm_end, we don't really need anon_vma
582 	 * lock. This is a fairly rare case by itself, but the anon_vma
583 	 * lock may be shared between many sibling processes.  Skipping
584 	 * the lock for brk adjustments makes a difference sometimes.
585 	 */
586 	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
587 		anon_vma = vma->anon_vma;
588 		anon_vma_lock(anon_vma);
589 	}
590 
591 	if (root) {
592 		flush_dcache_mmap_lock(mapping);
593 		vma_prio_tree_remove(vma, root);
594 		if (adjust_next)
595 			vma_prio_tree_remove(next, root);
596 	}
597 
598 	vma->vm_start = start;
599 	vma->vm_end = end;
600 	vma->vm_pgoff = pgoff;
601 	if (adjust_next) {
602 		next->vm_start += adjust_next << PAGE_SHIFT;
603 		next->vm_pgoff += adjust_next;
604 	}
605 
606 	if (root) {
607 		if (adjust_next)
608 			vma_prio_tree_insert(next, root);
609 		vma_prio_tree_insert(vma, root);
610 		flush_dcache_mmap_unlock(mapping);
611 	}
612 
613 	if (remove_next) {
614 		/*
615 		 * vma_merge has merged next into vma, and needs
616 		 * us to remove next before dropping the locks.
617 		 */
618 		__vma_unlink(mm, next, vma);
619 		if (file)
620 			__remove_shared_vm_struct(next, file, mapping);
621 	} else if (insert) {
622 		/*
623 		 * split_vma has split insert from vma, and needs
624 		 * us to insert it before dropping the locks
625 		 * (it may either follow vma or precede it).
626 		 */
627 		__insert_vm_struct(mm, insert);
628 	}
629 
630 	if (anon_vma)
631 		anon_vma_unlock(anon_vma);
632 	if (mapping)
633 		spin_unlock(&mapping->i_mmap_lock);
634 
635 	if (remove_next) {
636 		if (file) {
637 			fput(file);
638 			if (next->vm_flags & VM_EXECUTABLE)
639 				removed_exe_file_vma(mm);
640 		}
641 		if (next->anon_vma)
642 			anon_vma_merge(vma, next);
643 		mm->map_count--;
644 		mpol_put(vma_policy(next));
645 		kmem_cache_free(vm_area_cachep, next);
646 		/*
647 		 * In mprotect's case 6 (see comments on vma_merge),
648 		 * we must remove another next too. It would clutter
649 		 * up the code too much to do both in one go.
650 		 */
651 		if (remove_next == 2) {
652 			next = vma->vm_next;
653 			goto again;
654 		}
655 	}
656 
657 	validate_mm(mm);
658 
659 	return 0;
660 }
661 
662 /*
663  * If the vma has a ->close operation then the driver probably needs to release
664  * per-vma resources, so we don't attempt to merge those.
665  */
666 static inline int is_mergeable_vma(struct vm_area_struct *vma,
667 			struct file *file, unsigned long vm_flags)
668 {
669 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
670 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
671 		return 0;
672 	if (vma->vm_file != file)
673 		return 0;
674 	if (vma->vm_ops && vma->vm_ops->close)
675 		return 0;
676 	return 1;
677 }
678 
679 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
680 					struct anon_vma *anon_vma2)
681 {
682 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
683 }
684 
685 /*
686  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687  * in front of (at a lower virtual address and file offset than) the vma.
688  *
689  * We cannot merge two vmas if they have differently assigned (non-NULL)
690  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691  *
692  * We don't check here for the merged mmap wrapping around the end of pagecache
693  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694  * wrap, nor mmaps which cover the final page at index -1UL.
695  */
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 	if (is_mergeable_vma(vma, file, vm_flags) &&
701 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
702 		if (vma->vm_pgoff == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710  * beyond (at a higher virtual address and file offset than) the vma.
711  *
712  * We cannot merge two vmas if they have differently assigned (non-NULL)
713  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714  */
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 {
719 	if (is_mergeable_vma(vma, file, vm_flags) &&
720 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
721 		pgoff_t vm_pglen;
722 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 			return 1;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731  * whether that can be merged with its predecessor or its successor.
732  * Or both (it neatly fills a hole).
733  *
734  * In most cases - when called for mmap, brk or mremap - [addr,end) is
735  * certain not to be mapped by the time vma_merge is called; but when
736  * called for mprotect, it is certain to be already mapped (either at
737  * an offset within prev, or at the start of next), and the flags of
738  * this area are about to be changed to vm_flags - and the no-change
739  * case has already been eliminated.
740  *
741  * The following mprotect cases have to be considered, where AAAA is
742  * the area passed down from mprotect_fixup, never extending beyond one
743  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744  *
745  *     AAAA             AAAA                AAAA          AAAA
746  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
747  *    cannot merge    might become    might become    might become
748  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
749  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
750  *    mremap move:                                    PPPPNNNNNNNN 8
751  *        AAAA
752  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
753  *    might become    case 1 below    case 2 below    case 3 below
754  *
755  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757  */
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 			struct vm_area_struct *prev, unsigned long addr,
760 			unsigned long end, unsigned long vm_flags,
761 		     	struct anon_vma *anon_vma, struct file *file,
762 			pgoff_t pgoff, struct mempolicy *policy)
763 {
764 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 	struct vm_area_struct *area, *next;
766 	int err;
767 
768 	/*
769 	 * We later require that vma->vm_flags == vm_flags,
770 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
771 	 */
772 	if (vm_flags & VM_SPECIAL)
773 		return NULL;
774 
775 	if (prev)
776 		next = prev->vm_next;
777 	else
778 		next = mm->mmap;
779 	area = next;
780 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
781 		next = next->vm_next;
782 
783 	/*
784 	 * Can it merge with the predecessor?
785 	 */
786 	if (prev && prev->vm_end == addr &&
787   			mpol_equal(vma_policy(prev), policy) &&
788 			can_vma_merge_after(prev, vm_flags,
789 						anon_vma, file, pgoff)) {
790 		/*
791 		 * OK, it can.  Can we now merge in the successor as well?
792 		 */
793 		if (next && end == next->vm_start &&
794 				mpol_equal(policy, vma_policy(next)) &&
795 				can_vma_merge_before(next, vm_flags,
796 					anon_vma, file, pgoff+pglen) &&
797 				is_mergeable_anon_vma(prev->anon_vma,
798 						      next->anon_vma)) {
799 							/* cases 1, 6 */
800 			err = vma_adjust(prev, prev->vm_start,
801 				next->vm_end, prev->vm_pgoff, NULL);
802 		} else					/* cases 2, 5, 7 */
803 			err = vma_adjust(prev, prev->vm_start,
804 				end, prev->vm_pgoff, NULL);
805 		if (err)
806 			return NULL;
807 		return prev;
808 	}
809 
810 	/*
811 	 * Can this new request be merged in front of next?
812 	 */
813 	if (next && end == next->vm_start &&
814  			mpol_equal(policy, vma_policy(next)) &&
815 			can_vma_merge_before(next, vm_flags,
816 					anon_vma, file, pgoff+pglen)) {
817 		if (prev && addr < prev->vm_end)	/* case 4 */
818 			err = vma_adjust(prev, prev->vm_start,
819 				addr, prev->vm_pgoff, NULL);
820 		else					/* cases 3, 8 */
821 			err = vma_adjust(area, addr, next->vm_end,
822 				next->vm_pgoff - pglen, NULL);
823 		if (err)
824 			return NULL;
825 		return area;
826 	}
827 
828 	return NULL;
829 }
830 
831 /*
832  * Rough compatbility check to quickly see if it's even worth looking
833  * at sharing an anon_vma.
834  *
835  * They need to have the same vm_file, and the flags can only differ
836  * in things that mprotect may change.
837  *
838  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
839  * we can merge the two vma's. For example, we refuse to merge a vma if
840  * there is a vm_ops->close() function, because that indicates that the
841  * driver is doing some kind of reference counting. But that doesn't
842  * really matter for the anon_vma sharing case.
843  */
844 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
845 {
846 	return a->vm_end == b->vm_start &&
847 		mpol_equal(vma_policy(a), vma_policy(b)) &&
848 		a->vm_file == b->vm_file &&
849 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
850 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
851 }
852 
853 /*
854  * Do some basic sanity checking to see if we can re-use the anon_vma
855  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
856  * the same as 'old', the other will be the new one that is trying
857  * to share the anon_vma.
858  *
859  * NOTE! This runs with mm_sem held for reading, so it is possible that
860  * the anon_vma of 'old' is concurrently in the process of being set up
861  * by another page fault trying to merge _that_. But that's ok: if it
862  * is being set up, that automatically means that it will be a singleton
863  * acceptable for merging, so we can do all of this optimistically. But
864  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
865  *
866  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
867  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
868  * is to return an anon_vma that is "complex" due to having gone through
869  * a fork).
870  *
871  * We also make sure that the two vma's are compatible (adjacent,
872  * and with the same memory policies). That's all stable, even with just
873  * a read lock on the mm_sem.
874  */
875 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
876 {
877 	if (anon_vma_compatible(a, b)) {
878 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
879 
880 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
881 			return anon_vma;
882 	}
883 	return NULL;
884 }
885 
886 /*
887  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
888  * neighbouring vmas for a suitable anon_vma, before it goes off
889  * to allocate a new anon_vma.  It checks because a repetitive
890  * sequence of mprotects and faults may otherwise lead to distinct
891  * anon_vmas being allocated, preventing vma merge in subsequent
892  * mprotect.
893  */
894 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
895 {
896 	struct anon_vma *anon_vma;
897 	struct vm_area_struct *near;
898 
899 	near = vma->vm_next;
900 	if (!near)
901 		goto try_prev;
902 
903 	anon_vma = reusable_anon_vma(near, vma, near);
904 	if (anon_vma)
905 		return anon_vma;
906 try_prev:
907 	/*
908 	 * It is potentially slow to have to call find_vma_prev here.
909 	 * But it's only on the first write fault on the vma, not
910 	 * every time, and we could devise a way to avoid it later
911 	 * (e.g. stash info in next's anon_vma_node when assigning
912 	 * an anon_vma, or when trying vma_merge).  Another time.
913 	 */
914 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
915 	if (!near)
916 		goto none;
917 
918 	anon_vma = reusable_anon_vma(near, near, vma);
919 	if (anon_vma)
920 		return anon_vma;
921 none:
922 	/*
923 	 * There's no absolute need to look only at touching neighbours:
924 	 * we could search further afield for "compatible" anon_vmas.
925 	 * But it would probably just be a waste of time searching,
926 	 * or lead to too many vmas hanging off the same anon_vma.
927 	 * We're trying to allow mprotect remerging later on,
928 	 * not trying to minimize memory used for anon_vmas.
929 	 */
930 	return NULL;
931 }
932 
933 #ifdef CONFIG_PROC_FS
934 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
935 						struct file *file, long pages)
936 {
937 	const unsigned long stack_flags
938 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
939 
940 	if (file) {
941 		mm->shared_vm += pages;
942 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
943 			mm->exec_vm += pages;
944 	} else if (flags & stack_flags)
945 		mm->stack_vm += pages;
946 	if (flags & (VM_RESERVED|VM_IO))
947 		mm->reserved_vm += pages;
948 }
949 #endif /* CONFIG_PROC_FS */
950 
951 /*
952  * The caller must hold down_write(&current->mm->mmap_sem).
953  */
954 
955 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
956 			unsigned long len, unsigned long prot,
957 			unsigned long flags, unsigned long pgoff)
958 {
959 	struct mm_struct * mm = current->mm;
960 	struct inode *inode;
961 	unsigned int vm_flags;
962 	int error;
963 	unsigned long reqprot = prot;
964 
965 	/*
966 	 * Does the application expect PROT_READ to imply PROT_EXEC?
967 	 *
968 	 * (the exception is when the underlying filesystem is noexec
969 	 *  mounted, in which case we dont add PROT_EXEC.)
970 	 */
971 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
972 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
973 			prot |= PROT_EXEC;
974 
975 	if (!len)
976 		return -EINVAL;
977 
978 	if (!(flags & MAP_FIXED))
979 		addr = round_hint_to_min(addr);
980 
981 	/* Careful about overflows.. */
982 	len = PAGE_ALIGN(len);
983 	if (!len)
984 		return -ENOMEM;
985 
986 	/* offset overflow? */
987 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
988                return -EOVERFLOW;
989 
990 	/* Too many mappings? */
991 	if (mm->map_count > sysctl_max_map_count)
992 		return -ENOMEM;
993 
994 	/* Obtain the address to map to. we verify (or select) it and ensure
995 	 * that it represents a valid section of the address space.
996 	 */
997 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
998 	if (addr & ~PAGE_MASK)
999 		return addr;
1000 
1001 	/* Do simple checking here so the lower-level routines won't have
1002 	 * to. we assume access permissions have been handled by the open
1003 	 * of the memory object, so we don't do any here.
1004 	 */
1005 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1006 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1007 
1008 	if (flags & MAP_LOCKED)
1009 		if (!can_do_mlock())
1010 			return -EPERM;
1011 
1012 	/* mlock MCL_FUTURE? */
1013 	if (vm_flags & VM_LOCKED) {
1014 		unsigned long locked, lock_limit;
1015 		locked = len >> PAGE_SHIFT;
1016 		locked += mm->locked_vm;
1017 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1018 		lock_limit >>= PAGE_SHIFT;
1019 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1020 			return -EAGAIN;
1021 	}
1022 
1023 	inode = file ? file->f_path.dentry->d_inode : NULL;
1024 
1025 	if (file) {
1026 		switch (flags & MAP_TYPE) {
1027 		case MAP_SHARED:
1028 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1029 				return -EACCES;
1030 
1031 			/*
1032 			 * Make sure we don't allow writing to an append-only
1033 			 * file..
1034 			 */
1035 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1036 				return -EACCES;
1037 
1038 			/*
1039 			 * Make sure there are no mandatory locks on the file.
1040 			 */
1041 			if (locks_verify_locked(inode))
1042 				return -EAGAIN;
1043 
1044 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1045 			if (!(file->f_mode & FMODE_WRITE))
1046 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1047 
1048 			/* fall through */
1049 		case MAP_PRIVATE:
1050 			if (!(file->f_mode & FMODE_READ))
1051 				return -EACCES;
1052 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1053 				if (vm_flags & VM_EXEC)
1054 					return -EPERM;
1055 				vm_flags &= ~VM_MAYEXEC;
1056 			}
1057 
1058 			if (!file->f_op || !file->f_op->mmap)
1059 				return -ENODEV;
1060 			break;
1061 
1062 		default:
1063 			return -EINVAL;
1064 		}
1065 	} else {
1066 		switch (flags & MAP_TYPE) {
1067 		case MAP_SHARED:
1068 			/*
1069 			 * Ignore pgoff.
1070 			 */
1071 			pgoff = 0;
1072 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1073 			break;
1074 		case MAP_PRIVATE:
1075 			/*
1076 			 * Set pgoff according to addr for anon_vma.
1077 			 */
1078 			pgoff = addr >> PAGE_SHIFT;
1079 			break;
1080 		default:
1081 			return -EINVAL;
1082 		}
1083 	}
1084 
1085 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1086 	if (error)
1087 		return error;
1088 
1089 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1090 }
1091 EXPORT_SYMBOL(do_mmap_pgoff);
1092 
1093 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1094 		unsigned long, prot, unsigned long, flags,
1095 		unsigned long, fd, unsigned long, pgoff)
1096 {
1097 	struct file *file = NULL;
1098 	unsigned long retval = -EBADF;
1099 
1100 	if (!(flags & MAP_ANONYMOUS)) {
1101 		if (unlikely(flags & MAP_HUGETLB))
1102 			return -EINVAL;
1103 		file = fget(fd);
1104 		if (!file)
1105 			goto out;
1106 	} else if (flags & MAP_HUGETLB) {
1107 		struct user_struct *user = NULL;
1108 		/*
1109 		 * VM_NORESERVE is used because the reservations will be
1110 		 * taken when vm_ops->mmap() is called
1111 		 * A dummy user value is used because we are not locking
1112 		 * memory so no accounting is necessary
1113 		 */
1114 		len = ALIGN(len, huge_page_size(&default_hstate));
1115 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1116 						&user, HUGETLB_ANONHUGE_INODE);
1117 		if (IS_ERR(file))
1118 			return PTR_ERR(file);
1119 	}
1120 
1121 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1122 
1123 	down_write(&current->mm->mmap_sem);
1124 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1125 	up_write(&current->mm->mmap_sem);
1126 
1127 	if (file)
1128 		fput(file);
1129 out:
1130 	return retval;
1131 }
1132 
1133 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1134 struct mmap_arg_struct {
1135 	unsigned long addr;
1136 	unsigned long len;
1137 	unsigned long prot;
1138 	unsigned long flags;
1139 	unsigned long fd;
1140 	unsigned long offset;
1141 };
1142 
1143 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1144 {
1145 	struct mmap_arg_struct a;
1146 
1147 	if (copy_from_user(&a, arg, sizeof(a)))
1148 		return -EFAULT;
1149 	if (a.offset & ~PAGE_MASK)
1150 		return -EINVAL;
1151 
1152 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1153 			      a.offset >> PAGE_SHIFT);
1154 }
1155 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1156 
1157 /*
1158  * Some shared mappigns will want the pages marked read-only
1159  * to track write events. If so, we'll downgrade vm_page_prot
1160  * to the private version (using protection_map[] without the
1161  * VM_SHARED bit).
1162  */
1163 int vma_wants_writenotify(struct vm_area_struct *vma)
1164 {
1165 	unsigned int vm_flags = vma->vm_flags;
1166 
1167 	/* If it was private or non-writable, the write bit is already clear */
1168 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1169 		return 0;
1170 
1171 	/* The backer wishes to know when pages are first written to? */
1172 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1173 		return 1;
1174 
1175 	/* The open routine did something to the protections already? */
1176 	if (pgprot_val(vma->vm_page_prot) !=
1177 	    pgprot_val(vm_get_page_prot(vm_flags)))
1178 		return 0;
1179 
1180 	/* Specialty mapping? */
1181 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1182 		return 0;
1183 
1184 	/* Can the mapping track the dirty pages? */
1185 	return vma->vm_file && vma->vm_file->f_mapping &&
1186 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1187 }
1188 
1189 /*
1190  * We account for memory if it's a private writeable mapping,
1191  * not hugepages and VM_NORESERVE wasn't set.
1192  */
1193 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1194 {
1195 	/*
1196 	 * hugetlb has its own accounting separate from the core VM
1197 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1198 	 */
1199 	if (file && is_file_hugepages(file))
1200 		return 0;
1201 
1202 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1203 }
1204 
1205 unsigned long mmap_region(struct file *file, unsigned long addr,
1206 			  unsigned long len, unsigned long flags,
1207 			  unsigned int vm_flags, unsigned long pgoff)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct vm_area_struct *vma, *prev;
1211 	int correct_wcount = 0;
1212 	int error;
1213 	struct rb_node **rb_link, *rb_parent;
1214 	unsigned long charged = 0;
1215 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1216 
1217 	/* Clear old maps */
1218 	error = -ENOMEM;
1219 munmap_back:
1220 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1221 	if (vma && vma->vm_start < addr + len) {
1222 		if (do_munmap(mm, addr, len))
1223 			return -ENOMEM;
1224 		goto munmap_back;
1225 	}
1226 
1227 	/* Check against address space limit. */
1228 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1229 		return -ENOMEM;
1230 
1231 	/*
1232 	 * Set 'VM_NORESERVE' if we should not account for the
1233 	 * memory use of this mapping.
1234 	 */
1235 	if ((flags & MAP_NORESERVE)) {
1236 		/* We honor MAP_NORESERVE if allowed to overcommit */
1237 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1238 			vm_flags |= VM_NORESERVE;
1239 
1240 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1241 		if (file && is_file_hugepages(file))
1242 			vm_flags |= VM_NORESERVE;
1243 	}
1244 
1245 	/*
1246 	 * Private writable mapping: check memory availability
1247 	 */
1248 	if (accountable_mapping(file, vm_flags)) {
1249 		charged = len >> PAGE_SHIFT;
1250 		if (security_vm_enough_memory(charged))
1251 			return -ENOMEM;
1252 		vm_flags |= VM_ACCOUNT;
1253 	}
1254 
1255 	/*
1256 	 * Can we just expand an old mapping?
1257 	 */
1258 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1259 	if (vma)
1260 		goto out;
1261 
1262 	/*
1263 	 * Determine the object being mapped and call the appropriate
1264 	 * specific mapper. the address has already been validated, but
1265 	 * not unmapped, but the maps are removed from the list.
1266 	 */
1267 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1268 	if (!vma) {
1269 		error = -ENOMEM;
1270 		goto unacct_error;
1271 	}
1272 
1273 	vma->vm_mm = mm;
1274 	vma->vm_start = addr;
1275 	vma->vm_end = addr + len;
1276 	vma->vm_flags = vm_flags;
1277 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1278 	vma->vm_pgoff = pgoff;
1279 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1280 
1281 	if (file) {
1282 		error = -EINVAL;
1283 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1284 			goto free_vma;
1285 		if (vm_flags & VM_DENYWRITE) {
1286 			error = deny_write_access(file);
1287 			if (error)
1288 				goto free_vma;
1289 			correct_wcount = 1;
1290 		}
1291 		vma->vm_file = file;
1292 		get_file(file);
1293 		error = file->f_op->mmap(file, vma);
1294 		if (error)
1295 			goto unmap_and_free_vma;
1296 		if (vm_flags & VM_EXECUTABLE)
1297 			added_exe_file_vma(mm);
1298 
1299 		/* Can addr have changed??
1300 		 *
1301 		 * Answer: Yes, several device drivers can do it in their
1302 		 *         f_op->mmap method. -DaveM
1303 		 */
1304 		addr = vma->vm_start;
1305 		pgoff = vma->vm_pgoff;
1306 		vm_flags = vma->vm_flags;
1307 	} else if (vm_flags & VM_SHARED) {
1308 		error = shmem_zero_setup(vma);
1309 		if (error)
1310 			goto free_vma;
1311 	}
1312 
1313 	if (vma_wants_writenotify(vma)) {
1314 		pgprot_t pprot = vma->vm_page_prot;
1315 
1316 		/* Can vma->vm_page_prot have changed??
1317 		 *
1318 		 * Answer: Yes, drivers may have changed it in their
1319 		 *         f_op->mmap method.
1320 		 *
1321 		 * Ensures that vmas marked as uncached stay that way.
1322 		 */
1323 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1324 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1325 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1326 	}
1327 
1328 	vma_link(mm, vma, prev, rb_link, rb_parent);
1329 	file = vma->vm_file;
1330 
1331 	/* Once vma denies write, undo our temporary denial count */
1332 	if (correct_wcount)
1333 		atomic_inc(&inode->i_writecount);
1334 out:
1335 	perf_event_mmap(vma);
1336 
1337 	mm->total_vm += len >> PAGE_SHIFT;
1338 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1339 	if (vm_flags & VM_LOCKED) {
1340 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1341 			mm->locked_vm += (len >> PAGE_SHIFT);
1342 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1343 		make_pages_present(addr, addr + len);
1344 	return addr;
1345 
1346 unmap_and_free_vma:
1347 	if (correct_wcount)
1348 		atomic_inc(&inode->i_writecount);
1349 	vma->vm_file = NULL;
1350 	fput(file);
1351 
1352 	/* Undo any partial mapping done by a device driver. */
1353 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1354 	charged = 0;
1355 free_vma:
1356 	kmem_cache_free(vm_area_cachep, vma);
1357 unacct_error:
1358 	if (charged)
1359 		vm_unacct_memory(charged);
1360 	return error;
1361 }
1362 
1363 /* Get an address range which is currently unmapped.
1364  * For shmat() with addr=0.
1365  *
1366  * Ugly calling convention alert:
1367  * Return value with the low bits set means error value,
1368  * ie
1369  *	if (ret & ~PAGE_MASK)
1370  *		error = ret;
1371  *
1372  * This function "knows" that -ENOMEM has the bits set.
1373  */
1374 #ifndef HAVE_ARCH_UNMAPPED_AREA
1375 unsigned long
1376 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1377 		unsigned long len, unsigned long pgoff, unsigned long flags)
1378 {
1379 	struct mm_struct *mm = current->mm;
1380 	struct vm_area_struct *vma;
1381 	unsigned long start_addr;
1382 
1383 	if (len > TASK_SIZE)
1384 		return -ENOMEM;
1385 
1386 	if (flags & MAP_FIXED)
1387 		return addr;
1388 
1389 	if (addr) {
1390 		addr = PAGE_ALIGN(addr);
1391 		vma = find_vma(mm, addr);
1392 		if (TASK_SIZE - len >= addr &&
1393 		    (!vma || addr + len <= vma->vm_start))
1394 			return addr;
1395 	}
1396 	if (len > mm->cached_hole_size) {
1397 	        start_addr = addr = mm->free_area_cache;
1398 	} else {
1399 	        start_addr = addr = TASK_UNMAPPED_BASE;
1400 	        mm->cached_hole_size = 0;
1401 	}
1402 
1403 full_search:
1404 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1405 		/* At this point:  (!vma || addr < vma->vm_end). */
1406 		if (TASK_SIZE - len < addr) {
1407 			/*
1408 			 * Start a new search - just in case we missed
1409 			 * some holes.
1410 			 */
1411 			if (start_addr != TASK_UNMAPPED_BASE) {
1412 				addr = TASK_UNMAPPED_BASE;
1413 			        start_addr = addr;
1414 				mm->cached_hole_size = 0;
1415 				goto full_search;
1416 			}
1417 			return -ENOMEM;
1418 		}
1419 		if (!vma || addr + len <= vma->vm_start) {
1420 			/*
1421 			 * Remember the place where we stopped the search:
1422 			 */
1423 			mm->free_area_cache = addr + len;
1424 			return addr;
1425 		}
1426 		if (addr + mm->cached_hole_size < vma->vm_start)
1427 		        mm->cached_hole_size = vma->vm_start - addr;
1428 		addr = vma->vm_end;
1429 	}
1430 }
1431 #endif
1432 
1433 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1434 {
1435 	/*
1436 	 * Is this a new hole at the lowest possible address?
1437 	 */
1438 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1439 		mm->free_area_cache = addr;
1440 		mm->cached_hole_size = ~0UL;
1441 	}
1442 }
1443 
1444 /*
1445  * This mmap-allocator allocates new areas top-down from below the
1446  * stack's low limit (the base):
1447  */
1448 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1449 unsigned long
1450 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1451 			  const unsigned long len, const unsigned long pgoff,
1452 			  const unsigned long flags)
1453 {
1454 	struct vm_area_struct *vma;
1455 	struct mm_struct *mm = current->mm;
1456 	unsigned long addr = addr0;
1457 
1458 	/* requested length too big for entire address space */
1459 	if (len > TASK_SIZE)
1460 		return -ENOMEM;
1461 
1462 	if (flags & MAP_FIXED)
1463 		return addr;
1464 
1465 	/* requesting a specific address */
1466 	if (addr) {
1467 		addr = PAGE_ALIGN(addr);
1468 		vma = find_vma(mm, addr);
1469 		if (TASK_SIZE - len >= addr &&
1470 				(!vma || addr + len <= vma->vm_start))
1471 			return addr;
1472 	}
1473 
1474 	/* check if free_area_cache is useful for us */
1475 	if (len <= mm->cached_hole_size) {
1476  	        mm->cached_hole_size = 0;
1477  		mm->free_area_cache = mm->mmap_base;
1478  	}
1479 
1480 	/* either no address requested or can't fit in requested address hole */
1481 	addr = mm->free_area_cache;
1482 
1483 	/* make sure it can fit in the remaining address space */
1484 	if (addr > len) {
1485 		vma = find_vma(mm, addr-len);
1486 		if (!vma || addr <= vma->vm_start)
1487 			/* remember the address as a hint for next time */
1488 			return (mm->free_area_cache = addr-len);
1489 	}
1490 
1491 	if (mm->mmap_base < len)
1492 		goto bottomup;
1493 
1494 	addr = mm->mmap_base-len;
1495 
1496 	do {
1497 		/*
1498 		 * Lookup failure means no vma is above this address,
1499 		 * else if new region fits below vma->vm_start,
1500 		 * return with success:
1501 		 */
1502 		vma = find_vma(mm, addr);
1503 		if (!vma || addr+len <= vma->vm_start)
1504 			/* remember the address as a hint for next time */
1505 			return (mm->free_area_cache = addr);
1506 
1507  		/* remember the largest hole we saw so far */
1508  		if (addr + mm->cached_hole_size < vma->vm_start)
1509  		        mm->cached_hole_size = vma->vm_start - addr;
1510 
1511 		/* try just below the current vma->vm_start */
1512 		addr = vma->vm_start-len;
1513 	} while (len < vma->vm_start);
1514 
1515 bottomup:
1516 	/*
1517 	 * A failed mmap() very likely causes application failure,
1518 	 * so fall back to the bottom-up function here. This scenario
1519 	 * can happen with large stack limits and large mmap()
1520 	 * allocations.
1521 	 */
1522 	mm->cached_hole_size = ~0UL;
1523   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1524 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1525 	/*
1526 	 * Restore the topdown base:
1527 	 */
1528 	mm->free_area_cache = mm->mmap_base;
1529 	mm->cached_hole_size = ~0UL;
1530 
1531 	return addr;
1532 }
1533 #endif
1534 
1535 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1536 {
1537 	/*
1538 	 * Is this a new hole at the highest possible address?
1539 	 */
1540 	if (addr > mm->free_area_cache)
1541 		mm->free_area_cache = addr;
1542 
1543 	/* dont allow allocations above current base */
1544 	if (mm->free_area_cache > mm->mmap_base)
1545 		mm->free_area_cache = mm->mmap_base;
1546 }
1547 
1548 unsigned long
1549 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1550 		unsigned long pgoff, unsigned long flags)
1551 {
1552 	unsigned long (*get_area)(struct file *, unsigned long,
1553 				  unsigned long, unsigned long, unsigned long);
1554 
1555 	unsigned long error = arch_mmap_check(addr, len, flags);
1556 	if (error)
1557 		return error;
1558 
1559 	/* Careful about overflows.. */
1560 	if (len > TASK_SIZE)
1561 		return -ENOMEM;
1562 
1563 	get_area = current->mm->get_unmapped_area;
1564 	if (file && file->f_op && file->f_op->get_unmapped_area)
1565 		get_area = file->f_op->get_unmapped_area;
1566 	addr = get_area(file, addr, len, pgoff, flags);
1567 	if (IS_ERR_VALUE(addr))
1568 		return addr;
1569 
1570 	if (addr > TASK_SIZE - len)
1571 		return -ENOMEM;
1572 	if (addr & ~PAGE_MASK)
1573 		return -EINVAL;
1574 
1575 	return arch_rebalance_pgtables(addr, len);
1576 }
1577 
1578 EXPORT_SYMBOL(get_unmapped_area);
1579 
1580 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1581 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1582 {
1583 	struct vm_area_struct *vma = NULL;
1584 
1585 	if (mm) {
1586 		/* Check the cache first. */
1587 		/* (Cache hit rate is typically around 35%.) */
1588 		vma = mm->mmap_cache;
1589 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1590 			struct rb_node * rb_node;
1591 
1592 			rb_node = mm->mm_rb.rb_node;
1593 			vma = NULL;
1594 
1595 			while (rb_node) {
1596 				struct vm_area_struct * vma_tmp;
1597 
1598 				vma_tmp = rb_entry(rb_node,
1599 						struct vm_area_struct, vm_rb);
1600 
1601 				if (vma_tmp->vm_end > addr) {
1602 					vma = vma_tmp;
1603 					if (vma_tmp->vm_start <= addr)
1604 						break;
1605 					rb_node = rb_node->rb_left;
1606 				} else
1607 					rb_node = rb_node->rb_right;
1608 			}
1609 			if (vma)
1610 				mm->mmap_cache = vma;
1611 		}
1612 	}
1613 	return vma;
1614 }
1615 
1616 EXPORT_SYMBOL(find_vma);
1617 
1618 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1619 struct vm_area_struct *
1620 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1621 			struct vm_area_struct **pprev)
1622 {
1623 	struct vm_area_struct *vma = NULL, *prev = NULL;
1624 	struct rb_node *rb_node;
1625 	if (!mm)
1626 		goto out;
1627 
1628 	/* Guard against addr being lower than the first VMA */
1629 	vma = mm->mmap;
1630 
1631 	/* Go through the RB tree quickly. */
1632 	rb_node = mm->mm_rb.rb_node;
1633 
1634 	while (rb_node) {
1635 		struct vm_area_struct *vma_tmp;
1636 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1637 
1638 		if (addr < vma_tmp->vm_end) {
1639 			rb_node = rb_node->rb_left;
1640 		} else {
1641 			prev = vma_tmp;
1642 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1643 				break;
1644 			rb_node = rb_node->rb_right;
1645 		}
1646 	}
1647 
1648 out:
1649 	*pprev = prev;
1650 	return prev ? prev->vm_next : vma;
1651 }
1652 
1653 /*
1654  * Verify that the stack growth is acceptable and
1655  * update accounting. This is shared with both the
1656  * grow-up and grow-down cases.
1657  */
1658 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1659 {
1660 	struct mm_struct *mm = vma->vm_mm;
1661 	struct rlimit *rlim = current->signal->rlim;
1662 	unsigned long new_start;
1663 
1664 	/* address space limit tests */
1665 	if (!may_expand_vm(mm, grow))
1666 		return -ENOMEM;
1667 
1668 	/* Stack limit test */
1669 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1670 		return -ENOMEM;
1671 
1672 	/* mlock limit tests */
1673 	if (vma->vm_flags & VM_LOCKED) {
1674 		unsigned long locked;
1675 		unsigned long limit;
1676 		locked = mm->locked_vm + grow;
1677 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1678 		limit >>= PAGE_SHIFT;
1679 		if (locked > limit && !capable(CAP_IPC_LOCK))
1680 			return -ENOMEM;
1681 	}
1682 
1683 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1684 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1685 			vma->vm_end - size;
1686 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1687 		return -EFAULT;
1688 
1689 	/*
1690 	 * Overcommit..  This must be the final test, as it will
1691 	 * update security statistics.
1692 	 */
1693 	if (security_vm_enough_memory_mm(mm, grow))
1694 		return -ENOMEM;
1695 
1696 	/* Ok, everything looks good - let it rip */
1697 	mm->total_vm += grow;
1698 	if (vma->vm_flags & VM_LOCKED)
1699 		mm->locked_vm += grow;
1700 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1701 	return 0;
1702 }
1703 
1704 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1705 /*
1706  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1707  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1708  */
1709 #ifndef CONFIG_IA64
1710 static
1711 #endif
1712 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1713 {
1714 	int error;
1715 
1716 	if (!(vma->vm_flags & VM_GROWSUP))
1717 		return -EFAULT;
1718 
1719 	/*
1720 	 * We must make sure the anon_vma is allocated
1721 	 * so that the anon_vma locking is not a noop.
1722 	 */
1723 	if (unlikely(anon_vma_prepare(vma)))
1724 		return -ENOMEM;
1725 	vma_lock_anon_vma(vma);
1726 
1727 	/*
1728 	 * vma->vm_start/vm_end cannot change under us because the caller
1729 	 * is required to hold the mmap_sem in read mode.  We need the
1730 	 * anon_vma lock to serialize against concurrent expand_stacks.
1731 	 * Also guard against wrapping around to address 0.
1732 	 */
1733 	if (address < PAGE_ALIGN(address+4))
1734 		address = PAGE_ALIGN(address+4);
1735 	else {
1736 		vma_unlock_anon_vma(vma);
1737 		return -ENOMEM;
1738 	}
1739 	error = 0;
1740 
1741 	/* Somebody else might have raced and expanded it already */
1742 	if (address > vma->vm_end) {
1743 		unsigned long size, grow;
1744 
1745 		size = address - vma->vm_start;
1746 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1747 
1748 		error = acct_stack_growth(vma, size, grow);
1749 		if (!error) {
1750 			vma->vm_end = address;
1751 			perf_event_mmap(vma);
1752 		}
1753 	}
1754 	vma_unlock_anon_vma(vma);
1755 	return error;
1756 }
1757 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1758 
1759 /*
1760  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1761  */
1762 static int expand_downwards(struct vm_area_struct *vma,
1763 				   unsigned long address)
1764 {
1765 	int error;
1766 
1767 	/*
1768 	 * We must make sure the anon_vma is allocated
1769 	 * so that the anon_vma locking is not a noop.
1770 	 */
1771 	if (unlikely(anon_vma_prepare(vma)))
1772 		return -ENOMEM;
1773 
1774 	address &= PAGE_MASK;
1775 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1776 	if (error)
1777 		return error;
1778 
1779 	vma_lock_anon_vma(vma);
1780 
1781 	/*
1782 	 * vma->vm_start/vm_end cannot change under us because the caller
1783 	 * is required to hold the mmap_sem in read mode.  We need the
1784 	 * anon_vma lock to serialize against concurrent expand_stacks.
1785 	 */
1786 
1787 	/* Somebody else might have raced and expanded it already */
1788 	if (address < vma->vm_start) {
1789 		unsigned long size, grow;
1790 
1791 		size = vma->vm_end - address;
1792 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1793 
1794 		error = acct_stack_growth(vma, size, grow);
1795 		if (!error) {
1796 			vma->vm_start = address;
1797 			vma->vm_pgoff -= grow;
1798 			perf_event_mmap(vma);
1799 		}
1800 	}
1801 	vma_unlock_anon_vma(vma);
1802 	return error;
1803 }
1804 
1805 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1806 {
1807 	return expand_downwards(vma, address);
1808 }
1809 
1810 #ifdef CONFIG_STACK_GROWSUP
1811 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1812 {
1813 	return expand_upwards(vma, address);
1814 }
1815 
1816 struct vm_area_struct *
1817 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1818 {
1819 	struct vm_area_struct *vma, *prev;
1820 
1821 	addr &= PAGE_MASK;
1822 	vma = find_vma_prev(mm, addr, &prev);
1823 	if (vma && (vma->vm_start <= addr))
1824 		return vma;
1825 	if (!prev || expand_stack(prev, addr))
1826 		return NULL;
1827 	if (prev->vm_flags & VM_LOCKED) {
1828 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1829 	}
1830 	return prev;
1831 }
1832 #else
1833 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1834 {
1835 	return expand_downwards(vma, address);
1836 }
1837 
1838 struct vm_area_struct *
1839 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1840 {
1841 	struct vm_area_struct * vma;
1842 	unsigned long start;
1843 
1844 	addr &= PAGE_MASK;
1845 	vma = find_vma(mm,addr);
1846 	if (!vma)
1847 		return NULL;
1848 	if (vma->vm_start <= addr)
1849 		return vma;
1850 	if (!(vma->vm_flags & VM_GROWSDOWN))
1851 		return NULL;
1852 	start = vma->vm_start;
1853 	if (expand_stack(vma, addr))
1854 		return NULL;
1855 	if (vma->vm_flags & VM_LOCKED) {
1856 		mlock_vma_pages_range(vma, addr, start);
1857 	}
1858 	return vma;
1859 }
1860 #endif
1861 
1862 /*
1863  * Ok - we have the memory areas we should free on the vma list,
1864  * so release them, and do the vma updates.
1865  *
1866  * Called with the mm semaphore held.
1867  */
1868 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1869 {
1870 	/* Update high watermark before we lower total_vm */
1871 	update_hiwater_vm(mm);
1872 	do {
1873 		long nrpages = vma_pages(vma);
1874 
1875 		mm->total_vm -= nrpages;
1876 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1877 		vma = remove_vma(vma);
1878 	} while (vma);
1879 	validate_mm(mm);
1880 }
1881 
1882 /*
1883  * Get rid of page table information in the indicated region.
1884  *
1885  * Called with the mm semaphore held.
1886  */
1887 static void unmap_region(struct mm_struct *mm,
1888 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1889 		unsigned long start, unsigned long end)
1890 {
1891 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1892 	struct mmu_gather *tlb;
1893 	unsigned long nr_accounted = 0;
1894 
1895 	lru_add_drain();
1896 	tlb = tlb_gather_mmu(mm, 0);
1897 	update_hiwater_rss(mm);
1898 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1899 	vm_unacct_memory(nr_accounted);
1900 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1901 				 next? next->vm_start: 0);
1902 	tlb_finish_mmu(tlb, start, end);
1903 }
1904 
1905 /*
1906  * Create a list of vma's touched by the unmap, removing them from the mm's
1907  * vma list as we go..
1908  */
1909 static void
1910 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1911 	struct vm_area_struct *prev, unsigned long end)
1912 {
1913 	struct vm_area_struct **insertion_point;
1914 	struct vm_area_struct *tail_vma = NULL;
1915 	unsigned long addr;
1916 
1917 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1918 	do {
1919 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1920 		mm->map_count--;
1921 		tail_vma = vma;
1922 		vma = vma->vm_next;
1923 	} while (vma && vma->vm_start < end);
1924 	*insertion_point = vma;
1925 	tail_vma->vm_next = NULL;
1926 	if (mm->unmap_area == arch_unmap_area)
1927 		addr = prev ? prev->vm_end : mm->mmap_base;
1928 	else
1929 		addr = vma ?  vma->vm_start : mm->mmap_base;
1930 	mm->unmap_area(mm, addr);
1931 	mm->mmap_cache = NULL;		/* Kill the cache. */
1932 }
1933 
1934 /*
1935  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1936  * munmap path where it doesn't make sense to fail.
1937  */
1938 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1939 	      unsigned long addr, int new_below)
1940 {
1941 	struct mempolicy *pol;
1942 	struct vm_area_struct *new;
1943 	int err = -ENOMEM;
1944 
1945 	if (is_vm_hugetlb_page(vma) && (addr &
1946 					~(huge_page_mask(hstate_vma(vma)))))
1947 		return -EINVAL;
1948 
1949 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1950 	if (!new)
1951 		goto out_err;
1952 
1953 	/* most fields are the same, copy all, and then fixup */
1954 	*new = *vma;
1955 
1956 	INIT_LIST_HEAD(&new->anon_vma_chain);
1957 
1958 	if (new_below)
1959 		new->vm_end = addr;
1960 	else {
1961 		new->vm_start = addr;
1962 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1963 	}
1964 
1965 	pol = mpol_dup(vma_policy(vma));
1966 	if (IS_ERR(pol)) {
1967 		err = PTR_ERR(pol);
1968 		goto out_free_vma;
1969 	}
1970 	vma_set_policy(new, pol);
1971 
1972 	if (anon_vma_clone(new, vma))
1973 		goto out_free_mpol;
1974 
1975 	if (new->vm_file) {
1976 		get_file(new->vm_file);
1977 		if (vma->vm_flags & VM_EXECUTABLE)
1978 			added_exe_file_vma(mm);
1979 	}
1980 
1981 	if (new->vm_ops && new->vm_ops->open)
1982 		new->vm_ops->open(new);
1983 
1984 	if (new_below)
1985 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1986 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1987 	else
1988 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1989 
1990 	/* Success. */
1991 	if (!err)
1992 		return 0;
1993 
1994 	/* Clean everything up if vma_adjust failed. */
1995 	if (new->vm_ops && new->vm_ops->close)
1996 		new->vm_ops->close(new);
1997 	if (new->vm_file) {
1998 		if (vma->vm_flags & VM_EXECUTABLE)
1999 			removed_exe_file_vma(mm);
2000 		fput(new->vm_file);
2001 	}
2002  out_free_mpol:
2003 	mpol_put(pol);
2004  out_free_vma:
2005 	kmem_cache_free(vm_area_cachep, new);
2006  out_err:
2007 	return err;
2008 }
2009 
2010 /*
2011  * Split a vma into two pieces at address 'addr', a new vma is allocated
2012  * either for the first part or the tail.
2013  */
2014 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2015 	      unsigned long addr, int new_below)
2016 {
2017 	if (mm->map_count >= sysctl_max_map_count)
2018 		return -ENOMEM;
2019 
2020 	return __split_vma(mm, vma, addr, new_below);
2021 }
2022 
2023 /* Munmap is split into 2 main parts -- this part which finds
2024  * what needs doing, and the areas themselves, which do the
2025  * work.  This now handles partial unmappings.
2026  * Jeremy Fitzhardinge <jeremy@goop.org>
2027  */
2028 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2029 {
2030 	unsigned long end;
2031 	struct vm_area_struct *vma, *prev, *last;
2032 
2033 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2034 		return -EINVAL;
2035 
2036 	if ((len = PAGE_ALIGN(len)) == 0)
2037 		return -EINVAL;
2038 
2039 	/* Find the first overlapping VMA */
2040 	vma = find_vma_prev(mm, start, &prev);
2041 	if (!vma)
2042 		return 0;
2043 	/* we have  start < vma->vm_end  */
2044 
2045 	/* if it doesn't overlap, we have nothing.. */
2046 	end = start + len;
2047 	if (vma->vm_start >= end)
2048 		return 0;
2049 
2050 	/*
2051 	 * If we need to split any vma, do it now to save pain later.
2052 	 *
2053 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2054 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2055 	 * places tmp vma above, and higher split_vma places tmp vma below.
2056 	 */
2057 	if (start > vma->vm_start) {
2058 		int error;
2059 
2060 		/*
2061 		 * Make sure that map_count on return from munmap() will
2062 		 * not exceed its limit; but let map_count go just above
2063 		 * its limit temporarily, to help free resources as expected.
2064 		 */
2065 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2066 			return -ENOMEM;
2067 
2068 		error = __split_vma(mm, vma, start, 0);
2069 		if (error)
2070 			return error;
2071 		prev = vma;
2072 	}
2073 
2074 	/* Does it split the last one? */
2075 	last = find_vma(mm, end);
2076 	if (last && end > last->vm_start) {
2077 		int error = __split_vma(mm, last, end, 1);
2078 		if (error)
2079 			return error;
2080 	}
2081 	vma = prev? prev->vm_next: mm->mmap;
2082 
2083 	/*
2084 	 * unlock any mlock()ed ranges before detaching vmas
2085 	 */
2086 	if (mm->locked_vm) {
2087 		struct vm_area_struct *tmp = vma;
2088 		while (tmp && tmp->vm_start < end) {
2089 			if (tmp->vm_flags & VM_LOCKED) {
2090 				mm->locked_vm -= vma_pages(tmp);
2091 				munlock_vma_pages_all(tmp);
2092 			}
2093 			tmp = tmp->vm_next;
2094 		}
2095 	}
2096 
2097 	/*
2098 	 * Remove the vma's, and unmap the actual pages
2099 	 */
2100 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2101 	unmap_region(mm, vma, prev, start, end);
2102 
2103 	/* Fix up all other VM information */
2104 	remove_vma_list(mm, vma);
2105 
2106 	return 0;
2107 }
2108 
2109 EXPORT_SYMBOL(do_munmap);
2110 
2111 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2112 {
2113 	int ret;
2114 	struct mm_struct *mm = current->mm;
2115 
2116 	profile_munmap(addr);
2117 
2118 	down_write(&mm->mmap_sem);
2119 	ret = do_munmap(mm, addr, len);
2120 	up_write(&mm->mmap_sem);
2121 	return ret;
2122 }
2123 
2124 static inline void verify_mm_writelocked(struct mm_struct *mm)
2125 {
2126 #ifdef CONFIG_DEBUG_VM
2127 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2128 		WARN_ON(1);
2129 		up_read(&mm->mmap_sem);
2130 	}
2131 #endif
2132 }
2133 
2134 /*
2135  *  this is really a simplified "do_mmap".  it only handles
2136  *  anonymous maps.  eventually we may be able to do some
2137  *  brk-specific accounting here.
2138  */
2139 unsigned long do_brk(unsigned long addr, unsigned long len)
2140 {
2141 	struct mm_struct * mm = current->mm;
2142 	struct vm_area_struct * vma, * prev;
2143 	unsigned long flags;
2144 	struct rb_node ** rb_link, * rb_parent;
2145 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2146 	int error;
2147 
2148 	len = PAGE_ALIGN(len);
2149 	if (!len)
2150 		return addr;
2151 
2152 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2153 	if (error)
2154 		return error;
2155 
2156 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2157 
2158 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2159 	if (error & ~PAGE_MASK)
2160 		return error;
2161 
2162 	/*
2163 	 * mlock MCL_FUTURE?
2164 	 */
2165 	if (mm->def_flags & VM_LOCKED) {
2166 		unsigned long locked, lock_limit;
2167 		locked = len >> PAGE_SHIFT;
2168 		locked += mm->locked_vm;
2169 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2170 		lock_limit >>= PAGE_SHIFT;
2171 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2172 			return -EAGAIN;
2173 	}
2174 
2175 	/*
2176 	 * mm->mmap_sem is required to protect against another thread
2177 	 * changing the mappings in case we sleep.
2178 	 */
2179 	verify_mm_writelocked(mm);
2180 
2181 	/*
2182 	 * Clear old maps.  this also does some error checking for us
2183 	 */
2184  munmap_back:
2185 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2186 	if (vma && vma->vm_start < addr + len) {
2187 		if (do_munmap(mm, addr, len))
2188 			return -ENOMEM;
2189 		goto munmap_back;
2190 	}
2191 
2192 	/* Check against address space limits *after* clearing old maps... */
2193 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2194 		return -ENOMEM;
2195 
2196 	if (mm->map_count > sysctl_max_map_count)
2197 		return -ENOMEM;
2198 
2199 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2200 		return -ENOMEM;
2201 
2202 	/* Can we just expand an old private anonymous mapping? */
2203 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2204 					NULL, NULL, pgoff, NULL);
2205 	if (vma)
2206 		goto out;
2207 
2208 	/*
2209 	 * create a vma struct for an anonymous mapping
2210 	 */
2211 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2212 	if (!vma) {
2213 		vm_unacct_memory(len >> PAGE_SHIFT);
2214 		return -ENOMEM;
2215 	}
2216 
2217 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2218 	vma->vm_mm = mm;
2219 	vma->vm_start = addr;
2220 	vma->vm_end = addr + len;
2221 	vma->vm_pgoff = pgoff;
2222 	vma->vm_flags = flags;
2223 	vma->vm_page_prot = vm_get_page_prot(flags);
2224 	vma_link(mm, vma, prev, rb_link, rb_parent);
2225 out:
2226 	perf_event_mmap(vma);
2227 	mm->total_vm += len >> PAGE_SHIFT;
2228 	if (flags & VM_LOCKED) {
2229 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2230 			mm->locked_vm += (len >> PAGE_SHIFT);
2231 	}
2232 	return addr;
2233 }
2234 
2235 EXPORT_SYMBOL(do_brk);
2236 
2237 /* Release all mmaps. */
2238 void exit_mmap(struct mm_struct *mm)
2239 {
2240 	struct mmu_gather *tlb;
2241 	struct vm_area_struct *vma;
2242 	unsigned long nr_accounted = 0;
2243 	unsigned long end;
2244 
2245 	/* mm's last user has gone, and its about to be pulled down */
2246 	mmu_notifier_release(mm);
2247 
2248 	if (mm->locked_vm) {
2249 		vma = mm->mmap;
2250 		while (vma) {
2251 			if (vma->vm_flags & VM_LOCKED)
2252 				munlock_vma_pages_all(vma);
2253 			vma = vma->vm_next;
2254 		}
2255 	}
2256 
2257 	arch_exit_mmap(mm);
2258 
2259 	vma = mm->mmap;
2260 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2261 		return;
2262 
2263 	lru_add_drain();
2264 	flush_cache_mm(mm);
2265 	tlb = tlb_gather_mmu(mm, 1);
2266 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2267 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2268 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2269 	vm_unacct_memory(nr_accounted);
2270 
2271 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2272 	tlb_finish_mmu(tlb, 0, end);
2273 
2274 	/*
2275 	 * Walk the list again, actually closing and freeing it,
2276 	 * with preemption enabled, without holding any MM locks.
2277 	 */
2278 	while (vma)
2279 		vma = remove_vma(vma);
2280 
2281 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2282 }
2283 
2284 /* Insert vm structure into process list sorted by address
2285  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2286  * then i_mmap_lock is taken here.
2287  */
2288 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2289 {
2290 	struct vm_area_struct * __vma, * prev;
2291 	struct rb_node ** rb_link, * rb_parent;
2292 
2293 	/*
2294 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2295 	 * until its first write fault, when page's anon_vma and index
2296 	 * are set.  But now set the vm_pgoff it will almost certainly
2297 	 * end up with (unless mremap moves it elsewhere before that
2298 	 * first wfault), so /proc/pid/maps tells a consistent story.
2299 	 *
2300 	 * By setting it to reflect the virtual start address of the
2301 	 * vma, merges and splits can happen in a seamless way, just
2302 	 * using the existing file pgoff checks and manipulations.
2303 	 * Similarly in do_mmap_pgoff and in do_brk.
2304 	 */
2305 	if (!vma->vm_file) {
2306 		BUG_ON(vma->anon_vma);
2307 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2308 	}
2309 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2310 	if (__vma && __vma->vm_start < vma->vm_end)
2311 		return -ENOMEM;
2312 	if ((vma->vm_flags & VM_ACCOUNT) &&
2313 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2314 		return -ENOMEM;
2315 	vma_link(mm, vma, prev, rb_link, rb_parent);
2316 	return 0;
2317 }
2318 
2319 /*
2320  * Copy the vma structure to a new location in the same mm,
2321  * prior to moving page table entries, to effect an mremap move.
2322  */
2323 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2324 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2325 {
2326 	struct vm_area_struct *vma = *vmap;
2327 	unsigned long vma_start = vma->vm_start;
2328 	struct mm_struct *mm = vma->vm_mm;
2329 	struct vm_area_struct *new_vma, *prev;
2330 	struct rb_node **rb_link, *rb_parent;
2331 	struct mempolicy *pol;
2332 
2333 	/*
2334 	 * If anonymous vma has not yet been faulted, update new pgoff
2335 	 * to match new location, to increase its chance of merging.
2336 	 */
2337 	if (!vma->vm_file && !vma->anon_vma)
2338 		pgoff = addr >> PAGE_SHIFT;
2339 
2340 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2341 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2342 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2343 	if (new_vma) {
2344 		/*
2345 		 * Source vma may have been merged into new_vma
2346 		 */
2347 		if (vma_start >= new_vma->vm_start &&
2348 		    vma_start < new_vma->vm_end)
2349 			*vmap = new_vma;
2350 	} else {
2351 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2352 		if (new_vma) {
2353 			*new_vma = *vma;
2354 			pol = mpol_dup(vma_policy(vma));
2355 			if (IS_ERR(pol))
2356 				goto out_free_vma;
2357 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2358 			if (anon_vma_clone(new_vma, vma))
2359 				goto out_free_mempol;
2360 			vma_set_policy(new_vma, pol);
2361 			new_vma->vm_start = addr;
2362 			new_vma->vm_end = addr + len;
2363 			new_vma->vm_pgoff = pgoff;
2364 			if (new_vma->vm_file) {
2365 				get_file(new_vma->vm_file);
2366 				if (vma->vm_flags & VM_EXECUTABLE)
2367 					added_exe_file_vma(mm);
2368 			}
2369 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2370 				new_vma->vm_ops->open(new_vma);
2371 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2372 		}
2373 	}
2374 	return new_vma;
2375 
2376  out_free_mempol:
2377 	mpol_put(pol);
2378  out_free_vma:
2379 	kmem_cache_free(vm_area_cachep, new_vma);
2380 	return NULL;
2381 }
2382 
2383 /*
2384  * Return true if the calling process may expand its vm space by the passed
2385  * number of pages
2386  */
2387 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2388 {
2389 	unsigned long cur = mm->total_vm;	/* pages */
2390 	unsigned long lim;
2391 
2392 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2393 
2394 	if (cur + npages > lim)
2395 		return 0;
2396 	return 1;
2397 }
2398 
2399 
2400 static int special_mapping_fault(struct vm_area_struct *vma,
2401 				struct vm_fault *vmf)
2402 {
2403 	pgoff_t pgoff;
2404 	struct page **pages;
2405 
2406 	/*
2407 	 * special mappings have no vm_file, and in that case, the mm
2408 	 * uses vm_pgoff internally. So we have to subtract it from here.
2409 	 * We are allowed to do this because we are the mm; do not copy
2410 	 * this code into drivers!
2411 	 */
2412 	pgoff = vmf->pgoff - vma->vm_pgoff;
2413 
2414 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2415 		pgoff--;
2416 
2417 	if (*pages) {
2418 		struct page *page = *pages;
2419 		get_page(page);
2420 		vmf->page = page;
2421 		return 0;
2422 	}
2423 
2424 	return VM_FAULT_SIGBUS;
2425 }
2426 
2427 /*
2428  * Having a close hook prevents vma merging regardless of flags.
2429  */
2430 static void special_mapping_close(struct vm_area_struct *vma)
2431 {
2432 }
2433 
2434 static const struct vm_operations_struct special_mapping_vmops = {
2435 	.close = special_mapping_close,
2436 	.fault = special_mapping_fault,
2437 };
2438 
2439 /*
2440  * Called with mm->mmap_sem held for writing.
2441  * Insert a new vma covering the given region, with the given flags.
2442  * Its pages are supplied by the given array of struct page *.
2443  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2444  * The region past the last page supplied will always produce SIGBUS.
2445  * The array pointer and the pages it points to are assumed to stay alive
2446  * for as long as this mapping might exist.
2447  */
2448 int install_special_mapping(struct mm_struct *mm,
2449 			    unsigned long addr, unsigned long len,
2450 			    unsigned long vm_flags, struct page **pages)
2451 {
2452 	struct vm_area_struct *vma;
2453 
2454 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2455 	if (unlikely(vma == NULL))
2456 		return -ENOMEM;
2457 
2458 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2459 	vma->vm_mm = mm;
2460 	vma->vm_start = addr;
2461 	vma->vm_end = addr + len;
2462 
2463 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2464 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2465 
2466 	vma->vm_ops = &special_mapping_vmops;
2467 	vma->vm_private_data = pages;
2468 
2469 	if (unlikely(insert_vm_struct(mm, vma))) {
2470 		kmem_cache_free(vm_area_cachep, vma);
2471 		return -ENOMEM;
2472 	}
2473 
2474 	mm->total_vm += len >> PAGE_SHIFT;
2475 
2476 	perf_event_mmap(vma);
2477 
2478 	return 0;
2479 }
2480 
2481 static DEFINE_MUTEX(mm_all_locks_mutex);
2482 
2483 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2484 {
2485 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2486 		/*
2487 		 * The LSB of head.next can't change from under us
2488 		 * because we hold the mm_all_locks_mutex.
2489 		 */
2490 		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2491 		/*
2492 		 * We can safely modify head.next after taking the
2493 		 * anon_vma->root->lock. If some other vma in this mm shares
2494 		 * the same anon_vma we won't take it again.
2495 		 *
2496 		 * No need of atomic instructions here, head.next
2497 		 * can't change from under us thanks to the
2498 		 * anon_vma->root->lock.
2499 		 */
2500 		if (__test_and_set_bit(0, (unsigned long *)
2501 				       &anon_vma->root->head.next))
2502 			BUG();
2503 	}
2504 }
2505 
2506 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2507 {
2508 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2509 		/*
2510 		 * AS_MM_ALL_LOCKS can't change from under us because
2511 		 * we hold the mm_all_locks_mutex.
2512 		 *
2513 		 * Operations on ->flags have to be atomic because
2514 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2515 		 * mm_all_locks_mutex, there may be other cpus
2516 		 * changing other bitflags in parallel to us.
2517 		 */
2518 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2519 			BUG();
2520 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2521 	}
2522 }
2523 
2524 /*
2525  * This operation locks against the VM for all pte/vma/mm related
2526  * operations that could ever happen on a certain mm. This includes
2527  * vmtruncate, try_to_unmap, and all page faults.
2528  *
2529  * The caller must take the mmap_sem in write mode before calling
2530  * mm_take_all_locks(). The caller isn't allowed to release the
2531  * mmap_sem until mm_drop_all_locks() returns.
2532  *
2533  * mmap_sem in write mode is required in order to block all operations
2534  * that could modify pagetables and free pages without need of
2535  * altering the vma layout (for example populate_range() with
2536  * nonlinear vmas). It's also needed in write mode to avoid new
2537  * anon_vmas to be associated with existing vmas.
2538  *
2539  * A single task can't take more than one mm_take_all_locks() in a row
2540  * or it would deadlock.
2541  *
2542  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2543  * mapping->flags avoid to take the same lock twice, if more than one
2544  * vma in this mm is backed by the same anon_vma or address_space.
2545  *
2546  * We can take all the locks in random order because the VM code
2547  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2548  * takes more than one of them in a row. Secondly we're protected
2549  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2550  *
2551  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2552  * that may have to take thousand of locks.
2553  *
2554  * mm_take_all_locks() can fail if it's interrupted by signals.
2555  */
2556 int mm_take_all_locks(struct mm_struct *mm)
2557 {
2558 	struct vm_area_struct *vma;
2559 	struct anon_vma_chain *avc;
2560 	int ret = -EINTR;
2561 
2562 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2563 
2564 	mutex_lock(&mm_all_locks_mutex);
2565 
2566 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2567 		if (signal_pending(current))
2568 			goto out_unlock;
2569 		if (vma->vm_file && vma->vm_file->f_mapping)
2570 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2571 	}
2572 
2573 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2574 		if (signal_pending(current))
2575 			goto out_unlock;
2576 		if (vma->anon_vma)
2577 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2578 				vm_lock_anon_vma(mm, avc->anon_vma);
2579 	}
2580 
2581 	ret = 0;
2582 
2583 out_unlock:
2584 	if (ret)
2585 		mm_drop_all_locks(mm);
2586 
2587 	return ret;
2588 }
2589 
2590 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2591 {
2592 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2593 		/*
2594 		 * The LSB of head.next can't change to 0 from under
2595 		 * us because we hold the mm_all_locks_mutex.
2596 		 *
2597 		 * We must however clear the bitflag before unlocking
2598 		 * the vma so the users using the anon_vma->head will
2599 		 * never see our bitflag.
2600 		 *
2601 		 * No need of atomic instructions here, head.next
2602 		 * can't change from under us until we release the
2603 		 * anon_vma->root->lock.
2604 		 */
2605 		if (!__test_and_clear_bit(0, (unsigned long *)
2606 					  &anon_vma->root->head.next))
2607 			BUG();
2608 		anon_vma_unlock(anon_vma);
2609 	}
2610 }
2611 
2612 static void vm_unlock_mapping(struct address_space *mapping)
2613 {
2614 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2615 		/*
2616 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2617 		 * because we hold the mm_all_locks_mutex.
2618 		 */
2619 		spin_unlock(&mapping->i_mmap_lock);
2620 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2621 					&mapping->flags))
2622 			BUG();
2623 	}
2624 }
2625 
2626 /*
2627  * The mmap_sem cannot be released by the caller until
2628  * mm_drop_all_locks() returns.
2629  */
2630 void mm_drop_all_locks(struct mm_struct *mm)
2631 {
2632 	struct vm_area_struct *vma;
2633 	struct anon_vma_chain *avc;
2634 
2635 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2636 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2637 
2638 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2639 		if (vma->anon_vma)
2640 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2641 				vm_unlock_anon_vma(avc->anon_vma);
2642 		if (vma->vm_file && vma->vm_file->f_mapping)
2643 			vm_unlock_mapping(vma->vm_file->f_mapping);
2644 	}
2645 
2646 	mutex_unlock(&mm_all_locks_mutex);
2647 }
2648 
2649 /*
2650  * initialise the VMA slab
2651  */
2652 void __init mmap_init(void)
2653 {
2654 	int ret;
2655 
2656 	ret = percpu_counter_init(&vm_committed_as, 0);
2657 	VM_BUG_ON(ret);
2658 }
2659