xref: /openbmc/linux/mm/mmap.c (revision 479965a2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma->vm_flags & VM_SHARED)
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 	VMA_ITERATOR(vmi, mm, 0);
398 	struct address_space *mapping = NULL;
399 
400 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 	if (vma_iter_prealloc(&vmi, vma))
402 		return -ENOMEM;
403 
404 	vma_start_write(vma);
405 
406 	vma_iter_store(&vmi, vma);
407 
408 	if (vma->vm_file) {
409 		mapping = vma->vm_file->f_mapping;
410 		i_mmap_lock_write(mapping);
411 		__vma_link_file(vma, mapping);
412 		i_mmap_unlock_write(mapping);
413 	}
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 	return 0;
418 }
419 
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 		struct vm_area_struct *vma, struct vm_area_struct *next,
430 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 	memset(vp, 0, sizeof(struct vma_prepare));
433 	vp->vma = vma;
434 	vp->anon_vma = vma->anon_vma;
435 	vp->remove = remove;
436 	vp->remove2 = remove2;
437 	vp->adj_next = next;
438 	if (!vp->anon_vma && next)
439 		vp->anon_vma = next->anon_vma;
440 
441 	vp->file = vma->vm_file;
442 	if (vp->file)
443 		vp->mapping = vma->vm_file->f_mapping;
444 
445 }
446 
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453 				 struct vm_area_struct *vma)
454 {
455 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457 
458 
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 	if (vp->file) {
466 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467 
468 		if (vp->adj_next)
469 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 				      vp->adj_next->vm_end);
471 
472 		i_mmap_lock_write(vp->mapping);
473 		if (vp->insert && vp->insert->vm_file) {
474 			/*
475 			 * Put into interval tree now, so instantiated pages
476 			 * are visible to arm/parisc __flush_dcache_page
477 			 * throughout; but we cannot insert into address
478 			 * space until vma start or end is updated.
479 			 */
480 			__vma_link_file(vp->insert,
481 					vp->insert->vm_file->f_mapping);
482 		}
483 	}
484 
485 	if (vp->anon_vma) {
486 		anon_vma_lock_write(vp->anon_vma);
487 		anon_vma_interval_tree_pre_update_vma(vp->vma);
488 		if (vp->adj_next)
489 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 	}
491 
492 	if (vp->file) {
493 		flush_dcache_mmap_lock(vp->mapping);
494 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 		if (vp->adj_next)
496 			vma_interval_tree_remove(vp->adj_next,
497 						 &vp->mapping->i_mmap);
498 	}
499 
500 }
501 
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511 				struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 	if (vp->file) {
514 		if (vp->adj_next)
515 			vma_interval_tree_insert(vp->adj_next,
516 						 &vp->mapping->i_mmap);
517 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 		flush_dcache_mmap_unlock(vp->mapping);
519 	}
520 
521 	if (vp->remove && vp->file) {
522 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 		if (vp->remove2)
524 			__remove_shared_vm_struct(vp->remove2, vp->file,
525 						  vp->mapping);
526 	} else if (vp->insert) {
527 		/*
528 		 * split_vma has split insert from vma, and needs
529 		 * us to insert it before dropping the locks
530 		 * (it may either follow vma or precede it).
531 		 */
532 		vma_iter_store(vmi, vp->insert);
533 		mm->map_count++;
534 	}
535 
536 	if (vp->anon_vma) {
537 		anon_vma_interval_tree_post_update_vma(vp->vma);
538 		if (vp->adj_next)
539 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 		anon_vma_unlock_write(vp->anon_vma);
541 	}
542 
543 	if (vp->file) {
544 		i_mmap_unlock_write(vp->mapping);
545 		uprobe_mmap(vp->vma);
546 
547 		if (vp->adj_next)
548 			uprobe_mmap(vp->adj_next);
549 	}
550 
551 	if (vp->remove) {
552 again:
553 		vma_mark_detached(vp->remove, true);
554 		if (vp->file) {
555 			uprobe_munmap(vp->remove, vp->remove->vm_start,
556 				      vp->remove->vm_end);
557 			fput(vp->file);
558 		}
559 		if (vp->remove->anon_vma)
560 			anon_vma_merge(vp->vma, vp->remove);
561 		mm->map_count--;
562 		mpol_put(vma_policy(vp->remove));
563 		if (!vp->remove2)
564 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 		vm_area_free(vp->remove);
566 
567 		/*
568 		 * In mprotect's case 6 (see comments on vma_merge),
569 		 * we are removing both mid and next vmas
570 		 */
571 		if (vp->remove2) {
572 			vp->remove = vp->remove2;
573 			vp->remove2 = NULL;
574 			goto again;
575 		}
576 	}
577 	if (vp->insert && vp->file)
578 		uprobe_mmap(vp->insert);
579 	validate_mm(mm);
580 }
581 
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  *
587  * Returns: 0 on success.
588  */
589 static inline int dup_anon_vma(struct vm_area_struct *dst,
590 			       struct vm_area_struct *src)
591 {
592 	/*
593 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
594 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
595 	 * anon pages imported.
596 	 */
597 	if (src->anon_vma && !dst->anon_vma) {
598 		vma_assert_write_locked(dst);
599 		dst->anon_vma = src->anon_vma;
600 		return anon_vma_clone(dst, src);
601 	}
602 
603 	return 0;
604 }
605 
606 /*
607  * vma_expand - Expand an existing VMA
608  *
609  * @vmi: The vma iterator
610  * @vma: The vma to expand
611  * @start: The start of the vma
612  * @end: The exclusive end of the vma
613  * @pgoff: The page offset of vma
614  * @next: The current of next vma.
615  *
616  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
617  * expand over @next if it's different from @vma and @end == @next->vm_end.
618  * Checking if the @vma can expand and merge with @next needs to be handled by
619  * the caller.
620  *
621  * Returns: 0 on success
622  */
623 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
624 	       unsigned long start, unsigned long end, pgoff_t pgoff,
625 	       struct vm_area_struct *next)
626 {
627 	bool remove_next = false;
628 	struct vma_prepare vp;
629 
630 	vma_start_write(vma);
631 	if (next && (vma != next) && (end == next->vm_end)) {
632 		int ret;
633 
634 		remove_next = true;
635 		vma_start_write(next);
636 		ret = dup_anon_vma(vma, next);
637 		if (ret)
638 			return ret;
639 	}
640 
641 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
642 	/* Not merging but overwriting any part of next is not handled. */
643 	VM_WARN_ON(next && !vp.remove &&
644 		  next != vma && end > next->vm_start);
645 	/* Only handles expanding */
646 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
647 
648 	/* Note: vma iterator must be pointing to 'start' */
649 	vma_iter_config(vmi, start, end);
650 	if (vma_iter_prealloc(vmi, vma))
651 		goto nomem;
652 
653 	vma_prepare(&vp);
654 	vma_adjust_trans_huge(vma, start, end, 0);
655 	vma->vm_start = start;
656 	vma->vm_end = end;
657 	vma->vm_pgoff = pgoff;
658 	vma_iter_store(vmi, vma);
659 
660 	vma_complete(&vp, vmi, vma->vm_mm);
661 	return 0;
662 
663 nomem:
664 	return -ENOMEM;
665 }
666 
667 /*
668  * vma_shrink() - Reduce an existing VMAs memory area
669  * @vmi: The vma iterator
670  * @vma: The VMA to modify
671  * @start: The new start
672  * @end: The new end
673  *
674  * Returns: 0 on success, -ENOMEM otherwise
675  */
676 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
677 	       unsigned long start, unsigned long end, pgoff_t pgoff)
678 {
679 	struct vma_prepare vp;
680 
681 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
682 
683 	if (vma->vm_start < start)
684 		vma_iter_config(vmi, vma->vm_start, start);
685 	else
686 		vma_iter_config(vmi, end, vma->vm_end);
687 
688 	if (vma_iter_prealloc(vmi, NULL))
689 		return -ENOMEM;
690 
691 	vma_start_write(vma);
692 
693 	init_vma_prep(&vp, vma);
694 	vma_prepare(&vp);
695 	vma_adjust_trans_huge(vma, start, end, 0);
696 
697 	vma_iter_clear(vmi);
698 	vma->vm_start = start;
699 	vma->vm_end = end;
700 	vma->vm_pgoff = pgoff;
701 	vma_complete(&vp, vmi, vma->vm_mm);
702 	return 0;
703 }
704 
705 /*
706  * If the vma has a ->close operation then the driver probably needs to release
707  * per-vma resources, so we don't attempt to merge those if the caller indicates
708  * the current vma may be removed as part of the merge.
709  */
710 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
711 		struct file *file, unsigned long vm_flags,
712 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
713 		struct anon_vma_name *anon_name, bool may_remove_vma)
714 {
715 	/*
716 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
717 	 * match the flags but dirty bit -- the caller should mark
718 	 * merged VMA as dirty. If dirty bit won't be excluded from
719 	 * comparison, we increase pressure on the memory system forcing
720 	 * the kernel to generate new VMAs when old one could be
721 	 * extended instead.
722 	 */
723 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
724 		return false;
725 	if (vma->vm_file != file)
726 		return false;
727 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
728 		return false;
729 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
730 		return false;
731 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
732 		return false;
733 	return true;
734 }
735 
736 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
737 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
738 {
739 	/*
740 	 * The list_is_singular() test is to avoid merging VMA cloned from
741 	 * parents. This can improve scalability caused by anon_vma lock.
742 	 */
743 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
744 		list_is_singular(&vma->anon_vma_chain)))
745 		return true;
746 	return anon_vma1 == anon_vma2;
747 }
748 
749 /*
750  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
751  * in front of (at a lower virtual address and file offset than) the vma.
752  *
753  * We cannot merge two vmas if they have differently assigned (non-NULL)
754  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
755  *
756  * We don't check here for the merged mmap wrapping around the end of pagecache
757  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
758  * wrap, nor mmaps which cover the final page at index -1UL.
759  *
760  * We assume the vma may be removed as part of the merge.
761  */
762 static bool
763 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
764 		struct anon_vma *anon_vma, struct file *file,
765 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
766 		struct anon_vma_name *anon_name)
767 {
768 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
769 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
770 		if (vma->vm_pgoff == vm_pgoff)
771 			return true;
772 	}
773 	return false;
774 }
775 
776 /*
777  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
778  * beyond (at a higher virtual address and file offset than) the vma.
779  *
780  * We cannot merge two vmas if they have differently assigned (non-NULL)
781  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
782  *
783  * We assume that vma is not removed as part of the merge.
784  */
785 static bool
786 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
787 		struct anon_vma *anon_vma, struct file *file,
788 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
789 		struct anon_vma_name *anon_name)
790 {
791 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
792 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
793 		pgoff_t vm_pglen;
794 		vm_pglen = vma_pages(vma);
795 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
796 			return true;
797 	}
798 	return false;
799 }
800 
801 /*
802  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
803  * figure out whether that can be merged with its predecessor or its
804  * successor.  Or both (it neatly fills a hole).
805  *
806  * In most cases - when called for mmap, brk or mremap - [addr,end) is
807  * certain not to be mapped by the time vma_merge is called; but when
808  * called for mprotect, it is certain to be already mapped (either at
809  * an offset within prev, or at the start of next), and the flags of
810  * this area are about to be changed to vm_flags - and the no-change
811  * case has already been eliminated.
812  *
813  * The following mprotect cases have to be considered, where **** is
814  * the area passed down from mprotect_fixup, never extending beyond one
815  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
816  * at the same address as **** and is of the same or larger span, and
817  * NNNN the next vma after ****:
818  *
819  *     ****             ****                   ****
820  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
821  *    cannot merge    might become       might become
822  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
823  *    mmap, brk or    case 4 below       case 5 below
824  *    mremap move:
825  *                        ****               ****
826  *                    PPPP    NNNN       PPPPCCCCNNNN
827  *                    might become       might become
828  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
829  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
830  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
831  *
832  * It is important for case 8 that the vma CCCC overlapping the
833  * region **** is never going to extended over NNNN. Instead NNNN must
834  * be extended in region **** and CCCC must be removed. This way in
835  * all cases where vma_merge succeeds, the moment vma_merge drops the
836  * rmap_locks, the properties of the merged vma will be already
837  * correct for the whole merged range. Some of those properties like
838  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
839  * be correct for the whole merged range immediately after the
840  * rmap_locks are released. Otherwise if NNNN would be removed and
841  * CCCC would be extended over the NNNN range, remove_migration_ptes
842  * or other rmap walkers (if working on addresses beyond the "end"
843  * parameter) may establish ptes with the wrong permissions of CCCC
844  * instead of the right permissions of NNNN.
845  *
846  * In the code below:
847  * PPPP is represented by *prev
848  * CCCC is represented by *curr or not represented at all (NULL)
849  * NNNN is represented by *next or not represented at all (NULL)
850  * **** is not represented - it will be merged and the vma containing the
851  *      area is returned, or the function will return NULL
852  */
853 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
854 			struct vm_area_struct *prev, unsigned long addr,
855 			unsigned long end, unsigned long vm_flags,
856 			struct anon_vma *anon_vma, struct file *file,
857 			pgoff_t pgoff, struct mempolicy *policy,
858 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
859 			struct anon_vma_name *anon_name)
860 {
861 	struct vm_area_struct *curr, *next, *res;
862 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
863 	struct vma_prepare vp;
864 	pgoff_t vma_pgoff;
865 	int err = 0;
866 	bool merge_prev = false;
867 	bool merge_next = false;
868 	bool vma_expanded = false;
869 	unsigned long vma_start = addr;
870 	unsigned long vma_end = end;
871 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
872 	long adj_start = 0;
873 
874 	/*
875 	 * We later require that vma->vm_flags == vm_flags,
876 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
877 	 */
878 	if (vm_flags & VM_SPECIAL)
879 		return NULL;
880 
881 	/* Does the input range span an existing VMA? (cases 5 - 8) */
882 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
883 
884 	if (!curr ||			/* cases 1 - 4 */
885 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
886 		next = vma_lookup(mm, end);
887 	else
888 		next = NULL;		/* case 5 */
889 
890 	if (prev) {
891 		vma_start = prev->vm_start;
892 		vma_pgoff = prev->vm_pgoff;
893 
894 		/* Can we merge the predecessor? */
895 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
896 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
897 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
898 			merge_prev = true;
899 			vma_prev(vmi);
900 		}
901 	}
902 
903 	/* Can we merge the successor? */
904 	if (next && mpol_equal(policy, vma_policy(next)) &&
905 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
906 				 vm_userfaultfd_ctx, anon_name)) {
907 		merge_next = true;
908 	}
909 
910 	/* Verify some invariant that must be enforced by the caller. */
911 	VM_WARN_ON(prev && addr <= prev->vm_start);
912 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
913 	VM_WARN_ON(addr >= end);
914 
915 	if (!merge_prev && !merge_next)
916 		return NULL; /* Not mergeable. */
917 
918 	if (merge_prev)
919 		vma_start_write(prev);
920 
921 	res = vma = prev;
922 	remove = remove2 = adjust = NULL;
923 
924 	/* Can we merge both the predecessor and the successor? */
925 	if (merge_prev && merge_next &&
926 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
927 		vma_start_write(next);
928 		remove = next;				/* case 1 */
929 		vma_end = next->vm_end;
930 		err = dup_anon_vma(prev, next);
931 		if (curr) {				/* case 6 */
932 			vma_start_write(curr);
933 			remove = curr;
934 			remove2 = next;
935 			if (!next->anon_vma)
936 				err = dup_anon_vma(prev, curr);
937 		}
938 	} else if (merge_prev) {			/* case 2 */
939 		if (curr) {
940 			vma_start_write(curr);
941 			err = dup_anon_vma(prev, curr);
942 			if (end == curr->vm_end) {	/* case 7 */
943 				remove = curr;
944 			} else {			/* case 5 */
945 				adjust = curr;
946 				adj_start = (end - curr->vm_start);
947 			}
948 		}
949 	} else { /* merge_next */
950 		vma_start_write(next);
951 		res = next;
952 		if (prev && addr < prev->vm_end) {	/* case 4 */
953 			vma_start_write(prev);
954 			vma_end = addr;
955 			adjust = next;
956 			adj_start = -(prev->vm_end - addr);
957 			err = dup_anon_vma(next, prev);
958 		} else {
959 			/*
960 			 * Note that cases 3 and 8 are the ONLY ones where prev
961 			 * is permitted to be (but is not necessarily) NULL.
962 			 */
963 			vma = next;			/* case 3 */
964 			vma_start = addr;
965 			vma_end = next->vm_end;
966 			vma_pgoff = next->vm_pgoff - pglen;
967 			if (curr) {			/* case 8 */
968 				vma_pgoff = curr->vm_pgoff;
969 				vma_start_write(curr);
970 				remove = curr;
971 				err = dup_anon_vma(next, curr);
972 			}
973 		}
974 	}
975 
976 	/* Error in anon_vma clone. */
977 	if (err)
978 		return NULL;
979 
980 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
981 		vma_expanded = true;
982 
983 	if (vma_expanded) {
984 		vma_iter_config(vmi, vma_start, vma_end);
985 	} else {
986 		vma_iter_config(vmi, adjust->vm_start + adj_start,
987 				adjust->vm_end);
988 	}
989 
990 	if (vma_iter_prealloc(vmi, vma))
991 		return NULL;
992 
993 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
994 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
995 		   vp.anon_vma != adjust->anon_vma);
996 
997 	vma_prepare(&vp);
998 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
999 
1000 	vma->vm_start = vma_start;
1001 	vma->vm_end = vma_end;
1002 	vma->vm_pgoff = vma_pgoff;
1003 
1004 	if (vma_expanded)
1005 		vma_iter_store(vmi, vma);
1006 
1007 	if (adj_start) {
1008 		adjust->vm_start += adj_start;
1009 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1010 		if (adj_start < 0) {
1011 			WARN_ON(vma_expanded);
1012 			vma_iter_store(vmi, next);
1013 		}
1014 	}
1015 
1016 	vma_complete(&vp, vmi, mm);
1017 	khugepaged_enter_vma(res, vm_flags);
1018 	return res;
1019 }
1020 
1021 /*
1022  * Rough compatibility check to quickly see if it's even worth looking
1023  * at sharing an anon_vma.
1024  *
1025  * They need to have the same vm_file, and the flags can only differ
1026  * in things that mprotect may change.
1027  *
1028  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1029  * we can merge the two vma's. For example, we refuse to merge a vma if
1030  * there is a vm_ops->close() function, because that indicates that the
1031  * driver is doing some kind of reference counting. But that doesn't
1032  * really matter for the anon_vma sharing case.
1033  */
1034 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1035 {
1036 	return a->vm_end == b->vm_start &&
1037 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1038 		a->vm_file == b->vm_file &&
1039 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1040 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1041 }
1042 
1043 /*
1044  * Do some basic sanity checking to see if we can re-use the anon_vma
1045  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1046  * the same as 'old', the other will be the new one that is trying
1047  * to share the anon_vma.
1048  *
1049  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1050  * the anon_vma of 'old' is concurrently in the process of being set up
1051  * by another page fault trying to merge _that_. But that's ok: if it
1052  * is being set up, that automatically means that it will be a singleton
1053  * acceptable for merging, so we can do all of this optimistically. But
1054  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1055  *
1056  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1057  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1058  * is to return an anon_vma that is "complex" due to having gone through
1059  * a fork).
1060  *
1061  * We also make sure that the two vma's are compatible (adjacent,
1062  * and with the same memory policies). That's all stable, even with just
1063  * a read lock on the mmap_lock.
1064  */
1065 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 	if (anon_vma_compatible(a, b)) {
1068 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1069 
1070 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1071 			return anon_vma;
1072 	}
1073 	return NULL;
1074 }
1075 
1076 /*
1077  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1078  * neighbouring vmas for a suitable anon_vma, before it goes off
1079  * to allocate a new anon_vma.  It checks because a repetitive
1080  * sequence of mprotects and faults may otherwise lead to distinct
1081  * anon_vmas being allocated, preventing vma merge in subsequent
1082  * mprotect.
1083  */
1084 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1085 {
1086 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1087 	struct anon_vma *anon_vma = NULL;
1088 	struct vm_area_struct *prev, *next;
1089 
1090 	/* Try next first. */
1091 	next = mas_walk(&mas);
1092 	if (next) {
1093 		anon_vma = reusable_anon_vma(next, vma, next);
1094 		if (anon_vma)
1095 			return anon_vma;
1096 	}
1097 
1098 	prev = mas_prev(&mas, 0);
1099 	VM_BUG_ON_VMA(prev != vma, vma);
1100 	prev = mas_prev(&mas, 0);
1101 	/* Try prev next. */
1102 	if (prev)
1103 		anon_vma = reusable_anon_vma(prev, prev, vma);
1104 
1105 	/*
1106 	 * We might reach here with anon_vma == NULL if we can't find
1107 	 * any reusable anon_vma.
1108 	 * There's no absolute need to look only at touching neighbours:
1109 	 * we could search further afield for "compatible" anon_vmas.
1110 	 * But it would probably just be a waste of time searching,
1111 	 * or lead to too many vmas hanging off the same anon_vma.
1112 	 * We're trying to allow mprotect remerging later on,
1113 	 * not trying to minimize memory used for anon_vmas.
1114 	 */
1115 	return anon_vma;
1116 }
1117 
1118 /*
1119  * If a hint addr is less than mmap_min_addr change hint to be as
1120  * low as possible but still greater than mmap_min_addr
1121  */
1122 static inline unsigned long round_hint_to_min(unsigned long hint)
1123 {
1124 	hint &= PAGE_MASK;
1125 	if (((void *)hint != NULL) &&
1126 	    (hint < mmap_min_addr))
1127 		return PAGE_ALIGN(mmap_min_addr);
1128 	return hint;
1129 }
1130 
1131 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1132 			unsigned long bytes)
1133 {
1134 	unsigned long locked_pages, limit_pages;
1135 
1136 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1137 		return true;
1138 
1139 	locked_pages = bytes >> PAGE_SHIFT;
1140 	locked_pages += mm->locked_vm;
1141 
1142 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1143 	limit_pages >>= PAGE_SHIFT;
1144 
1145 	return locked_pages <= limit_pages;
1146 }
1147 
1148 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1149 {
1150 	if (S_ISREG(inode->i_mode))
1151 		return MAX_LFS_FILESIZE;
1152 
1153 	if (S_ISBLK(inode->i_mode))
1154 		return MAX_LFS_FILESIZE;
1155 
1156 	if (S_ISSOCK(inode->i_mode))
1157 		return MAX_LFS_FILESIZE;
1158 
1159 	/* Special "we do even unsigned file positions" case */
1160 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1161 		return 0;
1162 
1163 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1164 	return ULONG_MAX;
1165 }
1166 
1167 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1168 				unsigned long pgoff, unsigned long len)
1169 {
1170 	u64 maxsize = file_mmap_size_max(file, inode);
1171 
1172 	if (maxsize && len > maxsize)
1173 		return false;
1174 	maxsize -= len;
1175 	if (pgoff > maxsize >> PAGE_SHIFT)
1176 		return false;
1177 	return true;
1178 }
1179 
1180 /*
1181  * The caller must write-lock current->mm->mmap_lock.
1182  */
1183 unsigned long do_mmap(struct file *file, unsigned long addr,
1184 			unsigned long len, unsigned long prot,
1185 			unsigned long flags, vm_flags_t vm_flags,
1186 			unsigned long pgoff, unsigned long *populate,
1187 			struct list_head *uf)
1188 {
1189 	struct mm_struct *mm = current->mm;
1190 	int pkey = 0;
1191 
1192 	*populate = 0;
1193 
1194 	if (!len)
1195 		return -EINVAL;
1196 
1197 	/*
1198 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1199 	 *
1200 	 * (the exception is when the underlying filesystem is noexec
1201 	 *  mounted, in which case we dont add PROT_EXEC.)
1202 	 */
1203 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1204 		if (!(file && path_noexec(&file->f_path)))
1205 			prot |= PROT_EXEC;
1206 
1207 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1208 	if (flags & MAP_FIXED_NOREPLACE)
1209 		flags |= MAP_FIXED;
1210 
1211 	if (!(flags & MAP_FIXED))
1212 		addr = round_hint_to_min(addr);
1213 
1214 	/* Careful about overflows.. */
1215 	len = PAGE_ALIGN(len);
1216 	if (!len)
1217 		return -ENOMEM;
1218 
1219 	/* offset overflow? */
1220 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1221 		return -EOVERFLOW;
1222 
1223 	/* Too many mappings? */
1224 	if (mm->map_count > sysctl_max_map_count)
1225 		return -ENOMEM;
1226 
1227 	/* Obtain the address to map to. we verify (or select) it and ensure
1228 	 * that it represents a valid section of the address space.
1229 	 */
1230 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1231 	if (IS_ERR_VALUE(addr))
1232 		return addr;
1233 
1234 	if (flags & MAP_FIXED_NOREPLACE) {
1235 		if (find_vma_intersection(mm, addr, addr + len))
1236 			return -EEXIST;
1237 	}
1238 
1239 	if (prot == PROT_EXEC) {
1240 		pkey = execute_only_pkey(mm);
1241 		if (pkey < 0)
1242 			pkey = 0;
1243 	}
1244 
1245 	/* Do simple checking here so the lower-level routines won't have
1246 	 * to. we assume access permissions have been handled by the open
1247 	 * of the memory object, so we don't do any here.
1248 	 */
1249 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1250 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251 
1252 	if (flags & MAP_LOCKED)
1253 		if (!can_do_mlock())
1254 			return -EPERM;
1255 
1256 	if (!mlock_future_ok(mm, vm_flags, len))
1257 		return -EAGAIN;
1258 
1259 	if (file) {
1260 		struct inode *inode = file_inode(file);
1261 		unsigned long flags_mask;
1262 
1263 		if (!file_mmap_ok(file, inode, pgoff, len))
1264 			return -EOVERFLOW;
1265 
1266 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1267 
1268 		switch (flags & MAP_TYPE) {
1269 		case MAP_SHARED:
1270 			/*
1271 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1272 			 * flags. E.g. MAP_SYNC is dangerous to use with
1273 			 * MAP_SHARED as you don't know which consistency model
1274 			 * you will get. We silently ignore unsupported flags
1275 			 * with MAP_SHARED to preserve backward compatibility.
1276 			 */
1277 			flags &= LEGACY_MAP_MASK;
1278 			fallthrough;
1279 		case MAP_SHARED_VALIDATE:
1280 			if (flags & ~flags_mask)
1281 				return -EOPNOTSUPP;
1282 			if (prot & PROT_WRITE) {
1283 				if (!(file->f_mode & FMODE_WRITE))
1284 					return -EACCES;
1285 				if (IS_SWAPFILE(file->f_mapping->host))
1286 					return -ETXTBSY;
1287 			}
1288 
1289 			/*
1290 			 * Make sure we don't allow writing to an append-only
1291 			 * file..
1292 			 */
1293 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1294 				return -EACCES;
1295 
1296 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1297 			if (!(file->f_mode & FMODE_WRITE))
1298 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1299 			fallthrough;
1300 		case MAP_PRIVATE:
1301 			if (!(file->f_mode & FMODE_READ))
1302 				return -EACCES;
1303 			if (path_noexec(&file->f_path)) {
1304 				if (vm_flags & VM_EXEC)
1305 					return -EPERM;
1306 				vm_flags &= ~VM_MAYEXEC;
1307 			}
1308 
1309 			if (!file->f_op->mmap)
1310 				return -ENODEV;
1311 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1312 				return -EINVAL;
1313 			break;
1314 
1315 		default:
1316 			return -EINVAL;
1317 		}
1318 	} else {
1319 		switch (flags & MAP_TYPE) {
1320 		case MAP_SHARED:
1321 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 				return -EINVAL;
1323 			/*
1324 			 * Ignore pgoff.
1325 			 */
1326 			pgoff = 0;
1327 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1328 			break;
1329 		case MAP_PRIVATE:
1330 			/*
1331 			 * Set pgoff according to addr for anon_vma.
1332 			 */
1333 			pgoff = addr >> PAGE_SHIFT;
1334 			break;
1335 		default:
1336 			return -EINVAL;
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * Set 'VM_NORESERVE' if we should not account for the
1342 	 * memory use of this mapping.
1343 	 */
1344 	if (flags & MAP_NORESERVE) {
1345 		/* We honor MAP_NORESERVE if allowed to overcommit */
1346 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1347 			vm_flags |= VM_NORESERVE;
1348 
1349 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1350 		if (file && is_file_hugepages(file))
1351 			vm_flags |= VM_NORESERVE;
1352 	}
1353 
1354 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1355 	if (!IS_ERR_VALUE(addr) &&
1356 	    ((vm_flags & VM_LOCKED) ||
1357 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1358 		*populate = len;
1359 	return addr;
1360 }
1361 
1362 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1363 			      unsigned long prot, unsigned long flags,
1364 			      unsigned long fd, unsigned long pgoff)
1365 {
1366 	struct file *file = NULL;
1367 	unsigned long retval;
1368 
1369 	if (!(flags & MAP_ANONYMOUS)) {
1370 		audit_mmap_fd(fd, flags);
1371 		file = fget(fd);
1372 		if (!file)
1373 			return -EBADF;
1374 		if (is_file_hugepages(file)) {
1375 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1376 		} else if (unlikely(flags & MAP_HUGETLB)) {
1377 			retval = -EINVAL;
1378 			goto out_fput;
1379 		}
1380 	} else if (flags & MAP_HUGETLB) {
1381 		struct hstate *hs;
1382 
1383 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1384 		if (!hs)
1385 			return -EINVAL;
1386 
1387 		len = ALIGN(len, huge_page_size(hs));
1388 		/*
1389 		 * VM_NORESERVE is used because the reservations will be
1390 		 * taken when vm_ops->mmap() is called
1391 		 */
1392 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1393 				VM_NORESERVE,
1394 				HUGETLB_ANONHUGE_INODE,
1395 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1396 		if (IS_ERR(file))
1397 			return PTR_ERR(file);
1398 	}
1399 
1400 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1401 out_fput:
1402 	if (file)
1403 		fput(file);
1404 	return retval;
1405 }
1406 
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408 		unsigned long, prot, unsigned long, flags,
1409 		unsigned long, fd, unsigned long, pgoff)
1410 {
1411 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1412 }
1413 
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1416 	unsigned long addr;
1417 	unsigned long len;
1418 	unsigned long prot;
1419 	unsigned long flags;
1420 	unsigned long fd;
1421 	unsigned long offset;
1422 };
1423 
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1425 {
1426 	struct mmap_arg_struct a;
1427 
1428 	if (copy_from_user(&a, arg, sizeof(a)))
1429 		return -EFAULT;
1430 	if (offset_in_page(a.offset))
1431 		return -EINVAL;
1432 
1433 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434 			       a.offset >> PAGE_SHIFT);
1435 }
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1437 
1438 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1439 {
1440 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1441 }
1442 
1443 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1444 {
1445 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1446 		(VM_WRITE | VM_SHARED);
1447 }
1448 
1449 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1450 {
1451 	/* No managed pages to writeback. */
1452 	if (vma->vm_flags & VM_PFNMAP)
1453 		return false;
1454 
1455 	return vma->vm_file && vma->vm_file->f_mapping &&
1456 		mapping_can_writeback(vma->vm_file->f_mapping);
1457 }
1458 
1459 /*
1460  * Does this VMA require the underlying folios to have their dirty state
1461  * tracked?
1462  */
1463 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1464 {
1465 	/* Only shared, writable VMAs require dirty tracking. */
1466 	if (!vma_is_shared_writable(vma))
1467 		return false;
1468 
1469 	/* Does the filesystem need to be notified? */
1470 	if (vm_ops_needs_writenotify(vma->vm_ops))
1471 		return true;
1472 
1473 	/*
1474 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1475 	 * can writeback, dirty tracking is still required.
1476 	 */
1477 	return vma_fs_can_writeback(vma);
1478 }
1479 
1480 /*
1481  * Some shared mappings will want the pages marked read-only
1482  * to track write events. If so, we'll downgrade vm_page_prot
1483  * to the private version (using protection_map[] without the
1484  * VM_SHARED bit).
1485  */
1486 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1487 {
1488 	/* If it was private or non-writable, the write bit is already clear */
1489 	if (!vma_is_shared_writable(vma))
1490 		return 0;
1491 
1492 	/* The backer wishes to know when pages are first written to? */
1493 	if (vm_ops_needs_writenotify(vma->vm_ops))
1494 		return 1;
1495 
1496 	/* The open routine did something to the protections that pgprot_modify
1497 	 * won't preserve? */
1498 	if (pgprot_val(vm_page_prot) !=
1499 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1500 		return 0;
1501 
1502 	/*
1503 	 * Do we need to track softdirty? hugetlb does not support softdirty
1504 	 * tracking yet.
1505 	 */
1506 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1507 		return 1;
1508 
1509 	/* Do we need write faults for uffd-wp tracking? */
1510 	if (userfaultfd_wp(vma))
1511 		return 1;
1512 
1513 	/* Can the mapping track the dirty pages? */
1514 	return vma_fs_can_writeback(vma);
1515 }
1516 
1517 /*
1518  * We account for memory if it's a private writeable mapping,
1519  * not hugepages and VM_NORESERVE wasn't set.
1520  */
1521 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1522 {
1523 	/*
1524 	 * hugetlb has its own accounting separate from the core VM
1525 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1526 	 */
1527 	if (file && is_file_hugepages(file))
1528 		return 0;
1529 
1530 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1531 }
1532 
1533 /**
1534  * unmapped_area() - Find an area between the low_limit and the high_limit with
1535  * the correct alignment and offset, all from @info. Note: current->mm is used
1536  * for the search.
1537  *
1538  * @info: The unmapped area information including the range [low_limit -
1539  * high_limit), the alignment offset and mask.
1540  *
1541  * Return: A memory address or -ENOMEM.
1542  */
1543 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1544 {
1545 	unsigned long length, gap;
1546 	unsigned long low_limit, high_limit;
1547 	struct vm_area_struct *tmp;
1548 
1549 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1550 
1551 	/* Adjust search length to account for worst case alignment overhead */
1552 	length = info->length + info->align_mask;
1553 	if (length < info->length)
1554 		return -ENOMEM;
1555 
1556 	low_limit = info->low_limit;
1557 	if (low_limit < mmap_min_addr)
1558 		low_limit = mmap_min_addr;
1559 	high_limit = info->high_limit;
1560 retry:
1561 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1562 		return -ENOMEM;
1563 
1564 	gap = mas.index;
1565 	gap += (info->align_offset - gap) & info->align_mask;
1566 	tmp = mas_next(&mas, ULONG_MAX);
1567 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1568 		if (vm_start_gap(tmp) < gap + length - 1) {
1569 			low_limit = tmp->vm_end;
1570 			mas_reset(&mas);
1571 			goto retry;
1572 		}
1573 	} else {
1574 		tmp = mas_prev(&mas, 0);
1575 		if (tmp && vm_end_gap(tmp) > gap) {
1576 			low_limit = vm_end_gap(tmp);
1577 			mas_reset(&mas);
1578 			goto retry;
1579 		}
1580 	}
1581 
1582 	return gap;
1583 }
1584 
1585 /**
1586  * unmapped_area_topdown() - Find an area between the low_limit and the
1587  * high_limit with the correct alignment and offset at the highest available
1588  * address, all from @info. Note: current->mm is used for the search.
1589  *
1590  * @info: The unmapped area information including the range [low_limit -
1591  * high_limit), the alignment offset and mask.
1592  *
1593  * Return: A memory address or -ENOMEM.
1594  */
1595 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1596 {
1597 	unsigned long length, gap, gap_end;
1598 	unsigned long low_limit, high_limit;
1599 	struct vm_area_struct *tmp;
1600 
1601 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1602 	/* Adjust search length to account for worst case alignment overhead */
1603 	length = info->length + info->align_mask;
1604 	if (length < info->length)
1605 		return -ENOMEM;
1606 
1607 	low_limit = info->low_limit;
1608 	if (low_limit < mmap_min_addr)
1609 		low_limit = mmap_min_addr;
1610 	high_limit = info->high_limit;
1611 retry:
1612 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1613 		return -ENOMEM;
1614 
1615 	gap = mas.last + 1 - info->length;
1616 	gap -= (gap - info->align_offset) & info->align_mask;
1617 	gap_end = mas.last;
1618 	tmp = mas_next(&mas, ULONG_MAX);
1619 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1620 		if (vm_start_gap(tmp) <= gap_end) {
1621 			high_limit = vm_start_gap(tmp);
1622 			mas_reset(&mas);
1623 			goto retry;
1624 		}
1625 	} else {
1626 		tmp = mas_prev(&mas, 0);
1627 		if (tmp && vm_end_gap(tmp) > gap) {
1628 			high_limit = tmp->vm_start;
1629 			mas_reset(&mas);
1630 			goto retry;
1631 		}
1632 	}
1633 
1634 	return gap;
1635 }
1636 
1637 /*
1638  * Search for an unmapped address range.
1639  *
1640  * We are looking for a range that:
1641  * - does not intersect with any VMA;
1642  * - is contained within the [low_limit, high_limit) interval;
1643  * - is at least the desired size.
1644  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1645  */
1646 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1647 {
1648 	unsigned long addr;
1649 
1650 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1651 		addr = unmapped_area_topdown(info);
1652 	else
1653 		addr = unmapped_area(info);
1654 
1655 	trace_vm_unmapped_area(addr, info);
1656 	return addr;
1657 }
1658 
1659 /* Get an address range which is currently unmapped.
1660  * For shmat() with addr=0.
1661  *
1662  * Ugly calling convention alert:
1663  * Return value with the low bits set means error value,
1664  * ie
1665  *	if (ret & ~PAGE_MASK)
1666  *		error = ret;
1667  *
1668  * This function "knows" that -ENOMEM has the bits set.
1669  */
1670 unsigned long
1671 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1672 			  unsigned long len, unsigned long pgoff,
1673 			  unsigned long flags)
1674 {
1675 	struct mm_struct *mm = current->mm;
1676 	struct vm_area_struct *vma, *prev;
1677 	struct vm_unmapped_area_info info;
1678 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1679 
1680 	if (len > mmap_end - mmap_min_addr)
1681 		return -ENOMEM;
1682 
1683 	if (flags & MAP_FIXED)
1684 		return addr;
1685 
1686 	if (addr) {
1687 		addr = PAGE_ALIGN(addr);
1688 		vma = find_vma_prev(mm, addr, &prev);
1689 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1690 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1691 		    (!prev || addr >= vm_end_gap(prev)))
1692 			return addr;
1693 	}
1694 
1695 	info.flags = 0;
1696 	info.length = len;
1697 	info.low_limit = mm->mmap_base;
1698 	info.high_limit = mmap_end;
1699 	info.align_mask = 0;
1700 	info.align_offset = 0;
1701 	return vm_unmapped_area(&info);
1702 }
1703 
1704 #ifndef HAVE_ARCH_UNMAPPED_AREA
1705 unsigned long
1706 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1707 		       unsigned long len, unsigned long pgoff,
1708 		       unsigned long flags)
1709 {
1710 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1711 }
1712 #endif
1713 
1714 /*
1715  * This mmap-allocator allocates new areas top-down from below the
1716  * stack's low limit (the base):
1717  */
1718 unsigned long
1719 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1720 				  unsigned long len, unsigned long pgoff,
1721 				  unsigned long flags)
1722 {
1723 	struct vm_area_struct *vma, *prev;
1724 	struct mm_struct *mm = current->mm;
1725 	struct vm_unmapped_area_info info;
1726 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727 
1728 	/* requested length too big for entire address space */
1729 	if (len > mmap_end - mmap_min_addr)
1730 		return -ENOMEM;
1731 
1732 	if (flags & MAP_FIXED)
1733 		return addr;
1734 
1735 	/* requesting a specific address */
1736 	if (addr) {
1737 		addr = PAGE_ALIGN(addr);
1738 		vma = find_vma_prev(mm, addr, &prev);
1739 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1740 				(!vma || addr + len <= vm_start_gap(vma)) &&
1741 				(!prev || addr >= vm_end_gap(prev)))
1742 			return addr;
1743 	}
1744 
1745 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1746 	info.length = len;
1747 	info.low_limit = PAGE_SIZE;
1748 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1749 	info.align_mask = 0;
1750 	info.align_offset = 0;
1751 	addr = vm_unmapped_area(&info);
1752 
1753 	/*
1754 	 * A failed mmap() very likely causes application failure,
1755 	 * so fall back to the bottom-up function here. This scenario
1756 	 * can happen with large stack limits and large mmap()
1757 	 * allocations.
1758 	 */
1759 	if (offset_in_page(addr)) {
1760 		VM_BUG_ON(addr != -ENOMEM);
1761 		info.flags = 0;
1762 		info.low_limit = TASK_UNMAPPED_BASE;
1763 		info.high_limit = mmap_end;
1764 		addr = vm_unmapped_area(&info);
1765 	}
1766 
1767 	return addr;
1768 }
1769 
1770 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1771 unsigned long
1772 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1773 			       unsigned long len, unsigned long pgoff,
1774 			       unsigned long flags)
1775 {
1776 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1777 }
1778 #endif
1779 
1780 unsigned long
1781 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1782 		unsigned long pgoff, unsigned long flags)
1783 {
1784 	unsigned long (*get_area)(struct file *, unsigned long,
1785 				  unsigned long, unsigned long, unsigned long);
1786 
1787 	unsigned long error = arch_mmap_check(addr, len, flags);
1788 	if (error)
1789 		return error;
1790 
1791 	/* Careful about overflows.. */
1792 	if (len > TASK_SIZE)
1793 		return -ENOMEM;
1794 
1795 	get_area = current->mm->get_unmapped_area;
1796 	if (file) {
1797 		if (file->f_op->get_unmapped_area)
1798 			get_area = file->f_op->get_unmapped_area;
1799 	} else if (flags & MAP_SHARED) {
1800 		/*
1801 		 * mmap_region() will call shmem_zero_setup() to create a file,
1802 		 * so use shmem's get_unmapped_area in case it can be huge.
1803 		 * do_mmap() will clear pgoff, so match alignment.
1804 		 */
1805 		pgoff = 0;
1806 		get_area = shmem_get_unmapped_area;
1807 	}
1808 
1809 	addr = get_area(file, addr, len, pgoff, flags);
1810 	if (IS_ERR_VALUE(addr))
1811 		return addr;
1812 
1813 	if (addr > TASK_SIZE - len)
1814 		return -ENOMEM;
1815 	if (offset_in_page(addr))
1816 		return -EINVAL;
1817 
1818 	error = security_mmap_addr(addr);
1819 	return error ? error : addr;
1820 }
1821 
1822 EXPORT_SYMBOL(get_unmapped_area);
1823 
1824 /**
1825  * find_vma_intersection() - Look up the first VMA which intersects the interval
1826  * @mm: The process address space.
1827  * @start_addr: The inclusive start user address.
1828  * @end_addr: The exclusive end user address.
1829  *
1830  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1831  * start_addr < end_addr.
1832  */
1833 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1834 					     unsigned long start_addr,
1835 					     unsigned long end_addr)
1836 {
1837 	unsigned long index = start_addr;
1838 
1839 	mmap_assert_locked(mm);
1840 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1841 }
1842 EXPORT_SYMBOL(find_vma_intersection);
1843 
1844 /**
1845  * find_vma() - Find the VMA for a given address, or the next VMA.
1846  * @mm: The mm_struct to check
1847  * @addr: The address
1848  *
1849  * Returns: The VMA associated with addr, or the next VMA.
1850  * May return %NULL in the case of no VMA at addr or above.
1851  */
1852 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1853 {
1854 	unsigned long index = addr;
1855 
1856 	mmap_assert_locked(mm);
1857 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1858 }
1859 EXPORT_SYMBOL(find_vma);
1860 
1861 /**
1862  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1863  * set %pprev to the previous VMA, if any.
1864  * @mm: The mm_struct to check
1865  * @addr: The address
1866  * @pprev: The pointer to set to the previous VMA
1867  *
1868  * Note that RCU lock is missing here since the external mmap_lock() is used
1869  * instead.
1870  *
1871  * Returns: The VMA associated with @addr, or the next vma.
1872  * May return %NULL in the case of no vma at addr or above.
1873  */
1874 struct vm_area_struct *
1875 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1876 			struct vm_area_struct **pprev)
1877 {
1878 	struct vm_area_struct *vma;
1879 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1880 
1881 	vma = mas_walk(&mas);
1882 	*pprev = mas_prev(&mas, 0);
1883 	if (!vma)
1884 		vma = mas_next(&mas, ULONG_MAX);
1885 	return vma;
1886 }
1887 
1888 /*
1889  * Verify that the stack growth is acceptable and
1890  * update accounting. This is shared with both the
1891  * grow-up and grow-down cases.
1892  */
1893 static int acct_stack_growth(struct vm_area_struct *vma,
1894 			     unsigned long size, unsigned long grow)
1895 {
1896 	struct mm_struct *mm = vma->vm_mm;
1897 	unsigned long new_start;
1898 
1899 	/* address space limit tests */
1900 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1901 		return -ENOMEM;
1902 
1903 	/* Stack limit test */
1904 	if (size > rlimit(RLIMIT_STACK))
1905 		return -ENOMEM;
1906 
1907 	/* mlock limit tests */
1908 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1909 		return -ENOMEM;
1910 
1911 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1912 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1913 			vma->vm_end - size;
1914 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1915 		return -EFAULT;
1916 
1917 	/*
1918 	 * Overcommit..  This must be the final test, as it will
1919 	 * update security statistics.
1920 	 */
1921 	if (security_vm_enough_memory_mm(mm, grow))
1922 		return -ENOMEM;
1923 
1924 	return 0;
1925 }
1926 
1927 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1928 /*
1929  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1930  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1931  */
1932 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1933 {
1934 	struct mm_struct *mm = vma->vm_mm;
1935 	struct vm_area_struct *next;
1936 	unsigned long gap_addr;
1937 	int error = 0;
1938 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1939 
1940 	if (!(vma->vm_flags & VM_GROWSUP))
1941 		return -EFAULT;
1942 
1943 	/* Guard against exceeding limits of the address space. */
1944 	address &= PAGE_MASK;
1945 	if (address >= (TASK_SIZE & PAGE_MASK))
1946 		return -ENOMEM;
1947 	address += PAGE_SIZE;
1948 
1949 	/* Enforce stack_guard_gap */
1950 	gap_addr = address + stack_guard_gap;
1951 
1952 	/* Guard against overflow */
1953 	if (gap_addr < address || gap_addr > TASK_SIZE)
1954 		gap_addr = TASK_SIZE;
1955 
1956 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1957 	if (next && vma_is_accessible(next)) {
1958 		if (!(next->vm_flags & VM_GROWSUP))
1959 			return -ENOMEM;
1960 		/* Check that both stack segments have the same anon_vma? */
1961 	}
1962 
1963 	if (next)
1964 		mas_prev_range(&mas, address);
1965 
1966 	__mas_set_range(&mas, vma->vm_start, address - 1);
1967 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1968 		return -ENOMEM;
1969 
1970 	/* We must make sure the anon_vma is allocated. */
1971 	if (unlikely(anon_vma_prepare(vma))) {
1972 		mas_destroy(&mas);
1973 		return -ENOMEM;
1974 	}
1975 
1976 	/* Lock the VMA before expanding to prevent concurrent page faults */
1977 	vma_start_write(vma);
1978 	/*
1979 	 * vma->vm_start/vm_end cannot change under us because the caller
1980 	 * is required to hold the mmap_lock in read mode.  We need the
1981 	 * anon_vma lock to serialize against concurrent expand_stacks.
1982 	 */
1983 	anon_vma_lock_write(vma->anon_vma);
1984 
1985 	/* Somebody else might have raced and expanded it already */
1986 	if (address > vma->vm_end) {
1987 		unsigned long size, grow;
1988 
1989 		size = address - vma->vm_start;
1990 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1991 
1992 		error = -ENOMEM;
1993 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994 			error = acct_stack_growth(vma, size, grow);
1995 			if (!error) {
1996 				/*
1997 				 * We only hold a shared mmap_lock lock here, so
1998 				 * we need to protect against concurrent vma
1999 				 * expansions.  anon_vma_lock_write() doesn't
2000 				 * help here, as we don't guarantee that all
2001 				 * growable vmas in a mm share the same root
2002 				 * anon vma.  So, we reuse mm->page_table_lock
2003 				 * to guard against concurrent vma expansions.
2004 				 */
2005 				spin_lock(&mm->page_table_lock);
2006 				if (vma->vm_flags & VM_LOCKED)
2007 					mm->locked_vm += grow;
2008 				vm_stat_account(mm, vma->vm_flags, grow);
2009 				anon_vma_interval_tree_pre_update_vma(vma);
2010 				vma->vm_end = address;
2011 				/* Overwrite old entry in mtree. */
2012 				mas_store_prealloc(&mas, vma);
2013 				anon_vma_interval_tree_post_update_vma(vma);
2014 				spin_unlock(&mm->page_table_lock);
2015 
2016 				perf_event_mmap(vma);
2017 			}
2018 		}
2019 	}
2020 	anon_vma_unlock_write(vma->anon_vma);
2021 	khugepaged_enter_vma(vma, vma->vm_flags);
2022 	mas_destroy(&mas);
2023 	validate_mm(mm);
2024 	return error;
2025 }
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2027 
2028 /*
2029  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2030  * mmap_lock held for writing.
2031  */
2032 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2033 {
2034 	struct mm_struct *mm = vma->vm_mm;
2035 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2036 	struct vm_area_struct *prev;
2037 	int error = 0;
2038 
2039 	if (!(vma->vm_flags & VM_GROWSDOWN))
2040 		return -EFAULT;
2041 
2042 	address &= PAGE_MASK;
2043 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2044 		return -EPERM;
2045 
2046 	/* Enforce stack_guard_gap */
2047 	prev = mas_prev(&mas, 0);
2048 	/* Check that both stack segments have the same anon_vma? */
2049 	if (prev) {
2050 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2051 		    vma_is_accessible(prev) &&
2052 		    (address - prev->vm_end < stack_guard_gap))
2053 			return -ENOMEM;
2054 	}
2055 
2056 	if (prev)
2057 		mas_next_range(&mas, vma->vm_start);
2058 
2059 	__mas_set_range(&mas, address, vma->vm_end - 1);
2060 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2061 		return -ENOMEM;
2062 
2063 	/* We must make sure the anon_vma is allocated. */
2064 	if (unlikely(anon_vma_prepare(vma))) {
2065 		mas_destroy(&mas);
2066 		return -ENOMEM;
2067 	}
2068 
2069 	/* Lock the VMA before expanding to prevent concurrent page faults */
2070 	vma_start_write(vma);
2071 	/*
2072 	 * vma->vm_start/vm_end cannot change under us because the caller
2073 	 * is required to hold the mmap_lock in read mode.  We need the
2074 	 * anon_vma lock to serialize against concurrent expand_stacks.
2075 	 */
2076 	anon_vma_lock_write(vma->anon_vma);
2077 
2078 	/* Somebody else might have raced and expanded it already */
2079 	if (address < vma->vm_start) {
2080 		unsigned long size, grow;
2081 
2082 		size = vma->vm_end - address;
2083 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2084 
2085 		error = -ENOMEM;
2086 		if (grow <= vma->vm_pgoff) {
2087 			error = acct_stack_growth(vma, size, grow);
2088 			if (!error) {
2089 				/*
2090 				 * We only hold a shared mmap_lock lock here, so
2091 				 * we need to protect against concurrent vma
2092 				 * expansions.  anon_vma_lock_write() doesn't
2093 				 * help here, as we don't guarantee that all
2094 				 * growable vmas in a mm share the same root
2095 				 * anon vma.  So, we reuse mm->page_table_lock
2096 				 * to guard against concurrent vma expansions.
2097 				 */
2098 				spin_lock(&mm->page_table_lock);
2099 				if (vma->vm_flags & VM_LOCKED)
2100 					mm->locked_vm += grow;
2101 				vm_stat_account(mm, vma->vm_flags, grow);
2102 				anon_vma_interval_tree_pre_update_vma(vma);
2103 				vma->vm_start = address;
2104 				vma->vm_pgoff -= grow;
2105 				/* Overwrite old entry in mtree. */
2106 				mas_store_prealloc(&mas, vma);
2107 				anon_vma_interval_tree_post_update_vma(vma);
2108 				spin_unlock(&mm->page_table_lock);
2109 
2110 				perf_event_mmap(vma);
2111 			}
2112 		}
2113 	}
2114 	anon_vma_unlock_write(vma->anon_vma);
2115 	khugepaged_enter_vma(vma, vma->vm_flags);
2116 	mas_destroy(&mas);
2117 	validate_mm(mm);
2118 	return error;
2119 }
2120 
2121 /* enforced gap between the expanding stack and other mappings. */
2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2123 
2124 static int __init cmdline_parse_stack_guard_gap(char *p)
2125 {
2126 	unsigned long val;
2127 	char *endptr;
2128 
2129 	val = simple_strtoul(p, &endptr, 10);
2130 	if (!*endptr)
2131 		stack_guard_gap = val << PAGE_SHIFT;
2132 
2133 	return 1;
2134 }
2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2136 
2137 #ifdef CONFIG_STACK_GROWSUP
2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2139 {
2140 	return expand_upwards(vma, address);
2141 }
2142 
2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2144 {
2145 	struct vm_area_struct *vma, *prev;
2146 
2147 	addr &= PAGE_MASK;
2148 	vma = find_vma_prev(mm, addr, &prev);
2149 	if (vma && (vma->vm_start <= addr))
2150 		return vma;
2151 	if (!prev)
2152 		return NULL;
2153 	if (expand_stack_locked(prev, addr))
2154 		return NULL;
2155 	if (prev->vm_flags & VM_LOCKED)
2156 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2157 	return prev;
2158 }
2159 #else
2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2161 {
2162 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2163 		return -EINVAL;
2164 	return expand_downwards(vma, address);
2165 }
2166 
2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2168 {
2169 	struct vm_area_struct *vma;
2170 	unsigned long start;
2171 
2172 	addr &= PAGE_MASK;
2173 	vma = find_vma(mm, addr);
2174 	if (!vma)
2175 		return NULL;
2176 	if (vma->vm_start <= addr)
2177 		return vma;
2178 	start = vma->vm_start;
2179 	if (expand_stack_locked(vma, addr))
2180 		return NULL;
2181 	if (vma->vm_flags & VM_LOCKED)
2182 		populate_vma_page_range(vma, addr, start, NULL);
2183 	return vma;
2184 }
2185 #endif
2186 
2187 /*
2188  * IA64 has some horrid mapping rules: it can expand both up and down,
2189  * but with various special rules.
2190  *
2191  * We'll get rid of this architecture eventually, so the ugliness is
2192  * temporary.
2193  */
2194 #ifdef CONFIG_IA64
2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2196 {
2197 	return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2198 		REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2199 }
2200 
2201 /*
2202  * IA64 stacks grow down, but there's a special register backing store
2203  * that can grow up. Only sequentially, though, so the new address must
2204  * match vm_end.
2205  */
2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2207 {
2208 	if (!vma_expand_ok(vma, addr))
2209 		return -EFAULT;
2210 	if (vma->vm_end != (addr & PAGE_MASK))
2211 		return -EFAULT;
2212 	return expand_upwards(vma, addr);
2213 }
2214 
2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2216 {
2217 	if (!vma_expand_ok(vma, addr))
2218 		return -EFAULT;
2219 	return expand_downwards(vma, addr);
2220 }
2221 
2222 #elif defined(CONFIG_STACK_GROWSUP)
2223 
2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2225 #define vma_expand_down(vma, addr) (-EFAULT)
2226 
2227 #else
2228 
2229 #define vma_expand_up(vma,addr) (-EFAULT)
2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2231 
2232 #endif
2233 
2234 /*
2235  * expand_stack(): legacy interface for page faulting. Don't use unless
2236  * you have to.
2237  *
2238  * This is called with the mm locked for reading, drops the lock, takes
2239  * the lock for writing, tries to look up a vma again, expands it if
2240  * necessary, and downgrades the lock to reading again.
2241  *
2242  * If no vma is found or it can't be expanded, it returns NULL and has
2243  * dropped the lock.
2244  */
2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2246 {
2247 	struct vm_area_struct *vma, *prev;
2248 
2249 	mmap_read_unlock(mm);
2250 	if (mmap_write_lock_killable(mm))
2251 		return NULL;
2252 
2253 	vma = find_vma_prev(mm, addr, &prev);
2254 	if (vma && vma->vm_start <= addr)
2255 		goto success;
2256 
2257 	if (prev && !vma_expand_up(prev, addr)) {
2258 		vma = prev;
2259 		goto success;
2260 	}
2261 
2262 	if (vma && !vma_expand_down(vma, addr))
2263 		goto success;
2264 
2265 	mmap_write_unlock(mm);
2266 	return NULL;
2267 
2268 success:
2269 	mmap_write_downgrade(mm);
2270 	return vma;
2271 }
2272 
2273 /*
2274  * Ok - we have the memory areas we should free on a maple tree so release them,
2275  * and do the vma updates.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2280 {
2281 	unsigned long nr_accounted = 0;
2282 	struct vm_area_struct *vma;
2283 
2284 	/* Update high watermark before we lower total_vm */
2285 	update_hiwater_vm(mm);
2286 	mas_for_each(mas, vma, ULONG_MAX) {
2287 		long nrpages = vma_pages(vma);
2288 
2289 		if (vma->vm_flags & VM_ACCOUNT)
2290 			nr_accounted += nrpages;
2291 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2292 		remove_vma(vma, false);
2293 	}
2294 	vm_unacct_memory(nr_accounted);
2295 }
2296 
2297 /*
2298  * Get rid of page table information in the indicated region.
2299  *
2300  * Called with the mm semaphore held.
2301  */
2302 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2303 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2304 		struct vm_area_struct *next, unsigned long start,
2305 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2306 {
2307 	struct mmu_gather tlb;
2308 	unsigned long mt_start = mas->index;
2309 
2310 	lru_add_drain();
2311 	tlb_gather_mmu(&tlb, mm);
2312 	update_hiwater_rss(mm);
2313 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2314 	mas_set(mas, mt_start);
2315 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2317 				 mm_wr_locked);
2318 	tlb_finish_mmu(&tlb);
2319 }
2320 
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2323  * has already been checked or doesn't make sense to fail.
2324  * VMA Iterator will point to the end VMA.
2325  */
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327 		unsigned long addr, int new_below)
2328 {
2329 	struct vma_prepare vp;
2330 	struct vm_area_struct *new;
2331 	int err;
2332 
2333 	WARN_ON(vma->vm_start >= addr);
2334 	WARN_ON(vma->vm_end <= addr);
2335 
2336 	if (vma->vm_ops && vma->vm_ops->may_split) {
2337 		err = vma->vm_ops->may_split(vma, addr);
2338 		if (err)
2339 			return err;
2340 	}
2341 
2342 	new = vm_area_dup(vma);
2343 	if (!new)
2344 		return -ENOMEM;
2345 
2346 	if (new_below) {
2347 		new->vm_end = addr;
2348 	} else {
2349 		new->vm_start = addr;
2350 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2351 	}
2352 
2353 	err = -ENOMEM;
2354 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2355 	if (vma_iter_prealloc(vmi, new))
2356 		goto out_free_vma;
2357 
2358 	err = vma_dup_policy(vma, new);
2359 	if (err)
2360 		goto out_free_vmi;
2361 
2362 	err = anon_vma_clone(new, vma);
2363 	if (err)
2364 		goto out_free_mpol;
2365 
2366 	if (new->vm_file)
2367 		get_file(new->vm_file);
2368 
2369 	if (new->vm_ops && new->vm_ops->open)
2370 		new->vm_ops->open(new);
2371 
2372 	vma_start_write(vma);
2373 	vma_start_write(new);
2374 
2375 	init_vma_prep(&vp, vma);
2376 	vp.insert = new;
2377 	vma_prepare(&vp);
2378 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2379 
2380 	if (new_below) {
2381 		vma->vm_start = addr;
2382 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2383 	} else {
2384 		vma->vm_end = addr;
2385 	}
2386 
2387 	/* vma_complete stores the new vma */
2388 	vma_complete(&vp, vmi, vma->vm_mm);
2389 
2390 	/* Success. */
2391 	if (new_below)
2392 		vma_next(vmi);
2393 	return 0;
2394 
2395 out_free_mpol:
2396 	mpol_put(vma_policy(new));
2397 out_free_vmi:
2398 	vma_iter_free(vmi);
2399 out_free_vma:
2400 	vm_area_free(new);
2401 	return err;
2402 }
2403 
2404 /*
2405  * Split a vma into two pieces at address 'addr', a new vma is allocated
2406  * either for the first part or the tail.
2407  */
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409 	      unsigned long addr, int new_below)
2410 {
2411 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2412 		return -ENOMEM;
2413 
2414 	return __split_vma(vmi, vma, addr, new_below);
2415 }
2416 
2417 /*
2418  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419  * @vmi: The vma iterator
2420  * @vma: The starting vm_area_struct
2421  * @mm: The mm_struct
2422  * @start: The aligned start address to munmap.
2423  * @end: The aligned end address to munmap.
2424  * @uf: The userfaultfd list_head
2425  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2426  * success.
2427  *
2428  * Return: 0 on success and drops the lock if so directed, error and leaves the
2429  * lock held otherwise.
2430  */
2431 static int
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433 		    struct mm_struct *mm, unsigned long start,
2434 		    unsigned long end, struct list_head *uf, bool unlock)
2435 {
2436 	struct vm_area_struct *prev, *next = NULL;
2437 	struct maple_tree mt_detach;
2438 	int count = 0;
2439 	int error = -ENOMEM;
2440 	unsigned long locked_vm = 0;
2441 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2442 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443 	mt_on_stack(mt_detach);
2444 
2445 	/*
2446 	 * If we need to split any vma, do it now to save pain later.
2447 	 *
2448 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2450 	 * places tmp vma above, and higher split_vma places tmp vma below.
2451 	 */
2452 
2453 	/* Does it split the first one? */
2454 	if (start > vma->vm_start) {
2455 
2456 		/*
2457 		 * Make sure that map_count on return from munmap() will
2458 		 * not exceed its limit; but let map_count go just above
2459 		 * its limit temporarily, to help free resources as expected.
2460 		 */
2461 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462 			goto map_count_exceeded;
2463 
2464 		error = __split_vma(vmi, vma, start, 1);
2465 		if (error)
2466 			goto start_split_failed;
2467 	}
2468 
2469 	/*
2470 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2471 	 * it is always overwritten.
2472 	 */
2473 	next = vma;
2474 	do {
2475 		/* Does it split the end? */
2476 		if (next->vm_end > end) {
2477 			error = __split_vma(vmi, next, end, 0);
2478 			if (error)
2479 				goto end_split_failed;
2480 		}
2481 		vma_start_write(next);
2482 		mas_set(&mas_detach, count);
2483 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2484 		if (error)
2485 			goto munmap_gather_failed;
2486 		vma_mark_detached(next, true);
2487 		if (next->vm_flags & VM_LOCKED)
2488 			locked_vm += vma_pages(next);
2489 
2490 		count++;
2491 		if (unlikely(uf)) {
2492 			/*
2493 			 * If userfaultfd_unmap_prep returns an error the vmas
2494 			 * will remain split, but userland will get a
2495 			 * highly unexpected error anyway. This is no
2496 			 * different than the case where the first of the two
2497 			 * __split_vma fails, but we don't undo the first
2498 			 * split, despite we could. This is unlikely enough
2499 			 * failure that it's not worth optimizing it for.
2500 			 */
2501 			error = userfaultfd_unmap_prep(next, start, end, uf);
2502 
2503 			if (error)
2504 				goto userfaultfd_error;
2505 		}
2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2507 		BUG_ON(next->vm_start < start);
2508 		BUG_ON(next->vm_start > end);
2509 #endif
2510 	} for_each_vma_range(*vmi, next, end);
2511 
2512 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2513 	/* Make sure no VMAs are about to be lost. */
2514 	{
2515 		MA_STATE(test, &mt_detach, 0, 0);
2516 		struct vm_area_struct *vma_mas, *vma_test;
2517 		int test_count = 0;
2518 
2519 		vma_iter_set(vmi, start);
2520 		rcu_read_lock();
2521 		vma_test = mas_find(&test, count - 1);
2522 		for_each_vma_range(*vmi, vma_mas, end) {
2523 			BUG_ON(vma_mas != vma_test);
2524 			test_count++;
2525 			vma_test = mas_next(&test, count - 1);
2526 		}
2527 		rcu_read_unlock();
2528 		BUG_ON(count != test_count);
2529 	}
2530 #endif
2531 
2532 	while (vma_iter_addr(vmi) > start)
2533 		vma_iter_prev_range(vmi);
2534 
2535 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2536 	if (error)
2537 		goto clear_tree_failed;
2538 
2539 	/* Point of no return */
2540 	mm->locked_vm -= locked_vm;
2541 	mm->map_count -= count;
2542 	if (unlock)
2543 		mmap_write_downgrade(mm);
2544 
2545 	prev = vma_iter_prev_range(vmi);
2546 	next = vma_next(vmi);
2547 	if (next)
2548 		vma_iter_prev_range(vmi);
2549 
2550 	/*
2551 	 * We can free page tables without write-locking mmap_lock because VMAs
2552 	 * were isolated before we downgraded mmap_lock.
2553 	 */
2554 	mas_set(&mas_detach, 1);
2555 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2556 		     !unlock);
2557 	/* Statistics and freeing VMAs */
2558 	mas_set(&mas_detach, 0);
2559 	remove_mt(mm, &mas_detach);
2560 	validate_mm(mm);
2561 	if (unlock)
2562 		mmap_read_unlock(mm);
2563 
2564 	__mt_destroy(&mt_detach);
2565 	return 0;
2566 
2567 clear_tree_failed:
2568 userfaultfd_error:
2569 munmap_gather_failed:
2570 end_split_failed:
2571 	mas_set(&mas_detach, 0);
2572 	mas_for_each(&mas_detach, next, end)
2573 		vma_mark_detached(next, false);
2574 
2575 	__mt_destroy(&mt_detach);
2576 start_split_failed:
2577 map_count_exceeded:
2578 	validate_mm(mm);
2579 	return error;
2580 }
2581 
2582 /*
2583  * do_vmi_munmap() - munmap a given range.
2584  * @vmi: The vma iterator
2585  * @mm: The mm_struct
2586  * @start: The start address to munmap
2587  * @len: The length of the range to munmap
2588  * @uf: The userfaultfd list_head
2589  * @unlock: set to true if the user wants to drop the mmap_lock on success
2590  *
2591  * This function takes a @mas that is either pointing to the previous VMA or set
2592  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2593  * aligned and any arch_unmap work will be preformed.
2594  *
2595  * Return: 0 on success and drops the lock if so directed, error and leaves the
2596  * lock held otherwise.
2597  */
2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2599 		  unsigned long start, size_t len, struct list_head *uf,
2600 		  bool unlock)
2601 {
2602 	unsigned long end;
2603 	struct vm_area_struct *vma;
2604 
2605 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2606 		return -EINVAL;
2607 
2608 	end = start + PAGE_ALIGN(len);
2609 	if (end == start)
2610 		return -EINVAL;
2611 
2612 	 /* arch_unmap() might do unmaps itself.  */
2613 	arch_unmap(mm, start, end);
2614 
2615 	/* Find the first overlapping VMA */
2616 	vma = vma_find(vmi, end);
2617 	if (!vma) {
2618 		if (unlock)
2619 			mmap_write_unlock(mm);
2620 		return 0;
2621 	}
2622 
2623 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2624 }
2625 
2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2627  * @mm: The mm_struct
2628  * @start: The start address to munmap
2629  * @len: The length to be munmapped.
2630  * @uf: The userfaultfd list_head
2631  *
2632  * Return: 0 on success, error otherwise.
2633  */
2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2635 	      struct list_head *uf)
2636 {
2637 	VMA_ITERATOR(vmi, mm, start);
2638 
2639 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2640 }
2641 
2642 unsigned long mmap_region(struct file *file, unsigned long addr,
2643 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2644 		struct list_head *uf)
2645 {
2646 	struct mm_struct *mm = current->mm;
2647 	struct vm_area_struct *vma = NULL;
2648 	struct vm_area_struct *next, *prev, *merge;
2649 	pgoff_t pglen = len >> PAGE_SHIFT;
2650 	unsigned long charged = 0;
2651 	unsigned long end = addr + len;
2652 	unsigned long merge_start = addr, merge_end = end;
2653 	pgoff_t vm_pgoff;
2654 	int error;
2655 	VMA_ITERATOR(vmi, mm, addr);
2656 
2657 	/* Check against address space limit. */
2658 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2659 		unsigned long nr_pages;
2660 
2661 		/*
2662 		 * MAP_FIXED may remove pages of mappings that intersects with
2663 		 * requested mapping. Account for the pages it would unmap.
2664 		 */
2665 		nr_pages = count_vma_pages_range(mm, addr, end);
2666 
2667 		if (!may_expand_vm(mm, vm_flags,
2668 					(len >> PAGE_SHIFT) - nr_pages))
2669 			return -ENOMEM;
2670 	}
2671 
2672 	/* Unmap any existing mapping in the area */
2673 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2674 		return -ENOMEM;
2675 
2676 	/*
2677 	 * Private writable mapping: check memory availability
2678 	 */
2679 	if (accountable_mapping(file, vm_flags)) {
2680 		charged = len >> PAGE_SHIFT;
2681 		if (security_vm_enough_memory_mm(mm, charged))
2682 			return -ENOMEM;
2683 		vm_flags |= VM_ACCOUNT;
2684 	}
2685 
2686 	next = vma_next(&vmi);
2687 	prev = vma_prev(&vmi);
2688 	if (vm_flags & VM_SPECIAL) {
2689 		if (prev)
2690 			vma_iter_next_range(&vmi);
2691 		goto cannot_expand;
2692 	}
2693 
2694 	/* Attempt to expand an old mapping */
2695 	/* Check next */
2696 	if (next && next->vm_start == end && !vma_policy(next) &&
2697 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2698 				 NULL_VM_UFFD_CTX, NULL)) {
2699 		merge_end = next->vm_end;
2700 		vma = next;
2701 		vm_pgoff = next->vm_pgoff - pglen;
2702 	}
2703 
2704 	/* Check prev */
2705 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2706 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2707 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2708 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2709 				       NULL_VM_UFFD_CTX, NULL))) {
2710 		merge_start = prev->vm_start;
2711 		vma = prev;
2712 		vm_pgoff = prev->vm_pgoff;
2713 	} else if (prev) {
2714 		vma_iter_next_range(&vmi);
2715 	}
2716 
2717 	/* Actually expand, if possible */
2718 	if (vma &&
2719 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2720 		khugepaged_enter_vma(vma, vm_flags);
2721 		goto expanded;
2722 	}
2723 
2724 	if (vma == prev)
2725 		vma_iter_set(&vmi, addr);
2726 cannot_expand:
2727 
2728 	/*
2729 	 * Determine the object being mapped and call the appropriate
2730 	 * specific mapper. the address has already been validated, but
2731 	 * not unmapped, but the maps are removed from the list.
2732 	 */
2733 	vma = vm_area_alloc(mm);
2734 	if (!vma) {
2735 		error = -ENOMEM;
2736 		goto unacct_error;
2737 	}
2738 
2739 	vma_iter_config(&vmi, addr, end);
2740 	vma->vm_start = addr;
2741 	vma->vm_end = end;
2742 	vm_flags_init(vma, vm_flags);
2743 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2744 	vma->vm_pgoff = pgoff;
2745 
2746 	if (file) {
2747 		if (vm_flags & VM_SHARED) {
2748 			error = mapping_map_writable(file->f_mapping);
2749 			if (error)
2750 				goto free_vma;
2751 		}
2752 
2753 		vma->vm_file = get_file(file);
2754 		error = call_mmap(file, vma);
2755 		if (error)
2756 			goto unmap_and_free_vma;
2757 
2758 		/*
2759 		 * Expansion is handled above, merging is handled below.
2760 		 * Drivers should not alter the address of the VMA.
2761 		 */
2762 		error = -EINVAL;
2763 		if (WARN_ON((addr != vma->vm_start)))
2764 			goto close_and_free_vma;
2765 
2766 		vma_iter_config(&vmi, addr, end);
2767 		/*
2768 		 * If vm_flags changed after call_mmap(), we should try merge
2769 		 * vma again as we may succeed this time.
2770 		 */
2771 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2772 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2773 				    vma->vm_end, vma->vm_flags, NULL,
2774 				    vma->vm_file, vma->vm_pgoff, NULL,
2775 				    NULL_VM_UFFD_CTX, NULL);
2776 			if (merge) {
2777 				/*
2778 				 * ->mmap() can change vma->vm_file and fput
2779 				 * the original file. So fput the vma->vm_file
2780 				 * here or we would add an extra fput for file
2781 				 * and cause general protection fault
2782 				 * ultimately.
2783 				 */
2784 				fput(vma->vm_file);
2785 				vm_area_free(vma);
2786 				vma = merge;
2787 				/* Update vm_flags to pick up the change. */
2788 				vm_flags = vma->vm_flags;
2789 				goto unmap_writable;
2790 			}
2791 		}
2792 
2793 		vm_flags = vma->vm_flags;
2794 	} else if (vm_flags & VM_SHARED) {
2795 		error = shmem_zero_setup(vma);
2796 		if (error)
2797 			goto free_vma;
2798 	} else {
2799 		vma_set_anonymous(vma);
2800 	}
2801 
2802 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2803 		error = -EACCES;
2804 		goto close_and_free_vma;
2805 	}
2806 
2807 	/* Allow architectures to sanity-check the vm_flags */
2808 	error = -EINVAL;
2809 	if (!arch_validate_flags(vma->vm_flags))
2810 		goto close_and_free_vma;
2811 
2812 	error = -ENOMEM;
2813 	if (vma_iter_prealloc(&vmi, vma))
2814 		goto close_and_free_vma;
2815 
2816 	/* Lock the VMA since it is modified after insertion into VMA tree */
2817 	vma_start_write(vma);
2818 	vma_iter_store(&vmi, vma);
2819 	mm->map_count++;
2820 	if (vma->vm_file) {
2821 		i_mmap_lock_write(vma->vm_file->f_mapping);
2822 		if (vma->vm_flags & VM_SHARED)
2823 			mapping_allow_writable(vma->vm_file->f_mapping);
2824 
2825 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2826 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2827 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2828 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2829 	}
2830 
2831 	/*
2832 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2833 	 * call covers the non-merge case.
2834 	 */
2835 	khugepaged_enter_vma(vma, vma->vm_flags);
2836 
2837 	/* Once vma denies write, undo our temporary denial count */
2838 unmap_writable:
2839 	if (file && vm_flags & VM_SHARED)
2840 		mapping_unmap_writable(file->f_mapping);
2841 	file = vma->vm_file;
2842 	ksm_add_vma(vma);
2843 expanded:
2844 	perf_event_mmap(vma);
2845 
2846 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2847 	if (vm_flags & VM_LOCKED) {
2848 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2849 					is_vm_hugetlb_page(vma) ||
2850 					vma == get_gate_vma(current->mm))
2851 			vm_flags_clear(vma, VM_LOCKED_MASK);
2852 		else
2853 			mm->locked_vm += (len >> PAGE_SHIFT);
2854 	}
2855 
2856 	if (file)
2857 		uprobe_mmap(vma);
2858 
2859 	/*
2860 	 * New (or expanded) vma always get soft dirty status.
2861 	 * Otherwise user-space soft-dirty page tracker won't
2862 	 * be able to distinguish situation when vma area unmapped,
2863 	 * then new mapped in-place (which must be aimed as
2864 	 * a completely new data area).
2865 	 */
2866 	vm_flags_set(vma, VM_SOFTDIRTY);
2867 
2868 	vma_set_page_prot(vma);
2869 
2870 	validate_mm(mm);
2871 	return addr;
2872 
2873 close_and_free_vma:
2874 	if (file && vma->vm_ops && vma->vm_ops->close)
2875 		vma->vm_ops->close(vma);
2876 
2877 	if (file || vma->vm_file) {
2878 unmap_and_free_vma:
2879 		fput(vma->vm_file);
2880 		vma->vm_file = NULL;
2881 
2882 		vma_iter_set(&vmi, vma->vm_end);
2883 		/* Undo any partial mapping done by a device driver. */
2884 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2885 			     vma->vm_end, vma->vm_end, true);
2886 	}
2887 	if (file && (vm_flags & VM_SHARED))
2888 		mapping_unmap_writable(file->f_mapping);
2889 free_vma:
2890 	vm_area_free(vma);
2891 unacct_error:
2892 	if (charged)
2893 		vm_unacct_memory(charged);
2894 	validate_mm(mm);
2895 	return error;
2896 }
2897 
2898 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2899 {
2900 	int ret;
2901 	struct mm_struct *mm = current->mm;
2902 	LIST_HEAD(uf);
2903 	VMA_ITERATOR(vmi, mm, start);
2904 
2905 	if (mmap_write_lock_killable(mm))
2906 		return -EINTR;
2907 
2908 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2909 	if (ret || !unlock)
2910 		mmap_write_unlock(mm);
2911 
2912 	userfaultfd_unmap_complete(mm, &uf);
2913 	return ret;
2914 }
2915 
2916 int vm_munmap(unsigned long start, size_t len)
2917 {
2918 	return __vm_munmap(start, len, false);
2919 }
2920 EXPORT_SYMBOL(vm_munmap);
2921 
2922 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2923 {
2924 	addr = untagged_addr(addr);
2925 	return __vm_munmap(addr, len, true);
2926 }
2927 
2928 
2929 /*
2930  * Emulation of deprecated remap_file_pages() syscall.
2931  */
2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2933 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2934 {
2935 
2936 	struct mm_struct *mm = current->mm;
2937 	struct vm_area_struct *vma;
2938 	unsigned long populate = 0;
2939 	unsigned long ret = -EINVAL;
2940 	struct file *file;
2941 
2942 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2943 		     current->comm, current->pid);
2944 
2945 	if (prot)
2946 		return ret;
2947 	start = start & PAGE_MASK;
2948 	size = size & PAGE_MASK;
2949 
2950 	if (start + size <= start)
2951 		return ret;
2952 
2953 	/* Does pgoff wrap? */
2954 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2955 		return ret;
2956 
2957 	if (mmap_write_lock_killable(mm))
2958 		return -EINTR;
2959 
2960 	vma = vma_lookup(mm, start);
2961 
2962 	if (!vma || !(vma->vm_flags & VM_SHARED))
2963 		goto out;
2964 
2965 	if (start + size > vma->vm_end) {
2966 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2967 		struct vm_area_struct *next, *prev = vma;
2968 
2969 		for_each_vma_range(vmi, next, start + size) {
2970 			/* hole between vmas ? */
2971 			if (next->vm_start != prev->vm_end)
2972 				goto out;
2973 
2974 			if (next->vm_file != vma->vm_file)
2975 				goto out;
2976 
2977 			if (next->vm_flags != vma->vm_flags)
2978 				goto out;
2979 
2980 			if (start + size <= next->vm_end)
2981 				break;
2982 
2983 			prev = next;
2984 		}
2985 
2986 		if (!next)
2987 			goto out;
2988 	}
2989 
2990 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2991 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2992 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2993 
2994 	flags &= MAP_NONBLOCK;
2995 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2996 	if (vma->vm_flags & VM_LOCKED)
2997 		flags |= MAP_LOCKED;
2998 
2999 	file = get_file(vma->vm_file);
3000 	ret = do_mmap(vma->vm_file, start, size,
3001 			prot, flags, 0, pgoff, &populate, NULL);
3002 	fput(file);
3003 out:
3004 	mmap_write_unlock(mm);
3005 	if (populate)
3006 		mm_populate(ret, populate);
3007 	if (!IS_ERR_VALUE(ret))
3008 		ret = 0;
3009 	return ret;
3010 }
3011 
3012 /*
3013  * do_vma_munmap() - Unmap a full or partial vma.
3014  * @vmi: The vma iterator pointing at the vma
3015  * @vma: The first vma to be munmapped
3016  * @start: the start of the address to unmap
3017  * @end: The end of the address to unmap
3018  * @uf: The userfaultfd list_head
3019  * @unlock: Drop the lock on success
3020  *
3021  * unmaps a VMA mapping when the vma iterator is already in position.
3022  * Does not handle alignment.
3023  *
3024  * Return: 0 on success drops the lock of so directed, error on failure and will
3025  * still hold the lock.
3026  */
3027 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3028 		unsigned long start, unsigned long end, struct list_head *uf,
3029 		bool unlock)
3030 {
3031 	struct mm_struct *mm = vma->vm_mm;
3032 
3033 	arch_unmap(mm, start, end);
3034 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3035 }
3036 
3037 /*
3038  * do_brk_flags() - Increase the brk vma if the flags match.
3039  * @vmi: The vma iterator
3040  * @addr: The start address
3041  * @len: The length of the increase
3042  * @vma: The vma,
3043  * @flags: The VMA Flags
3044  *
3045  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3046  * do not match then create a new anonymous VMA.  Eventually we may be able to
3047  * do some brk-specific accounting here.
3048  */
3049 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3050 		unsigned long addr, unsigned long len, unsigned long flags)
3051 {
3052 	struct mm_struct *mm = current->mm;
3053 	struct vma_prepare vp;
3054 
3055 	/*
3056 	 * Check against address space limits by the changed size
3057 	 * Note: This happens *after* clearing old mappings in some code paths.
3058 	 */
3059 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3060 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3061 		return -ENOMEM;
3062 
3063 	if (mm->map_count > sysctl_max_map_count)
3064 		return -ENOMEM;
3065 
3066 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3067 		return -ENOMEM;
3068 
3069 	/*
3070 	 * Expand the existing vma if possible; Note that singular lists do not
3071 	 * occur after forking, so the expand will only happen on new VMAs.
3072 	 */
3073 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3074 	    can_vma_merge_after(vma, flags, NULL, NULL,
3075 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3076 		vma_iter_config(vmi, vma->vm_start, addr + len);
3077 		if (vma_iter_prealloc(vmi, vma))
3078 			goto unacct_fail;
3079 
3080 		vma_start_write(vma);
3081 
3082 		init_vma_prep(&vp, vma);
3083 		vma_prepare(&vp);
3084 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3085 		vma->vm_end = addr + len;
3086 		vm_flags_set(vma, VM_SOFTDIRTY);
3087 		vma_iter_store(vmi, vma);
3088 
3089 		vma_complete(&vp, vmi, mm);
3090 		khugepaged_enter_vma(vma, flags);
3091 		goto out;
3092 	}
3093 
3094 	if (vma)
3095 		vma_iter_next_range(vmi);
3096 	/* create a vma struct for an anonymous mapping */
3097 	vma = vm_area_alloc(mm);
3098 	if (!vma)
3099 		goto unacct_fail;
3100 
3101 	vma_set_anonymous(vma);
3102 	vma->vm_start = addr;
3103 	vma->vm_end = addr + len;
3104 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3105 	vm_flags_init(vma, flags);
3106 	vma->vm_page_prot = vm_get_page_prot(flags);
3107 	vma_start_write(vma);
3108 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3109 		goto mas_store_fail;
3110 
3111 	mm->map_count++;
3112 	validate_mm(mm);
3113 	ksm_add_vma(vma);
3114 out:
3115 	perf_event_mmap(vma);
3116 	mm->total_vm += len >> PAGE_SHIFT;
3117 	mm->data_vm += len >> PAGE_SHIFT;
3118 	if (flags & VM_LOCKED)
3119 		mm->locked_vm += (len >> PAGE_SHIFT);
3120 	vm_flags_set(vma, VM_SOFTDIRTY);
3121 	return 0;
3122 
3123 mas_store_fail:
3124 	vm_area_free(vma);
3125 unacct_fail:
3126 	vm_unacct_memory(len >> PAGE_SHIFT);
3127 	return -ENOMEM;
3128 }
3129 
3130 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3131 {
3132 	struct mm_struct *mm = current->mm;
3133 	struct vm_area_struct *vma = NULL;
3134 	unsigned long len;
3135 	int ret;
3136 	bool populate;
3137 	LIST_HEAD(uf);
3138 	VMA_ITERATOR(vmi, mm, addr);
3139 
3140 	len = PAGE_ALIGN(request);
3141 	if (len < request)
3142 		return -ENOMEM;
3143 	if (!len)
3144 		return 0;
3145 
3146 	if (mmap_write_lock_killable(mm))
3147 		return -EINTR;
3148 
3149 	/* Until we need other flags, refuse anything except VM_EXEC. */
3150 	if ((flags & (~VM_EXEC)) != 0)
3151 		return -EINVAL;
3152 
3153 	ret = check_brk_limits(addr, len);
3154 	if (ret)
3155 		goto limits_failed;
3156 
3157 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3158 	if (ret)
3159 		goto munmap_failed;
3160 
3161 	vma = vma_prev(&vmi);
3162 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3163 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3164 	mmap_write_unlock(mm);
3165 	userfaultfd_unmap_complete(mm, &uf);
3166 	if (populate && !ret)
3167 		mm_populate(addr, len);
3168 	return ret;
3169 
3170 munmap_failed:
3171 limits_failed:
3172 	mmap_write_unlock(mm);
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL(vm_brk_flags);
3176 
3177 int vm_brk(unsigned long addr, unsigned long len)
3178 {
3179 	return vm_brk_flags(addr, len, 0);
3180 }
3181 EXPORT_SYMBOL(vm_brk);
3182 
3183 /* Release all mmaps. */
3184 void exit_mmap(struct mm_struct *mm)
3185 {
3186 	struct mmu_gather tlb;
3187 	struct vm_area_struct *vma;
3188 	unsigned long nr_accounted = 0;
3189 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3190 	int count = 0;
3191 
3192 	/* mm's last user has gone, and its about to be pulled down */
3193 	mmu_notifier_release(mm);
3194 
3195 	mmap_read_lock(mm);
3196 	arch_exit_mmap(mm);
3197 
3198 	vma = mas_find(&mas, ULONG_MAX);
3199 	if (!vma) {
3200 		/* Can happen if dup_mmap() received an OOM */
3201 		mmap_read_unlock(mm);
3202 		return;
3203 	}
3204 
3205 	lru_add_drain();
3206 	flush_cache_mm(mm);
3207 	tlb_gather_mmu_fullmm(&tlb, mm);
3208 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3209 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3210 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3211 	mmap_read_unlock(mm);
3212 
3213 	/*
3214 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3215 	 * because the memory has been already freed.
3216 	 */
3217 	set_bit(MMF_OOM_SKIP, &mm->flags);
3218 	mmap_write_lock(mm);
3219 	mt_clear_in_rcu(&mm->mm_mt);
3220 	mas_set(&mas, vma->vm_end);
3221 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3222 		      USER_PGTABLES_CEILING, true);
3223 	tlb_finish_mmu(&tlb);
3224 
3225 	/*
3226 	 * Walk the list again, actually closing and freeing it, with preemption
3227 	 * enabled, without holding any MM locks besides the unreachable
3228 	 * mmap_write_lock.
3229 	 */
3230 	mas_set(&mas, vma->vm_end);
3231 	do {
3232 		if (vma->vm_flags & VM_ACCOUNT)
3233 			nr_accounted += vma_pages(vma);
3234 		remove_vma(vma, true);
3235 		count++;
3236 		cond_resched();
3237 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3238 
3239 	BUG_ON(count != mm->map_count);
3240 
3241 	trace_exit_mmap(mm);
3242 	__mt_destroy(&mm->mm_mt);
3243 	mmap_write_unlock(mm);
3244 	vm_unacct_memory(nr_accounted);
3245 }
3246 
3247 /* Insert vm structure into process list sorted by address
3248  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3249  * then i_mmap_rwsem is taken here.
3250  */
3251 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3252 {
3253 	unsigned long charged = vma_pages(vma);
3254 
3255 
3256 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3257 		return -ENOMEM;
3258 
3259 	if ((vma->vm_flags & VM_ACCOUNT) &&
3260 	     security_vm_enough_memory_mm(mm, charged))
3261 		return -ENOMEM;
3262 
3263 	/*
3264 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3265 	 * until its first write fault, when page's anon_vma and index
3266 	 * are set.  But now set the vm_pgoff it will almost certainly
3267 	 * end up with (unless mremap moves it elsewhere before that
3268 	 * first wfault), so /proc/pid/maps tells a consistent story.
3269 	 *
3270 	 * By setting it to reflect the virtual start address of the
3271 	 * vma, merges and splits can happen in a seamless way, just
3272 	 * using the existing file pgoff checks and manipulations.
3273 	 * Similarly in do_mmap and in do_brk_flags.
3274 	 */
3275 	if (vma_is_anonymous(vma)) {
3276 		BUG_ON(vma->anon_vma);
3277 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3278 	}
3279 
3280 	if (vma_link(mm, vma)) {
3281 		vm_unacct_memory(charged);
3282 		return -ENOMEM;
3283 	}
3284 
3285 	return 0;
3286 }
3287 
3288 /*
3289  * Copy the vma structure to a new location in the same mm,
3290  * prior to moving page table entries, to effect an mremap move.
3291  */
3292 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3293 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3294 	bool *need_rmap_locks)
3295 {
3296 	struct vm_area_struct *vma = *vmap;
3297 	unsigned long vma_start = vma->vm_start;
3298 	struct mm_struct *mm = vma->vm_mm;
3299 	struct vm_area_struct *new_vma, *prev;
3300 	bool faulted_in_anon_vma = true;
3301 	VMA_ITERATOR(vmi, mm, addr);
3302 
3303 	/*
3304 	 * If anonymous vma has not yet been faulted, update new pgoff
3305 	 * to match new location, to increase its chance of merging.
3306 	 */
3307 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3308 		pgoff = addr >> PAGE_SHIFT;
3309 		faulted_in_anon_vma = false;
3310 	}
3311 
3312 	new_vma = find_vma_prev(mm, addr, &prev);
3313 	if (new_vma && new_vma->vm_start < addr + len)
3314 		return NULL;	/* should never get here */
3315 
3316 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3317 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3318 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3319 	if (new_vma) {
3320 		/*
3321 		 * Source vma may have been merged into new_vma
3322 		 */
3323 		if (unlikely(vma_start >= new_vma->vm_start &&
3324 			     vma_start < new_vma->vm_end)) {
3325 			/*
3326 			 * The only way we can get a vma_merge with
3327 			 * self during an mremap is if the vma hasn't
3328 			 * been faulted in yet and we were allowed to
3329 			 * reset the dst vma->vm_pgoff to the
3330 			 * destination address of the mremap to allow
3331 			 * the merge to happen. mremap must change the
3332 			 * vm_pgoff linearity between src and dst vmas
3333 			 * (in turn preventing a vma_merge) to be
3334 			 * safe. It is only safe to keep the vm_pgoff
3335 			 * linear if there are no pages mapped yet.
3336 			 */
3337 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3338 			*vmap = vma = new_vma;
3339 		}
3340 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3341 	} else {
3342 		new_vma = vm_area_dup(vma);
3343 		if (!new_vma)
3344 			goto out;
3345 		new_vma->vm_start = addr;
3346 		new_vma->vm_end = addr + len;
3347 		new_vma->vm_pgoff = pgoff;
3348 		if (vma_dup_policy(vma, new_vma))
3349 			goto out_free_vma;
3350 		if (anon_vma_clone(new_vma, vma))
3351 			goto out_free_mempol;
3352 		if (new_vma->vm_file)
3353 			get_file(new_vma->vm_file);
3354 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3355 			new_vma->vm_ops->open(new_vma);
3356 		if (vma_link(mm, new_vma))
3357 			goto out_vma_link;
3358 		*need_rmap_locks = false;
3359 	}
3360 	return new_vma;
3361 
3362 out_vma_link:
3363 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3364 		new_vma->vm_ops->close(new_vma);
3365 
3366 	if (new_vma->vm_file)
3367 		fput(new_vma->vm_file);
3368 
3369 	unlink_anon_vmas(new_vma);
3370 out_free_mempol:
3371 	mpol_put(vma_policy(new_vma));
3372 out_free_vma:
3373 	vm_area_free(new_vma);
3374 out:
3375 	return NULL;
3376 }
3377 
3378 /*
3379  * Return true if the calling process may expand its vm space by the passed
3380  * number of pages
3381  */
3382 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3383 {
3384 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3385 		return false;
3386 
3387 	if (is_data_mapping(flags) &&
3388 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3389 		/* Workaround for Valgrind */
3390 		if (rlimit(RLIMIT_DATA) == 0 &&
3391 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3392 			return true;
3393 
3394 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3395 			     current->comm, current->pid,
3396 			     (mm->data_vm + npages) << PAGE_SHIFT,
3397 			     rlimit(RLIMIT_DATA),
3398 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3399 
3400 		if (!ignore_rlimit_data)
3401 			return false;
3402 	}
3403 
3404 	return true;
3405 }
3406 
3407 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3408 {
3409 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3410 
3411 	if (is_exec_mapping(flags))
3412 		mm->exec_vm += npages;
3413 	else if (is_stack_mapping(flags))
3414 		mm->stack_vm += npages;
3415 	else if (is_data_mapping(flags))
3416 		mm->data_vm += npages;
3417 }
3418 
3419 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3420 
3421 /*
3422  * Having a close hook prevents vma merging regardless of flags.
3423  */
3424 static void special_mapping_close(struct vm_area_struct *vma)
3425 {
3426 }
3427 
3428 static const char *special_mapping_name(struct vm_area_struct *vma)
3429 {
3430 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3431 }
3432 
3433 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3434 {
3435 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3436 
3437 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3438 		return -EFAULT;
3439 
3440 	if (sm->mremap)
3441 		return sm->mremap(sm, new_vma);
3442 
3443 	return 0;
3444 }
3445 
3446 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3447 {
3448 	/*
3449 	 * Forbid splitting special mappings - kernel has expectations over
3450 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3451 	 * the size of vma should stay the same over the special mapping's
3452 	 * lifetime.
3453 	 */
3454 	return -EINVAL;
3455 }
3456 
3457 static const struct vm_operations_struct special_mapping_vmops = {
3458 	.close = special_mapping_close,
3459 	.fault = special_mapping_fault,
3460 	.mremap = special_mapping_mremap,
3461 	.name = special_mapping_name,
3462 	/* vDSO code relies that VVAR can't be accessed remotely */
3463 	.access = NULL,
3464 	.may_split = special_mapping_split,
3465 };
3466 
3467 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3468 	.close = special_mapping_close,
3469 	.fault = special_mapping_fault,
3470 };
3471 
3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3473 {
3474 	struct vm_area_struct *vma = vmf->vma;
3475 	pgoff_t pgoff;
3476 	struct page **pages;
3477 
3478 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3479 		pages = vma->vm_private_data;
3480 	} else {
3481 		struct vm_special_mapping *sm = vma->vm_private_data;
3482 
3483 		if (sm->fault)
3484 			return sm->fault(sm, vmf->vma, vmf);
3485 
3486 		pages = sm->pages;
3487 	}
3488 
3489 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3490 		pgoff--;
3491 
3492 	if (*pages) {
3493 		struct page *page = *pages;
3494 		get_page(page);
3495 		vmf->page = page;
3496 		return 0;
3497 	}
3498 
3499 	return VM_FAULT_SIGBUS;
3500 }
3501 
3502 static struct vm_area_struct *__install_special_mapping(
3503 	struct mm_struct *mm,
3504 	unsigned long addr, unsigned long len,
3505 	unsigned long vm_flags, void *priv,
3506 	const struct vm_operations_struct *ops)
3507 {
3508 	int ret;
3509 	struct vm_area_struct *vma;
3510 
3511 	vma = vm_area_alloc(mm);
3512 	if (unlikely(vma == NULL))
3513 		return ERR_PTR(-ENOMEM);
3514 
3515 	vma->vm_start = addr;
3516 	vma->vm_end = addr + len;
3517 
3518 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3519 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3520 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3521 
3522 	vma->vm_ops = ops;
3523 	vma->vm_private_data = priv;
3524 
3525 	ret = insert_vm_struct(mm, vma);
3526 	if (ret)
3527 		goto out;
3528 
3529 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3530 
3531 	perf_event_mmap(vma);
3532 
3533 	return vma;
3534 
3535 out:
3536 	vm_area_free(vma);
3537 	return ERR_PTR(ret);
3538 }
3539 
3540 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3541 	const struct vm_special_mapping *sm)
3542 {
3543 	return vma->vm_private_data == sm &&
3544 		(vma->vm_ops == &special_mapping_vmops ||
3545 		 vma->vm_ops == &legacy_special_mapping_vmops);
3546 }
3547 
3548 /*
3549  * Called with mm->mmap_lock held for writing.
3550  * Insert a new vma covering the given region, with the given flags.
3551  * Its pages are supplied by the given array of struct page *.
3552  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3553  * The region past the last page supplied will always produce SIGBUS.
3554  * The array pointer and the pages it points to are assumed to stay alive
3555  * for as long as this mapping might exist.
3556  */
3557 struct vm_area_struct *_install_special_mapping(
3558 	struct mm_struct *mm,
3559 	unsigned long addr, unsigned long len,
3560 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3561 {
3562 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3563 					&special_mapping_vmops);
3564 }
3565 
3566 int install_special_mapping(struct mm_struct *mm,
3567 			    unsigned long addr, unsigned long len,
3568 			    unsigned long vm_flags, struct page **pages)
3569 {
3570 	struct vm_area_struct *vma = __install_special_mapping(
3571 		mm, addr, len, vm_flags, (void *)pages,
3572 		&legacy_special_mapping_vmops);
3573 
3574 	return PTR_ERR_OR_ZERO(vma);
3575 }
3576 
3577 static DEFINE_MUTEX(mm_all_locks_mutex);
3578 
3579 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3580 {
3581 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3582 		/*
3583 		 * The LSB of head.next can't change from under us
3584 		 * because we hold the mm_all_locks_mutex.
3585 		 */
3586 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3587 		/*
3588 		 * We can safely modify head.next after taking the
3589 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3590 		 * the same anon_vma we won't take it again.
3591 		 *
3592 		 * No need of atomic instructions here, head.next
3593 		 * can't change from under us thanks to the
3594 		 * anon_vma->root->rwsem.
3595 		 */
3596 		if (__test_and_set_bit(0, (unsigned long *)
3597 				       &anon_vma->root->rb_root.rb_root.rb_node))
3598 			BUG();
3599 	}
3600 }
3601 
3602 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3603 {
3604 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605 		/*
3606 		 * AS_MM_ALL_LOCKS can't change from under us because
3607 		 * we hold the mm_all_locks_mutex.
3608 		 *
3609 		 * Operations on ->flags have to be atomic because
3610 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3611 		 * mm_all_locks_mutex, there may be other cpus
3612 		 * changing other bitflags in parallel to us.
3613 		 */
3614 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3615 			BUG();
3616 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3617 	}
3618 }
3619 
3620 /*
3621  * This operation locks against the VM for all pte/vma/mm related
3622  * operations that could ever happen on a certain mm. This includes
3623  * vmtruncate, try_to_unmap, and all page faults.
3624  *
3625  * The caller must take the mmap_lock in write mode before calling
3626  * mm_take_all_locks(). The caller isn't allowed to release the
3627  * mmap_lock until mm_drop_all_locks() returns.
3628  *
3629  * mmap_lock in write mode is required in order to block all operations
3630  * that could modify pagetables and free pages without need of
3631  * altering the vma layout. It's also needed in write mode to avoid new
3632  * anon_vmas to be associated with existing vmas.
3633  *
3634  * A single task can't take more than one mm_take_all_locks() in a row
3635  * or it would deadlock.
3636  *
3637  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3638  * mapping->flags avoid to take the same lock twice, if more than one
3639  * vma in this mm is backed by the same anon_vma or address_space.
3640  *
3641  * We take locks in following order, accordingly to comment at beginning
3642  * of mm/rmap.c:
3643  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3644  *     hugetlb mapping);
3645  *   - all vmas marked locked
3646  *   - all i_mmap_rwsem locks;
3647  *   - all anon_vma->rwseml
3648  *
3649  * We can take all locks within these types randomly because the VM code
3650  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3651  * mm_all_locks_mutex.
3652  *
3653  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3654  * that may have to take thousand of locks.
3655  *
3656  * mm_take_all_locks() can fail if it's interrupted by signals.
3657  */
3658 int mm_take_all_locks(struct mm_struct *mm)
3659 {
3660 	struct vm_area_struct *vma;
3661 	struct anon_vma_chain *avc;
3662 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3663 
3664 	mmap_assert_write_locked(mm);
3665 
3666 	mutex_lock(&mm_all_locks_mutex);
3667 
3668 	/*
3669 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3670 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3671 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3672 	 * is reached.
3673 	 */
3674 	mas_for_each(&mas, vma, ULONG_MAX) {
3675 		if (signal_pending(current))
3676 			goto out_unlock;
3677 		vma_start_write(vma);
3678 	}
3679 
3680 	mas_set(&mas, 0);
3681 	mas_for_each(&mas, vma, ULONG_MAX) {
3682 		if (signal_pending(current))
3683 			goto out_unlock;
3684 		if (vma->vm_file && vma->vm_file->f_mapping &&
3685 				is_vm_hugetlb_page(vma))
3686 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3687 	}
3688 
3689 	mas_set(&mas, 0);
3690 	mas_for_each(&mas, vma, ULONG_MAX) {
3691 		if (signal_pending(current))
3692 			goto out_unlock;
3693 		if (vma->vm_file && vma->vm_file->f_mapping &&
3694 				!is_vm_hugetlb_page(vma))
3695 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3696 	}
3697 
3698 	mas_set(&mas, 0);
3699 	mas_for_each(&mas, vma, ULONG_MAX) {
3700 		if (signal_pending(current))
3701 			goto out_unlock;
3702 		if (vma->anon_vma)
3703 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3704 				vm_lock_anon_vma(mm, avc->anon_vma);
3705 	}
3706 
3707 	return 0;
3708 
3709 out_unlock:
3710 	mm_drop_all_locks(mm);
3711 	return -EINTR;
3712 }
3713 
3714 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3715 {
3716 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3717 		/*
3718 		 * The LSB of head.next can't change to 0 from under
3719 		 * us because we hold the mm_all_locks_mutex.
3720 		 *
3721 		 * We must however clear the bitflag before unlocking
3722 		 * the vma so the users using the anon_vma->rb_root will
3723 		 * never see our bitflag.
3724 		 *
3725 		 * No need of atomic instructions here, head.next
3726 		 * can't change from under us until we release the
3727 		 * anon_vma->root->rwsem.
3728 		 */
3729 		if (!__test_and_clear_bit(0, (unsigned long *)
3730 					  &anon_vma->root->rb_root.rb_root.rb_node))
3731 			BUG();
3732 		anon_vma_unlock_write(anon_vma);
3733 	}
3734 }
3735 
3736 static void vm_unlock_mapping(struct address_space *mapping)
3737 {
3738 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3739 		/*
3740 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3741 		 * because we hold the mm_all_locks_mutex.
3742 		 */
3743 		i_mmap_unlock_write(mapping);
3744 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3745 					&mapping->flags))
3746 			BUG();
3747 	}
3748 }
3749 
3750 /*
3751  * The mmap_lock cannot be released by the caller until
3752  * mm_drop_all_locks() returns.
3753  */
3754 void mm_drop_all_locks(struct mm_struct *mm)
3755 {
3756 	struct vm_area_struct *vma;
3757 	struct anon_vma_chain *avc;
3758 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3759 
3760 	mmap_assert_write_locked(mm);
3761 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3762 
3763 	mas_for_each(&mas, vma, ULONG_MAX) {
3764 		if (vma->anon_vma)
3765 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3766 				vm_unlock_anon_vma(avc->anon_vma);
3767 		if (vma->vm_file && vma->vm_file->f_mapping)
3768 			vm_unlock_mapping(vma->vm_file->f_mapping);
3769 	}
3770 
3771 	mutex_unlock(&mm_all_locks_mutex);
3772 }
3773 
3774 /*
3775  * initialise the percpu counter for VM
3776  */
3777 void __init mmap_init(void)
3778 {
3779 	int ret;
3780 
3781 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3782 	VM_BUG_ON(ret);
3783 }
3784 
3785 /*
3786  * Initialise sysctl_user_reserve_kbytes.
3787  *
3788  * This is intended to prevent a user from starting a single memory hogging
3789  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3790  * mode.
3791  *
3792  * The default value is min(3% of free memory, 128MB)
3793  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3794  */
3795 static int init_user_reserve(void)
3796 {
3797 	unsigned long free_kbytes;
3798 
3799 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3800 
3801 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3802 	return 0;
3803 }
3804 subsys_initcall(init_user_reserve);
3805 
3806 /*
3807  * Initialise sysctl_admin_reserve_kbytes.
3808  *
3809  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3810  * to log in and kill a memory hogging process.
3811  *
3812  * Systems with more than 256MB will reserve 8MB, enough to recover
3813  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3814  * only reserve 3% of free pages by default.
3815  */
3816 static int init_admin_reserve(void)
3817 {
3818 	unsigned long free_kbytes;
3819 
3820 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3821 
3822 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3823 	return 0;
3824 }
3825 subsys_initcall(init_admin_reserve);
3826 
3827 /*
3828  * Reinititalise user and admin reserves if memory is added or removed.
3829  *
3830  * The default user reserve max is 128MB, and the default max for the
3831  * admin reserve is 8MB. These are usually, but not always, enough to
3832  * enable recovery from a memory hogging process using login/sshd, a shell,
3833  * and tools like top. It may make sense to increase or even disable the
3834  * reserve depending on the existence of swap or variations in the recovery
3835  * tools. So, the admin may have changed them.
3836  *
3837  * If memory is added and the reserves have been eliminated or increased above
3838  * the default max, then we'll trust the admin.
3839  *
3840  * If memory is removed and there isn't enough free memory, then we
3841  * need to reset the reserves.
3842  *
3843  * Otherwise keep the reserve set by the admin.
3844  */
3845 static int reserve_mem_notifier(struct notifier_block *nb,
3846 			     unsigned long action, void *data)
3847 {
3848 	unsigned long tmp, free_kbytes;
3849 
3850 	switch (action) {
3851 	case MEM_ONLINE:
3852 		/* Default max is 128MB. Leave alone if modified by operator. */
3853 		tmp = sysctl_user_reserve_kbytes;
3854 		if (0 < tmp && tmp < (1UL << 17))
3855 			init_user_reserve();
3856 
3857 		/* Default max is 8MB.  Leave alone if modified by operator. */
3858 		tmp = sysctl_admin_reserve_kbytes;
3859 		if (0 < tmp && tmp < (1UL << 13))
3860 			init_admin_reserve();
3861 
3862 		break;
3863 	case MEM_OFFLINE:
3864 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3865 
3866 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3867 			init_user_reserve();
3868 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3869 				sysctl_user_reserve_kbytes);
3870 		}
3871 
3872 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3873 			init_admin_reserve();
3874 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3875 				sysctl_admin_reserve_kbytes);
3876 		}
3877 		break;
3878 	default:
3879 		break;
3880 	}
3881 	return NOTIFY_OK;
3882 }
3883 
3884 static int __meminit init_reserve_notifier(void)
3885 {
3886 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3887 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3888 
3889 	return 0;
3890 }
3891 subsys_initcall(init_reserve_notifier);
3892