1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 158 unsigned long start, unsigned long end, gfp_t gfp) 159 { 160 vmi->mas.index = start; 161 vmi->mas.last = end - 1; 162 mas_store_gfp(&vmi->mas, NULL, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 /* 170 * check_brk_limits() - Use platform specific check of range & verify mlock 171 * limits. 172 * @addr: The address to check 173 * @len: The size of increase. 174 * 175 * Return: 0 on success. 176 */ 177 static int check_brk_limits(unsigned long addr, unsigned long len) 178 { 179 unsigned long mapped_addr; 180 181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 182 if (IS_ERR_VALUE(mapped_addr)) 183 return mapped_addr; 184 185 return mlock_future_ok(current->mm, current->mm->def_flags, len) 186 ? 0 : -EAGAIN; 187 } 188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 189 unsigned long addr, unsigned long request, unsigned long flags); 190 SYSCALL_DEFINE1(brk, unsigned long, brk) 191 { 192 unsigned long newbrk, oldbrk, origbrk; 193 struct mm_struct *mm = current->mm; 194 struct vm_area_struct *brkvma, *next = NULL; 195 unsigned long min_brk; 196 bool populate = false; 197 LIST_HEAD(uf); 198 struct vma_iterator vmi; 199 200 if (mmap_write_lock_killable(mm)) 201 return -EINTR; 202 203 origbrk = mm->brk; 204 205 #ifdef CONFIG_COMPAT_BRK 206 /* 207 * CONFIG_COMPAT_BRK can still be overridden by setting 208 * randomize_va_space to 2, which will still cause mm->start_brk 209 * to be arbitrarily shifted 210 */ 211 if (current->brk_randomized) 212 min_brk = mm->start_brk; 213 else 214 min_brk = mm->end_data; 215 #else 216 min_brk = mm->start_brk; 217 #endif 218 if (brk < min_brk) 219 goto out; 220 221 /* 222 * Check against rlimit here. If this check is done later after the test 223 * of oldbrk with newbrk then it can escape the test and let the data 224 * segment grow beyond its set limit the in case where the limit is 225 * not page aligned -Ram Gupta 226 */ 227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 228 mm->end_data, mm->start_data)) 229 goto out; 230 231 newbrk = PAGE_ALIGN(brk); 232 oldbrk = PAGE_ALIGN(mm->brk); 233 if (oldbrk == newbrk) { 234 mm->brk = brk; 235 goto success; 236 } 237 238 /* Always allow shrinking brk. */ 239 if (brk <= mm->brk) { 240 /* Search one past newbrk */ 241 vma_iter_init(&vmi, mm, newbrk); 242 brkvma = vma_find(&vmi, oldbrk); 243 if (!brkvma || brkvma->vm_start >= oldbrk) 244 goto out; /* mapping intersects with an existing non-brk vma. */ 245 /* 246 * mm->brk must be protected by write mmap_lock. 247 * do_vma_munmap() will drop the lock on success, so update it 248 * before calling do_vma_munmap(). 249 */ 250 mm->brk = brk; 251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 252 goto out; 253 254 goto success_unlocked; 255 } 256 257 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 258 goto out; 259 260 /* 261 * Only check if the next VMA is within the stack_guard_gap of the 262 * expansion area 263 */ 264 vma_iter_init(&vmi, mm, oldbrk); 265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 267 goto out; 268 269 brkvma = vma_prev_limit(&vmi, mm->start_brk); 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 272 goto out; 273 274 mm->brk = brk; 275 if (mm->def_flags & VM_LOCKED) 276 populate = true; 277 278 success: 279 mmap_write_unlock(mm); 280 success_unlocked: 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 mm->brk = origbrk; 288 mmap_write_unlock(mm); 289 return origbrk; 290 } 291 292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 293 static void validate_mm(struct mm_struct *mm) 294 { 295 int bug = 0; 296 int i = 0; 297 struct vm_area_struct *vma; 298 VMA_ITERATOR(vmi, mm, 0); 299 300 mt_validate(&mm->mm_mt); 301 for_each_vma(vmi, vma) { 302 #ifdef CONFIG_DEBUG_VM_RB 303 struct anon_vma *anon_vma = vma->anon_vma; 304 struct anon_vma_chain *avc; 305 #endif 306 unsigned long vmi_start, vmi_end; 307 bool warn = 0; 308 309 vmi_start = vma_iter_addr(&vmi); 310 vmi_end = vma_iter_end(&vmi); 311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 312 warn = 1; 313 314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 315 warn = 1; 316 317 if (warn) { 318 pr_emerg("issue in %s\n", current->comm); 319 dump_stack(); 320 dump_vma(vma); 321 pr_emerg("tree range: %px start %lx end %lx\n", vma, 322 vmi_start, vmi_end - 1); 323 vma_iter_dump_tree(&vmi); 324 } 325 326 #ifdef CONFIG_DEBUG_VM_RB 327 if (anon_vma) { 328 anon_vma_lock_read(anon_vma); 329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 330 anon_vma_interval_tree_verify(avc); 331 anon_vma_unlock_read(anon_vma); 332 } 333 #endif 334 i++; 335 } 336 if (i != mm->map_count) { 337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 338 bug = 1; 339 } 340 VM_BUG_ON_MM(bug, mm); 341 } 342 343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 344 #define validate_mm(mm) do { } while (0) 345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 346 347 /* 348 * vma has some anon_vma assigned, and is already inserted on that 349 * anon_vma's interval trees. 350 * 351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 352 * vma must be removed from the anon_vma's interval trees using 353 * anon_vma_interval_tree_pre_update_vma(). 354 * 355 * After the update, the vma will be reinserted using 356 * anon_vma_interval_tree_post_update_vma(). 357 * 358 * The entire update must be protected by exclusive mmap_lock and by 359 * the root anon_vma's mutex. 360 */ 361 static inline void 362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 363 { 364 struct anon_vma_chain *avc; 365 366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 368 } 369 370 static inline void 371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 372 { 373 struct anon_vma_chain *avc; 374 375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 377 } 378 379 static unsigned long count_vma_pages_range(struct mm_struct *mm, 380 unsigned long addr, unsigned long end) 381 { 382 VMA_ITERATOR(vmi, mm, addr); 383 struct vm_area_struct *vma; 384 unsigned long nr_pages = 0; 385 386 for_each_vma_range(vmi, vma, end) { 387 unsigned long vm_start = max(addr, vma->vm_start); 388 unsigned long vm_end = min(end, vma->vm_end); 389 390 nr_pages += PHYS_PFN(vm_end - vm_start); 391 } 392 393 return nr_pages; 394 } 395 396 static void __vma_link_file(struct vm_area_struct *vma, 397 struct address_space *mapping) 398 { 399 if (vma->vm_flags & VM_SHARED) 400 mapping_allow_writable(mapping); 401 402 flush_dcache_mmap_lock(mapping); 403 vma_interval_tree_insert(vma, &mapping->i_mmap); 404 flush_dcache_mmap_unlock(mapping); 405 } 406 407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 408 { 409 VMA_ITERATOR(vmi, mm, 0); 410 struct address_space *mapping = NULL; 411 412 if (vma_iter_prealloc(&vmi)) 413 return -ENOMEM; 414 415 if (vma->vm_file) { 416 mapping = vma->vm_file->f_mapping; 417 i_mmap_lock_write(mapping); 418 } 419 420 vma_iter_store(&vmi, vma); 421 422 if (mapping) { 423 __vma_link_file(vma, mapping); 424 i_mmap_unlock_write(mapping); 425 } 426 427 mm->map_count++; 428 validate_mm(mm); 429 return 0; 430 } 431 432 /* 433 * init_multi_vma_prep() - Initializer for struct vma_prepare 434 * @vp: The vma_prepare struct 435 * @vma: The vma that will be altered once locked 436 * @next: The next vma if it is to be adjusted 437 * @remove: The first vma to be removed 438 * @remove2: The second vma to be removed 439 */ 440 static inline void init_multi_vma_prep(struct vma_prepare *vp, 441 struct vm_area_struct *vma, struct vm_area_struct *next, 442 struct vm_area_struct *remove, struct vm_area_struct *remove2) 443 { 444 memset(vp, 0, sizeof(struct vma_prepare)); 445 vp->vma = vma; 446 vp->anon_vma = vma->anon_vma; 447 vp->remove = remove; 448 vp->remove2 = remove2; 449 vp->adj_next = next; 450 if (!vp->anon_vma && next) 451 vp->anon_vma = next->anon_vma; 452 453 vp->file = vma->vm_file; 454 if (vp->file) 455 vp->mapping = vma->vm_file->f_mapping; 456 457 } 458 459 /* 460 * init_vma_prep() - Initializer wrapper for vma_prepare struct 461 * @vp: The vma_prepare struct 462 * @vma: The vma that will be altered once locked 463 */ 464 static inline void init_vma_prep(struct vma_prepare *vp, 465 struct vm_area_struct *vma) 466 { 467 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 468 } 469 470 471 /* 472 * vma_prepare() - Helper function for handling locking VMAs prior to altering 473 * @vp: The initialized vma_prepare struct 474 */ 475 static inline void vma_prepare(struct vma_prepare *vp) 476 { 477 vma_start_write(vp->vma); 478 if (vp->adj_next) 479 vma_start_write(vp->adj_next); 480 /* vp->insert is always a newly created VMA, no need for locking */ 481 if (vp->remove) 482 vma_start_write(vp->remove); 483 if (vp->remove2) 484 vma_start_write(vp->remove2); 485 486 if (vp->file) { 487 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 488 489 if (vp->adj_next) 490 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 491 vp->adj_next->vm_end); 492 493 i_mmap_lock_write(vp->mapping); 494 if (vp->insert && vp->insert->vm_file) { 495 /* 496 * Put into interval tree now, so instantiated pages 497 * are visible to arm/parisc __flush_dcache_page 498 * throughout; but we cannot insert into address 499 * space until vma start or end is updated. 500 */ 501 __vma_link_file(vp->insert, 502 vp->insert->vm_file->f_mapping); 503 } 504 } 505 506 if (vp->anon_vma) { 507 anon_vma_lock_write(vp->anon_vma); 508 anon_vma_interval_tree_pre_update_vma(vp->vma); 509 if (vp->adj_next) 510 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 511 } 512 513 if (vp->file) { 514 flush_dcache_mmap_lock(vp->mapping); 515 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 516 if (vp->adj_next) 517 vma_interval_tree_remove(vp->adj_next, 518 &vp->mapping->i_mmap); 519 } 520 521 } 522 523 /* 524 * vma_complete- Helper function for handling the unlocking after altering VMAs, 525 * or for inserting a VMA. 526 * 527 * @vp: The vma_prepare struct 528 * @vmi: The vma iterator 529 * @mm: The mm_struct 530 */ 531 static inline void vma_complete(struct vma_prepare *vp, 532 struct vma_iterator *vmi, struct mm_struct *mm) 533 { 534 if (vp->file) { 535 if (vp->adj_next) 536 vma_interval_tree_insert(vp->adj_next, 537 &vp->mapping->i_mmap); 538 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 539 flush_dcache_mmap_unlock(vp->mapping); 540 } 541 542 if (vp->remove && vp->file) { 543 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 544 if (vp->remove2) 545 __remove_shared_vm_struct(vp->remove2, vp->file, 546 vp->mapping); 547 } else if (vp->insert) { 548 /* 549 * split_vma has split insert from vma, and needs 550 * us to insert it before dropping the locks 551 * (it may either follow vma or precede it). 552 */ 553 vma_iter_store(vmi, vp->insert); 554 mm->map_count++; 555 } 556 557 if (vp->anon_vma) { 558 anon_vma_interval_tree_post_update_vma(vp->vma); 559 if (vp->adj_next) 560 anon_vma_interval_tree_post_update_vma(vp->adj_next); 561 anon_vma_unlock_write(vp->anon_vma); 562 } 563 564 if (vp->file) { 565 i_mmap_unlock_write(vp->mapping); 566 uprobe_mmap(vp->vma); 567 568 if (vp->adj_next) 569 uprobe_mmap(vp->adj_next); 570 } 571 572 if (vp->remove) { 573 again: 574 vma_mark_detached(vp->remove, true); 575 if (vp->file) { 576 uprobe_munmap(vp->remove, vp->remove->vm_start, 577 vp->remove->vm_end); 578 fput(vp->file); 579 } 580 if (vp->remove->anon_vma) 581 anon_vma_merge(vp->vma, vp->remove); 582 mm->map_count--; 583 mpol_put(vma_policy(vp->remove)); 584 if (!vp->remove2) 585 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 586 vm_area_free(vp->remove); 587 588 /* 589 * In mprotect's case 6 (see comments on vma_merge), 590 * we are removing both mid and next vmas 591 */ 592 if (vp->remove2) { 593 vp->remove = vp->remove2; 594 vp->remove2 = NULL; 595 goto again; 596 } 597 } 598 if (vp->insert && vp->file) 599 uprobe_mmap(vp->insert); 600 } 601 602 /* 603 * dup_anon_vma() - Helper function to duplicate anon_vma 604 * @dst: The destination VMA 605 * @src: The source VMA 606 * 607 * Returns: 0 on success. 608 */ 609 static inline int dup_anon_vma(struct vm_area_struct *dst, 610 struct vm_area_struct *src) 611 { 612 /* 613 * Easily overlooked: when mprotect shifts the boundary, make sure the 614 * expanding vma has anon_vma set if the shrinking vma had, to cover any 615 * anon pages imported. 616 */ 617 if (src->anon_vma && !dst->anon_vma) { 618 dst->anon_vma = src->anon_vma; 619 return anon_vma_clone(dst, src); 620 } 621 622 return 0; 623 } 624 625 /* 626 * vma_expand - Expand an existing VMA 627 * 628 * @vmi: The vma iterator 629 * @vma: The vma to expand 630 * @start: The start of the vma 631 * @end: The exclusive end of the vma 632 * @pgoff: The page offset of vma 633 * @next: The current of next vma. 634 * 635 * Expand @vma to @start and @end. Can expand off the start and end. Will 636 * expand over @next if it's different from @vma and @end == @next->vm_end. 637 * Checking if the @vma can expand and merge with @next needs to be handled by 638 * the caller. 639 * 640 * Returns: 0 on success 641 */ 642 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 643 unsigned long start, unsigned long end, pgoff_t pgoff, 644 struct vm_area_struct *next) 645 { 646 bool remove_next = false; 647 struct vma_prepare vp; 648 649 if (next && (vma != next) && (end == next->vm_end)) { 650 int ret; 651 652 remove_next = true; 653 ret = dup_anon_vma(vma, next); 654 if (ret) 655 return ret; 656 } 657 658 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 659 /* Not merging but overwriting any part of next is not handled. */ 660 VM_WARN_ON(next && !vp.remove && 661 next != vma && end > next->vm_start); 662 /* Only handles expanding */ 663 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 664 665 if (vma_iter_prealloc(vmi)) 666 goto nomem; 667 668 vma_prepare(&vp); 669 vma_adjust_trans_huge(vma, start, end, 0); 670 /* VMA iterator points to previous, so set to start if necessary */ 671 if (vma_iter_addr(vmi) != start) 672 vma_iter_set(vmi, start); 673 674 vma->vm_start = start; 675 vma->vm_end = end; 676 vma->vm_pgoff = pgoff; 677 /* Note: mas must be pointing to the expanding VMA */ 678 vma_iter_store(vmi, vma); 679 680 vma_complete(&vp, vmi, vma->vm_mm); 681 validate_mm(vma->vm_mm); 682 return 0; 683 684 nomem: 685 return -ENOMEM; 686 } 687 688 /* 689 * vma_shrink() - Reduce an existing VMAs memory area 690 * @vmi: The vma iterator 691 * @vma: The VMA to modify 692 * @start: The new start 693 * @end: The new end 694 * 695 * Returns: 0 on success, -ENOMEM otherwise 696 */ 697 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 698 unsigned long start, unsigned long end, pgoff_t pgoff) 699 { 700 struct vma_prepare vp; 701 702 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 703 704 if (vma_iter_prealloc(vmi)) 705 return -ENOMEM; 706 707 init_vma_prep(&vp, vma); 708 vma_prepare(&vp); 709 vma_adjust_trans_huge(vma, start, end, 0); 710 711 if (vma->vm_start < start) 712 vma_iter_clear(vmi, vma->vm_start, start); 713 714 if (vma->vm_end > end) 715 vma_iter_clear(vmi, end, vma->vm_end); 716 717 vma->vm_start = start; 718 vma->vm_end = end; 719 vma->vm_pgoff = pgoff; 720 vma_complete(&vp, vmi, vma->vm_mm); 721 validate_mm(vma->vm_mm); 722 return 0; 723 } 724 725 /* 726 * If the vma has a ->close operation then the driver probably needs to release 727 * per-vma resources, so we don't attempt to merge those if the caller indicates 728 * the current vma may be removed as part of the merge. 729 */ 730 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 731 struct file *file, unsigned long vm_flags, 732 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 733 struct anon_vma_name *anon_name, bool may_remove_vma) 734 { 735 /* 736 * VM_SOFTDIRTY should not prevent from VMA merging, if we 737 * match the flags but dirty bit -- the caller should mark 738 * merged VMA as dirty. If dirty bit won't be excluded from 739 * comparison, we increase pressure on the memory system forcing 740 * the kernel to generate new VMAs when old one could be 741 * extended instead. 742 */ 743 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 744 return false; 745 if (vma->vm_file != file) 746 return false; 747 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 748 return false; 749 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 750 return false; 751 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 752 return false; 753 return true; 754 } 755 756 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 757 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 758 { 759 /* 760 * The list_is_singular() test is to avoid merging VMA cloned from 761 * parents. This can improve scalability caused by anon_vma lock. 762 */ 763 if ((!anon_vma1 || !anon_vma2) && (!vma || 764 list_is_singular(&vma->anon_vma_chain))) 765 return true; 766 return anon_vma1 == anon_vma2; 767 } 768 769 /* 770 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 771 * in front of (at a lower virtual address and file offset than) the vma. 772 * 773 * We cannot merge two vmas if they have differently assigned (non-NULL) 774 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 775 * 776 * We don't check here for the merged mmap wrapping around the end of pagecache 777 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 778 * wrap, nor mmaps which cover the final page at index -1UL. 779 * 780 * We assume the vma may be removed as part of the merge. 781 */ 782 static bool 783 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 784 struct anon_vma *anon_vma, struct file *file, 785 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 786 struct anon_vma_name *anon_name) 787 { 788 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 789 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 790 if (vma->vm_pgoff == vm_pgoff) 791 return true; 792 } 793 return false; 794 } 795 796 /* 797 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 798 * beyond (at a higher virtual address and file offset than) the vma. 799 * 800 * We cannot merge two vmas if they have differently assigned (non-NULL) 801 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 802 * 803 * We assume that vma is not removed as part of the merge. 804 */ 805 static bool 806 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 807 struct anon_vma *anon_vma, struct file *file, 808 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 809 struct anon_vma_name *anon_name) 810 { 811 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 812 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 813 pgoff_t vm_pglen; 814 vm_pglen = vma_pages(vma); 815 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 816 return true; 817 } 818 return false; 819 } 820 821 /* 822 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 823 * figure out whether that can be merged with its predecessor or its 824 * successor. Or both (it neatly fills a hole). 825 * 826 * In most cases - when called for mmap, brk or mremap - [addr,end) is 827 * certain not to be mapped by the time vma_merge is called; but when 828 * called for mprotect, it is certain to be already mapped (either at 829 * an offset within prev, or at the start of next), and the flags of 830 * this area are about to be changed to vm_flags - and the no-change 831 * case has already been eliminated. 832 * 833 * The following mprotect cases have to be considered, where **** is 834 * the area passed down from mprotect_fixup, never extending beyond one 835 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 836 * at the same address as **** and is of the same or larger span, and 837 * NNNN the next vma after ****: 838 * 839 * **** **** **** 840 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 841 * cannot merge might become might become 842 * PPNNNNNNNNNN PPPPPPPPPPCC 843 * mmap, brk or case 4 below case 5 below 844 * mremap move: 845 * **** **** 846 * PPPP NNNN PPPPCCCCNNNN 847 * might become might become 848 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 849 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 850 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 851 * 852 * It is important for case 8 that the vma CCCC overlapping the 853 * region **** is never going to extended over NNNN. Instead NNNN must 854 * be extended in region **** and CCCC must be removed. This way in 855 * all cases where vma_merge succeeds, the moment vma_merge drops the 856 * rmap_locks, the properties of the merged vma will be already 857 * correct for the whole merged range. Some of those properties like 858 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 859 * be correct for the whole merged range immediately after the 860 * rmap_locks are released. Otherwise if NNNN would be removed and 861 * CCCC would be extended over the NNNN range, remove_migration_ptes 862 * or other rmap walkers (if working on addresses beyond the "end" 863 * parameter) may establish ptes with the wrong permissions of CCCC 864 * instead of the right permissions of NNNN. 865 * 866 * In the code below: 867 * PPPP is represented by *prev 868 * CCCC is represented by *curr or not represented at all (NULL) 869 * NNNN is represented by *next or not represented at all (NULL) 870 * **** is not represented - it will be merged and the vma containing the 871 * area is returned, or the function will return NULL 872 */ 873 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 874 struct vm_area_struct *prev, unsigned long addr, 875 unsigned long end, unsigned long vm_flags, 876 struct anon_vma *anon_vma, struct file *file, 877 pgoff_t pgoff, struct mempolicy *policy, 878 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 879 struct anon_vma_name *anon_name) 880 { 881 struct vm_area_struct *curr, *next, *res; 882 struct vm_area_struct *vma, *adjust, *remove, *remove2; 883 struct vma_prepare vp; 884 pgoff_t vma_pgoff; 885 int err = 0; 886 bool merge_prev = false; 887 bool merge_next = false; 888 bool vma_expanded = false; 889 unsigned long vma_start = addr; 890 unsigned long vma_end = end; 891 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 892 long adj_start = 0; 893 894 validate_mm(mm); 895 /* 896 * We later require that vma->vm_flags == vm_flags, 897 * so this tests vma->vm_flags & VM_SPECIAL, too. 898 */ 899 if (vm_flags & VM_SPECIAL) 900 return NULL; 901 902 /* Does the input range span an existing VMA? (cases 5 - 8) */ 903 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 904 905 if (!curr || /* cases 1 - 4 */ 906 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 907 next = vma_lookup(mm, end); 908 else 909 next = NULL; /* case 5 */ 910 911 if (prev) { 912 vma_start = prev->vm_start; 913 vma_pgoff = prev->vm_pgoff; 914 915 /* Can we merge the predecessor? */ 916 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 917 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 918 pgoff, vm_userfaultfd_ctx, anon_name)) { 919 merge_prev = true; 920 vma_prev(vmi); 921 } 922 } 923 924 /* Can we merge the successor? */ 925 if (next && mpol_equal(policy, vma_policy(next)) && 926 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 927 vm_userfaultfd_ctx, anon_name)) { 928 merge_next = true; 929 } 930 931 /* Verify some invariant that must be enforced by the caller. */ 932 VM_WARN_ON(prev && addr <= prev->vm_start); 933 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 934 VM_WARN_ON(addr >= end); 935 936 if (!merge_prev && !merge_next) 937 return NULL; /* Not mergeable. */ 938 939 res = vma = prev; 940 remove = remove2 = adjust = NULL; 941 942 /* Can we merge both the predecessor and the successor? */ 943 if (merge_prev && merge_next && 944 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 945 remove = next; /* case 1 */ 946 vma_end = next->vm_end; 947 err = dup_anon_vma(prev, next); 948 if (curr) { /* case 6 */ 949 remove = curr; 950 remove2 = next; 951 if (!next->anon_vma) 952 err = dup_anon_vma(prev, curr); 953 } 954 } else if (merge_prev) { /* case 2 */ 955 if (curr) { 956 err = dup_anon_vma(prev, curr); 957 if (end == curr->vm_end) { /* case 7 */ 958 remove = curr; 959 } else { /* case 5 */ 960 adjust = curr; 961 adj_start = (end - curr->vm_start); 962 } 963 } 964 } else { /* merge_next */ 965 res = next; 966 if (prev && addr < prev->vm_end) { /* case 4 */ 967 vma_end = addr; 968 adjust = next; 969 adj_start = -(prev->vm_end - addr); 970 err = dup_anon_vma(next, prev); 971 } else { 972 /* 973 * Note that cases 3 and 8 are the ONLY ones where prev 974 * is permitted to be (but is not necessarily) NULL. 975 */ 976 vma = next; /* case 3 */ 977 vma_start = addr; 978 vma_end = next->vm_end; 979 vma_pgoff = next->vm_pgoff - pglen; 980 if (curr) { /* case 8 */ 981 vma_pgoff = curr->vm_pgoff; 982 remove = curr; 983 err = dup_anon_vma(next, curr); 984 } 985 } 986 } 987 988 /* Error in anon_vma clone. */ 989 if (err) 990 return NULL; 991 992 if (vma_iter_prealloc(vmi)) 993 return NULL; 994 995 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 996 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 997 vp.anon_vma != adjust->anon_vma); 998 999 vma_prepare(&vp); 1000 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1001 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1002 vma_expanded = true; 1003 1004 vma->vm_start = vma_start; 1005 vma->vm_end = vma_end; 1006 vma->vm_pgoff = vma_pgoff; 1007 1008 if (vma_expanded) 1009 vma_iter_store(vmi, vma); 1010 1011 if (adj_start) { 1012 adjust->vm_start += adj_start; 1013 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1014 if (adj_start < 0) { 1015 WARN_ON(vma_expanded); 1016 vma_iter_store(vmi, next); 1017 } 1018 } 1019 1020 vma_complete(&vp, vmi, mm); 1021 vma_iter_free(vmi); 1022 validate_mm(mm); 1023 khugepaged_enter_vma(res, vm_flags); 1024 1025 return res; 1026 } 1027 1028 /* 1029 * Rough compatibility check to quickly see if it's even worth looking 1030 * at sharing an anon_vma. 1031 * 1032 * They need to have the same vm_file, and the flags can only differ 1033 * in things that mprotect may change. 1034 * 1035 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1036 * we can merge the two vma's. For example, we refuse to merge a vma if 1037 * there is a vm_ops->close() function, because that indicates that the 1038 * driver is doing some kind of reference counting. But that doesn't 1039 * really matter for the anon_vma sharing case. 1040 */ 1041 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1042 { 1043 return a->vm_end == b->vm_start && 1044 mpol_equal(vma_policy(a), vma_policy(b)) && 1045 a->vm_file == b->vm_file && 1046 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1047 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1048 } 1049 1050 /* 1051 * Do some basic sanity checking to see if we can re-use the anon_vma 1052 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1053 * the same as 'old', the other will be the new one that is trying 1054 * to share the anon_vma. 1055 * 1056 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1057 * the anon_vma of 'old' is concurrently in the process of being set up 1058 * by another page fault trying to merge _that_. But that's ok: if it 1059 * is being set up, that automatically means that it will be a singleton 1060 * acceptable for merging, so we can do all of this optimistically. But 1061 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1062 * 1063 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1064 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1065 * is to return an anon_vma that is "complex" due to having gone through 1066 * a fork). 1067 * 1068 * We also make sure that the two vma's are compatible (adjacent, 1069 * and with the same memory policies). That's all stable, even with just 1070 * a read lock on the mmap_lock. 1071 */ 1072 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1073 { 1074 if (anon_vma_compatible(a, b)) { 1075 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1076 1077 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1078 return anon_vma; 1079 } 1080 return NULL; 1081 } 1082 1083 /* 1084 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1085 * neighbouring vmas for a suitable anon_vma, before it goes off 1086 * to allocate a new anon_vma. It checks because a repetitive 1087 * sequence of mprotects and faults may otherwise lead to distinct 1088 * anon_vmas being allocated, preventing vma merge in subsequent 1089 * mprotect. 1090 */ 1091 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1092 { 1093 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1094 struct anon_vma *anon_vma = NULL; 1095 struct vm_area_struct *prev, *next; 1096 1097 /* Try next first. */ 1098 next = mas_walk(&mas); 1099 if (next) { 1100 anon_vma = reusable_anon_vma(next, vma, next); 1101 if (anon_vma) 1102 return anon_vma; 1103 } 1104 1105 prev = mas_prev(&mas, 0); 1106 VM_BUG_ON_VMA(prev != vma, vma); 1107 prev = mas_prev(&mas, 0); 1108 /* Try prev next. */ 1109 if (prev) 1110 anon_vma = reusable_anon_vma(prev, prev, vma); 1111 1112 /* 1113 * We might reach here with anon_vma == NULL if we can't find 1114 * any reusable anon_vma. 1115 * There's no absolute need to look only at touching neighbours: 1116 * we could search further afield for "compatible" anon_vmas. 1117 * But it would probably just be a waste of time searching, 1118 * or lead to too many vmas hanging off the same anon_vma. 1119 * We're trying to allow mprotect remerging later on, 1120 * not trying to minimize memory used for anon_vmas. 1121 */ 1122 return anon_vma; 1123 } 1124 1125 /* 1126 * If a hint addr is less than mmap_min_addr change hint to be as 1127 * low as possible but still greater than mmap_min_addr 1128 */ 1129 static inline unsigned long round_hint_to_min(unsigned long hint) 1130 { 1131 hint &= PAGE_MASK; 1132 if (((void *)hint != NULL) && 1133 (hint < mmap_min_addr)) 1134 return PAGE_ALIGN(mmap_min_addr); 1135 return hint; 1136 } 1137 1138 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1139 unsigned long bytes) 1140 { 1141 unsigned long locked_pages, limit_pages; 1142 1143 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1144 return true; 1145 1146 locked_pages = bytes >> PAGE_SHIFT; 1147 locked_pages += mm->locked_vm; 1148 1149 limit_pages = rlimit(RLIMIT_MEMLOCK); 1150 limit_pages >>= PAGE_SHIFT; 1151 1152 return locked_pages <= limit_pages; 1153 } 1154 1155 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1156 { 1157 if (S_ISREG(inode->i_mode)) 1158 return MAX_LFS_FILESIZE; 1159 1160 if (S_ISBLK(inode->i_mode)) 1161 return MAX_LFS_FILESIZE; 1162 1163 if (S_ISSOCK(inode->i_mode)) 1164 return MAX_LFS_FILESIZE; 1165 1166 /* Special "we do even unsigned file positions" case */ 1167 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1168 return 0; 1169 1170 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1171 return ULONG_MAX; 1172 } 1173 1174 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1175 unsigned long pgoff, unsigned long len) 1176 { 1177 u64 maxsize = file_mmap_size_max(file, inode); 1178 1179 if (maxsize && len > maxsize) 1180 return false; 1181 maxsize -= len; 1182 if (pgoff > maxsize >> PAGE_SHIFT) 1183 return false; 1184 return true; 1185 } 1186 1187 /* 1188 * The caller must write-lock current->mm->mmap_lock. 1189 */ 1190 unsigned long do_mmap(struct file *file, unsigned long addr, 1191 unsigned long len, unsigned long prot, 1192 unsigned long flags, unsigned long pgoff, 1193 unsigned long *populate, struct list_head *uf) 1194 { 1195 struct mm_struct *mm = current->mm; 1196 vm_flags_t vm_flags; 1197 int pkey = 0; 1198 1199 validate_mm(mm); 1200 *populate = 0; 1201 1202 if (!len) 1203 return -EINVAL; 1204 1205 /* 1206 * Does the application expect PROT_READ to imply PROT_EXEC? 1207 * 1208 * (the exception is when the underlying filesystem is noexec 1209 * mounted, in which case we dont add PROT_EXEC.) 1210 */ 1211 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1212 if (!(file && path_noexec(&file->f_path))) 1213 prot |= PROT_EXEC; 1214 1215 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1216 if (flags & MAP_FIXED_NOREPLACE) 1217 flags |= MAP_FIXED; 1218 1219 if (!(flags & MAP_FIXED)) 1220 addr = round_hint_to_min(addr); 1221 1222 /* Careful about overflows.. */ 1223 len = PAGE_ALIGN(len); 1224 if (!len) 1225 return -ENOMEM; 1226 1227 /* offset overflow? */ 1228 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1229 return -EOVERFLOW; 1230 1231 /* Too many mappings? */ 1232 if (mm->map_count > sysctl_max_map_count) 1233 return -ENOMEM; 1234 1235 /* Obtain the address to map to. we verify (or select) it and ensure 1236 * that it represents a valid section of the address space. 1237 */ 1238 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1239 if (IS_ERR_VALUE(addr)) 1240 return addr; 1241 1242 if (flags & MAP_FIXED_NOREPLACE) { 1243 if (find_vma_intersection(mm, addr, addr + len)) 1244 return -EEXIST; 1245 } 1246 1247 if (prot == PROT_EXEC) { 1248 pkey = execute_only_pkey(mm); 1249 if (pkey < 0) 1250 pkey = 0; 1251 } 1252 1253 /* Do simple checking here so the lower-level routines won't have 1254 * to. we assume access permissions have been handled by the open 1255 * of the memory object, so we don't do any here. 1256 */ 1257 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1258 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1259 1260 if (flags & MAP_LOCKED) 1261 if (!can_do_mlock()) 1262 return -EPERM; 1263 1264 if (!mlock_future_ok(mm, vm_flags, len)) 1265 return -EAGAIN; 1266 1267 if (file) { 1268 struct inode *inode = file_inode(file); 1269 unsigned long flags_mask; 1270 1271 if (!file_mmap_ok(file, inode, pgoff, len)) 1272 return -EOVERFLOW; 1273 1274 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1275 1276 switch (flags & MAP_TYPE) { 1277 case MAP_SHARED: 1278 /* 1279 * Force use of MAP_SHARED_VALIDATE with non-legacy 1280 * flags. E.g. MAP_SYNC is dangerous to use with 1281 * MAP_SHARED as you don't know which consistency model 1282 * you will get. We silently ignore unsupported flags 1283 * with MAP_SHARED to preserve backward compatibility. 1284 */ 1285 flags &= LEGACY_MAP_MASK; 1286 fallthrough; 1287 case MAP_SHARED_VALIDATE: 1288 if (flags & ~flags_mask) 1289 return -EOPNOTSUPP; 1290 if (prot & PROT_WRITE) { 1291 if (!(file->f_mode & FMODE_WRITE)) 1292 return -EACCES; 1293 if (IS_SWAPFILE(file->f_mapping->host)) 1294 return -ETXTBSY; 1295 } 1296 1297 /* 1298 * Make sure we don't allow writing to an append-only 1299 * file.. 1300 */ 1301 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1302 return -EACCES; 1303 1304 vm_flags |= VM_SHARED | VM_MAYSHARE; 1305 if (!(file->f_mode & FMODE_WRITE)) 1306 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1307 fallthrough; 1308 case MAP_PRIVATE: 1309 if (!(file->f_mode & FMODE_READ)) 1310 return -EACCES; 1311 if (path_noexec(&file->f_path)) { 1312 if (vm_flags & VM_EXEC) 1313 return -EPERM; 1314 vm_flags &= ~VM_MAYEXEC; 1315 } 1316 1317 if (!file->f_op->mmap) 1318 return -ENODEV; 1319 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1320 return -EINVAL; 1321 break; 1322 1323 default: 1324 return -EINVAL; 1325 } 1326 } else { 1327 switch (flags & MAP_TYPE) { 1328 case MAP_SHARED: 1329 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1330 return -EINVAL; 1331 /* 1332 * Ignore pgoff. 1333 */ 1334 pgoff = 0; 1335 vm_flags |= VM_SHARED | VM_MAYSHARE; 1336 break; 1337 case MAP_PRIVATE: 1338 /* 1339 * Set pgoff according to addr for anon_vma. 1340 */ 1341 pgoff = addr >> PAGE_SHIFT; 1342 break; 1343 default: 1344 return -EINVAL; 1345 } 1346 } 1347 1348 /* 1349 * Set 'VM_NORESERVE' if we should not account for the 1350 * memory use of this mapping. 1351 */ 1352 if (flags & MAP_NORESERVE) { 1353 /* We honor MAP_NORESERVE if allowed to overcommit */ 1354 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1355 vm_flags |= VM_NORESERVE; 1356 1357 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1358 if (file && is_file_hugepages(file)) 1359 vm_flags |= VM_NORESERVE; 1360 } 1361 1362 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1363 if (!IS_ERR_VALUE(addr) && 1364 ((vm_flags & VM_LOCKED) || 1365 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1366 *populate = len; 1367 return addr; 1368 } 1369 1370 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1371 unsigned long prot, unsigned long flags, 1372 unsigned long fd, unsigned long pgoff) 1373 { 1374 struct file *file = NULL; 1375 unsigned long retval; 1376 1377 if (!(flags & MAP_ANONYMOUS)) { 1378 audit_mmap_fd(fd, flags); 1379 file = fget(fd); 1380 if (!file) 1381 return -EBADF; 1382 if (is_file_hugepages(file)) { 1383 len = ALIGN(len, huge_page_size(hstate_file(file))); 1384 } else if (unlikely(flags & MAP_HUGETLB)) { 1385 retval = -EINVAL; 1386 goto out_fput; 1387 } 1388 } else if (flags & MAP_HUGETLB) { 1389 struct hstate *hs; 1390 1391 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1392 if (!hs) 1393 return -EINVAL; 1394 1395 len = ALIGN(len, huge_page_size(hs)); 1396 /* 1397 * VM_NORESERVE is used because the reservations will be 1398 * taken when vm_ops->mmap() is called 1399 */ 1400 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1401 VM_NORESERVE, 1402 HUGETLB_ANONHUGE_INODE, 1403 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1404 if (IS_ERR(file)) 1405 return PTR_ERR(file); 1406 } 1407 1408 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1409 out_fput: 1410 if (file) 1411 fput(file); 1412 return retval; 1413 } 1414 1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1416 unsigned long, prot, unsigned long, flags, 1417 unsigned long, fd, unsigned long, pgoff) 1418 { 1419 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1420 } 1421 1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1423 struct mmap_arg_struct { 1424 unsigned long addr; 1425 unsigned long len; 1426 unsigned long prot; 1427 unsigned long flags; 1428 unsigned long fd; 1429 unsigned long offset; 1430 }; 1431 1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1433 { 1434 struct mmap_arg_struct a; 1435 1436 if (copy_from_user(&a, arg, sizeof(a))) 1437 return -EFAULT; 1438 if (offset_in_page(a.offset)) 1439 return -EINVAL; 1440 1441 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1442 a.offset >> PAGE_SHIFT); 1443 } 1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1445 1446 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1447 { 1448 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1449 } 1450 1451 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1452 { 1453 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1454 (VM_WRITE | VM_SHARED); 1455 } 1456 1457 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1458 { 1459 /* No managed pages to writeback. */ 1460 if (vma->vm_flags & VM_PFNMAP) 1461 return false; 1462 1463 return vma->vm_file && vma->vm_file->f_mapping && 1464 mapping_can_writeback(vma->vm_file->f_mapping); 1465 } 1466 1467 /* 1468 * Does this VMA require the underlying folios to have their dirty state 1469 * tracked? 1470 */ 1471 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1472 { 1473 /* Only shared, writable VMAs require dirty tracking. */ 1474 if (!vma_is_shared_writable(vma)) 1475 return false; 1476 1477 /* Does the filesystem need to be notified? */ 1478 if (vm_ops_needs_writenotify(vma->vm_ops)) 1479 return true; 1480 1481 /* 1482 * Even if the filesystem doesn't indicate a need for writenotify, if it 1483 * can writeback, dirty tracking is still required. 1484 */ 1485 return vma_fs_can_writeback(vma); 1486 } 1487 1488 /* 1489 * Some shared mappings will want the pages marked read-only 1490 * to track write events. If so, we'll downgrade vm_page_prot 1491 * to the private version (using protection_map[] without the 1492 * VM_SHARED bit). 1493 */ 1494 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1495 { 1496 /* If it was private or non-writable, the write bit is already clear */ 1497 if (!vma_is_shared_writable(vma)) 1498 return 0; 1499 1500 /* The backer wishes to know when pages are first written to? */ 1501 if (vm_ops_needs_writenotify(vma->vm_ops)) 1502 return 1; 1503 1504 /* The open routine did something to the protections that pgprot_modify 1505 * won't preserve? */ 1506 if (pgprot_val(vm_page_prot) != 1507 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1508 return 0; 1509 1510 /* 1511 * Do we need to track softdirty? hugetlb does not support softdirty 1512 * tracking yet. 1513 */ 1514 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1515 return 1; 1516 1517 /* Do we need write faults for uffd-wp tracking? */ 1518 if (userfaultfd_wp(vma)) 1519 return 1; 1520 1521 /* Can the mapping track the dirty pages? */ 1522 return vma_fs_can_writeback(vma); 1523 } 1524 1525 /* 1526 * We account for memory if it's a private writeable mapping, 1527 * not hugepages and VM_NORESERVE wasn't set. 1528 */ 1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1530 { 1531 /* 1532 * hugetlb has its own accounting separate from the core VM 1533 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1534 */ 1535 if (file && is_file_hugepages(file)) 1536 return 0; 1537 1538 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1539 } 1540 1541 /** 1542 * unmapped_area() - Find an area between the low_limit and the high_limit with 1543 * the correct alignment and offset, all from @info. Note: current->mm is used 1544 * for the search. 1545 * 1546 * @info: The unmapped area information including the range [low_limit - 1547 * high_limit), the alignment offset and mask. 1548 * 1549 * Return: A memory address or -ENOMEM. 1550 */ 1551 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1552 { 1553 unsigned long length, gap; 1554 unsigned long low_limit, high_limit; 1555 struct vm_area_struct *tmp; 1556 1557 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1558 1559 /* Adjust search length to account for worst case alignment overhead */ 1560 length = info->length + info->align_mask; 1561 if (length < info->length) 1562 return -ENOMEM; 1563 1564 low_limit = info->low_limit; 1565 if (low_limit < mmap_min_addr) 1566 low_limit = mmap_min_addr; 1567 high_limit = info->high_limit; 1568 retry: 1569 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1570 return -ENOMEM; 1571 1572 gap = mas.index; 1573 gap += (info->align_offset - gap) & info->align_mask; 1574 tmp = mas_next(&mas, ULONG_MAX); 1575 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1576 if (vm_start_gap(tmp) < gap + length - 1) { 1577 low_limit = tmp->vm_end; 1578 mas_reset(&mas); 1579 goto retry; 1580 } 1581 } else { 1582 tmp = mas_prev(&mas, 0); 1583 if (tmp && vm_end_gap(tmp) > gap) { 1584 low_limit = vm_end_gap(tmp); 1585 mas_reset(&mas); 1586 goto retry; 1587 } 1588 } 1589 1590 return gap; 1591 } 1592 1593 /** 1594 * unmapped_area_topdown() - Find an area between the low_limit and the 1595 * high_limit with the correct alignment and offset at the highest available 1596 * address, all from @info. Note: current->mm is used for the search. 1597 * 1598 * @info: The unmapped area information including the range [low_limit - 1599 * high_limit), the alignment offset and mask. 1600 * 1601 * Return: A memory address or -ENOMEM. 1602 */ 1603 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1604 { 1605 unsigned long length, gap, gap_end; 1606 unsigned long low_limit, high_limit; 1607 struct vm_area_struct *tmp; 1608 1609 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1610 /* Adjust search length to account for worst case alignment overhead */ 1611 length = info->length + info->align_mask; 1612 if (length < info->length) 1613 return -ENOMEM; 1614 1615 low_limit = info->low_limit; 1616 if (low_limit < mmap_min_addr) 1617 low_limit = mmap_min_addr; 1618 high_limit = info->high_limit; 1619 retry: 1620 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1621 return -ENOMEM; 1622 1623 gap = mas.last + 1 - info->length; 1624 gap -= (gap - info->align_offset) & info->align_mask; 1625 gap_end = mas.last; 1626 tmp = mas_next(&mas, ULONG_MAX); 1627 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */ 1628 if (vm_start_gap(tmp) <= gap_end) { 1629 high_limit = vm_start_gap(tmp); 1630 mas_reset(&mas); 1631 goto retry; 1632 } 1633 } else { 1634 tmp = mas_prev(&mas, 0); 1635 if (tmp && vm_end_gap(tmp) > gap) { 1636 high_limit = tmp->vm_start; 1637 mas_reset(&mas); 1638 goto retry; 1639 } 1640 } 1641 1642 return gap; 1643 } 1644 1645 /* 1646 * Search for an unmapped address range. 1647 * 1648 * We are looking for a range that: 1649 * - does not intersect with any VMA; 1650 * - is contained within the [low_limit, high_limit) interval; 1651 * - is at least the desired size. 1652 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1653 */ 1654 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1655 { 1656 unsigned long addr; 1657 1658 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1659 addr = unmapped_area_topdown(info); 1660 else 1661 addr = unmapped_area(info); 1662 1663 trace_vm_unmapped_area(addr, info); 1664 return addr; 1665 } 1666 1667 /* Get an address range which is currently unmapped. 1668 * For shmat() with addr=0. 1669 * 1670 * Ugly calling convention alert: 1671 * Return value with the low bits set means error value, 1672 * ie 1673 * if (ret & ~PAGE_MASK) 1674 * error = ret; 1675 * 1676 * This function "knows" that -ENOMEM has the bits set. 1677 */ 1678 unsigned long 1679 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1680 unsigned long len, unsigned long pgoff, 1681 unsigned long flags) 1682 { 1683 struct mm_struct *mm = current->mm; 1684 struct vm_area_struct *vma, *prev; 1685 struct vm_unmapped_area_info info; 1686 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1687 1688 if (len > mmap_end - mmap_min_addr) 1689 return -ENOMEM; 1690 1691 if (flags & MAP_FIXED) 1692 return addr; 1693 1694 if (addr) { 1695 addr = PAGE_ALIGN(addr); 1696 vma = find_vma_prev(mm, addr, &prev); 1697 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1698 (!vma || addr + len <= vm_start_gap(vma)) && 1699 (!prev || addr >= vm_end_gap(prev))) 1700 return addr; 1701 } 1702 1703 info.flags = 0; 1704 info.length = len; 1705 info.low_limit = mm->mmap_base; 1706 info.high_limit = mmap_end; 1707 info.align_mask = 0; 1708 info.align_offset = 0; 1709 return vm_unmapped_area(&info); 1710 } 1711 1712 #ifndef HAVE_ARCH_UNMAPPED_AREA 1713 unsigned long 1714 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1715 unsigned long len, unsigned long pgoff, 1716 unsigned long flags) 1717 { 1718 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1719 } 1720 #endif 1721 1722 /* 1723 * This mmap-allocator allocates new areas top-down from below the 1724 * stack's low limit (the base): 1725 */ 1726 unsigned long 1727 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1728 unsigned long len, unsigned long pgoff, 1729 unsigned long flags) 1730 { 1731 struct vm_area_struct *vma, *prev; 1732 struct mm_struct *mm = current->mm; 1733 struct vm_unmapped_area_info info; 1734 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1735 1736 /* requested length too big for entire address space */ 1737 if (len > mmap_end - mmap_min_addr) 1738 return -ENOMEM; 1739 1740 if (flags & MAP_FIXED) 1741 return addr; 1742 1743 /* requesting a specific address */ 1744 if (addr) { 1745 addr = PAGE_ALIGN(addr); 1746 vma = find_vma_prev(mm, addr, &prev); 1747 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1748 (!vma || addr + len <= vm_start_gap(vma)) && 1749 (!prev || addr >= vm_end_gap(prev))) 1750 return addr; 1751 } 1752 1753 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1754 info.length = len; 1755 info.low_limit = PAGE_SIZE; 1756 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1757 info.align_mask = 0; 1758 info.align_offset = 0; 1759 addr = vm_unmapped_area(&info); 1760 1761 /* 1762 * A failed mmap() very likely causes application failure, 1763 * so fall back to the bottom-up function here. This scenario 1764 * can happen with large stack limits and large mmap() 1765 * allocations. 1766 */ 1767 if (offset_in_page(addr)) { 1768 VM_BUG_ON(addr != -ENOMEM); 1769 info.flags = 0; 1770 info.low_limit = TASK_UNMAPPED_BASE; 1771 info.high_limit = mmap_end; 1772 addr = vm_unmapped_area(&info); 1773 } 1774 1775 return addr; 1776 } 1777 1778 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1779 unsigned long 1780 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1781 unsigned long len, unsigned long pgoff, 1782 unsigned long flags) 1783 { 1784 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1785 } 1786 #endif 1787 1788 unsigned long 1789 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1790 unsigned long pgoff, unsigned long flags) 1791 { 1792 unsigned long (*get_area)(struct file *, unsigned long, 1793 unsigned long, unsigned long, unsigned long); 1794 1795 unsigned long error = arch_mmap_check(addr, len, flags); 1796 if (error) 1797 return error; 1798 1799 /* Careful about overflows.. */ 1800 if (len > TASK_SIZE) 1801 return -ENOMEM; 1802 1803 get_area = current->mm->get_unmapped_area; 1804 if (file) { 1805 if (file->f_op->get_unmapped_area) 1806 get_area = file->f_op->get_unmapped_area; 1807 } else if (flags & MAP_SHARED) { 1808 /* 1809 * mmap_region() will call shmem_zero_setup() to create a file, 1810 * so use shmem's get_unmapped_area in case it can be huge. 1811 * do_mmap() will clear pgoff, so match alignment. 1812 */ 1813 pgoff = 0; 1814 get_area = shmem_get_unmapped_area; 1815 } 1816 1817 addr = get_area(file, addr, len, pgoff, flags); 1818 if (IS_ERR_VALUE(addr)) 1819 return addr; 1820 1821 if (addr > TASK_SIZE - len) 1822 return -ENOMEM; 1823 if (offset_in_page(addr)) 1824 return -EINVAL; 1825 1826 error = security_mmap_addr(addr); 1827 return error ? error : addr; 1828 } 1829 1830 EXPORT_SYMBOL(get_unmapped_area); 1831 1832 /** 1833 * find_vma_intersection() - Look up the first VMA which intersects the interval 1834 * @mm: The process address space. 1835 * @start_addr: The inclusive start user address. 1836 * @end_addr: The exclusive end user address. 1837 * 1838 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1839 * start_addr < end_addr. 1840 */ 1841 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1842 unsigned long start_addr, 1843 unsigned long end_addr) 1844 { 1845 unsigned long index = start_addr; 1846 1847 mmap_assert_locked(mm); 1848 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1849 } 1850 EXPORT_SYMBOL(find_vma_intersection); 1851 1852 /** 1853 * find_vma() - Find the VMA for a given address, or the next VMA. 1854 * @mm: The mm_struct to check 1855 * @addr: The address 1856 * 1857 * Returns: The VMA associated with addr, or the next VMA. 1858 * May return %NULL in the case of no VMA at addr or above. 1859 */ 1860 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1861 { 1862 unsigned long index = addr; 1863 1864 mmap_assert_locked(mm); 1865 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1866 } 1867 EXPORT_SYMBOL(find_vma); 1868 1869 /** 1870 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1871 * set %pprev to the previous VMA, if any. 1872 * @mm: The mm_struct to check 1873 * @addr: The address 1874 * @pprev: The pointer to set to the previous VMA 1875 * 1876 * Note that RCU lock is missing here since the external mmap_lock() is used 1877 * instead. 1878 * 1879 * Returns: The VMA associated with @addr, or the next vma. 1880 * May return %NULL in the case of no vma at addr or above. 1881 */ 1882 struct vm_area_struct * 1883 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1884 struct vm_area_struct **pprev) 1885 { 1886 struct vm_area_struct *vma; 1887 MA_STATE(mas, &mm->mm_mt, addr, addr); 1888 1889 vma = mas_walk(&mas); 1890 *pprev = mas_prev(&mas, 0); 1891 if (!vma) 1892 vma = mas_next(&mas, ULONG_MAX); 1893 return vma; 1894 } 1895 1896 /* 1897 * Verify that the stack growth is acceptable and 1898 * update accounting. This is shared with both the 1899 * grow-up and grow-down cases. 1900 */ 1901 static int acct_stack_growth(struct vm_area_struct *vma, 1902 unsigned long size, unsigned long grow) 1903 { 1904 struct mm_struct *mm = vma->vm_mm; 1905 unsigned long new_start; 1906 1907 /* address space limit tests */ 1908 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1909 return -ENOMEM; 1910 1911 /* Stack limit test */ 1912 if (size > rlimit(RLIMIT_STACK)) 1913 return -ENOMEM; 1914 1915 /* mlock limit tests */ 1916 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1917 return -ENOMEM; 1918 1919 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1920 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1921 vma->vm_end - size; 1922 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1923 return -EFAULT; 1924 1925 /* 1926 * Overcommit.. This must be the final test, as it will 1927 * update security statistics. 1928 */ 1929 if (security_vm_enough_memory_mm(mm, grow)) 1930 return -ENOMEM; 1931 1932 return 0; 1933 } 1934 1935 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1936 /* 1937 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1938 * vma is the last one with address > vma->vm_end. Have to extend vma. 1939 */ 1940 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1941 { 1942 struct mm_struct *mm = vma->vm_mm; 1943 struct vm_area_struct *next; 1944 unsigned long gap_addr; 1945 int error = 0; 1946 MA_STATE(mas, &mm->mm_mt, 0, 0); 1947 1948 if (!(vma->vm_flags & VM_GROWSUP)) 1949 return -EFAULT; 1950 1951 /* Guard against exceeding limits of the address space. */ 1952 address &= PAGE_MASK; 1953 if (address >= (TASK_SIZE & PAGE_MASK)) 1954 return -ENOMEM; 1955 address += PAGE_SIZE; 1956 1957 /* Enforce stack_guard_gap */ 1958 gap_addr = address + stack_guard_gap; 1959 1960 /* Guard against overflow */ 1961 if (gap_addr < address || gap_addr > TASK_SIZE) 1962 gap_addr = TASK_SIZE; 1963 1964 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1965 if (next && vma_is_accessible(next)) { 1966 if (!(next->vm_flags & VM_GROWSUP)) 1967 return -ENOMEM; 1968 /* Check that both stack segments have the same anon_vma? */ 1969 } 1970 1971 if (mas_preallocate(&mas, GFP_KERNEL)) 1972 return -ENOMEM; 1973 1974 /* We must make sure the anon_vma is allocated. */ 1975 if (unlikely(anon_vma_prepare(vma))) { 1976 mas_destroy(&mas); 1977 return -ENOMEM; 1978 } 1979 1980 /* Lock the VMA before expanding to prevent concurrent page faults */ 1981 vma_start_write(vma); 1982 /* 1983 * vma->vm_start/vm_end cannot change under us because the caller 1984 * is required to hold the mmap_lock in read mode. We need the 1985 * anon_vma lock to serialize against concurrent expand_stacks. 1986 */ 1987 anon_vma_lock_write(vma->anon_vma); 1988 1989 /* Somebody else might have raced and expanded it already */ 1990 if (address > vma->vm_end) { 1991 unsigned long size, grow; 1992 1993 size = address - vma->vm_start; 1994 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1995 1996 error = -ENOMEM; 1997 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1998 error = acct_stack_growth(vma, size, grow); 1999 if (!error) { 2000 /* 2001 * We only hold a shared mmap_lock lock here, so 2002 * we need to protect against concurrent vma 2003 * expansions. anon_vma_lock_write() doesn't 2004 * help here, as we don't guarantee that all 2005 * growable vmas in a mm share the same root 2006 * anon vma. So, we reuse mm->page_table_lock 2007 * to guard against concurrent vma expansions. 2008 */ 2009 spin_lock(&mm->page_table_lock); 2010 if (vma->vm_flags & VM_LOCKED) 2011 mm->locked_vm += grow; 2012 vm_stat_account(mm, vma->vm_flags, grow); 2013 anon_vma_interval_tree_pre_update_vma(vma); 2014 vma->vm_end = address; 2015 /* Overwrite old entry in mtree. */ 2016 mas_set_range(&mas, vma->vm_start, address - 1); 2017 mas_store_prealloc(&mas, vma); 2018 anon_vma_interval_tree_post_update_vma(vma); 2019 spin_unlock(&mm->page_table_lock); 2020 2021 perf_event_mmap(vma); 2022 } 2023 } 2024 } 2025 anon_vma_unlock_write(vma->anon_vma); 2026 khugepaged_enter_vma(vma, vma->vm_flags); 2027 mas_destroy(&mas); 2028 return error; 2029 } 2030 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2031 2032 /* 2033 * vma is the first one with address < vma->vm_start. Have to extend vma. 2034 * mmap_lock held for writing. 2035 */ 2036 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2037 { 2038 struct mm_struct *mm = vma->vm_mm; 2039 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2040 struct vm_area_struct *prev; 2041 int error = 0; 2042 2043 if (!(vma->vm_flags & VM_GROWSDOWN)) 2044 return -EFAULT; 2045 2046 address &= PAGE_MASK; 2047 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2048 return -EPERM; 2049 2050 /* Enforce stack_guard_gap */ 2051 prev = mas_prev(&mas, 0); 2052 /* Check that both stack segments have the same anon_vma? */ 2053 if (prev) { 2054 if (!(prev->vm_flags & VM_GROWSDOWN) && 2055 vma_is_accessible(prev) && 2056 (address - prev->vm_end < stack_guard_gap)) 2057 return -ENOMEM; 2058 } 2059 2060 if (mas_preallocate(&mas, GFP_KERNEL)) 2061 return -ENOMEM; 2062 2063 /* We must make sure the anon_vma is allocated. */ 2064 if (unlikely(anon_vma_prepare(vma))) { 2065 mas_destroy(&mas); 2066 return -ENOMEM; 2067 } 2068 2069 /* Lock the VMA before expanding to prevent concurrent page faults */ 2070 vma_start_write(vma); 2071 /* 2072 * vma->vm_start/vm_end cannot change under us because the caller 2073 * is required to hold the mmap_lock in read mode. We need the 2074 * anon_vma lock to serialize against concurrent expand_stacks. 2075 */ 2076 anon_vma_lock_write(vma->anon_vma); 2077 2078 /* Somebody else might have raced and expanded it already */ 2079 if (address < vma->vm_start) { 2080 unsigned long size, grow; 2081 2082 size = vma->vm_end - address; 2083 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2084 2085 error = -ENOMEM; 2086 if (grow <= vma->vm_pgoff) { 2087 error = acct_stack_growth(vma, size, grow); 2088 if (!error) { 2089 /* 2090 * We only hold a shared mmap_lock lock here, so 2091 * we need to protect against concurrent vma 2092 * expansions. anon_vma_lock_write() doesn't 2093 * help here, as we don't guarantee that all 2094 * growable vmas in a mm share the same root 2095 * anon vma. So, we reuse mm->page_table_lock 2096 * to guard against concurrent vma expansions. 2097 */ 2098 spin_lock(&mm->page_table_lock); 2099 if (vma->vm_flags & VM_LOCKED) 2100 mm->locked_vm += grow; 2101 vm_stat_account(mm, vma->vm_flags, grow); 2102 anon_vma_interval_tree_pre_update_vma(vma); 2103 vma->vm_start = address; 2104 vma->vm_pgoff -= grow; 2105 /* Overwrite old entry in mtree. */ 2106 mas_set_range(&mas, address, vma->vm_end - 1); 2107 mas_store_prealloc(&mas, vma); 2108 anon_vma_interval_tree_post_update_vma(vma); 2109 spin_unlock(&mm->page_table_lock); 2110 2111 perf_event_mmap(vma); 2112 } 2113 } 2114 } 2115 anon_vma_unlock_write(vma->anon_vma); 2116 khugepaged_enter_vma(vma, vma->vm_flags); 2117 mas_destroy(&mas); 2118 return error; 2119 } 2120 2121 /* enforced gap between the expanding stack and other mappings. */ 2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2123 2124 static int __init cmdline_parse_stack_guard_gap(char *p) 2125 { 2126 unsigned long val; 2127 char *endptr; 2128 2129 val = simple_strtoul(p, &endptr, 10); 2130 if (!*endptr) 2131 stack_guard_gap = val << PAGE_SHIFT; 2132 2133 return 1; 2134 } 2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2136 2137 #ifdef CONFIG_STACK_GROWSUP 2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2139 { 2140 return expand_upwards(vma, address); 2141 } 2142 2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2144 { 2145 struct vm_area_struct *vma, *prev; 2146 2147 addr &= PAGE_MASK; 2148 vma = find_vma_prev(mm, addr, &prev); 2149 if (vma && (vma->vm_start <= addr)) 2150 return vma; 2151 if (!prev) 2152 return NULL; 2153 if (expand_stack_locked(prev, addr)) 2154 return NULL; 2155 if (prev->vm_flags & VM_LOCKED) 2156 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2157 return prev; 2158 } 2159 #else 2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2161 { 2162 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2163 return -EINVAL; 2164 return expand_downwards(vma, address); 2165 } 2166 2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2168 { 2169 struct vm_area_struct *vma; 2170 unsigned long start; 2171 2172 addr &= PAGE_MASK; 2173 vma = find_vma(mm, addr); 2174 if (!vma) 2175 return NULL; 2176 if (vma->vm_start <= addr) 2177 return vma; 2178 start = vma->vm_start; 2179 if (expand_stack_locked(vma, addr)) 2180 return NULL; 2181 if (vma->vm_flags & VM_LOCKED) 2182 populate_vma_page_range(vma, addr, start, NULL); 2183 return vma; 2184 } 2185 #endif 2186 2187 /* 2188 * IA64 has some horrid mapping rules: it can expand both up and down, 2189 * but with various special rules. 2190 * 2191 * We'll get rid of this architecture eventually, so the ugliness is 2192 * temporary. 2193 */ 2194 #ifdef CONFIG_IA64 2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2196 { 2197 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2198 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2199 } 2200 2201 /* 2202 * IA64 stacks grow down, but there's a special register backing store 2203 * that can grow up. Only sequentially, though, so the new address must 2204 * match vm_end. 2205 */ 2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2207 { 2208 if (!vma_expand_ok(vma, addr)) 2209 return -EFAULT; 2210 if (vma->vm_end != (addr & PAGE_MASK)) 2211 return -EFAULT; 2212 return expand_upwards(vma, addr); 2213 } 2214 2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2216 { 2217 if (!vma_expand_ok(vma, addr)) 2218 return -EFAULT; 2219 return expand_downwards(vma, addr); 2220 } 2221 2222 #elif defined(CONFIG_STACK_GROWSUP) 2223 2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2225 #define vma_expand_down(vma, addr) (-EFAULT) 2226 2227 #else 2228 2229 #define vma_expand_up(vma,addr) (-EFAULT) 2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2231 2232 #endif 2233 2234 /* 2235 * expand_stack(): legacy interface for page faulting. Don't use unless 2236 * you have to. 2237 * 2238 * This is called with the mm locked for reading, drops the lock, takes 2239 * the lock for writing, tries to look up a vma again, expands it if 2240 * necessary, and downgrades the lock to reading again. 2241 * 2242 * If no vma is found or it can't be expanded, it returns NULL and has 2243 * dropped the lock. 2244 */ 2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2246 { 2247 struct vm_area_struct *vma, *prev; 2248 2249 mmap_read_unlock(mm); 2250 if (mmap_write_lock_killable(mm)) 2251 return NULL; 2252 2253 vma = find_vma_prev(mm, addr, &prev); 2254 if (vma && vma->vm_start <= addr) 2255 goto success; 2256 2257 if (prev && !vma_expand_up(prev, addr)) { 2258 vma = prev; 2259 goto success; 2260 } 2261 2262 if (vma && !vma_expand_down(vma, addr)) 2263 goto success; 2264 2265 mmap_write_unlock(mm); 2266 return NULL; 2267 2268 success: 2269 mmap_write_downgrade(mm); 2270 return vma; 2271 } 2272 2273 /* 2274 * Ok - we have the memory areas we should free on a maple tree so release them, 2275 * and do the vma updates. 2276 * 2277 * Called with the mm semaphore held. 2278 */ 2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2280 { 2281 unsigned long nr_accounted = 0; 2282 struct vm_area_struct *vma; 2283 2284 /* Update high watermark before we lower total_vm */ 2285 update_hiwater_vm(mm); 2286 mas_for_each(mas, vma, ULONG_MAX) { 2287 long nrpages = vma_pages(vma); 2288 2289 if (vma->vm_flags & VM_ACCOUNT) 2290 nr_accounted += nrpages; 2291 vm_stat_account(mm, vma->vm_flags, -nrpages); 2292 remove_vma(vma, false); 2293 } 2294 vm_unacct_memory(nr_accounted); 2295 validate_mm(mm); 2296 } 2297 2298 /* 2299 * Get rid of page table information in the indicated region. 2300 * 2301 * Called with the mm semaphore held. 2302 */ 2303 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2304 struct vm_area_struct *vma, struct vm_area_struct *prev, 2305 struct vm_area_struct *next, 2306 unsigned long start, unsigned long end, bool mm_wr_locked) 2307 { 2308 struct mmu_gather tlb; 2309 2310 lru_add_drain(); 2311 tlb_gather_mmu(&tlb, mm); 2312 update_hiwater_rss(mm); 2313 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked); 2314 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2315 next ? next->vm_start : USER_PGTABLES_CEILING, 2316 mm_wr_locked); 2317 tlb_finish_mmu(&tlb); 2318 } 2319 2320 /* 2321 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2322 * has already been checked or doesn't make sense to fail. 2323 * VMA Iterator will point to the end VMA. 2324 */ 2325 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2326 unsigned long addr, int new_below) 2327 { 2328 struct vma_prepare vp; 2329 struct vm_area_struct *new; 2330 int err; 2331 2332 validate_mm(vma->vm_mm); 2333 2334 WARN_ON(vma->vm_start >= addr); 2335 WARN_ON(vma->vm_end <= addr); 2336 2337 if (vma->vm_ops && vma->vm_ops->may_split) { 2338 err = vma->vm_ops->may_split(vma, addr); 2339 if (err) 2340 return err; 2341 } 2342 2343 new = vm_area_dup(vma); 2344 if (!new) 2345 return -ENOMEM; 2346 2347 err = -ENOMEM; 2348 if (vma_iter_prealloc(vmi)) 2349 goto out_free_vma; 2350 2351 if (new_below) { 2352 new->vm_end = addr; 2353 } else { 2354 new->vm_start = addr; 2355 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2356 } 2357 2358 err = vma_dup_policy(vma, new); 2359 if (err) 2360 goto out_free_vmi; 2361 2362 err = anon_vma_clone(new, vma); 2363 if (err) 2364 goto out_free_mpol; 2365 2366 if (new->vm_file) 2367 get_file(new->vm_file); 2368 2369 if (new->vm_ops && new->vm_ops->open) 2370 new->vm_ops->open(new); 2371 2372 init_vma_prep(&vp, vma); 2373 vp.insert = new; 2374 vma_prepare(&vp); 2375 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2376 2377 if (new_below) { 2378 vma->vm_start = addr; 2379 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2380 } else { 2381 vma->vm_end = addr; 2382 } 2383 2384 /* vma_complete stores the new vma */ 2385 vma_complete(&vp, vmi, vma->vm_mm); 2386 2387 /* Success. */ 2388 if (new_below) 2389 vma_next(vmi); 2390 validate_mm(vma->vm_mm); 2391 return 0; 2392 2393 out_free_mpol: 2394 mpol_put(vma_policy(new)); 2395 out_free_vmi: 2396 vma_iter_free(vmi); 2397 out_free_vma: 2398 vm_area_free(new); 2399 validate_mm(vma->vm_mm); 2400 return err; 2401 } 2402 2403 /* 2404 * Split a vma into two pieces at address 'addr', a new vma is allocated 2405 * either for the first part or the tail. 2406 */ 2407 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2408 unsigned long addr, int new_below) 2409 { 2410 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2411 return -ENOMEM; 2412 2413 return __split_vma(vmi, vma, addr, new_below); 2414 } 2415 2416 /* 2417 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2418 * @vmi: The vma iterator 2419 * @vma: The starting vm_area_struct 2420 * @mm: The mm_struct 2421 * @start: The aligned start address to munmap. 2422 * @end: The aligned end address to munmap. 2423 * @uf: The userfaultfd list_head 2424 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2425 * success. 2426 * 2427 * Return: 0 on success and drops the lock if so directed, error and leaves the 2428 * lock held otherwise. 2429 */ 2430 static int 2431 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2432 struct mm_struct *mm, unsigned long start, 2433 unsigned long end, struct list_head *uf, bool unlock) 2434 { 2435 struct vm_area_struct *prev, *next = NULL; 2436 struct maple_tree mt_detach; 2437 int count = 0; 2438 int error = -ENOMEM; 2439 unsigned long locked_vm = 0; 2440 MA_STATE(mas_detach, &mt_detach, 0, 0); 2441 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2442 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2443 2444 /* 2445 * If we need to split any vma, do it now to save pain later. 2446 * 2447 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2448 * unmapped vm_area_struct will remain in use: so lower split_vma 2449 * places tmp vma above, and higher split_vma places tmp vma below. 2450 */ 2451 2452 /* Does it split the first one? */ 2453 if (start > vma->vm_start) { 2454 2455 /* 2456 * Make sure that map_count on return from munmap() will 2457 * not exceed its limit; but let map_count go just above 2458 * its limit temporarily, to help free resources as expected. 2459 */ 2460 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2461 goto map_count_exceeded; 2462 2463 error = __split_vma(vmi, vma, start, 0); 2464 if (error) 2465 goto start_split_failed; 2466 2467 vma = vma_iter_load(vmi); 2468 } 2469 2470 prev = vma_prev(vmi); 2471 if (unlikely((!prev))) 2472 vma_iter_set(vmi, start); 2473 2474 /* 2475 * Detach a range of VMAs from the mm. Using next as a temp variable as 2476 * it is always overwritten. 2477 */ 2478 for_each_vma_range(*vmi, next, end) { 2479 /* Does it split the end? */ 2480 if (next->vm_end > end) { 2481 error = __split_vma(vmi, next, end, 0); 2482 if (error) 2483 goto end_split_failed; 2484 } 2485 vma_start_write(next); 2486 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1); 2487 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2488 if (error) 2489 goto munmap_gather_failed; 2490 vma_mark_detached(next, true); 2491 if (next->vm_flags & VM_LOCKED) 2492 locked_vm += vma_pages(next); 2493 2494 count++; 2495 if (unlikely(uf)) { 2496 /* 2497 * If userfaultfd_unmap_prep returns an error the vmas 2498 * will remain split, but userland will get a 2499 * highly unexpected error anyway. This is no 2500 * different than the case where the first of the two 2501 * __split_vma fails, but we don't undo the first 2502 * split, despite we could. This is unlikely enough 2503 * failure that it's not worth optimizing it for. 2504 */ 2505 error = userfaultfd_unmap_prep(next, start, end, uf); 2506 2507 if (error) 2508 goto userfaultfd_error; 2509 } 2510 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2511 BUG_ON(next->vm_start < start); 2512 BUG_ON(next->vm_start > end); 2513 #endif 2514 } 2515 2516 if (vma_iter_end(vmi) > end) 2517 next = vma_iter_load(vmi); 2518 2519 if (!next) 2520 next = vma_next(vmi); 2521 2522 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2523 /* Make sure no VMAs are about to be lost. */ 2524 { 2525 MA_STATE(test, &mt_detach, start, end - 1); 2526 struct vm_area_struct *vma_mas, *vma_test; 2527 int test_count = 0; 2528 2529 vma_iter_set(vmi, start); 2530 rcu_read_lock(); 2531 vma_test = mas_find(&test, end - 1); 2532 for_each_vma_range(*vmi, vma_mas, end) { 2533 BUG_ON(vma_mas != vma_test); 2534 test_count++; 2535 vma_test = mas_next(&test, end - 1); 2536 } 2537 rcu_read_unlock(); 2538 BUG_ON(count != test_count); 2539 } 2540 #endif 2541 vma_iter_set(vmi, start); 2542 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2543 if (error) 2544 goto clear_tree_failed; 2545 2546 /* Point of no return */ 2547 mm->locked_vm -= locked_vm; 2548 mm->map_count -= count; 2549 if (unlock) 2550 mmap_write_downgrade(mm); 2551 2552 /* 2553 * We can free page tables without write-locking mmap_lock because VMAs 2554 * were isolated before we downgraded mmap_lock. 2555 */ 2556 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock); 2557 /* Statistics and freeing VMAs */ 2558 mas_set(&mas_detach, start); 2559 remove_mt(mm, &mas_detach); 2560 __mt_destroy(&mt_detach); 2561 validate_mm(mm); 2562 if (unlock) 2563 mmap_read_unlock(mm); 2564 2565 return 0; 2566 2567 clear_tree_failed: 2568 userfaultfd_error: 2569 munmap_gather_failed: 2570 end_split_failed: 2571 mas_set(&mas_detach, 0); 2572 mas_for_each(&mas_detach, next, end) 2573 vma_mark_detached(next, false); 2574 2575 __mt_destroy(&mt_detach); 2576 start_split_failed: 2577 map_count_exceeded: 2578 validate_mm(mm); 2579 return error; 2580 } 2581 2582 /* 2583 * do_vmi_munmap() - munmap a given range. 2584 * @vmi: The vma iterator 2585 * @mm: The mm_struct 2586 * @start: The start address to munmap 2587 * @len: The length of the range to munmap 2588 * @uf: The userfaultfd list_head 2589 * @unlock: set to true if the user wants to drop the mmap_lock on success 2590 * 2591 * This function takes a @mas that is either pointing to the previous VMA or set 2592 * to MA_START and sets it up to remove the mapping(s). The @len will be 2593 * aligned and any arch_unmap work will be preformed. 2594 * 2595 * Return: 0 on success and drops the lock if so directed, error and leaves the 2596 * lock held otherwise. 2597 */ 2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2599 unsigned long start, size_t len, struct list_head *uf, 2600 bool unlock) 2601 { 2602 unsigned long end; 2603 struct vm_area_struct *vma; 2604 2605 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2606 return -EINVAL; 2607 2608 end = start + PAGE_ALIGN(len); 2609 if (end == start) 2610 return -EINVAL; 2611 2612 /* arch_unmap() might do unmaps itself. */ 2613 arch_unmap(mm, start, end); 2614 2615 /* Find the first overlapping VMA */ 2616 vma = vma_find(vmi, end); 2617 if (!vma) { 2618 if (unlock) 2619 mmap_write_unlock(mm); 2620 return 0; 2621 } 2622 2623 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2624 } 2625 2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2627 * @mm: The mm_struct 2628 * @start: The start address to munmap 2629 * @len: The length to be munmapped. 2630 * @uf: The userfaultfd list_head 2631 * 2632 * Return: 0 on success, error otherwise. 2633 */ 2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2635 struct list_head *uf) 2636 { 2637 VMA_ITERATOR(vmi, mm, start); 2638 2639 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2640 } 2641 2642 unsigned long mmap_region(struct file *file, unsigned long addr, 2643 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2644 struct list_head *uf) 2645 { 2646 struct mm_struct *mm = current->mm; 2647 struct vm_area_struct *vma = NULL; 2648 struct vm_area_struct *next, *prev, *merge; 2649 pgoff_t pglen = len >> PAGE_SHIFT; 2650 unsigned long charged = 0; 2651 unsigned long end = addr + len; 2652 unsigned long merge_start = addr, merge_end = end; 2653 pgoff_t vm_pgoff; 2654 int error; 2655 VMA_ITERATOR(vmi, mm, addr); 2656 2657 /* Check against address space limit. */ 2658 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2659 unsigned long nr_pages; 2660 2661 /* 2662 * MAP_FIXED may remove pages of mappings that intersects with 2663 * requested mapping. Account for the pages it would unmap. 2664 */ 2665 nr_pages = count_vma_pages_range(mm, addr, end); 2666 2667 if (!may_expand_vm(mm, vm_flags, 2668 (len >> PAGE_SHIFT) - nr_pages)) 2669 return -ENOMEM; 2670 } 2671 2672 /* Unmap any existing mapping in the area */ 2673 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2674 return -ENOMEM; 2675 2676 /* 2677 * Private writable mapping: check memory availability 2678 */ 2679 if (accountable_mapping(file, vm_flags)) { 2680 charged = len >> PAGE_SHIFT; 2681 if (security_vm_enough_memory_mm(mm, charged)) 2682 return -ENOMEM; 2683 vm_flags |= VM_ACCOUNT; 2684 } 2685 2686 next = vma_next(&vmi); 2687 prev = vma_prev(&vmi); 2688 if (vm_flags & VM_SPECIAL) 2689 goto cannot_expand; 2690 2691 /* Attempt to expand an old mapping */ 2692 /* Check next */ 2693 if (next && next->vm_start == end && !vma_policy(next) && 2694 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2695 NULL_VM_UFFD_CTX, NULL)) { 2696 merge_end = next->vm_end; 2697 vma = next; 2698 vm_pgoff = next->vm_pgoff - pglen; 2699 } 2700 2701 /* Check prev */ 2702 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2703 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2704 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2705 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2706 NULL_VM_UFFD_CTX, NULL))) { 2707 merge_start = prev->vm_start; 2708 vma = prev; 2709 vm_pgoff = prev->vm_pgoff; 2710 } 2711 2712 2713 /* Actually expand, if possible */ 2714 if (vma && 2715 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2716 khugepaged_enter_vma(vma, vm_flags); 2717 goto expanded; 2718 } 2719 2720 cannot_expand: 2721 if (prev) 2722 vma_iter_next_range(&vmi); 2723 2724 /* 2725 * Determine the object being mapped and call the appropriate 2726 * specific mapper. the address has already been validated, but 2727 * not unmapped, but the maps are removed from the list. 2728 */ 2729 vma = vm_area_alloc(mm); 2730 if (!vma) { 2731 error = -ENOMEM; 2732 goto unacct_error; 2733 } 2734 2735 vma_iter_set(&vmi, addr); 2736 vma->vm_start = addr; 2737 vma->vm_end = end; 2738 vm_flags_init(vma, vm_flags); 2739 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2740 vma->vm_pgoff = pgoff; 2741 2742 if (file) { 2743 if (vm_flags & VM_SHARED) { 2744 error = mapping_map_writable(file->f_mapping); 2745 if (error) 2746 goto free_vma; 2747 } 2748 2749 vma->vm_file = get_file(file); 2750 error = call_mmap(file, vma); 2751 if (error) 2752 goto unmap_and_free_vma; 2753 2754 /* 2755 * Expansion is handled above, merging is handled below. 2756 * Drivers should not alter the address of the VMA. 2757 */ 2758 error = -EINVAL; 2759 if (WARN_ON((addr != vma->vm_start))) 2760 goto close_and_free_vma; 2761 2762 vma_iter_set(&vmi, addr); 2763 /* 2764 * If vm_flags changed after call_mmap(), we should try merge 2765 * vma again as we may succeed this time. 2766 */ 2767 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2768 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2769 vma->vm_end, vma->vm_flags, NULL, 2770 vma->vm_file, vma->vm_pgoff, NULL, 2771 NULL_VM_UFFD_CTX, NULL); 2772 if (merge) { 2773 /* 2774 * ->mmap() can change vma->vm_file and fput 2775 * the original file. So fput the vma->vm_file 2776 * here or we would add an extra fput for file 2777 * and cause general protection fault 2778 * ultimately. 2779 */ 2780 fput(vma->vm_file); 2781 vm_area_free(vma); 2782 vma = merge; 2783 /* Update vm_flags to pick up the change. */ 2784 vm_flags = vma->vm_flags; 2785 goto unmap_writable; 2786 } 2787 } 2788 2789 vm_flags = vma->vm_flags; 2790 } else if (vm_flags & VM_SHARED) { 2791 error = shmem_zero_setup(vma); 2792 if (error) 2793 goto free_vma; 2794 } else { 2795 vma_set_anonymous(vma); 2796 } 2797 2798 if (map_deny_write_exec(vma, vma->vm_flags)) { 2799 error = -EACCES; 2800 goto close_and_free_vma; 2801 } 2802 2803 /* Allow architectures to sanity-check the vm_flags */ 2804 error = -EINVAL; 2805 if (!arch_validate_flags(vma->vm_flags)) 2806 goto close_and_free_vma; 2807 2808 error = -ENOMEM; 2809 if (vma_iter_prealloc(&vmi)) 2810 goto close_and_free_vma; 2811 2812 /* Lock the VMA since it is modified after insertion into VMA tree */ 2813 vma_start_write(vma); 2814 if (vma->vm_file) 2815 i_mmap_lock_write(vma->vm_file->f_mapping); 2816 2817 vma_iter_store(&vmi, vma); 2818 mm->map_count++; 2819 if (vma->vm_file) { 2820 if (vma->vm_flags & VM_SHARED) 2821 mapping_allow_writable(vma->vm_file->f_mapping); 2822 2823 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2824 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2825 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2826 i_mmap_unlock_write(vma->vm_file->f_mapping); 2827 } 2828 2829 /* 2830 * vma_merge() calls khugepaged_enter_vma() either, the below 2831 * call covers the non-merge case. 2832 */ 2833 khugepaged_enter_vma(vma, vma->vm_flags); 2834 2835 /* Once vma denies write, undo our temporary denial count */ 2836 unmap_writable: 2837 if (file && vm_flags & VM_SHARED) 2838 mapping_unmap_writable(file->f_mapping); 2839 file = vma->vm_file; 2840 ksm_add_vma(vma); 2841 expanded: 2842 perf_event_mmap(vma); 2843 2844 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2845 if (vm_flags & VM_LOCKED) { 2846 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2847 is_vm_hugetlb_page(vma) || 2848 vma == get_gate_vma(current->mm)) 2849 vm_flags_clear(vma, VM_LOCKED_MASK); 2850 else 2851 mm->locked_vm += (len >> PAGE_SHIFT); 2852 } 2853 2854 if (file) 2855 uprobe_mmap(vma); 2856 2857 /* 2858 * New (or expanded) vma always get soft dirty status. 2859 * Otherwise user-space soft-dirty page tracker won't 2860 * be able to distinguish situation when vma area unmapped, 2861 * then new mapped in-place (which must be aimed as 2862 * a completely new data area). 2863 */ 2864 vm_flags_set(vma, VM_SOFTDIRTY); 2865 2866 vma_set_page_prot(vma); 2867 2868 validate_mm(mm); 2869 return addr; 2870 2871 close_and_free_vma: 2872 if (file && vma->vm_ops && vma->vm_ops->close) 2873 vma->vm_ops->close(vma); 2874 2875 if (file || vma->vm_file) { 2876 unmap_and_free_vma: 2877 fput(vma->vm_file); 2878 vma->vm_file = NULL; 2879 2880 /* Undo any partial mapping done by a device driver. */ 2881 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start, 2882 vma->vm_end, true); 2883 } 2884 if (file && (vm_flags & VM_SHARED)) 2885 mapping_unmap_writable(file->f_mapping); 2886 free_vma: 2887 vm_area_free(vma); 2888 unacct_error: 2889 if (charged) 2890 vm_unacct_memory(charged); 2891 validate_mm(mm); 2892 return error; 2893 } 2894 2895 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2896 { 2897 int ret; 2898 struct mm_struct *mm = current->mm; 2899 LIST_HEAD(uf); 2900 VMA_ITERATOR(vmi, mm, start); 2901 2902 if (mmap_write_lock_killable(mm)) 2903 return -EINTR; 2904 2905 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2906 if (ret || !unlock) 2907 mmap_write_unlock(mm); 2908 2909 userfaultfd_unmap_complete(mm, &uf); 2910 return ret; 2911 } 2912 2913 int vm_munmap(unsigned long start, size_t len) 2914 { 2915 return __vm_munmap(start, len, false); 2916 } 2917 EXPORT_SYMBOL(vm_munmap); 2918 2919 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2920 { 2921 addr = untagged_addr(addr); 2922 return __vm_munmap(addr, len, true); 2923 } 2924 2925 2926 /* 2927 * Emulation of deprecated remap_file_pages() syscall. 2928 */ 2929 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2930 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2931 { 2932 2933 struct mm_struct *mm = current->mm; 2934 struct vm_area_struct *vma; 2935 unsigned long populate = 0; 2936 unsigned long ret = -EINVAL; 2937 struct file *file; 2938 2939 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2940 current->comm, current->pid); 2941 2942 if (prot) 2943 return ret; 2944 start = start & PAGE_MASK; 2945 size = size & PAGE_MASK; 2946 2947 if (start + size <= start) 2948 return ret; 2949 2950 /* Does pgoff wrap? */ 2951 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2952 return ret; 2953 2954 if (mmap_write_lock_killable(mm)) 2955 return -EINTR; 2956 2957 vma = vma_lookup(mm, start); 2958 2959 if (!vma || !(vma->vm_flags & VM_SHARED)) 2960 goto out; 2961 2962 if (start + size > vma->vm_end) { 2963 VMA_ITERATOR(vmi, mm, vma->vm_end); 2964 struct vm_area_struct *next, *prev = vma; 2965 2966 for_each_vma_range(vmi, next, start + size) { 2967 /* hole between vmas ? */ 2968 if (next->vm_start != prev->vm_end) 2969 goto out; 2970 2971 if (next->vm_file != vma->vm_file) 2972 goto out; 2973 2974 if (next->vm_flags != vma->vm_flags) 2975 goto out; 2976 2977 if (start + size <= next->vm_end) 2978 break; 2979 2980 prev = next; 2981 } 2982 2983 if (!next) 2984 goto out; 2985 } 2986 2987 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2988 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2989 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2990 2991 flags &= MAP_NONBLOCK; 2992 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2993 if (vma->vm_flags & VM_LOCKED) 2994 flags |= MAP_LOCKED; 2995 2996 file = get_file(vma->vm_file); 2997 ret = do_mmap(vma->vm_file, start, size, 2998 prot, flags, pgoff, &populate, NULL); 2999 fput(file); 3000 out: 3001 mmap_write_unlock(mm); 3002 if (populate) 3003 mm_populate(ret, populate); 3004 if (!IS_ERR_VALUE(ret)) 3005 ret = 0; 3006 return ret; 3007 } 3008 3009 /* 3010 * do_vma_munmap() - Unmap a full or partial vma. 3011 * @vmi: The vma iterator pointing at the vma 3012 * @vma: The first vma to be munmapped 3013 * @start: the start of the address to unmap 3014 * @end: The end of the address to unmap 3015 * @uf: The userfaultfd list_head 3016 * @unlock: Drop the lock on success 3017 * 3018 * unmaps a VMA mapping when the vma iterator is already in position. 3019 * Does not handle alignment. 3020 * 3021 * Return: 0 on success drops the lock of so directed, error on failure and will 3022 * still hold the lock. 3023 */ 3024 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3025 unsigned long start, unsigned long end, struct list_head *uf, 3026 bool unlock) 3027 { 3028 struct mm_struct *mm = vma->vm_mm; 3029 3030 arch_unmap(mm, start, end); 3031 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3032 } 3033 3034 /* 3035 * do_brk_flags() - Increase the brk vma if the flags match. 3036 * @vmi: The vma iterator 3037 * @addr: The start address 3038 * @len: The length of the increase 3039 * @vma: The vma, 3040 * @flags: The VMA Flags 3041 * 3042 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3043 * do not match then create a new anonymous VMA. Eventually we may be able to 3044 * do some brk-specific accounting here. 3045 */ 3046 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3047 unsigned long addr, unsigned long len, unsigned long flags) 3048 { 3049 struct mm_struct *mm = current->mm; 3050 struct vma_prepare vp; 3051 3052 validate_mm(mm); 3053 /* 3054 * Check against address space limits by the changed size 3055 * Note: This happens *after* clearing old mappings in some code paths. 3056 */ 3057 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3058 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3059 return -ENOMEM; 3060 3061 if (mm->map_count > sysctl_max_map_count) 3062 return -ENOMEM; 3063 3064 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3065 return -ENOMEM; 3066 3067 /* 3068 * Expand the existing vma if possible; Note that singular lists do not 3069 * occur after forking, so the expand will only happen on new VMAs. 3070 */ 3071 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3072 can_vma_merge_after(vma, flags, NULL, NULL, 3073 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3074 if (vma_iter_prealloc(vmi)) 3075 goto unacct_fail; 3076 3077 init_vma_prep(&vp, vma); 3078 vma_prepare(&vp); 3079 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3080 vma->vm_end = addr + len; 3081 vm_flags_set(vma, VM_SOFTDIRTY); 3082 vma_iter_store(vmi, vma); 3083 3084 vma_complete(&vp, vmi, mm); 3085 khugepaged_enter_vma(vma, flags); 3086 goto out; 3087 } 3088 3089 /* create a vma struct for an anonymous mapping */ 3090 vma = vm_area_alloc(mm); 3091 if (!vma) 3092 goto unacct_fail; 3093 3094 vma_set_anonymous(vma); 3095 vma->vm_start = addr; 3096 vma->vm_end = addr + len; 3097 vma->vm_pgoff = addr >> PAGE_SHIFT; 3098 vm_flags_init(vma, flags); 3099 vma->vm_page_prot = vm_get_page_prot(flags); 3100 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3101 goto mas_store_fail; 3102 3103 mm->map_count++; 3104 ksm_add_vma(vma); 3105 out: 3106 perf_event_mmap(vma); 3107 mm->total_vm += len >> PAGE_SHIFT; 3108 mm->data_vm += len >> PAGE_SHIFT; 3109 if (flags & VM_LOCKED) 3110 mm->locked_vm += (len >> PAGE_SHIFT); 3111 vm_flags_set(vma, VM_SOFTDIRTY); 3112 validate_mm(mm); 3113 return 0; 3114 3115 mas_store_fail: 3116 vm_area_free(vma); 3117 unacct_fail: 3118 vm_unacct_memory(len >> PAGE_SHIFT); 3119 return -ENOMEM; 3120 } 3121 3122 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3123 { 3124 struct mm_struct *mm = current->mm; 3125 struct vm_area_struct *vma = NULL; 3126 unsigned long len; 3127 int ret; 3128 bool populate; 3129 LIST_HEAD(uf); 3130 VMA_ITERATOR(vmi, mm, addr); 3131 3132 len = PAGE_ALIGN(request); 3133 if (len < request) 3134 return -ENOMEM; 3135 if (!len) 3136 return 0; 3137 3138 if (mmap_write_lock_killable(mm)) 3139 return -EINTR; 3140 3141 /* Until we need other flags, refuse anything except VM_EXEC. */ 3142 if ((flags & (~VM_EXEC)) != 0) 3143 return -EINVAL; 3144 3145 ret = check_brk_limits(addr, len); 3146 if (ret) 3147 goto limits_failed; 3148 3149 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3150 if (ret) 3151 goto munmap_failed; 3152 3153 vma = vma_prev(&vmi); 3154 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3155 populate = ((mm->def_flags & VM_LOCKED) != 0); 3156 mmap_write_unlock(mm); 3157 userfaultfd_unmap_complete(mm, &uf); 3158 if (populate && !ret) 3159 mm_populate(addr, len); 3160 return ret; 3161 3162 munmap_failed: 3163 limits_failed: 3164 mmap_write_unlock(mm); 3165 return ret; 3166 } 3167 EXPORT_SYMBOL(vm_brk_flags); 3168 3169 int vm_brk(unsigned long addr, unsigned long len) 3170 { 3171 return vm_brk_flags(addr, len, 0); 3172 } 3173 EXPORT_SYMBOL(vm_brk); 3174 3175 /* Release all mmaps. */ 3176 void exit_mmap(struct mm_struct *mm) 3177 { 3178 struct mmu_gather tlb; 3179 struct vm_area_struct *vma; 3180 unsigned long nr_accounted = 0; 3181 MA_STATE(mas, &mm->mm_mt, 0, 0); 3182 int count = 0; 3183 3184 /* mm's last user has gone, and its about to be pulled down */ 3185 mmu_notifier_release(mm); 3186 3187 mmap_read_lock(mm); 3188 arch_exit_mmap(mm); 3189 3190 vma = mas_find(&mas, ULONG_MAX); 3191 if (!vma) { 3192 /* Can happen if dup_mmap() received an OOM */ 3193 mmap_read_unlock(mm); 3194 return; 3195 } 3196 3197 lru_add_drain(); 3198 flush_cache_mm(mm); 3199 tlb_gather_mmu_fullmm(&tlb, mm); 3200 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3201 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3202 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false); 3203 mmap_read_unlock(mm); 3204 3205 /* 3206 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3207 * because the memory has been already freed. 3208 */ 3209 set_bit(MMF_OOM_SKIP, &mm->flags); 3210 mmap_write_lock(mm); 3211 mt_clear_in_rcu(&mm->mm_mt); 3212 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3213 USER_PGTABLES_CEILING, true); 3214 tlb_finish_mmu(&tlb); 3215 3216 /* 3217 * Walk the list again, actually closing and freeing it, with preemption 3218 * enabled, without holding any MM locks besides the unreachable 3219 * mmap_write_lock. 3220 */ 3221 do { 3222 if (vma->vm_flags & VM_ACCOUNT) 3223 nr_accounted += vma_pages(vma); 3224 remove_vma(vma, true); 3225 count++; 3226 cond_resched(); 3227 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3228 3229 BUG_ON(count != mm->map_count); 3230 3231 trace_exit_mmap(mm); 3232 __mt_destroy(&mm->mm_mt); 3233 mmap_write_unlock(mm); 3234 vm_unacct_memory(nr_accounted); 3235 } 3236 3237 /* Insert vm structure into process list sorted by address 3238 * and into the inode's i_mmap tree. If vm_file is non-NULL 3239 * then i_mmap_rwsem is taken here. 3240 */ 3241 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3242 { 3243 unsigned long charged = vma_pages(vma); 3244 3245 3246 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3247 return -ENOMEM; 3248 3249 if ((vma->vm_flags & VM_ACCOUNT) && 3250 security_vm_enough_memory_mm(mm, charged)) 3251 return -ENOMEM; 3252 3253 /* 3254 * The vm_pgoff of a purely anonymous vma should be irrelevant 3255 * until its first write fault, when page's anon_vma and index 3256 * are set. But now set the vm_pgoff it will almost certainly 3257 * end up with (unless mremap moves it elsewhere before that 3258 * first wfault), so /proc/pid/maps tells a consistent story. 3259 * 3260 * By setting it to reflect the virtual start address of the 3261 * vma, merges and splits can happen in a seamless way, just 3262 * using the existing file pgoff checks and manipulations. 3263 * Similarly in do_mmap and in do_brk_flags. 3264 */ 3265 if (vma_is_anonymous(vma)) { 3266 BUG_ON(vma->anon_vma); 3267 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3268 } 3269 3270 if (vma_link(mm, vma)) { 3271 vm_unacct_memory(charged); 3272 return -ENOMEM; 3273 } 3274 3275 return 0; 3276 } 3277 3278 /* 3279 * Copy the vma structure to a new location in the same mm, 3280 * prior to moving page table entries, to effect an mremap move. 3281 */ 3282 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3283 unsigned long addr, unsigned long len, pgoff_t pgoff, 3284 bool *need_rmap_locks) 3285 { 3286 struct vm_area_struct *vma = *vmap; 3287 unsigned long vma_start = vma->vm_start; 3288 struct mm_struct *mm = vma->vm_mm; 3289 struct vm_area_struct *new_vma, *prev; 3290 bool faulted_in_anon_vma = true; 3291 VMA_ITERATOR(vmi, mm, addr); 3292 3293 validate_mm(mm); 3294 /* 3295 * If anonymous vma has not yet been faulted, update new pgoff 3296 * to match new location, to increase its chance of merging. 3297 */ 3298 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3299 pgoff = addr >> PAGE_SHIFT; 3300 faulted_in_anon_vma = false; 3301 } 3302 3303 new_vma = find_vma_prev(mm, addr, &prev); 3304 if (new_vma && new_vma->vm_start < addr + len) 3305 return NULL; /* should never get here */ 3306 3307 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3308 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3309 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3310 if (new_vma) { 3311 /* 3312 * Source vma may have been merged into new_vma 3313 */ 3314 if (unlikely(vma_start >= new_vma->vm_start && 3315 vma_start < new_vma->vm_end)) { 3316 /* 3317 * The only way we can get a vma_merge with 3318 * self during an mremap is if the vma hasn't 3319 * been faulted in yet and we were allowed to 3320 * reset the dst vma->vm_pgoff to the 3321 * destination address of the mremap to allow 3322 * the merge to happen. mremap must change the 3323 * vm_pgoff linearity between src and dst vmas 3324 * (in turn preventing a vma_merge) to be 3325 * safe. It is only safe to keep the vm_pgoff 3326 * linear if there are no pages mapped yet. 3327 */ 3328 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3329 *vmap = vma = new_vma; 3330 } 3331 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3332 } else { 3333 new_vma = vm_area_dup(vma); 3334 if (!new_vma) 3335 goto out; 3336 new_vma->vm_start = addr; 3337 new_vma->vm_end = addr + len; 3338 new_vma->vm_pgoff = pgoff; 3339 if (vma_dup_policy(vma, new_vma)) 3340 goto out_free_vma; 3341 if (anon_vma_clone(new_vma, vma)) 3342 goto out_free_mempol; 3343 if (new_vma->vm_file) 3344 get_file(new_vma->vm_file); 3345 if (new_vma->vm_ops && new_vma->vm_ops->open) 3346 new_vma->vm_ops->open(new_vma); 3347 vma_start_write(new_vma); 3348 if (vma_link(mm, new_vma)) 3349 goto out_vma_link; 3350 *need_rmap_locks = false; 3351 } 3352 validate_mm(mm); 3353 return new_vma; 3354 3355 out_vma_link: 3356 if (new_vma->vm_ops && new_vma->vm_ops->close) 3357 new_vma->vm_ops->close(new_vma); 3358 3359 if (new_vma->vm_file) 3360 fput(new_vma->vm_file); 3361 3362 unlink_anon_vmas(new_vma); 3363 out_free_mempol: 3364 mpol_put(vma_policy(new_vma)); 3365 out_free_vma: 3366 vm_area_free(new_vma); 3367 out: 3368 validate_mm(mm); 3369 return NULL; 3370 } 3371 3372 /* 3373 * Return true if the calling process may expand its vm space by the passed 3374 * number of pages 3375 */ 3376 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3377 { 3378 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3379 return false; 3380 3381 if (is_data_mapping(flags) && 3382 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3383 /* Workaround for Valgrind */ 3384 if (rlimit(RLIMIT_DATA) == 0 && 3385 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3386 return true; 3387 3388 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3389 current->comm, current->pid, 3390 (mm->data_vm + npages) << PAGE_SHIFT, 3391 rlimit(RLIMIT_DATA), 3392 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3393 3394 if (!ignore_rlimit_data) 3395 return false; 3396 } 3397 3398 return true; 3399 } 3400 3401 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3402 { 3403 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3404 3405 if (is_exec_mapping(flags)) 3406 mm->exec_vm += npages; 3407 else if (is_stack_mapping(flags)) 3408 mm->stack_vm += npages; 3409 else if (is_data_mapping(flags)) 3410 mm->data_vm += npages; 3411 } 3412 3413 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3414 3415 /* 3416 * Having a close hook prevents vma merging regardless of flags. 3417 */ 3418 static void special_mapping_close(struct vm_area_struct *vma) 3419 { 3420 } 3421 3422 static const char *special_mapping_name(struct vm_area_struct *vma) 3423 { 3424 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3425 } 3426 3427 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3428 { 3429 struct vm_special_mapping *sm = new_vma->vm_private_data; 3430 3431 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3432 return -EFAULT; 3433 3434 if (sm->mremap) 3435 return sm->mremap(sm, new_vma); 3436 3437 return 0; 3438 } 3439 3440 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3441 { 3442 /* 3443 * Forbid splitting special mappings - kernel has expectations over 3444 * the number of pages in mapping. Together with VM_DONTEXPAND 3445 * the size of vma should stay the same over the special mapping's 3446 * lifetime. 3447 */ 3448 return -EINVAL; 3449 } 3450 3451 static const struct vm_operations_struct special_mapping_vmops = { 3452 .close = special_mapping_close, 3453 .fault = special_mapping_fault, 3454 .mremap = special_mapping_mremap, 3455 .name = special_mapping_name, 3456 /* vDSO code relies that VVAR can't be accessed remotely */ 3457 .access = NULL, 3458 .may_split = special_mapping_split, 3459 }; 3460 3461 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3462 .close = special_mapping_close, 3463 .fault = special_mapping_fault, 3464 }; 3465 3466 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3467 { 3468 struct vm_area_struct *vma = vmf->vma; 3469 pgoff_t pgoff; 3470 struct page **pages; 3471 3472 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3473 pages = vma->vm_private_data; 3474 } else { 3475 struct vm_special_mapping *sm = vma->vm_private_data; 3476 3477 if (sm->fault) 3478 return sm->fault(sm, vmf->vma, vmf); 3479 3480 pages = sm->pages; 3481 } 3482 3483 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3484 pgoff--; 3485 3486 if (*pages) { 3487 struct page *page = *pages; 3488 get_page(page); 3489 vmf->page = page; 3490 return 0; 3491 } 3492 3493 return VM_FAULT_SIGBUS; 3494 } 3495 3496 static struct vm_area_struct *__install_special_mapping( 3497 struct mm_struct *mm, 3498 unsigned long addr, unsigned long len, 3499 unsigned long vm_flags, void *priv, 3500 const struct vm_operations_struct *ops) 3501 { 3502 int ret; 3503 struct vm_area_struct *vma; 3504 3505 validate_mm(mm); 3506 vma = vm_area_alloc(mm); 3507 if (unlikely(vma == NULL)) 3508 return ERR_PTR(-ENOMEM); 3509 3510 vma->vm_start = addr; 3511 vma->vm_end = addr + len; 3512 3513 vm_flags_init(vma, (vm_flags | mm->def_flags | 3514 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3515 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3516 3517 vma->vm_ops = ops; 3518 vma->vm_private_data = priv; 3519 3520 ret = insert_vm_struct(mm, vma); 3521 if (ret) 3522 goto out; 3523 3524 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3525 3526 perf_event_mmap(vma); 3527 3528 validate_mm(mm); 3529 return vma; 3530 3531 out: 3532 vm_area_free(vma); 3533 validate_mm(mm); 3534 return ERR_PTR(ret); 3535 } 3536 3537 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3538 const struct vm_special_mapping *sm) 3539 { 3540 return vma->vm_private_data == sm && 3541 (vma->vm_ops == &special_mapping_vmops || 3542 vma->vm_ops == &legacy_special_mapping_vmops); 3543 } 3544 3545 /* 3546 * Called with mm->mmap_lock held for writing. 3547 * Insert a new vma covering the given region, with the given flags. 3548 * Its pages are supplied by the given array of struct page *. 3549 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3550 * The region past the last page supplied will always produce SIGBUS. 3551 * The array pointer and the pages it points to are assumed to stay alive 3552 * for as long as this mapping might exist. 3553 */ 3554 struct vm_area_struct *_install_special_mapping( 3555 struct mm_struct *mm, 3556 unsigned long addr, unsigned long len, 3557 unsigned long vm_flags, const struct vm_special_mapping *spec) 3558 { 3559 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3560 &special_mapping_vmops); 3561 } 3562 3563 int install_special_mapping(struct mm_struct *mm, 3564 unsigned long addr, unsigned long len, 3565 unsigned long vm_flags, struct page **pages) 3566 { 3567 struct vm_area_struct *vma = __install_special_mapping( 3568 mm, addr, len, vm_flags, (void *)pages, 3569 &legacy_special_mapping_vmops); 3570 3571 return PTR_ERR_OR_ZERO(vma); 3572 } 3573 3574 static DEFINE_MUTEX(mm_all_locks_mutex); 3575 3576 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3577 { 3578 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3579 /* 3580 * The LSB of head.next can't change from under us 3581 * because we hold the mm_all_locks_mutex. 3582 */ 3583 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3584 /* 3585 * We can safely modify head.next after taking the 3586 * anon_vma->root->rwsem. If some other vma in this mm shares 3587 * the same anon_vma we won't take it again. 3588 * 3589 * No need of atomic instructions here, head.next 3590 * can't change from under us thanks to the 3591 * anon_vma->root->rwsem. 3592 */ 3593 if (__test_and_set_bit(0, (unsigned long *) 3594 &anon_vma->root->rb_root.rb_root.rb_node)) 3595 BUG(); 3596 } 3597 } 3598 3599 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3600 { 3601 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3602 /* 3603 * AS_MM_ALL_LOCKS can't change from under us because 3604 * we hold the mm_all_locks_mutex. 3605 * 3606 * Operations on ->flags have to be atomic because 3607 * even if AS_MM_ALL_LOCKS is stable thanks to the 3608 * mm_all_locks_mutex, there may be other cpus 3609 * changing other bitflags in parallel to us. 3610 */ 3611 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3612 BUG(); 3613 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3614 } 3615 } 3616 3617 /* 3618 * This operation locks against the VM for all pte/vma/mm related 3619 * operations that could ever happen on a certain mm. This includes 3620 * vmtruncate, try_to_unmap, and all page faults. 3621 * 3622 * The caller must take the mmap_lock in write mode before calling 3623 * mm_take_all_locks(). The caller isn't allowed to release the 3624 * mmap_lock until mm_drop_all_locks() returns. 3625 * 3626 * mmap_lock in write mode is required in order to block all operations 3627 * that could modify pagetables and free pages without need of 3628 * altering the vma layout. It's also needed in write mode to avoid new 3629 * anon_vmas to be associated with existing vmas. 3630 * 3631 * A single task can't take more than one mm_take_all_locks() in a row 3632 * or it would deadlock. 3633 * 3634 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3635 * mapping->flags avoid to take the same lock twice, if more than one 3636 * vma in this mm is backed by the same anon_vma or address_space. 3637 * 3638 * We take locks in following order, accordingly to comment at beginning 3639 * of mm/rmap.c: 3640 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3641 * hugetlb mapping); 3642 * - all vmas marked locked 3643 * - all i_mmap_rwsem locks; 3644 * - all anon_vma->rwseml 3645 * 3646 * We can take all locks within these types randomly because the VM code 3647 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3648 * mm_all_locks_mutex. 3649 * 3650 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3651 * that may have to take thousand of locks. 3652 * 3653 * mm_take_all_locks() can fail if it's interrupted by signals. 3654 */ 3655 int mm_take_all_locks(struct mm_struct *mm) 3656 { 3657 struct vm_area_struct *vma; 3658 struct anon_vma_chain *avc; 3659 MA_STATE(mas, &mm->mm_mt, 0, 0); 3660 3661 mmap_assert_write_locked(mm); 3662 3663 mutex_lock(&mm_all_locks_mutex); 3664 3665 mas_for_each(&mas, vma, ULONG_MAX) { 3666 if (signal_pending(current)) 3667 goto out_unlock; 3668 vma_start_write(vma); 3669 } 3670 3671 mas_set(&mas, 0); 3672 mas_for_each(&mas, vma, ULONG_MAX) { 3673 if (signal_pending(current)) 3674 goto out_unlock; 3675 if (vma->vm_file && vma->vm_file->f_mapping && 3676 is_vm_hugetlb_page(vma)) 3677 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3678 } 3679 3680 mas_set(&mas, 0); 3681 mas_for_each(&mas, vma, ULONG_MAX) { 3682 if (signal_pending(current)) 3683 goto out_unlock; 3684 if (vma->vm_file && vma->vm_file->f_mapping && 3685 !is_vm_hugetlb_page(vma)) 3686 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3687 } 3688 3689 mas_set(&mas, 0); 3690 mas_for_each(&mas, vma, ULONG_MAX) { 3691 if (signal_pending(current)) 3692 goto out_unlock; 3693 if (vma->anon_vma) 3694 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3695 vm_lock_anon_vma(mm, avc->anon_vma); 3696 } 3697 3698 return 0; 3699 3700 out_unlock: 3701 mm_drop_all_locks(mm); 3702 return -EINTR; 3703 } 3704 3705 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3706 { 3707 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3708 /* 3709 * The LSB of head.next can't change to 0 from under 3710 * us because we hold the mm_all_locks_mutex. 3711 * 3712 * We must however clear the bitflag before unlocking 3713 * the vma so the users using the anon_vma->rb_root will 3714 * never see our bitflag. 3715 * 3716 * No need of atomic instructions here, head.next 3717 * can't change from under us until we release the 3718 * anon_vma->root->rwsem. 3719 */ 3720 if (!__test_and_clear_bit(0, (unsigned long *) 3721 &anon_vma->root->rb_root.rb_root.rb_node)) 3722 BUG(); 3723 anon_vma_unlock_write(anon_vma); 3724 } 3725 } 3726 3727 static void vm_unlock_mapping(struct address_space *mapping) 3728 { 3729 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3730 /* 3731 * AS_MM_ALL_LOCKS can't change to 0 from under us 3732 * because we hold the mm_all_locks_mutex. 3733 */ 3734 i_mmap_unlock_write(mapping); 3735 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3736 &mapping->flags)) 3737 BUG(); 3738 } 3739 } 3740 3741 /* 3742 * The mmap_lock cannot be released by the caller until 3743 * mm_drop_all_locks() returns. 3744 */ 3745 void mm_drop_all_locks(struct mm_struct *mm) 3746 { 3747 struct vm_area_struct *vma; 3748 struct anon_vma_chain *avc; 3749 MA_STATE(mas, &mm->mm_mt, 0, 0); 3750 3751 mmap_assert_write_locked(mm); 3752 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3753 3754 mas_for_each(&mas, vma, ULONG_MAX) { 3755 if (vma->anon_vma) 3756 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3757 vm_unlock_anon_vma(avc->anon_vma); 3758 if (vma->vm_file && vma->vm_file->f_mapping) 3759 vm_unlock_mapping(vma->vm_file->f_mapping); 3760 } 3761 vma_end_write_all(mm); 3762 3763 mutex_unlock(&mm_all_locks_mutex); 3764 } 3765 3766 /* 3767 * initialise the percpu counter for VM 3768 */ 3769 void __init mmap_init(void) 3770 { 3771 int ret; 3772 3773 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3774 VM_BUG_ON(ret); 3775 } 3776 3777 /* 3778 * Initialise sysctl_user_reserve_kbytes. 3779 * 3780 * This is intended to prevent a user from starting a single memory hogging 3781 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3782 * mode. 3783 * 3784 * The default value is min(3% of free memory, 128MB) 3785 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3786 */ 3787 static int init_user_reserve(void) 3788 { 3789 unsigned long free_kbytes; 3790 3791 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3792 3793 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3794 return 0; 3795 } 3796 subsys_initcall(init_user_reserve); 3797 3798 /* 3799 * Initialise sysctl_admin_reserve_kbytes. 3800 * 3801 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3802 * to log in and kill a memory hogging process. 3803 * 3804 * Systems with more than 256MB will reserve 8MB, enough to recover 3805 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3806 * only reserve 3% of free pages by default. 3807 */ 3808 static int init_admin_reserve(void) 3809 { 3810 unsigned long free_kbytes; 3811 3812 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3813 3814 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3815 return 0; 3816 } 3817 subsys_initcall(init_admin_reserve); 3818 3819 /* 3820 * Reinititalise user and admin reserves if memory is added or removed. 3821 * 3822 * The default user reserve max is 128MB, and the default max for the 3823 * admin reserve is 8MB. These are usually, but not always, enough to 3824 * enable recovery from a memory hogging process using login/sshd, a shell, 3825 * and tools like top. It may make sense to increase or even disable the 3826 * reserve depending on the existence of swap or variations in the recovery 3827 * tools. So, the admin may have changed them. 3828 * 3829 * If memory is added and the reserves have been eliminated or increased above 3830 * the default max, then we'll trust the admin. 3831 * 3832 * If memory is removed and there isn't enough free memory, then we 3833 * need to reset the reserves. 3834 * 3835 * Otherwise keep the reserve set by the admin. 3836 */ 3837 static int reserve_mem_notifier(struct notifier_block *nb, 3838 unsigned long action, void *data) 3839 { 3840 unsigned long tmp, free_kbytes; 3841 3842 switch (action) { 3843 case MEM_ONLINE: 3844 /* Default max is 128MB. Leave alone if modified by operator. */ 3845 tmp = sysctl_user_reserve_kbytes; 3846 if (0 < tmp && tmp < (1UL << 17)) 3847 init_user_reserve(); 3848 3849 /* Default max is 8MB. Leave alone if modified by operator. */ 3850 tmp = sysctl_admin_reserve_kbytes; 3851 if (0 < tmp && tmp < (1UL << 13)) 3852 init_admin_reserve(); 3853 3854 break; 3855 case MEM_OFFLINE: 3856 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3857 3858 if (sysctl_user_reserve_kbytes > free_kbytes) { 3859 init_user_reserve(); 3860 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3861 sysctl_user_reserve_kbytes); 3862 } 3863 3864 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3865 init_admin_reserve(); 3866 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3867 sysctl_admin_reserve_kbytes); 3868 } 3869 break; 3870 default: 3871 break; 3872 } 3873 return NOTIFY_OK; 3874 } 3875 3876 static int __meminit init_reserve_notifier(void) 3877 { 3878 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3879 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3880 3881 return 0; 3882 } 3883 subsys_initcall(init_reserve_notifier); 3884