xref: /openbmc/linux/mm/mmap.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 
60 #include "internal.h"
61 
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)	(0)
64 #endif
65 
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76 
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 
80 static void unmap_region(struct mm_struct *mm,
81 		struct vm_area_struct *vma, struct vm_area_struct *prev,
82 		unsigned long start, unsigned long end);
83 
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type	prot
89  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
90  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
95  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
96  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *								r: (no) no
101  *								w: (no) no
102  *								x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105 	[VM_NONE]					= __P000,
106 	[VM_READ]					= __P001,
107 	[VM_WRITE]					= __P010,
108 	[VM_WRITE | VM_READ]				= __P011,
109 	[VM_EXEC]					= __P100,
110 	[VM_EXEC | VM_READ]				= __P101,
111 	[VM_EXEC | VM_WRITE]				= __P110,
112 	[VM_EXEC | VM_WRITE | VM_READ]			= __P111,
113 	[VM_SHARED]					= __S000,
114 	[VM_SHARED | VM_READ]				= __S001,
115 	[VM_SHARED | VM_WRITE]				= __S010,
116 	[VM_SHARED | VM_WRITE | VM_READ]		= __S011,
117 	[VM_SHARED | VM_EXEC]				= __S100,
118 	[VM_SHARED | VM_EXEC | VM_READ]			= __S101,
119 	[VM_SHARED | VM_EXEC | VM_WRITE]		= __S110,
120 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __S111
121 };
122 
123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
124 pgprot_t vm_get_page_prot(unsigned long vm_flags)
125 {
126 	return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
127 }
128 EXPORT_SYMBOL(vm_get_page_prot);
129 #endif	/* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
130 
131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
132 {
133 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
134 }
135 
136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
137 void vma_set_page_prot(struct vm_area_struct *vma)
138 {
139 	unsigned long vm_flags = vma->vm_flags;
140 	pgprot_t vm_page_prot;
141 
142 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
143 	if (vma_wants_writenotify(vma, vm_page_prot)) {
144 		vm_flags &= ~VM_SHARED;
145 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
146 	}
147 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
148 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
149 }
150 
151 /*
152  * Requires inode->i_mapping->i_mmap_rwsem
153  */
154 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
155 		struct file *file, struct address_space *mapping)
156 {
157 	if (vma->vm_flags & VM_SHARED)
158 		mapping_unmap_writable(mapping);
159 
160 	flush_dcache_mmap_lock(mapping);
161 	vma_interval_tree_remove(vma, &mapping->i_mmap);
162 	flush_dcache_mmap_unlock(mapping);
163 }
164 
165 /*
166  * Unlink a file-based vm structure from its interval tree, to hide
167  * vma from rmap and vmtruncate before freeing its page tables.
168  */
169 void unlink_file_vma(struct vm_area_struct *vma)
170 {
171 	struct file *file = vma->vm_file;
172 
173 	if (file) {
174 		struct address_space *mapping = file->f_mapping;
175 		i_mmap_lock_write(mapping);
176 		__remove_shared_vm_struct(vma, file, mapping);
177 		i_mmap_unlock_write(mapping);
178 	}
179 }
180 
181 /*
182  * Close a vm structure and free it, returning the next.
183  */
184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
185 {
186 	struct vm_area_struct *next = vma->vm_next;
187 
188 	might_sleep();
189 	if (vma->vm_ops && vma->vm_ops->close)
190 		vma->vm_ops->close(vma);
191 	if (vma->vm_file)
192 		fput(vma->vm_file);
193 	mpol_put(vma_policy(vma));
194 	vm_area_free(vma);
195 	return next;
196 }
197 
198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
199 		struct list_head *uf);
200 SYSCALL_DEFINE1(brk, unsigned long, brk)
201 {
202 	unsigned long newbrk, oldbrk, origbrk;
203 	struct mm_struct *mm = current->mm;
204 	struct vm_area_struct *next;
205 	unsigned long min_brk;
206 	bool populate;
207 	bool downgraded = false;
208 	LIST_HEAD(uf);
209 
210 	if (mmap_write_lock_killable(mm))
211 		return -EINTR;
212 
213 	origbrk = mm->brk;
214 
215 #ifdef CONFIG_COMPAT_BRK
216 	/*
217 	 * CONFIG_COMPAT_BRK can still be overridden by setting
218 	 * randomize_va_space to 2, which will still cause mm->start_brk
219 	 * to be arbitrarily shifted
220 	 */
221 	if (current->brk_randomized)
222 		min_brk = mm->start_brk;
223 	else
224 		min_brk = mm->end_data;
225 #else
226 	min_brk = mm->start_brk;
227 #endif
228 	if (brk < min_brk)
229 		goto out;
230 
231 	/*
232 	 * Check against rlimit here. If this check is done later after the test
233 	 * of oldbrk with newbrk then it can escape the test and let the data
234 	 * segment grow beyond its set limit the in case where the limit is
235 	 * not page aligned -Ram Gupta
236 	 */
237 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
238 			      mm->end_data, mm->start_data))
239 		goto out;
240 
241 	newbrk = PAGE_ALIGN(brk);
242 	oldbrk = PAGE_ALIGN(mm->brk);
243 	if (oldbrk == newbrk) {
244 		mm->brk = brk;
245 		goto success;
246 	}
247 
248 	/*
249 	 * Always allow shrinking brk.
250 	 * __do_munmap() may downgrade mmap_lock to read.
251 	 */
252 	if (brk <= mm->brk) {
253 		int ret;
254 
255 		/*
256 		 * mm->brk must to be protected by write mmap_lock so update it
257 		 * before downgrading mmap_lock. When __do_munmap() fails,
258 		 * mm->brk will be restored from origbrk.
259 		 */
260 		mm->brk = brk;
261 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
262 		if (ret < 0) {
263 			mm->brk = origbrk;
264 			goto out;
265 		} else if (ret == 1) {
266 			downgraded = true;
267 		}
268 		goto success;
269 	}
270 
271 	/* Check against existing mmap mappings. */
272 	next = find_vma(mm, oldbrk);
273 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
274 		goto out;
275 
276 	/* Ok, looks good - let it rip. */
277 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278 		goto out;
279 	mm->brk = brk;
280 
281 success:
282 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
283 	if (downgraded)
284 		mmap_read_unlock(mm);
285 	else
286 		mmap_write_unlock(mm);
287 	userfaultfd_unmap_complete(mm, &uf);
288 	if (populate)
289 		mm_populate(oldbrk, newbrk - oldbrk);
290 	return brk;
291 
292 out:
293 	mmap_write_unlock(mm);
294 	return origbrk;
295 }
296 
297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
298 {
299 	unsigned long gap, prev_end;
300 
301 	/*
302 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
303 	 * allow two stack_guard_gaps between them here, and when choosing
304 	 * an unmapped area; whereas when expanding we only require one.
305 	 * That's a little inconsistent, but keeps the code here simpler.
306 	 */
307 	gap = vm_start_gap(vma);
308 	if (vma->vm_prev) {
309 		prev_end = vm_end_gap(vma->vm_prev);
310 		if (gap > prev_end)
311 			gap -= prev_end;
312 		else
313 			gap = 0;
314 	}
315 	return gap;
316 }
317 
318 #ifdef CONFIG_DEBUG_VM_RB
319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
320 {
321 	unsigned long max = vma_compute_gap(vma), subtree_gap;
322 	if (vma->vm_rb.rb_left) {
323 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
324 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 		if (subtree_gap > max)
326 			max = subtree_gap;
327 	}
328 	if (vma->vm_rb.rb_right) {
329 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
330 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
331 		if (subtree_gap > max)
332 			max = subtree_gap;
333 	}
334 	return max;
335 }
336 
337 static int browse_rb(struct mm_struct *mm)
338 {
339 	struct rb_root *root = &mm->mm_rb;
340 	int i = 0, j, bug = 0;
341 	struct rb_node *nd, *pn = NULL;
342 	unsigned long prev = 0, pend = 0;
343 
344 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345 		struct vm_area_struct *vma;
346 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347 		if (vma->vm_start < prev) {
348 			pr_emerg("vm_start %lx < prev %lx\n",
349 				  vma->vm_start, prev);
350 			bug = 1;
351 		}
352 		if (vma->vm_start < pend) {
353 			pr_emerg("vm_start %lx < pend %lx\n",
354 				  vma->vm_start, pend);
355 			bug = 1;
356 		}
357 		if (vma->vm_start > vma->vm_end) {
358 			pr_emerg("vm_start %lx > vm_end %lx\n",
359 				  vma->vm_start, vma->vm_end);
360 			bug = 1;
361 		}
362 		spin_lock(&mm->page_table_lock);
363 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
364 			pr_emerg("free gap %lx, correct %lx\n",
365 			       vma->rb_subtree_gap,
366 			       vma_compute_subtree_gap(vma));
367 			bug = 1;
368 		}
369 		spin_unlock(&mm->page_table_lock);
370 		i++;
371 		pn = nd;
372 		prev = vma->vm_start;
373 		pend = vma->vm_end;
374 	}
375 	j = 0;
376 	for (nd = pn; nd; nd = rb_prev(nd))
377 		j++;
378 	if (i != j) {
379 		pr_emerg("backwards %d, forwards %d\n", j, i);
380 		bug = 1;
381 	}
382 	return bug ? -1 : i;
383 }
384 
385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
386 {
387 	struct rb_node *nd;
388 
389 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
390 		struct vm_area_struct *vma;
391 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
392 		VM_BUG_ON_VMA(vma != ignore &&
393 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
394 			vma);
395 	}
396 }
397 
398 static void validate_mm(struct mm_struct *mm)
399 {
400 	int bug = 0;
401 	int i = 0;
402 	unsigned long highest_address = 0;
403 	struct vm_area_struct *vma = mm->mmap;
404 
405 	while (vma) {
406 		struct anon_vma *anon_vma = vma->anon_vma;
407 		struct anon_vma_chain *avc;
408 
409 		if (anon_vma) {
410 			anon_vma_lock_read(anon_vma);
411 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
412 				anon_vma_interval_tree_verify(avc);
413 			anon_vma_unlock_read(anon_vma);
414 		}
415 
416 		highest_address = vm_end_gap(vma);
417 		vma = vma->vm_next;
418 		i++;
419 	}
420 	if (i != mm->map_count) {
421 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
422 		bug = 1;
423 	}
424 	if (highest_address != mm->highest_vm_end) {
425 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
426 			  mm->highest_vm_end, highest_address);
427 		bug = 1;
428 	}
429 	i = browse_rb(mm);
430 	if (i != mm->map_count) {
431 		if (i != -1)
432 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
433 		bug = 1;
434 	}
435 	VM_BUG_ON_MM(bug, mm);
436 }
437 #else
438 #define validate_mm_rb(root, ignore) do { } while (0)
439 #define validate_mm(mm) do { } while (0)
440 #endif
441 
442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
443 			 struct vm_area_struct, vm_rb,
444 			 unsigned long, rb_subtree_gap, vma_compute_gap)
445 
446 /*
447  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
448  * vma->vm_prev->vm_end values changed, without modifying the vma's position
449  * in the rbtree.
450  */
451 static void vma_gap_update(struct vm_area_struct *vma)
452 {
453 	/*
454 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
455 	 * a callback function that does exactly what we want.
456 	 */
457 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
458 }
459 
460 static inline void vma_rb_insert(struct vm_area_struct *vma,
461 				 struct rb_root *root)
462 {
463 	/* All rb_subtree_gap values must be consistent prior to insertion */
464 	validate_mm_rb(root, NULL);
465 
466 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 }
468 
469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
470 {
471 	/*
472 	 * Note rb_erase_augmented is a fairly large inline function,
473 	 * so make sure we instantiate it only once with our desired
474 	 * augmented rbtree callbacks.
475 	 */
476 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
477 }
478 
479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
480 						struct rb_root *root,
481 						struct vm_area_struct *ignore)
482 {
483 	/*
484 	 * All rb_subtree_gap values must be consistent prior to erase,
485 	 * with the possible exception of
486 	 *
487 	 * a. the "next" vma being erased if next->vm_start was reduced in
488 	 *    __vma_adjust() -> __vma_unlink()
489 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
490 	 *    vma_rb_erase()
491 	 */
492 	validate_mm_rb(root, ignore);
493 
494 	__vma_rb_erase(vma, root);
495 }
496 
497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
498 					 struct rb_root *root)
499 {
500 	vma_rb_erase_ignore(vma, root, vma);
501 }
502 
503 /*
504  * vma has some anon_vma assigned, and is already inserted on that
505  * anon_vma's interval trees.
506  *
507  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
508  * vma must be removed from the anon_vma's interval trees using
509  * anon_vma_interval_tree_pre_update_vma().
510  *
511  * After the update, the vma will be reinserted using
512  * anon_vma_interval_tree_post_update_vma().
513  *
514  * The entire update must be protected by exclusive mmap_lock and by
515  * the root anon_vma's mutex.
516  */
517 static inline void
518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
519 {
520 	struct anon_vma_chain *avc;
521 
522 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
524 }
525 
526 static inline void
527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
528 {
529 	struct anon_vma_chain *avc;
530 
531 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
532 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
533 }
534 
535 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
536 		unsigned long end, struct vm_area_struct **pprev,
537 		struct rb_node ***rb_link, struct rb_node **rb_parent)
538 {
539 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
540 
541 	mmap_assert_locked(mm);
542 	__rb_link = &mm->mm_rb.rb_node;
543 	rb_prev = __rb_parent = NULL;
544 
545 	while (*__rb_link) {
546 		struct vm_area_struct *vma_tmp;
547 
548 		__rb_parent = *__rb_link;
549 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
550 
551 		if (vma_tmp->vm_end > addr) {
552 			/* Fail if an existing vma overlaps the area */
553 			if (vma_tmp->vm_start < end)
554 				return -ENOMEM;
555 			__rb_link = &__rb_parent->rb_left;
556 		} else {
557 			rb_prev = __rb_parent;
558 			__rb_link = &__rb_parent->rb_right;
559 		}
560 	}
561 
562 	*pprev = NULL;
563 	if (rb_prev)
564 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
565 	*rb_link = __rb_link;
566 	*rb_parent = __rb_parent;
567 	return 0;
568 }
569 
570 /*
571  * vma_next() - Get the next VMA.
572  * @mm: The mm_struct.
573  * @vma: The current vma.
574  *
575  * If @vma is NULL, return the first vma in the mm.
576  *
577  * Returns: The next VMA after @vma.
578  */
579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
580 					 struct vm_area_struct *vma)
581 {
582 	if (!vma)
583 		return mm->mmap;
584 
585 	return vma->vm_next;
586 }
587 
588 /*
589  * munmap_vma_range() - munmap VMAs that overlap a range.
590  * @mm: The mm struct
591  * @start: The start of the range.
592  * @len: The length of the range.
593  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
594  * @rb_link: the rb_node
595  * @rb_parent: the parent rb_node
596  *
597  * Find all the vm_area_struct that overlap from @start to
598  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
599  *
600  * Returns: -ENOMEM on munmap failure or 0 on success.
601  */
602 static inline int
603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
604 		 struct vm_area_struct **pprev, struct rb_node ***link,
605 		 struct rb_node **parent, struct list_head *uf)
606 {
607 
608 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
609 		if (do_munmap(mm, start, len, uf))
610 			return -ENOMEM;
611 
612 	return 0;
613 }
614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615 		unsigned long addr, unsigned long end)
616 {
617 	unsigned long nr_pages = 0;
618 	struct vm_area_struct *vma;
619 
620 	/* Find first overlapping mapping */
621 	vma = find_vma_intersection(mm, addr, end);
622 	if (!vma)
623 		return 0;
624 
625 	nr_pages = (min(end, vma->vm_end) -
626 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
627 
628 	/* Iterate over the rest of the overlaps */
629 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630 		unsigned long overlap_len;
631 
632 		if (vma->vm_start > end)
633 			break;
634 
635 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
636 		nr_pages += overlap_len >> PAGE_SHIFT;
637 	}
638 
639 	return nr_pages;
640 }
641 
642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643 		struct rb_node **rb_link, struct rb_node *rb_parent)
644 {
645 	/* Update tracking information for the gap following the new vma. */
646 	if (vma->vm_next)
647 		vma_gap_update(vma->vm_next);
648 	else
649 		mm->highest_vm_end = vm_end_gap(vma);
650 
651 	/*
652 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
653 	 * correct insertion point for that vma. As a result, we could not
654 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
655 	 * So, we first insert the vma with a zero rb_subtree_gap value
656 	 * (to be consistent with what we did on the way down), and then
657 	 * immediately update the gap to the correct value. Finally we
658 	 * rebalance the rbtree after all augmented values have been set.
659 	 */
660 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661 	vma->rb_subtree_gap = 0;
662 	vma_gap_update(vma);
663 	vma_rb_insert(vma, &mm->mm_rb);
664 }
665 
666 static void __vma_link_file(struct vm_area_struct *vma)
667 {
668 	struct file *file;
669 
670 	file = vma->vm_file;
671 	if (file) {
672 		struct address_space *mapping = file->f_mapping;
673 
674 		if (vma->vm_flags & VM_SHARED)
675 			mapping_allow_writable(mapping);
676 
677 		flush_dcache_mmap_lock(mapping);
678 		vma_interval_tree_insert(vma, &mapping->i_mmap);
679 		flush_dcache_mmap_unlock(mapping);
680 	}
681 }
682 
683 static void
684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685 	struct vm_area_struct *prev, struct rb_node **rb_link,
686 	struct rb_node *rb_parent)
687 {
688 	__vma_link_list(mm, vma, prev);
689 	__vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691 
692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693 			struct vm_area_struct *prev, struct rb_node **rb_link,
694 			struct rb_node *rb_parent)
695 {
696 	struct address_space *mapping = NULL;
697 
698 	if (vma->vm_file) {
699 		mapping = vma->vm_file->f_mapping;
700 		i_mmap_lock_write(mapping);
701 	}
702 
703 	__vma_link(mm, vma, prev, rb_link, rb_parent);
704 	__vma_link_file(vma);
705 
706 	if (mapping)
707 		i_mmap_unlock_write(mapping);
708 
709 	mm->map_count++;
710 	validate_mm(mm);
711 }
712 
713 /*
714  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715  * mm's list and rbtree.  It has already been inserted into the interval tree.
716  */
717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	struct vm_area_struct *prev;
720 	struct rb_node **rb_link, *rb_parent;
721 
722 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723 			   &prev, &rb_link, &rb_parent))
724 		BUG();
725 	__vma_link(mm, vma, prev, rb_link, rb_parent);
726 	mm->map_count++;
727 }
728 
729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730 						struct vm_area_struct *vma,
731 						struct vm_area_struct *ignore)
732 {
733 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734 	__vma_unlink_list(mm, vma);
735 	/* Kill the cache */
736 	vmacache_invalidate(mm);
737 }
738 
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748 	struct vm_area_struct *expand)
749 {
750 	struct mm_struct *mm = vma->vm_mm;
751 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752 	struct address_space *mapping = NULL;
753 	struct rb_root_cached *root = NULL;
754 	struct anon_vma *anon_vma = NULL;
755 	struct file *file = vma->vm_file;
756 	bool start_changed = false, end_changed = false;
757 	long adjust_next = 0;
758 	int remove_next = 0;
759 
760 	if (next && !insert) {
761 		struct vm_area_struct *exporter = NULL, *importer = NULL;
762 
763 		if (end >= next->vm_end) {
764 			/*
765 			 * vma expands, overlapping all the next, and
766 			 * perhaps the one after too (mprotect case 6).
767 			 * The only other cases that gets here are
768 			 * case 1, case 7 and case 8.
769 			 */
770 			if (next == expand) {
771 				/*
772 				 * The only case where we don't expand "vma"
773 				 * and we expand "next" instead is case 8.
774 				 */
775 				VM_WARN_ON(end != next->vm_end);
776 				/*
777 				 * remove_next == 3 means we're
778 				 * removing "vma" and that to do so we
779 				 * swapped "vma" and "next".
780 				 */
781 				remove_next = 3;
782 				VM_WARN_ON(file != next->vm_file);
783 				swap(vma, next);
784 			} else {
785 				VM_WARN_ON(expand != vma);
786 				/*
787 				 * case 1, 6, 7, remove_next == 2 is case 6,
788 				 * remove_next == 1 is case 1 or 7.
789 				 */
790 				remove_next = 1 + (end > next->vm_end);
791 				VM_WARN_ON(remove_next == 2 &&
792 					   end != next->vm_next->vm_end);
793 				/* trim end to next, for case 6 first pass */
794 				end = next->vm_end;
795 			}
796 
797 			exporter = next;
798 			importer = vma;
799 
800 			/*
801 			 * If next doesn't have anon_vma, import from vma after
802 			 * next, if the vma overlaps with it.
803 			 */
804 			if (remove_next == 2 && !next->anon_vma)
805 				exporter = next->vm_next;
806 
807 		} else if (end > next->vm_start) {
808 			/*
809 			 * vma expands, overlapping part of the next:
810 			 * mprotect case 5 shifting the boundary up.
811 			 */
812 			adjust_next = (end - next->vm_start);
813 			exporter = next;
814 			importer = vma;
815 			VM_WARN_ON(expand != importer);
816 		} else if (end < vma->vm_end) {
817 			/*
818 			 * vma shrinks, and !insert tells it's not
819 			 * split_vma inserting another: so it must be
820 			 * mprotect case 4 shifting the boundary down.
821 			 */
822 			adjust_next = -(vma->vm_end - end);
823 			exporter = vma;
824 			importer = next;
825 			VM_WARN_ON(expand != importer);
826 		}
827 
828 		/*
829 		 * Easily overlooked: when mprotect shifts the boundary,
830 		 * make sure the expanding vma has anon_vma set if the
831 		 * shrinking vma had, to cover any anon pages imported.
832 		 */
833 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
834 			int error;
835 
836 			importer->anon_vma = exporter->anon_vma;
837 			error = anon_vma_clone(importer, exporter);
838 			if (error)
839 				return error;
840 		}
841 	}
842 again:
843 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844 
845 	if (file) {
846 		mapping = file->f_mapping;
847 		root = &mapping->i_mmap;
848 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849 
850 		if (adjust_next)
851 			uprobe_munmap(next, next->vm_start, next->vm_end);
852 
853 		i_mmap_lock_write(mapping);
854 		if (insert) {
855 			/*
856 			 * Put into interval tree now, so instantiated pages
857 			 * are visible to arm/parisc __flush_dcache_page
858 			 * throughout; but we cannot insert into address
859 			 * space until vma start or end is updated.
860 			 */
861 			__vma_link_file(insert);
862 		}
863 	}
864 
865 	anon_vma = vma->anon_vma;
866 	if (!anon_vma && adjust_next)
867 		anon_vma = next->anon_vma;
868 	if (anon_vma) {
869 		VM_WARN_ON(adjust_next && next->anon_vma &&
870 			   anon_vma != next->anon_vma);
871 		anon_vma_lock_write(anon_vma);
872 		anon_vma_interval_tree_pre_update_vma(vma);
873 		if (adjust_next)
874 			anon_vma_interval_tree_pre_update_vma(next);
875 	}
876 
877 	if (file) {
878 		flush_dcache_mmap_lock(mapping);
879 		vma_interval_tree_remove(vma, root);
880 		if (adjust_next)
881 			vma_interval_tree_remove(next, root);
882 	}
883 
884 	if (start != vma->vm_start) {
885 		vma->vm_start = start;
886 		start_changed = true;
887 	}
888 	if (end != vma->vm_end) {
889 		vma->vm_end = end;
890 		end_changed = true;
891 	}
892 	vma->vm_pgoff = pgoff;
893 	if (adjust_next) {
894 		next->vm_start += adjust_next;
895 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896 	}
897 
898 	if (file) {
899 		if (adjust_next)
900 			vma_interval_tree_insert(next, root);
901 		vma_interval_tree_insert(vma, root);
902 		flush_dcache_mmap_unlock(mapping);
903 	}
904 
905 	if (remove_next) {
906 		/*
907 		 * vma_merge has merged next into vma, and needs
908 		 * us to remove next before dropping the locks.
909 		 */
910 		if (remove_next != 3)
911 			__vma_unlink(mm, next, next);
912 		else
913 			/*
914 			 * vma is not before next if they've been
915 			 * swapped.
916 			 *
917 			 * pre-swap() next->vm_start was reduced so
918 			 * tell validate_mm_rb to ignore pre-swap()
919 			 * "next" (which is stored in post-swap()
920 			 * "vma").
921 			 */
922 			__vma_unlink(mm, next, vma);
923 		if (file)
924 			__remove_shared_vm_struct(next, file, mapping);
925 	} else if (insert) {
926 		/*
927 		 * split_vma has split insert from vma, and needs
928 		 * us to insert it before dropping the locks
929 		 * (it may either follow vma or precede it).
930 		 */
931 		__insert_vm_struct(mm, insert);
932 	} else {
933 		if (start_changed)
934 			vma_gap_update(vma);
935 		if (end_changed) {
936 			if (!next)
937 				mm->highest_vm_end = vm_end_gap(vma);
938 			else if (!adjust_next)
939 				vma_gap_update(next);
940 		}
941 	}
942 
943 	if (anon_vma) {
944 		anon_vma_interval_tree_post_update_vma(vma);
945 		if (adjust_next)
946 			anon_vma_interval_tree_post_update_vma(next);
947 		anon_vma_unlock_write(anon_vma);
948 	}
949 
950 	if (file) {
951 		i_mmap_unlock_write(mapping);
952 		uprobe_mmap(vma);
953 
954 		if (adjust_next)
955 			uprobe_mmap(next);
956 	}
957 
958 	if (remove_next) {
959 		if (file) {
960 			uprobe_munmap(next, next->vm_start, next->vm_end);
961 			fput(file);
962 		}
963 		if (next->anon_vma)
964 			anon_vma_merge(vma, next);
965 		mm->map_count--;
966 		mpol_put(vma_policy(next));
967 		vm_area_free(next);
968 		/*
969 		 * In mprotect's case 6 (see comments on vma_merge),
970 		 * we must remove another next too. It would clutter
971 		 * up the code too much to do both in one go.
972 		 */
973 		if (remove_next != 3) {
974 			/*
975 			 * If "next" was removed and vma->vm_end was
976 			 * expanded (up) over it, in turn
977 			 * "next->vm_prev->vm_end" changed and the
978 			 * "vma->vm_next" gap must be updated.
979 			 */
980 			next = vma->vm_next;
981 		} else {
982 			/*
983 			 * For the scope of the comment "next" and
984 			 * "vma" considered pre-swap(): if "vma" was
985 			 * removed, next->vm_start was expanded (down)
986 			 * over it and the "next" gap must be updated.
987 			 * Because of the swap() the post-swap() "vma"
988 			 * actually points to pre-swap() "next"
989 			 * (post-swap() "next" as opposed is now a
990 			 * dangling pointer).
991 			 */
992 			next = vma;
993 		}
994 		if (remove_next == 2) {
995 			remove_next = 1;
996 			end = next->vm_end;
997 			goto again;
998 		}
999 		else if (next)
1000 			vma_gap_update(next);
1001 		else {
1002 			/*
1003 			 * If remove_next == 2 we obviously can't
1004 			 * reach this path.
1005 			 *
1006 			 * If remove_next == 3 we can't reach this
1007 			 * path because pre-swap() next is always not
1008 			 * NULL. pre-swap() "next" is not being
1009 			 * removed and its next->vm_end is not altered
1010 			 * (and furthermore "end" already matches
1011 			 * next->vm_end in remove_next == 3).
1012 			 *
1013 			 * We reach this only in the remove_next == 1
1014 			 * case if the "next" vma that was removed was
1015 			 * the highest vma of the mm. However in such
1016 			 * case next->vm_end == "end" and the extended
1017 			 * "vma" has vma->vm_end == next->vm_end so
1018 			 * mm->highest_vm_end doesn't need any update
1019 			 * in remove_next == 1 case.
1020 			 */
1021 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022 		}
1023 	}
1024 	if (insert && file)
1025 		uprobe_mmap(insert);
1026 
1027 	validate_mm(mm);
1028 
1029 	return 0;
1030 }
1031 
1032 /*
1033  * If the vma has a ->close operation then the driver probably needs to release
1034  * per-vma resources, so we don't attempt to merge those.
1035  */
1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037 				struct file *file, unsigned long vm_flags,
1038 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039 				struct anon_vma_name *anon_name)
1040 {
1041 	/*
1042 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043 	 * match the flags but dirty bit -- the caller should mark
1044 	 * merged VMA as dirty. If dirty bit won't be excluded from
1045 	 * comparison, we increase pressure on the memory system forcing
1046 	 * the kernel to generate new VMAs when old one could be
1047 	 * extended instead.
1048 	 */
1049 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1050 		return 0;
1051 	if (vma->vm_file != file)
1052 		return 0;
1053 	if (vma->vm_ops && vma->vm_ops->close)
1054 		return 0;
1055 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1056 		return 0;
1057 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1058 		return 0;
1059 	return 1;
1060 }
1061 
1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063 					struct anon_vma *anon_vma2,
1064 					struct vm_area_struct *vma)
1065 {
1066 	/*
1067 	 * The list_is_singular() test is to avoid merging VMA cloned from
1068 	 * parents. This can improve scalability caused by anon_vma lock.
1069 	 */
1070 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071 		list_is_singular(&vma->anon_vma_chain)))
1072 		return 1;
1073 	return anon_vma1 == anon_vma2;
1074 }
1075 
1076 /*
1077  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078  * in front of (at a lower virtual address and file offset than) the vma.
1079  *
1080  * We cannot merge two vmas if they have differently assigned (non-NULL)
1081  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082  *
1083  * We don't check here for the merged mmap wrapping around the end of pagecache
1084  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085  * wrap, nor mmaps which cover the final page at index -1UL.
1086  */
1087 static int
1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089 		     struct anon_vma *anon_vma, struct file *file,
1090 		     pgoff_t vm_pgoff,
1091 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092 		     struct anon_vma_name *anon_name)
1093 {
1094 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096 		if (vma->vm_pgoff == vm_pgoff)
1097 			return 1;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104  * beyond (at a higher virtual address and file offset than) the vma.
1105  *
1106  * We cannot merge two vmas if they have differently assigned (non-NULL)
1107  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108  */
1109 static int
1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111 		    struct anon_vma *anon_vma, struct file *file,
1112 		    pgoff_t vm_pgoff,
1113 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114 		    struct anon_vma_name *anon_name)
1115 {
1116 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118 		pgoff_t vm_pglen;
1119 		vm_pglen = vma_pages(vma);
1120 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121 			return 1;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128  * figure out whether that can be merged with its predecessor or its
1129  * successor.  Or both (it neatly fills a hole).
1130  *
1131  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132  * certain not to be mapped by the time vma_merge is called; but when
1133  * called for mprotect, it is certain to be already mapped (either at
1134  * an offset within prev, or at the start of next), and the flags of
1135  * this area are about to be changed to vm_flags - and the no-change
1136  * case has already been eliminated.
1137  *
1138  * The following mprotect cases have to be considered, where AAAA is
1139  * the area passed down from mprotect_fixup, never extending beyond one
1140  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141  *
1142  *     AAAA             AAAA                   AAAA
1143  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1144  *    cannot merge    might become       might become
1145  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1146  *    mmap, brk or    case 4 below       case 5 below
1147  *    mremap move:
1148  *                        AAAA               AAAA
1149  *                    PPPP    NNNN       PPPPNNNNXXXX
1150  *                    might become       might become
1151  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1152  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1153  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1154  *
1155  * It is important for case 8 that the vma NNNN overlapping the
1156  * region AAAA is never going to extended over XXXX. Instead XXXX must
1157  * be extended in region AAAA and NNNN must be removed. This way in
1158  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159  * rmap_locks, the properties of the merged vma will be already
1160  * correct for the whole merged range. Some of those properties like
1161  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162  * be correct for the whole merged range immediately after the
1163  * rmap_locks are released. Otherwise if XXXX would be removed and
1164  * NNNN would be extended over the XXXX range, remove_migration_ptes
1165  * or other rmap walkers (if working on addresses beyond the "end"
1166  * parameter) may establish ptes with the wrong permissions of NNNN
1167  * instead of the right permissions of XXXX.
1168  */
1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170 			struct vm_area_struct *prev, unsigned long addr,
1171 			unsigned long end, unsigned long vm_flags,
1172 			struct anon_vma *anon_vma, struct file *file,
1173 			pgoff_t pgoff, struct mempolicy *policy,
1174 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175 			struct anon_vma_name *anon_name)
1176 {
1177 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178 	struct vm_area_struct *area, *next;
1179 	int err;
1180 
1181 	/*
1182 	 * We later require that vma->vm_flags == vm_flags,
1183 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1184 	 */
1185 	if (vm_flags & VM_SPECIAL)
1186 		return NULL;
1187 
1188 	next = vma_next(mm, prev);
1189 	area = next;
1190 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1191 		next = next->vm_next;
1192 
1193 	/* verify some invariant that must be enforced by the caller */
1194 	VM_WARN_ON(prev && addr <= prev->vm_start);
1195 	VM_WARN_ON(area && end > area->vm_end);
1196 	VM_WARN_ON(addr >= end);
1197 
1198 	/*
1199 	 * Can it merge with the predecessor?
1200 	 */
1201 	if (prev && prev->vm_end == addr &&
1202 			mpol_equal(vma_policy(prev), policy) &&
1203 			can_vma_merge_after(prev, vm_flags,
1204 					    anon_vma, file, pgoff,
1205 					    vm_userfaultfd_ctx, anon_name)) {
1206 		/*
1207 		 * OK, it can.  Can we now merge in the successor as well?
1208 		 */
1209 		if (next && end == next->vm_start &&
1210 				mpol_equal(policy, vma_policy(next)) &&
1211 				can_vma_merge_before(next, vm_flags,
1212 						     anon_vma, file,
1213 						     pgoff+pglen,
1214 						     vm_userfaultfd_ctx, anon_name) &&
1215 				is_mergeable_anon_vma(prev->anon_vma,
1216 						      next->anon_vma, NULL)) {
1217 							/* cases 1, 6 */
1218 			err = __vma_adjust(prev, prev->vm_start,
1219 					 next->vm_end, prev->vm_pgoff, NULL,
1220 					 prev);
1221 		} else					/* cases 2, 5, 7 */
1222 			err = __vma_adjust(prev, prev->vm_start,
1223 					 end, prev->vm_pgoff, NULL, prev);
1224 		if (err)
1225 			return NULL;
1226 		khugepaged_enter_vma_merge(prev, vm_flags);
1227 		return prev;
1228 	}
1229 
1230 	/*
1231 	 * Can this new request be merged in front of next?
1232 	 */
1233 	if (next && end == next->vm_start &&
1234 			mpol_equal(policy, vma_policy(next)) &&
1235 			can_vma_merge_before(next, vm_flags,
1236 					     anon_vma, file, pgoff+pglen,
1237 					     vm_userfaultfd_ctx, anon_name)) {
1238 		if (prev && addr < prev->vm_end)	/* case 4 */
1239 			err = __vma_adjust(prev, prev->vm_start,
1240 					 addr, prev->vm_pgoff, NULL, next);
1241 		else {					/* cases 3, 8 */
1242 			err = __vma_adjust(area, addr, next->vm_end,
1243 					 next->vm_pgoff - pglen, NULL, next);
1244 			/*
1245 			 * In case 3 area is already equal to next and
1246 			 * this is a noop, but in case 8 "area" has
1247 			 * been removed and next was expanded over it.
1248 			 */
1249 			area = next;
1250 		}
1251 		if (err)
1252 			return NULL;
1253 		khugepaged_enter_vma_merge(area, vm_flags);
1254 		return area;
1255 	}
1256 
1257 	return NULL;
1258 }
1259 
1260 /*
1261  * Rough compatibility check to quickly see if it's even worth looking
1262  * at sharing an anon_vma.
1263  *
1264  * They need to have the same vm_file, and the flags can only differ
1265  * in things that mprotect may change.
1266  *
1267  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268  * we can merge the two vma's. For example, we refuse to merge a vma if
1269  * there is a vm_ops->close() function, because that indicates that the
1270  * driver is doing some kind of reference counting. But that doesn't
1271  * really matter for the anon_vma sharing case.
1272  */
1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275 	return a->vm_end == b->vm_start &&
1276 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1277 		a->vm_file == b->vm_file &&
1278 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281 
1282 /*
1283  * Do some basic sanity checking to see if we can re-use the anon_vma
1284  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285  * the same as 'old', the other will be the new one that is trying
1286  * to share the anon_vma.
1287  *
1288  * NOTE! This runs with mm_sem held for reading, so it is possible that
1289  * the anon_vma of 'old' is concurrently in the process of being set up
1290  * by another page fault trying to merge _that_. But that's ok: if it
1291  * is being set up, that automatically means that it will be a singleton
1292  * acceptable for merging, so we can do all of this optimistically. But
1293  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294  *
1295  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297  * is to return an anon_vma that is "complex" due to having gone through
1298  * a fork).
1299  *
1300  * We also make sure that the two vma's are compatible (adjacent,
1301  * and with the same memory policies). That's all stable, even with just
1302  * a read lock on the mm_sem.
1303  */
1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306 	if (anon_vma_compatible(a, b)) {
1307 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308 
1309 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310 			return anon_vma;
1311 	}
1312 	return NULL;
1313 }
1314 
1315 /*
1316  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317  * neighbouring vmas for a suitable anon_vma, before it goes off
1318  * to allocate a new anon_vma.  It checks because a repetitive
1319  * sequence of mprotects and faults may otherwise lead to distinct
1320  * anon_vmas being allocated, preventing vma merge in subsequent
1321  * mprotect.
1322  */
1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325 	struct anon_vma *anon_vma = NULL;
1326 
1327 	/* Try next first. */
1328 	if (vma->vm_next) {
1329 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330 		if (anon_vma)
1331 			return anon_vma;
1332 	}
1333 
1334 	/* Try prev next. */
1335 	if (vma->vm_prev)
1336 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337 
1338 	/*
1339 	 * We might reach here with anon_vma == NULL if we can't find
1340 	 * any reusable anon_vma.
1341 	 * There's no absolute need to look only at touching neighbours:
1342 	 * we could search further afield for "compatible" anon_vmas.
1343 	 * But it would probably just be a waste of time searching,
1344 	 * or lead to too many vmas hanging off the same anon_vma.
1345 	 * We're trying to allow mprotect remerging later on,
1346 	 * not trying to minimize memory used for anon_vmas.
1347 	 */
1348 	return anon_vma;
1349 }
1350 
1351 /*
1352  * If a hint addr is less than mmap_min_addr change hint to be as
1353  * low as possible but still greater than mmap_min_addr
1354  */
1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357 	hint &= PAGE_MASK;
1358 	if (((void *)hint != NULL) &&
1359 	    (hint < mmap_min_addr))
1360 		return PAGE_ALIGN(mmap_min_addr);
1361 	return hint;
1362 }
1363 
1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1365 		       unsigned long len)
1366 {
1367 	unsigned long locked, lock_limit;
1368 
1369 	/*  mlock MCL_FUTURE? */
1370 	if (flags & VM_LOCKED) {
1371 		locked = len >> PAGE_SHIFT;
1372 		locked += mm->locked_vm;
1373 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1374 		lock_limit >>= PAGE_SHIFT;
1375 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1376 			return -EAGAIN;
1377 	}
1378 	return 0;
1379 }
1380 
1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1382 {
1383 	if (S_ISREG(inode->i_mode))
1384 		return MAX_LFS_FILESIZE;
1385 
1386 	if (S_ISBLK(inode->i_mode))
1387 		return MAX_LFS_FILESIZE;
1388 
1389 	if (S_ISSOCK(inode->i_mode))
1390 		return MAX_LFS_FILESIZE;
1391 
1392 	/* Special "we do even unsigned file positions" case */
1393 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1394 		return 0;
1395 
1396 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1397 	return ULONG_MAX;
1398 }
1399 
1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401 				unsigned long pgoff, unsigned long len)
1402 {
1403 	u64 maxsize = file_mmap_size_max(file, inode);
1404 
1405 	if (maxsize && len > maxsize)
1406 		return false;
1407 	maxsize -= len;
1408 	if (pgoff > maxsize >> PAGE_SHIFT)
1409 		return false;
1410 	return true;
1411 }
1412 
1413 /*
1414  * The caller must write-lock current->mm->mmap_lock.
1415  */
1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417 			unsigned long len, unsigned long prot,
1418 			unsigned long flags, unsigned long pgoff,
1419 			unsigned long *populate, struct list_head *uf)
1420 {
1421 	struct mm_struct *mm = current->mm;
1422 	vm_flags_t vm_flags;
1423 	int pkey = 0;
1424 
1425 	*populate = 0;
1426 
1427 	if (!len)
1428 		return -EINVAL;
1429 
1430 	/*
1431 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1432 	 *
1433 	 * (the exception is when the underlying filesystem is noexec
1434 	 *  mounted, in which case we dont add PROT_EXEC.)
1435 	 */
1436 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437 		if (!(file && path_noexec(&file->f_path)))
1438 			prot |= PROT_EXEC;
1439 
1440 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1441 	if (flags & MAP_FIXED_NOREPLACE)
1442 		flags |= MAP_FIXED;
1443 
1444 	if (!(flags & MAP_FIXED))
1445 		addr = round_hint_to_min(addr);
1446 
1447 	/* Careful about overflows.. */
1448 	len = PAGE_ALIGN(len);
1449 	if (!len)
1450 		return -ENOMEM;
1451 
1452 	/* offset overflow? */
1453 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454 		return -EOVERFLOW;
1455 
1456 	/* Too many mappings? */
1457 	if (mm->map_count > sysctl_max_map_count)
1458 		return -ENOMEM;
1459 
1460 	/* Obtain the address to map to. we verify (or select) it and ensure
1461 	 * that it represents a valid section of the address space.
1462 	 */
1463 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464 	if (IS_ERR_VALUE(addr))
1465 		return addr;
1466 
1467 	if (flags & MAP_FIXED_NOREPLACE) {
1468 		if (find_vma_intersection(mm, addr, addr + len))
1469 			return -EEXIST;
1470 	}
1471 
1472 	if (prot == PROT_EXEC) {
1473 		pkey = execute_only_pkey(mm);
1474 		if (pkey < 0)
1475 			pkey = 0;
1476 	}
1477 
1478 	/* Do simple checking here so the lower-level routines won't have
1479 	 * to. we assume access permissions have been handled by the open
1480 	 * of the memory object, so we don't do any here.
1481 	 */
1482 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1484 
1485 	if (flags & MAP_LOCKED)
1486 		if (!can_do_mlock())
1487 			return -EPERM;
1488 
1489 	if (mlock_future_check(mm, vm_flags, len))
1490 		return -EAGAIN;
1491 
1492 	if (file) {
1493 		struct inode *inode = file_inode(file);
1494 		unsigned long flags_mask;
1495 
1496 		if (!file_mmap_ok(file, inode, pgoff, len))
1497 			return -EOVERFLOW;
1498 
1499 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1500 
1501 		switch (flags & MAP_TYPE) {
1502 		case MAP_SHARED:
1503 			/*
1504 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1505 			 * flags. E.g. MAP_SYNC is dangerous to use with
1506 			 * MAP_SHARED as you don't know which consistency model
1507 			 * you will get. We silently ignore unsupported flags
1508 			 * with MAP_SHARED to preserve backward compatibility.
1509 			 */
1510 			flags &= LEGACY_MAP_MASK;
1511 			fallthrough;
1512 		case MAP_SHARED_VALIDATE:
1513 			if (flags & ~flags_mask)
1514 				return -EOPNOTSUPP;
1515 			if (prot & PROT_WRITE) {
1516 				if (!(file->f_mode & FMODE_WRITE))
1517 					return -EACCES;
1518 				if (IS_SWAPFILE(file->f_mapping->host))
1519 					return -ETXTBSY;
1520 			}
1521 
1522 			/*
1523 			 * Make sure we don't allow writing to an append-only
1524 			 * file..
1525 			 */
1526 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1527 				return -EACCES;
1528 
1529 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 			if (!(file->f_mode & FMODE_WRITE))
1531 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532 			fallthrough;
1533 		case MAP_PRIVATE:
1534 			if (!(file->f_mode & FMODE_READ))
1535 				return -EACCES;
1536 			if (path_noexec(&file->f_path)) {
1537 				if (vm_flags & VM_EXEC)
1538 					return -EPERM;
1539 				vm_flags &= ~VM_MAYEXEC;
1540 			}
1541 
1542 			if (!file->f_op->mmap)
1543 				return -ENODEV;
1544 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 				return -EINVAL;
1546 			break;
1547 
1548 		default:
1549 			return -EINVAL;
1550 		}
1551 	} else {
1552 		switch (flags & MAP_TYPE) {
1553 		case MAP_SHARED:
1554 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555 				return -EINVAL;
1556 			/*
1557 			 * Ignore pgoff.
1558 			 */
1559 			pgoff = 0;
1560 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1561 			break;
1562 		case MAP_PRIVATE:
1563 			/*
1564 			 * Set pgoff according to addr for anon_vma.
1565 			 */
1566 			pgoff = addr >> PAGE_SHIFT;
1567 			break;
1568 		default:
1569 			return -EINVAL;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Set 'VM_NORESERVE' if we should not account for the
1575 	 * memory use of this mapping.
1576 	 */
1577 	if (flags & MAP_NORESERVE) {
1578 		/* We honor MAP_NORESERVE if allowed to overcommit */
1579 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 			vm_flags |= VM_NORESERVE;
1581 
1582 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 		if (file && is_file_hugepages(file))
1584 			vm_flags |= VM_NORESERVE;
1585 	}
1586 
1587 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 	if (!IS_ERR_VALUE(addr) &&
1589 	    ((vm_flags & VM_LOCKED) ||
1590 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591 		*populate = len;
1592 	return addr;
1593 }
1594 
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 			      unsigned long prot, unsigned long flags,
1597 			      unsigned long fd, unsigned long pgoff)
1598 {
1599 	struct file *file = NULL;
1600 	unsigned long retval;
1601 
1602 	if (!(flags & MAP_ANONYMOUS)) {
1603 		audit_mmap_fd(fd, flags);
1604 		file = fget(fd);
1605 		if (!file)
1606 			return -EBADF;
1607 		if (is_file_hugepages(file)) {
1608 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 		} else if (unlikely(flags & MAP_HUGETLB)) {
1610 			retval = -EINVAL;
1611 			goto out_fput;
1612 		}
1613 	} else if (flags & MAP_HUGETLB) {
1614 		struct hstate *hs;
1615 
1616 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1617 		if (!hs)
1618 			return -EINVAL;
1619 
1620 		len = ALIGN(len, huge_page_size(hs));
1621 		/*
1622 		 * VM_NORESERVE is used because the reservations will be
1623 		 * taken when vm_ops->mmap() is called
1624 		 */
1625 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626 				VM_NORESERVE,
1627 				HUGETLB_ANONHUGE_INODE,
1628 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629 		if (IS_ERR(file))
1630 			return PTR_ERR(file);
1631 	}
1632 
1633 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635 	if (file)
1636 		fput(file);
1637 	return retval;
1638 }
1639 
1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641 		unsigned long, prot, unsigned long, flags,
1642 		unsigned long, fd, unsigned long, pgoff)
1643 {
1644 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646 
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649 	unsigned long addr;
1650 	unsigned long len;
1651 	unsigned long prot;
1652 	unsigned long flags;
1653 	unsigned long fd;
1654 	unsigned long offset;
1655 };
1656 
1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659 	struct mmap_arg_struct a;
1660 
1661 	if (copy_from_user(&a, arg, sizeof(a)))
1662 		return -EFAULT;
1663 	if (offset_in_page(a.offset))
1664 		return -EINVAL;
1665 
1666 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667 			       a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670 
1671 /*
1672  * Some shared mappings will want the pages marked read-only
1673  * to track write events. If so, we'll downgrade vm_page_prot
1674  * to the private version (using protection_map[] without the
1675  * VM_SHARED bit).
1676  */
1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679 	vm_flags_t vm_flags = vma->vm_flags;
1680 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681 
1682 	/* If it was private or non-writable, the write bit is already clear */
1683 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684 		return 0;
1685 
1686 	/* The backer wishes to know when pages are first written to? */
1687 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688 		return 1;
1689 
1690 	/* The open routine did something to the protections that pgprot_modify
1691 	 * won't preserve? */
1692 	if (pgprot_val(vm_page_prot) !=
1693 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694 		return 0;
1695 
1696 	/* Do we need to track softdirty? */
1697 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1698 		return 1;
1699 
1700 	/* Specialty mapping? */
1701 	if (vm_flags & VM_PFNMAP)
1702 		return 0;
1703 
1704 	/* Can the mapping track the dirty pages? */
1705 	return vma->vm_file && vma->vm_file->f_mapping &&
1706 		mapping_can_writeback(vma->vm_file->f_mapping);
1707 }
1708 
1709 /*
1710  * We account for memory if it's a private writeable mapping,
1711  * not hugepages and VM_NORESERVE wasn't set.
1712  */
1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1714 {
1715 	/*
1716 	 * hugetlb has its own accounting separate from the core VM
1717 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1718 	 */
1719 	if (file && is_file_hugepages(file))
1720 		return 0;
1721 
1722 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1723 }
1724 
1725 unsigned long mmap_region(struct file *file, unsigned long addr,
1726 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1727 		struct list_head *uf)
1728 {
1729 	struct mm_struct *mm = current->mm;
1730 	struct vm_area_struct *vma, *prev, *merge;
1731 	int error;
1732 	struct rb_node **rb_link, *rb_parent;
1733 	unsigned long charged = 0;
1734 
1735 	/* Check against address space limit. */
1736 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1737 		unsigned long nr_pages;
1738 
1739 		/*
1740 		 * MAP_FIXED may remove pages of mappings that intersects with
1741 		 * requested mapping. Account for the pages it would unmap.
1742 		 */
1743 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1744 
1745 		if (!may_expand_vm(mm, vm_flags,
1746 					(len >> PAGE_SHIFT) - nr_pages))
1747 			return -ENOMEM;
1748 	}
1749 
1750 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1751 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1752 		return -ENOMEM;
1753 	/*
1754 	 * Private writable mapping: check memory availability
1755 	 */
1756 	if (accountable_mapping(file, vm_flags)) {
1757 		charged = len >> PAGE_SHIFT;
1758 		if (security_vm_enough_memory_mm(mm, charged))
1759 			return -ENOMEM;
1760 		vm_flags |= VM_ACCOUNT;
1761 	}
1762 
1763 	/*
1764 	 * Can we just expand an old mapping?
1765 	 */
1766 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1768 	if (vma)
1769 		goto out;
1770 
1771 	/*
1772 	 * Determine the object being mapped and call the appropriate
1773 	 * specific mapper. the address has already been validated, but
1774 	 * not unmapped, but the maps are removed from the list.
1775 	 */
1776 	vma = vm_area_alloc(mm);
1777 	if (!vma) {
1778 		error = -ENOMEM;
1779 		goto unacct_error;
1780 	}
1781 
1782 	vma->vm_start = addr;
1783 	vma->vm_end = addr + len;
1784 	vma->vm_flags = vm_flags;
1785 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786 	vma->vm_pgoff = pgoff;
1787 
1788 	if (file) {
1789 		if (vm_flags & VM_SHARED) {
1790 			error = mapping_map_writable(file->f_mapping);
1791 			if (error)
1792 				goto free_vma;
1793 		}
1794 
1795 		vma->vm_file = get_file(file);
1796 		error = call_mmap(file, vma);
1797 		if (error)
1798 			goto unmap_and_free_vma;
1799 
1800 		/* Can addr have changed??
1801 		 *
1802 		 * Answer: Yes, several device drivers can do it in their
1803 		 *         f_op->mmap method. -DaveM
1804 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1805 		 *      be updated for vma_link()
1806 		 */
1807 		WARN_ON_ONCE(addr != vma->vm_start);
1808 
1809 		addr = vma->vm_start;
1810 
1811 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1812 		 * as we may succeed this time.
1813 		 */
1814 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1817 			if (merge) {
1818 				/* ->mmap() can change vma->vm_file and fput the original file. So
1819 				 * fput the vma->vm_file here or we would add an extra fput for file
1820 				 * and cause general protection fault ultimately.
1821 				 */
1822 				fput(vma->vm_file);
1823 				vm_area_free(vma);
1824 				vma = merge;
1825 				/* Update vm_flags to pick up the change. */
1826 				vm_flags = vma->vm_flags;
1827 				goto unmap_writable;
1828 			}
1829 		}
1830 
1831 		vm_flags = vma->vm_flags;
1832 	} else if (vm_flags & VM_SHARED) {
1833 		error = shmem_zero_setup(vma);
1834 		if (error)
1835 			goto free_vma;
1836 	} else {
1837 		vma_set_anonymous(vma);
1838 	}
1839 
1840 	/* Allow architectures to sanity-check the vm_flags */
1841 	if (!arch_validate_flags(vma->vm_flags)) {
1842 		error = -EINVAL;
1843 		if (file)
1844 			goto unmap_and_free_vma;
1845 		else
1846 			goto free_vma;
1847 	}
1848 
1849 	vma_link(mm, vma, prev, rb_link, rb_parent);
1850 	/* Once vma denies write, undo our temporary denial count */
1851 unmap_writable:
1852 	if (file && vm_flags & VM_SHARED)
1853 		mapping_unmap_writable(file->f_mapping);
1854 	file = vma->vm_file;
1855 out:
1856 	perf_event_mmap(vma);
1857 
1858 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1859 	if (vm_flags & VM_LOCKED) {
1860 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1861 					is_vm_hugetlb_page(vma) ||
1862 					vma == get_gate_vma(current->mm))
1863 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1864 		else
1865 			mm->locked_vm += (len >> PAGE_SHIFT);
1866 	}
1867 
1868 	if (file)
1869 		uprobe_mmap(vma);
1870 
1871 	/*
1872 	 * New (or expanded) vma always get soft dirty status.
1873 	 * Otherwise user-space soft-dirty page tracker won't
1874 	 * be able to distinguish situation when vma area unmapped,
1875 	 * then new mapped in-place (which must be aimed as
1876 	 * a completely new data area).
1877 	 */
1878 	vma->vm_flags |= VM_SOFTDIRTY;
1879 
1880 	vma_set_page_prot(vma);
1881 
1882 	return addr;
1883 
1884 unmap_and_free_vma:
1885 	fput(vma->vm_file);
1886 	vma->vm_file = NULL;
1887 
1888 	/* Undo any partial mapping done by a device driver. */
1889 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1890 	charged = 0;
1891 	if (vm_flags & VM_SHARED)
1892 		mapping_unmap_writable(file->f_mapping);
1893 free_vma:
1894 	vm_area_free(vma);
1895 unacct_error:
1896 	if (charged)
1897 		vm_unacct_memory(charged);
1898 	return error;
1899 }
1900 
1901 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1902 {
1903 	/*
1904 	 * We implement the search by looking for an rbtree node that
1905 	 * immediately follows a suitable gap. That is,
1906 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1907 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1908 	 * - gap_end - gap_start >= length
1909 	 */
1910 
1911 	struct mm_struct *mm = current->mm;
1912 	struct vm_area_struct *vma;
1913 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1914 
1915 	/* Adjust search length to account for worst case alignment overhead */
1916 	length = info->length + info->align_mask;
1917 	if (length < info->length)
1918 		return -ENOMEM;
1919 
1920 	/* Adjust search limits by the desired length */
1921 	if (info->high_limit < length)
1922 		return -ENOMEM;
1923 	high_limit = info->high_limit - length;
1924 
1925 	if (info->low_limit > high_limit)
1926 		return -ENOMEM;
1927 	low_limit = info->low_limit + length;
1928 
1929 	/* Check if rbtree root looks promising */
1930 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1931 		goto check_highest;
1932 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1933 	if (vma->rb_subtree_gap < length)
1934 		goto check_highest;
1935 
1936 	while (true) {
1937 		/* Visit left subtree if it looks promising */
1938 		gap_end = vm_start_gap(vma);
1939 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1940 			struct vm_area_struct *left =
1941 				rb_entry(vma->vm_rb.rb_left,
1942 					 struct vm_area_struct, vm_rb);
1943 			if (left->rb_subtree_gap >= length) {
1944 				vma = left;
1945 				continue;
1946 			}
1947 		}
1948 
1949 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1950 check_current:
1951 		/* Check if current node has a suitable gap */
1952 		if (gap_start > high_limit)
1953 			return -ENOMEM;
1954 		if (gap_end >= low_limit &&
1955 		    gap_end > gap_start && gap_end - gap_start >= length)
1956 			goto found;
1957 
1958 		/* Visit right subtree if it looks promising */
1959 		if (vma->vm_rb.rb_right) {
1960 			struct vm_area_struct *right =
1961 				rb_entry(vma->vm_rb.rb_right,
1962 					 struct vm_area_struct, vm_rb);
1963 			if (right->rb_subtree_gap >= length) {
1964 				vma = right;
1965 				continue;
1966 			}
1967 		}
1968 
1969 		/* Go back up the rbtree to find next candidate node */
1970 		while (true) {
1971 			struct rb_node *prev = &vma->vm_rb;
1972 			if (!rb_parent(prev))
1973 				goto check_highest;
1974 			vma = rb_entry(rb_parent(prev),
1975 				       struct vm_area_struct, vm_rb);
1976 			if (prev == vma->vm_rb.rb_left) {
1977 				gap_start = vm_end_gap(vma->vm_prev);
1978 				gap_end = vm_start_gap(vma);
1979 				goto check_current;
1980 			}
1981 		}
1982 	}
1983 
1984 check_highest:
1985 	/* Check highest gap, which does not precede any rbtree node */
1986 	gap_start = mm->highest_vm_end;
1987 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1988 	if (gap_start > high_limit)
1989 		return -ENOMEM;
1990 
1991 found:
1992 	/* We found a suitable gap. Clip it with the original low_limit. */
1993 	if (gap_start < info->low_limit)
1994 		gap_start = info->low_limit;
1995 
1996 	/* Adjust gap address to the desired alignment */
1997 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1998 
1999 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2000 	VM_BUG_ON(gap_start + info->length > gap_end);
2001 	return gap_start;
2002 }
2003 
2004 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2005 {
2006 	struct mm_struct *mm = current->mm;
2007 	struct vm_area_struct *vma;
2008 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2009 
2010 	/* Adjust search length to account for worst case alignment overhead */
2011 	length = info->length + info->align_mask;
2012 	if (length < info->length)
2013 		return -ENOMEM;
2014 
2015 	/*
2016 	 * Adjust search limits by the desired length.
2017 	 * See implementation comment at top of unmapped_area().
2018 	 */
2019 	gap_end = info->high_limit;
2020 	if (gap_end < length)
2021 		return -ENOMEM;
2022 	high_limit = gap_end - length;
2023 
2024 	if (info->low_limit > high_limit)
2025 		return -ENOMEM;
2026 	low_limit = info->low_limit + length;
2027 
2028 	/* Check highest gap, which does not precede any rbtree node */
2029 	gap_start = mm->highest_vm_end;
2030 	if (gap_start <= high_limit)
2031 		goto found_highest;
2032 
2033 	/* Check if rbtree root looks promising */
2034 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2035 		return -ENOMEM;
2036 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2037 	if (vma->rb_subtree_gap < length)
2038 		return -ENOMEM;
2039 
2040 	while (true) {
2041 		/* Visit right subtree if it looks promising */
2042 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2043 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2044 			struct vm_area_struct *right =
2045 				rb_entry(vma->vm_rb.rb_right,
2046 					 struct vm_area_struct, vm_rb);
2047 			if (right->rb_subtree_gap >= length) {
2048 				vma = right;
2049 				continue;
2050 			}
2051 		}
2052 
2053 check_current:
2054 		/* Check if current node has a suitable gap */
2055 		gap_end = vm_start_gap(vma);
2056 		if (gap_end < low_limit)
2057 			return -ENOMEM;
2058 		if (gap_start <= high_limit &&
2059 		    gap_end > gap_start && gap_end - gap_start >= length)
2060 			goto found;
2061 
2062 		/* Visit left subtree if it looks promising */
2063 		if (vma->vm_rb.rb_left) {
2064 			struct vm_area_struct *left =
2065 				rb_entry(vma->vm_rb.rb_left,
2066 					 struct vm_area_struct, vm_rb);
2067 			if (left->rb_subtree_gap >= length) {
2068 				vma = left;
2069 				continue;
2070 			}
2071 		}
2072 
2073 		/* Go back up the rbtree to find next candidate node */
2074 		while (true) {
2075 			struct rb_node *prev = &vma->vm_rb;
2076 			if (!rb_parent(prev))
2077 				return -ENOMEM;
2078 			vma = rb_entry(rb_parent(prev),
2079 				       struct vm_area_struct, vm_rb);
2080 			if (prev == vma->vm_rb.rb_right) {
2081 				gap_start = vma->vm_prev ?
2082 					vm_end_gap(vma->vm_prev) : 0;
2083 				goto check_current;
2084 			}
2085 		}
2086 	}
2087 
2088 found:
2089 	/* We found a suitable gap. Clip it with the original high_limit. */
2090 	if (gap_end > info->high_limit)
2091 		gap_end = info->high_limit;
2092 
2093 found_highest:
2094 	/* Compute highest gap address at the desired alignment */
2095 	gap_end -= info->length;
2096 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2097 
2098 	VM_BUG_ON(gap_end < info->low_limit);
2099 	VM_BUG_ON(gap_end < gap_start);
2100 	return gap_end;
2101 }
2102 
2103 /*
2104  * Search for an unmapped address range.
2105  *
2106  * We are looking for a range that:
2107  * - does not intersect with any VMA;
2108  * - is contained within the [low_limit, high_limit) interval;
2109  * - is at least the desired size.
2110  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2111  */
2112 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2113 {
2114 	unsigned long addr;
2115 
2116 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2117 		addr = unmapped_area_topdown(info);
2118 	else
2119 		addr = unmapped_area(info);
2120 
2121 	trace_vm_unmapped_area(addr, info);
2122 	return addr;
2123 }
2124 
2125 /* Get an address range which is currently unmapped.
2126  * For shmat() with addr=0.
2127  *
2128  * Ugly calling convention alert:
2129  * Return value with the low bits set means error value,
2130  * ie
2131  *	if (ret & ~PAGE_MASK)
2132  *		error = ret;
2133  *
2134  * This function "knows" that -ENOMEM has the bits set.
2135  */
2136 #ifndef HAVE_ARCH_UNMAPPED_AREA
2137 unsigned long
2138 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2139 		unsigned long len, unsigned long pgoff, unsigned long flags)
2140 {
2141 	struct mm_struct *mm = current->mm;
2142 	struct vm_area_struct *vma, *prev;
2143 	struct vm_unmapped_area_info info;
2144 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2145 
2146 	if (len > mmap_end - mmap_min_addr)
2147 		return -ENOMEM;
2148 
2149 	if (flags & MAP_FIXED)
2150 		return addr;
2151 
2152 	if (addr) {
2153 		addr = PAGE_ALIGN(addr);
2154 		vma = find_vma_prev(mm, addr, &prev);
2155 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2156 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2157 		    (!prev || addr >= vm_end_gap(prev)))
2158 			return addr;
2159 	}
2160 
2161 	info.flags = 0;
2162 	info.length = len;
2163 	info.low_limit = mm->mmap_base;
2164 	info.high_limit = mmap_end;
2165 	info.align_mask = 0;
2166 	info.align_offset = 0;
2167 	return vm_unmapped_area(&info);
2168 }
2169 #endif
2170 
2171 /*
2172  * This mmap-allocator allocates new areas top-down from below the
2173  * stack's low limit (the base):
2174  */
2175 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2176 unsigned long
2177 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2178 			  unsigned long len, unsigned long pgoff,
2179 			  unsigned long flags)
2180 {
2181 	struct vm_area_struct *vma, *prev;
2182 	struct mm_struct *mm = current->mm;
2183 	struct vm_unmapped_area_info info;
2184 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2185 
2186 	/* requested length too big for entire address space */
2187 	if (len > mmap_end - mmap_min_addr)
2188 		return -ENOMEM;
2189 
2190 	if (flags & MAP_FIXED)
2191 		return addr;
2192 
2193 	/* requesting a specific address */
2194 	if (addr) {
2195 		addr = PAGE_ALIGN(addr);
2196 		vma = find_vma_prev(mm, addr, &prev);
2197 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2198 				(!vma || addr + len <= vm_start_gap(vma)) &&
2199 				(!prev || addr >= vm_end_gap(prev)))
2200 			return addr;
2201 	}
2202 
2203 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2204 	info.length = len;
2205 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2206 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2207 	info.align_mask = 0;
2208 	info.align_offset = 0;
2209 	addr = vm_unmapped_area(&info);
2210 
2211 	/*
2212 	 * A failed mmap() very likely causes application failure,
2213 	 * so fall back to the bottom-up function here. This scenario
2214 	 * can happen with large stack limits and large mmap()
2215 	 * allocations.
2216 	 */
2217 	if (offset_in_page(addr)) {
2218 		VM_BUG_ON(addr != -ENOMEM);
2219 		info.flags = 0;
2220 		info.low_limit = TASK_UNMAPPED_BASE;
2221 		info.high_limit = mmap_end;
2222 		addr = vm_unmapped_area(&info);
2223 	}
2224 
2225 	return addr;
2226 }
2227 #endif
2228 
2229 unsigned long
2230 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2231 		unsigned long pgoff, unsigned long flags)
2232 {
2233 	unsigned long (*get_area)(struct file *, unsigned long,
2234 				  unsigned long, unsigned long, unsigned long);
2235 
2236 	unsigned long error = arch_mmap_check(addr, len, flags);
2237 	if (error)
2238 		return error;
2239 
2240 	/* Careful about overflows.. */
2241 	if (len > TASK_SIZE)
2242 		return -ENOMEM;
2243 
2244 	get_area = current->mm->get_unmapped_area;
2245 	if (file) {
2246 		if (file->f_op->get_unmapped_area)
2247 			get_area = file->f_op->get_unmapped_area;
2248 	} else if (flags & MAP_SHARED) {
2249 		/*
2250 		 * mmap_region() will call shmem_zero_setup() to create a file,
2251 		 * so use shmem's get_unmapped_area in case it can be huge.
2252 		 * do_mmap() will clear pgoff, so match alignment.
2253 		 */
2254 		pgoff = 0;
2255 		get_area = shmem_get_unmapped_area;
2256 	}
2257 
2258 	addr = get_area(file, addr, len, pgoff, flags);
2259 	if (IS_ERR_VALUE(addr))
2260 		return addr;
2261 
2262 	if (addr > TASK_SIZE - len)
2263 		return -ENOMEM;
2264 	if (offset_in_page(addr))
2265 		return -EINVAL;
2266 
2267 	error = security_mmap_addr(addr);
2268 	return error ? error : addr;
2269 }
2270 
2271 EXPORT_SYMBOL(get_unmapped_area);
2272 
2273 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2274 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2275 {
2276 	struct rb_node *rb_node;
2277 	struct vm_area_struct *vma;
2278 
2279 	mmap_assert_locked(mm);
2280 	/* Check the cache first. */
2281 	vma = vmacache_find(mm, addr);
2282 	if (likely(vma))
2283 		return vma;
2284 
2285 	rb_node = mm->mm_rb.rb_node;
2286 
2287 	while (rb_node) {
2288 		struct vm_area_struct *tmp;
2289 
2290 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2291 
2292 		if (tmp->vm_end > addr) {
2293 			vma = tmp;
2294 			if (tmp->vm_start <= addr)
2295 				break;
2296 			rb_node = rb_node->rb_left;
2297 		} else
2298 			rb_node = rb_node->rb_right;
2299 	}
2300 
2301 	if (vma)
2302 		vmacache_update(addr, vma);
2303 	return vma;
2304 }
2305 
2306 EXPORT_SYMBOL(find_vma);
2307 
2308 /*
2309  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2310  */
2311 struct vm_area_struct *
2312 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2313 			struct vm_area_struct **pprev)
2314 {
2315 	struct vm_area_struct *vma;
2316 
2317 	vma = find_vma(mm, addr);
2318 	if (vma) {
2319 		*pprev = vma->vm_prev;
2320 	} else {
2321 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2322 
2323 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2324 	}
2325 	return vma;
2326 }
2327 
2328 /*
2329  * Verify that the stack growth is acceptable and
2330  * update accounting. This is shared with both the
2331  * grow-up and grow-down cases.
2332  */
2333 static int acct_stack_growth(struct vm_area_struct *vma,
2334 			     unsigned long size, unsigned long grow)
2335 {
2336 	struct mm_struct *mm = vma->vm_mm;
2337 	unsigned long new_start;
2338 
2339 	/* address space limit tests */
2340 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2341 		return -ENOMEM;
2342 
2343 	/* Stack limit test */
2344 	if (size > rlimit(RLIMIT_STACK))
2345 		return -ENOMEM;
2346 
2347 	/* mlock limit tests */
2348 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2349 		return -ENOMEM;
2350 
2351 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2352 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2353 			vma->vm_end - size;
2354 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2355 		return -EFAULT;
2356 
2357 	/*
2358 	 * Overcommit..  This must be the final test, as it will
2359 	 * update security statistics.
2360 	 */
2361 	if (security_vm_enough_memory_mm(mm, grow))
2362 		return -ENOMEM;
2363 
2364 	return 0;
2365 }
2366 
2367 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2368 /*
2369  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2370  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2371  */
2372 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2373 {
2374 	struct mm_struct *mm = vma->vm_mm;
2375 	struct vm_area_struct *next;
2376 	unsigned long gap_addr;
2377 	int error = 0;
2378 
2379 	if (!(vma->vm_flags & VM_GROWSUP))
2380 		return -EFAULT;
2381 
2382 	/* Guard against exceeding limits of the address space. */
2383 	address &= PAGE_MASK;
2384 	if (address >= (TASK_SIZE & PAGE_MASK))
2385 		return -ENOMEM;
2386 	address += PAGE_SIZE;
2387 
2388 	/* Enforce stack_guard_gap */
2389 	gap_addr = address + stack_guard_gap;
2390 
2391 	/* Guard against overflow */
2392 	if (gap_addr < address || gap_addr > TASK_SIZE)
2393 		gap_addr = TASK_SIZE;
2394 
2395 	next = vma->vm_next;
2396 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2397 		if (!(next->vm_flags & VM_GROWSUP))
2398 			return -ENOMEM;
2399 		/* Check that both stack segments have the same anon_vma? */
2400 	}
2401 
2402 	/* We must make sure the anon_vma is allocated. */
2403 	if (unlikely(anon_vma_prepare(vma)))
2404 		return -ENOMEM;
2405 
2406 	/*
2407 	 * vma->vm_start/vm_end cannot change under us because the caller
2408 	 * is required to hold the mmap_lock in read mode.  We need the
2409 	 * anon_vma lock to serialize against concurrent expand_stacks.
2410 	 */
2411 	anon_vma_lock_write(vma->anon_vma);
2412 
2413 	/* Somebody else might have raced and expanded it already */
2414 	if (address > vma->vm_end) {
2415 		unsigned long size, grow;
2416 
2417 		size = address - vma->vm_start;
2418 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2419 
2420 		error = -ENOMEM;
2421 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2422 			error = acct_stack_growth(vma, size, grow);
2423 			if (!error) {
2424 				/*
2425 				 * vma_gap_update() doesn't support concurrent
2426 				 * updates, but we only hold a shared mmap_lock
2427 				 * lock here, so we need to protect against
2428 				 * concurrent vma expansions.
2429 				 * anon_vma_lock_write() doesn't help here, as
2430 				 * we don't guarantee that all growable vmas
2431 				 * in a mm share the same root anon vma.
2432 				 * So, we reuse mm->page_table_lock to guard
2433 				 * against concurrent vma expansions.
2434 				 */
2435 				spin_lock(&mm->page_table_lock);
2436 				if (vma->vm_flags & VM_LOCKED)
2437 					mm->locked_vm += grow;
2438 				vm_stat_account(mm, vma->vm_flags, grow);
2439 				anon_vma_interval_tree_pre_update_vma(vma);
2440 				vma->vm_end = address;
2441 				anon_vma_interval_tree_post_update_vma(vma);
2442 				if (vma->vm_next)
2443 					vma_gap_update(vma->vm_next);
2444 				else
2445 					mm->highest_vm_end = vm_end_gap(vma);
2446 				spin_unlock(&mm->page_table_lock);
2447 
2448 				perf_event_mmap(vma);
2449 			}
2450 		}
2451 	}
2452 	anon_vma_unlock_write(vma->anon_vma);
2453 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2454 	validate_mm(mm);
2455 	return error;
2456 }
2457 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2458 
2459 /*
2460  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2461  */
2462 int expand_downwards(struct vm_area_struct *vma,
2463 				   unsigned long address)
2464 {
2465 	struct mm_struct *mm = vma->vm_mm;
2466 	struct vm_area_struct *prev;
2467 	int error = 0;
2468 
2469 	address &= PAGE_MASK;
2470 	if (address < mmap_min_addr)
2471 		return -EPERM;
2472 
2473 	/* Enforce stack_guard_gap */
2474 	prev = vma->vm_prev;
2475 	/* Check that both stack segments have the same anon_vma? */
2476 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2477 			vma_is_accessible(prev)) {
2478 		if (address - prev->vm_end < stack_guard_gap)
2479 			return -ENOMEM;
2480 	}
2481 
2482 	/* We must make sure the anon_vma is allocated. */
2483 	if (unlikely(anon_vma_prepare(vma)))
2484 		return -ENOMEM;
2485 
2486 	/*
2487 	 * vma->vm_start/vm_end cannot change under us because the caller
2488 	 * is required to hold the mmap_lock in read mode.  We need the
2489 	 * anon_vma lock to serialize against concurrent expand_stacks.
2490 	 */
2491 	anon_vma_lock_write(vma->anon_vma);
2492 
2493 	/* Somebody else might have raced and expanded it already */
2494 	if (address < vma->vm_start) {
2495 		unsigned long size, grow;
2496 
2497 		size = vma->vm_end - address;
2498 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2499 
2500 		error = -ENOMEM;
2501 		if (grow <= vma->vm_pgoff) {
2502 			error = acct_stack_growth(vma, size, grow);
2503 			if (!error) {
2504 				/*
2505 				 * vma_gap_update() doesn't support concurrent
2506 				 * updates, but we only hold a shared mmap_lock
2507 				 * lock here, so we need to protect against
2508 				 * concurrent vma expansions.
2509 				 * anon_vma_lock_write() doesn't help here, as
2510 				 * we don't guarantee that all growable vmas
2511 				 * in a mm share the same root anon vma.
2512 				 * So, we reuse mm->page_table_lock to guard
2513 				 * against concurrent vma expansions.
2514 				 */
2515 				spin_lock(&mm->page_table_lock);
2516 				if (vma->vm_flags & VM_LOCKED)
2517 					mm->locked_vm += grow;
2518 				vm_stat_account(mm, vma->vm_flags, grow);
2519 				anon_vma_interval_tree_pre_update_vma(vma);
2520 				vma->vm_start = address;
2521 				vma->vm_pgoff -= grow;
2522 				anon_vma_interval_tree_post_update_vma(vma);
2523 				vma_gap_update(vma);
2524 				spin_unlock(&mm->page_table_lock);
2525 
2526 				perf_event_mmap(vma);
2527 			}
2528 		}
2529 	}
2530 	anon_vma_unlock_write(vma->anon_vma);
2531 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2532 	validate_mm(mm);
2533 	return error;
2534 }
2535 
2536 /* enforced gap between the expanding stack and other mappings. */
2537 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2538 
2539 static int __init cmdline_parse_stack_guard_gap(char *p)
2540 {
2541 	unsigned long val;
2542 	char *endptr;
2543 
2544 	val = simple_strtoul(p, &endptr, 10);
2545 	if (!*endptr)
2546 		stack_guard_gap = val << PAGE_SHIFT;
2547 
2548 	return 1;
2549 }
2550 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2551 
2552 #ifdef CONFIG_STACK_GROWSUP
2553 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554 {
2555 	return expand_upwards(vma, address);
2556 }
2557 
2558 struct vm_area_struct *
2559 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560 {
2561 	struct vm_area_struct *vma, *prev;
2562 
2563 	addr &= PAGE_MASK;
2564 	vma = find_vma_prev(mm, addr, &prev);
2565 	if (vma && (vma->vm_start <= addr))
2566 		return vma;
2567 	/* don't alter vm_end if the coredump is running */
2568 	if (!prev || expand_stack(prev, addr))
2569 		return NULL;
2570 	if (prev->vm_flags & VM_LOCKED)
2571 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2572 	return prev;
2573 }
2574 #else
2575 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2576 {
2577 	return expand_downwards(vma, address);
2578 }
2579 
2580 struct vm_area_struct *
2581 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2582 {
2583 	struct vm_area_struct *vma;
2584 	unsigned long start;
2585 
2586 	addr &= PAGE_MASK;
2587 	vma = find_vma(mm, addr);
2588 	if (!vma)
2589 		return NULL;
2590 	if (vma->vm_start <= addr)
2591 		return vma;
2592 	if (!(vma->vm_flags & VM_GROWSDOWN))
2593 		return NULL;
2594 	start = vma->vm_start;
2595 	if (expand_stack(vma, addr))
2596 		return NULL;
2597 	if (vma->vm_flags & VM_LOCKED)
2598 		populate_vma_page_range(vma, addr, start, NULL);
2599 	return vma;
2600 }
2601 #endif
2602 
2603 EXPORT_SYMBOL_GPL(find_extend_vma);
2604 
2605 /*
2606  * Ok - we have the memory areas we should free on the vma list,
2607  * so release them, and do the vma updates.
2608  *
2609  * Called with the mm semaphore held.
2610  */
2611 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2612 {
2613 	unsigned long nr_accounted = 0;
2614 
2615 	/* Update high watermark before we lower total_vm */
2616 	update_hiwater_vm(mm);
2617 	do {
2618 		long nrpages = vma_pages(vma);
2619 
2620 		if (vma->vm_flags & VM_ACCOUNT)
2621 			nr_accounted += nrpages;
2622 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2623 		vma = remove_vma(vma);
2624 	} while (vma);
2625 	vm_unacct_memory(nr_accounted);
2626 	validate_mm(mm);
2627 }
2628 
2629 /*
2630  * Get rid of page table information in the indicated region.
2631  *
2632  * Called with the mm semaphore held.
2633  */
2634 static void unmap_region(struct mm_struct *mm,
2635 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2636 		unsigned long start, unsigned long end)
2637 {
2638 	struct vm_area_struct *next = vma_next(mm, prev);
2639 	struct mmu_gather tlb;
2640 
2641 	lru_add_drain();
2642 	tlb_gather_mmu(&tlb, mm);
2643 	update_hiwater_rss(mm);
2644 	unmap_vmas(&tlb, vma, start, end);
2645 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2646 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2647 	tlb_finish_mmu(&tlb);
2648 }
2649 
2650 /*
2651  * Create a list of vma's touched by the unmap, removing them from the mm's
2652  * vma list as we go..
2653  */
2654 static bool
2655 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2656 	struct vm_area_struct *prev, unsigned long end)
2657 {
2658 	struct vm_area_struct **insertion_point;
2659 	struct vm_area_struct *tail_vma = NULL;
2660 
2661 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2662 	vma->vm_prev = NULL;
2663 	do {
2664 		vma_rb_erase(vma, &mm->mm_rb);
2665 		if (vma->vm_flags & VM_LOCKED)
2666 			mm->locked_vm -= vma_pages(vma);
2667 		mm->map_count--;
2668 		tail_vma = vma;
2669 		vma = vma->vm_next;
2670 	} while (vma && vma->vm_start < end);
2671 	*insertion_point = vma;
2672 	if (vma) {
2673 		vma->vm_prev = prev;
2674 		vma_gap_update(vma);
2675 	} else
2676 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2677 	tail_vma->vm_next = NULL;
2678 
2679 	/* Kill the cache */
2680 	vmacache_invalidate(mm);
2681 
2682 	/*
2683 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2684 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2685 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2686 	 */
2687 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2688 		return false;
2689 	if (prev && (prev->vm_flags & VM_GROWSUP))
2690 		return false;
2691 	return true;
2692 }
2693 
2694 /*
2695  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2696  * has already been checked or doesn't make sense to fail.
2697  */
2698 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2699 		unsigned long addr, int new_below)
2700 {
2701 	struct vm_area_struct *new;
2702 	int err;
2703 
2704 	if (vma->vm_ops && vma->vm_ops->may_split) {
2705 		err = vma->vm_ops->may_split(vma, addr);
2706 		if (err)
2707 			return err;
2708 	}
2709 
2710 	new = vm_area_dup(vma);
2711 	if (!new)
2712 		return -ENOMEM;
2713 
2714 	if (new_below)
2715 		new->vm_end = addr;
2716 	else {
2717 		new->vm_start = addr;
2718 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2719 	}
2720 
2721 	err = vma_dup_policy(vma, new);
2722 	if (err)
2723 		goto out_free_vma;
2724 
2725 	err = anon_vma_clone(new, vma);
2726 	if (err)
2727 		goto out_free_mpol;
2728 
2729 	if (new->vm_file)
2730 		get_file(new->vm_file);
2731 
2732 	if (new->vm_ops && new->vm_ops->open)
2733 		new->vm_ops->open(new);
2734 
2735 	if (new_below)
2736 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2737 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2738 	else
2739 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2740 
2741 	/* Success. */
2742 	if (!err)
2743 		return 0;
2744 
2745 	/* Clean everything up if vma_adjust failed. */
2746 	if (new->vm_ops && new->vm_ops->close)
2747 		new->vm_ops->close(new);
2748 	if (new->vm_file)
2749 		fput(new->vm_file);
2750 	unlink_anon_vmas(new);
2751  out_free_mpol:
2752 	mpol_put(vma_policy(new));
2753  out_free_vma:
2754 	vm_area_free(new);
2755 	return err;
2756 }
2757 
2758 /*
2759  * Split a vma into two pieces at address 'addr', a new vma is allocated
2760  * either for the first part or the tail.
2761  */
2762 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2763 	      unsigned long addr, int new_below)
2764 {
2765 	if (mm->map_count >= sysctl_max_map_count)
2766 		return -ENOMEM;
2767 
2768 	return __split_vma(mm, vma, addr, new_below);
2769 }
2770 
2771 /* Munmap is split into 2 main parts -- this part which finds
2772  * what needs doing, and the areas themselves, which do the
2773  * work.  This now handles partial unmappings.
2774  * Jeremy Fitzhardinge <jeremy@goop.org>
2775  */
2776 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2777 		struct list_head *uf, bool downgrade)
2778 {
2779 	unsigned long end;
2780 	struct vm_area_struct *vma, *prev, *last;
2781 
2782 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2783 		return -EINVAL;
2784 
2785 	len = PAGE_ALIGN(len);
2786 	end = start + len;
2787 	if (len == 0)
2788 		return -EINVAL;
2789 
2790 	/*
2791 	 * arch_unmap() might do unmaps itself.  It must be called
2792 	 * and finish any rbtree manipulation before this code
2793 	 * runs and also starts to manipulate the rbtree.
2794 	 */
2795 	arch_unmap(mm, start, end);
2796 
2797 	/* Find the first overlapping VMA where start < vma->vm_end */
2798 	vma = find_vma_intersection(mm, start, end);
2799 	if (!vma)
2800 		return 0;
2801 	prev = vma->vm_prev;
2802 
2803 	/*
2804 	 * If we need to split any vma, do it now to save pain later.
2805 	 *
2806 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2807 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2808 	 * places tmp vma above, and higher split_vma places tmp vma below.
2809 	 */
2810 	if (start > vma->vm_start) {
2811 		int error;
2812 
2813 		/*
2814 		 * Make sure that map_count on return from munmap() will
2815 		 * not exceed its limit; but let map_count go just above
2816 		 * its limit temporarily, to help free resources as expected.
2817 		 */
2818 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2819 			return -ENOMEM;
2820 
2821 		error = __split_vma(mm, vma, start, 0);
2822 		if (error)
2823 			return error;
2824 		prev = vma;
2825 	}
2826 
2827 	/* Does it split the last one? */
2828 	last = find_vma(mm, end);
2829 	if (last && end > last->vm_start) {
2830 		int error = __split_vma(mm, last, end, 1);
2831 		if (error)
2832 			return error;
2833 	}
2834 	vma = vma_next(mm, prev);
2835 
2836 	if (unlikely(uf)) {
2837 		/*
2838 		 * If userfaultfd_unmap_prep returns an error the vmas
2839 		 * will remain split, but userland will get a
2840 		 * highly unexpected error anyway. This is no
2841 		 * different than the case where the first of the two
2842 		 * __split_vma fails, but we don't undo the first
2843 		 * split, despite we could. This is unlikely enough
2844 		 * failure that it's not worth optimizing it for.
2845 		 */
2846 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2847 		if (error)
2848 			return error;
2849 	}
2850 
2851 	/* Detach vmas from rbtree */
2852 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2853 		downgrade = false;
2854 
2855 	if (downgrade)
2856 		mmap_write_downgrade(mm);
2857 
2858 	unmap_region(mm, vma, prev, start, end);
2859 
2860 	/* Fix up all other VM information */
2861 	remove_vma_list(mm, vma);
2862 
2863 	return downgrade ? 1 : 0;
2864 }
2865 
2866 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2867 	      struct list_head *uf)
2868 {
2869 	return __do_munmap(mm, start, len, uf, false);
2870 }
2871 
2872 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2873 {
2874 	int ret;
2875 	struct mm_struct *mm = current->mm;
2876 	LIST_HEAD(uf);
2877 
2878 	if (mmap_write_lock_killable(mm))
2879 		return -EINTR;
2880 
2881 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2882 	/*
2883 	 * Returning 1 indicates mmap_lock is downgraded.
2884 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2885 	 * it to 0 before return.
2886 	 */
2887 	if (ret == 1) {
2888 		mmap_read_unlock(mm);
2889 		ret = 0;
2890 	} else
2891 		mmap_write_unlock(mm);
2892 
2893 	userfaultfd_unmap_complete(mm, &uf);
2894 	return ret;
2895 }
2896 
2897 int vm_munmap(unsigned long start, size_t len)
2898 {
2899 	return __vm_munmap(start, len, false);
2900 }
2901 EXPORT_SYMBOL(vm_munmap);
2902 
2903 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2904 {
2905 	addr = untagged_addr(addr);
2906 	return __vm_munmap(addr, len, true);
2907 }
2908 
2909 
2910 /*
2911  * Emulation of deprecated remap_file_pages() syscall.
2912  */
2913 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2914 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2915 {
2916 
2917 	struct mm_struct *mm = current->mm;
2918 	struct vm_area_struct *vma;
2919 	unsigned long populate = 0;
2920 	unsigned long ret = -EINVAL;
2921 	struct file *file;
2922 
2923 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2924 		     current->comm, current->pid);
2925 
2926 	if (prot)
2927 		return ret;
2928 	start = start & PAGE_MASK;
2929 	size = size & PAGE_MASK;
2930 
2931 	if (start + size <= start)
2932 		return ret;
2933 
2934 	/* Does pgoff wrap? */
2935 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2936 		return ret;
2937 
2938 	if (mmap_write_lock_killable(mm))
2939 		return -EINTR;
2940 
2941 	vma = vma_lookup(mm, start);
2942 
2943 	if (!vma || !(vma->vm_flags & VM_SHARED))
2944 		goto out;
2945 
2946 	if (start + size > vma->vm_end) {
2947 		struct vm_area_struct *next;
2948 
2949 		for (next = vma->vm_next; next; next = next->vm_next) {
2950 			/* hole between vmas ? */
2951 			if (next->vm_start != next->vm_prev->vm_end)
2952 				goto out;
2953 
2954 			if (next->vm_file != vma->vm_file)
2955 				goto out;
2956 
2957 			if (next->vm_flags != vma->vm_flags)
2958 				goto out;
2959 
2960 			if (start + size <= next->vm_end)
2961 				break;
2962 		}
2963 
2964 		if (!next)
2965 			goto out;
2966 	}
2967 
2968 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2969 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2970 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2971 
2972 	flags &= MAP_NONBLOCK;
2973 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2974 	if (vma->vm_flags & VM_LOCKED)
2975 		flags |= MAP_LOCKED;
2976 
2977 	file = get_file(vma->vm_file);
2978 	ret = do_mmap(vma->vm_file, start, size,
2979 			prot, flags, pgoff, &populate, NULL);
2980 	fput(file);
2981 out:
2982 	mmap_write_unlock(mm);
2983 	if (populate)
2984 		mm_populate(ret, populate);
2985 	if (!IS_ERR_VALUE(ret))
2986 		ret = 0;
2987 	return ret;
2988 }
2989 
2990 /*
2991  *  this is really a simplified "do_mmap".  it only handles
2992  *  anonymous maps.  eventually we may be able to do some
2993  *  brk-specific accounting here.
2994  */
2995 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2996 {
2997 	struct mm_struct *mm = current->mm;
2998 	struct vm_area_struct *vma, *prev;
2999 	struct rb_node **rb_link, *rb_parent;
3000 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3001 	int error;
3002 	unsigned long mapped_addr;
3003 
3004 	/* Until we need other flags, refuse anything except VM_EXEC. */
3005 	if ((flags & (~VM_EXEC)) != 0)
3006 		return -EINVAL;
3007 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3008 
3009 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3010 	if (IS_ERR_VALUE(mapped_addr))
3011 		return mapped_addr;
3012 
3013 	error = mlock_future_check(mm, mm->def_flags, len);
3014 	if (error)
3015 		return error;
3016 
3017 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3018 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3019 		return -ENOMEM;
3020 
3021 	/* Check against address space limits *after* clearing old maps... */
3022 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3023 		return -ENOMEM;
3024 
3025 	if (mm->map_count > sysctl_max_map_count)
3026 		return -ENOMEM;
3027 
3028 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3029 		return -ENOMEM;
3030 
3031 	/* Can we just expand an old private anonymous mapping? */
3032 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3033 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3034 	if (vma)
3035 		goto out;
3036 
3037 	/*
3038 	 * create a vma struct for an anonymous mapping
3039 	 */
3040 	vma = vm_area_alloc(mm);
3041 	if (!vma) {
3042 		vm_unacct_memory(len >> PAGE_SHIFT);
3043 		return -ENOMEM;
3044 	}
3045 
3046 	vma_set_anonymous(vma);
3047 	vma->vm_start = addr;
3048 	vma->vm_end = addr + len;
3049 	vma->vm_pgoff = pgoff;
3050 	vma->vm_flags = flags;
3051 	vma->vm_page_prot = vm_get_page_prot(flags);
3052 	vma_link(mm, vma, prev, rb_link, rb_parent);
3053 out:
3054 	perf_event_mmap(vma);
3055 	mm->total_vm += len >> PAGE_SHIFT;
3056 	mm->data_vm += len >> PAGE_SHIFT;
3057 	if (flags & VM_LOCKED)
3058 		mm->locked_vm += (len >> PAGE_SHIFT);
3059 	vma->vm_flags |= VM_SOFTDIRTY;
3060 	return 0;
3061 }
3062 
3063 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3064 {
3065 	struct mm_struct *mm = current->mm;
3066 	unsigned long len;
3067 	int ret;
3068 	bool populate;
3069 	LIST_HEAD(uf);
3070 
3071 	len = PAGE_ALIGN(request);
3072 	if (len < request)
3073 		return -ENOMEM;
3074 	if (!len)
3075 		return 0;
3076 
3077 	if (mmap_write_lock_killable(mm))
3078 		return -EINTR;
3079 
3080 	ret = do_brk_flags(addr, len, flags, &uf);
3081 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 	mmap_write_unlock(mm);
3083 	userfaultfd_unmap_complete(mm, &uf);
3084 	if (populate && !ret)
3085 		mm_populate(addr, len);
3086 	return ret;
3087 }
3088 EXPORT_SYMBOL(vm_brk_flags);
3089 
3090 int vm_brk(unsigned long addr, unsigned long len)
3091 {
3092 	return vm_brk_flags(addr, len, 0);
3093 }
3094 EXPORT_SYMBOL(vm_brk);
3095 
3096 /* Release all mmaps. */
3097 void exit_mmap(struct mm_struct *mm)
3098 {
3099 	struct mmu_gather tlb;
3100 	struct vm_area_struct *vma;
3101 	unsigned long nr_accounted = 0;
3102 
3103 	/* mm's last user has gone, and its about to be pulled down */
3104 	mmu_notifier_release(mm);
3105 
3106 	if (unlikely(mm_is_oom_victim(mm))) {
3107 		/*
3108 		 * Manually reap the mm to free as much memory as possible.
3109 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3110 		 * this mm from further consideration.  Taking mm->mmap_lock for
3111 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3112 		 * reaper will not run on this mm again after mmap_lock is
3113 		 * dropped.
3114 		 *
3115 		 * Nothing can be holding mm->mmap_lock here and the above call
3116 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3117 		 * __oom_reap_task_mm() will not block.
3118 		 */
3119 		(void)__oom_reap_task_mm(mm);
3120 		set_bit(MMF_OOM_SKIP, &mm->flags);
3121 	}
3122 
3123 	mmap_write_lock(mm);
3124 	arch_exit_mmap(mm);
3125 
3126 	vma = mm->mmap;
3127 	if (!vma) {
3128 		/* Can happen if dup_mmap() received an OOM */
3129 		mmap_write_unlock(mm);
3130 		return;
3131 	}
3132 
3133 	lru_add_drain();
3134 	flush_cache_mm(mm);
3135 	tlb_gather_mmu_fullmm(&tlb, mm);
3136 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3137 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3138 	unmap_vmas(&tlb, vma, 0, -1);
3139 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3140 	tlb_finish_mmu(&tlb);
3141 
3142 	/* Walk the list again, actually closing and freeing it. */
3143 	while (vma) {
3144 		if (vma->vm_flags & VM_ACCOUNT)
3145 			nr_accounted += vma_pages(vma);
3146 		vma = remove_vma(vma);
3147 		cond_resched();
3148 	}
3149 	mm->mmap = NULL;
3150 	mmap_write_unlock(mm);
3151 	vm_unacct_memory(nr_accounted);
3152 }
3153 
3154 /* Insert vm structure into process list sorted by address
3155  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3156  * then i_mmap_rwsem is taken here.
3157  */
3158 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3159 {
3160 	struct vm_area_struct *prev;
3161 	struct rb_node **rb_link, *rb_parent;
3162 
3163 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3164 			   &prev, &rb_link, &rb_parent))
3165 		return -ENOMEM;
3166 	if ((vma->vm_flags & VM_ACCOUNT) &&
3167 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3168 		return -ENOMEM;
3169 
3170 	/*
3171 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3172 	 * until its first write fault, when page's anon_vma and index
3173 	 * are set.  But now set the vm_pgoff it will almost certainly
3174 	 * end up with (unless mremap moves it elsewhere before that
3175 	 * first wfault), so /proc/pid/maps tells a consistent story.
3176 	 *
3177 	 * By setting it to reflect the virtual start address of the
3178 	 * vma, merges and splits can happen in a seamless way, just
3179 	 * using the existing file pgoff checks and manipulations.
3180 	 * Similarly in do_mmap and in do_brk_flags.
3181 	 */
3182 	if (vma_is_anonymous(vma)) {
3183 		BUG_ON(vma->anon_vma);
3184 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3185 	}
3186 
3187 	vma_link(mm, vma, prev, rb_link, rb_parent);
3188 	return 0;
3189 }
3190 
3191 /*
3192  * Copy the vma structure to a new location in the same mm,
3193  * prior to moving page table entries, to effect an mremap move.
3194  */
3195 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3196 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3197 	bool *need_rmap_locks)
3198 {
3199 	struct vm_area_struct *vma = *vmap;
3200 	unsigned long vma_start = vma->vm_start;
3201 	struct mm_struct *mm = vma->vm_mm;
3202 	struct vm_area_struct *new_vma, *prev;
3203 	struct rb_node **rb_link, *rb_parent;
3204 	bool faulted_in_anon_vma = true;
3205 
3206 	/*
3207 	 * If anonymous vma has not yet been faulted, update new pgoff
3208 	 * to match new location, to increase its chance of merging.
3209 	 */
3210 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3211 		pgoff = addr >> PAGE_SHIFT;
3212 		faulted_in_anon_vma = false;
3213 	}
3214 
3215 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3216 		return NULL;	/* should never get here */
3217 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3218 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3219 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3220 	if (new_vma) {
3221 		/*
3222 		 * Source vma may have been merged into new_vma
3223 		 */
3224 		if (unlikely(vma_start >= new_vma->vm_start &&
3225 			     vma_start < new_vma->vm_end)) {
3226 			/*
3227 			 * The only way we can get a vma_merge with
3228 			 * self during an mremap is if the vma hasn't
3229 			 * been faulted in yet and we were allowed to
3230 			 * reset the dst vma->vm_pgoff to the
3231 			 * destination address of the mremap to allow
3232 			 * the merge to happen. mremap must change the
3233 			 * vm_pgoff linearity between src and dst vmas
3234 			 * (in turn preventing a vma_merge) to be
3235 			 * safe. It is only safe to keep the vm_pgoff
3236 			 * linear if there are no pages mapped yet.
3237 			 */
3238 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3239 			*vmap = vma = new_vma;
3240 		}
3241 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3242 	} else {
3243 		new_vma = vm_area_dup(vma);
3244 		if (!new_vma)
3245 			goto out;
3246 		new_vma->vm_start = addr;
3247 		new_vma->vm_end = addr + len;
3248 		new_vma->vm_pgoff = pgoff;
3249 		if (vma_dup_policy(vma, new_vma))
3250 			goto out_free_vma;
3251 		if (anon_vma_clone(new_vma, vma))
3252 			goto out_free_mempol;
3253 		if (new_vma->vm_file)
3254 			get_file(new_vma->vm_file);
3255 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3256 			new_vma->vm_ops->open(new_vma);
3257 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3258 		*need_rmap_locks = false;
3259 	}
3260 	return new_vma;
3261 
3262 out_free_mempol:
3263 	mpol_put(vma_policy(new_vma));
3264 out_free_vma:
3265 	vm_area_free(new_vma);
3266 out:
3267 	return NULL;
3268 }
3269 
3270 /*
3271  * Return true if the calling process may expand its vm space by the passed
3272  * number of pages
3273  */
3274 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3275 {
3276 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3277 		return false;
3278 
3279 	if (is_data_mapping(flags) &&
3280 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3281 		/* Workaround for Valgrind */
3282 		if (rlimit(RLIMIT_DATA) == 0 &&
3283 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3284 			return true;
3285 
3286 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3287 			     current->comm, current->pid,
3288 			     (mm->data_vm + npages) << PAGE_SHIFT,
3289 			     rlimit(RLIMIT_DATA),
3290 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3291 
3292 		if (!ignore_rlimit_data)
3293 			return false;
3294 	}
3295 
3296 	return true;
3297 }
3298 
3299 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3300 {
3301 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3302 
3303 	if (is_exec_mapping(flags))
3304 		mm->exec_vm += npages;
3305 	else if (is_stack_mapping(flags))
3306 		mm->stack_vm += npages;
3307 	else if (is_data_mapping(flags))
3308 		mm->data_vm += npages;
3309 }
3310 
3311 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3312 
3313 /*
3314  * Having a close hook prevents vma merging regardless of flags.
3315  */
3316 static void special_mapping_close(struct vm_area_struct *vma)
3317 {
3318 }
3319 
3320 static const char *special_mapping_name(struct vm_area_struct *vma)
3321 {
3322 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3323 }
3324 
3325 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3326 {
3327 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3328 
3329 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3330 		return -EFAULT;
3331 
3332 	if (sm->mremap)
3333 		return sm->mremap(sm, new_vma);
3334 
3335 	return 0;
3336 }
3337 
3338 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3339 {
3340 	/*
3341 	 * Forbid splitting special mappings - kernel has expectations over
3342 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3343 	 * the size of vma should stay the same over the special mapping's
3344 	 * lifetime.
3345 	 */
3346 	return -EINVAL;
3347 }
3348 
3349 static const struct vm_operations_struct special_mapping_vmops = {
3350 	.close = special_mapping_close,
3351 	.fault = special_mapping_fault,
3352 	.mremap = special_mapping_mremap,
3353 	.name = special_mapping_name,
3354 	/* vDSO code relies that VVAR can't be accessed remotely */
3355 	.access = NULL,
3356 	.may_split = special_mapping_split,
3357 };
3358 
3359 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3360 	.close = special_mapping_close,
3361 	.fault = special_mapping_fault,
3362 };
3363 
3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3365 {
3366 	struct vm_area_struct *vma = vmf->vma;
3367 	pgoff_t pgoff;
3368 	struct page **pages;
3369 
3370 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3371 		pages = vma->vm_private_data;
3372 	} else {
3373 		struct vm_special_mapping *sm = vma->vm_private_data;
3374 
3375 		if (sm->fault)
3376 			return sm->fault(sm, vmf->vma, vmf);
3377 
3378 		pages = sm->pages;
3379 	}
3380 
3381 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3382 		pgoff--;
3383 
3384 	if (*pages) {
3385 		struct page *page = *pages;
3386 		get_page(page);
3387 		vmf->page = page;
3388 		return 0;
3389 	}
3390 
3391 	return VM_FAULT_SIGBUS;
3392 }
3393 
3394 static struct vm_area_struct *__install_special_mapping(
3395 	struct mm_struct *mm,
3396 	unsigned long addr, unsigned long len,
3397 	unsigned long vm_flags, void *priv,
3398 	const struct vm_operations_struct *ops)
3399 {
3400 	int ret;
3401 	struct vm_area_struct *vma;
3402 
3403 	vma = vm_area_alloc(mm);
3404 	if (unlikely(vma == NULL))
3405 		return ERR_PTR(-ENOMEM);
3406 
3407 	vma->vm_start = addr;
3408 	vma->vm_end = addr + len;
3409 
3410 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3411 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3412 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3413 
3414 	vma->vm_ops = ops;
3415 	vma->vm_private_data = priv;
3416 
3417 	ret = insert_vm_struct(mm, vma);
3418 	if (ret)
3419 		goto out;
3420 
3421 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3422 
3423 	perf_event_mmap(vma);
3424 
3425 	return vma;
3426 
3427 out:
3428 	vm_area_free(vma);
3429 	return ERR_PTR(ret);
3430 }
3431 
3432 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3433 	const struct vm_special_mapping *sm)
3434 {
3435 	return vma->vm_private_data == sm &&
3436 		(vma->vm_ops == &special_mapping_vmops ||
3437 		 vma->vm_ops == &legacy_special_mapping_vmops);
3438 }
3439 
3440 /*
3441  * Called with mm->mmap_lock held for writing.
3442  * Insert a new vma covering the given region, with the given flags.
3443  * Its pages are supplied by the given array of struct page *.
3444  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3445  * The region past the last page supplied will always produce SIGBUS.
3446  * The array pointer and the pages it points to are assumed to stay alive
3447  * for as long as this mapping might exist.
3448  */
3449 struct vm_area_struct *_install_special_mapping(
3450 	struct mm_struct *mm,
3451 	unsigned long addr, unsigned long len,
3452 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3453 {
3454 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3455 					&special_mapping_vmops);
3456 }
3457 
3458 int install_special_mapping(struct mm_struct *mm,
3459 			    unsigned long addr, unsigned long len,
3460 			    unsigned long vm_flags, struct page **pages)
3461 {
3462 	struct vm_area_struct *vma = __install_special_mapping(
3463 		mm, addr, len, vm_flags, (void *)pages,
3464 		&legacy_special_mapping_vmops);
3465 
3466 	return PTR_ERR_OR_ZERO(vma);
3467 }
3468 
3469 static DEFINE_MUTEX(mm_all_locks_mutex);
3470 
3471 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3472 {
3473 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3474 		/*
3475 		 * The LSB of head.next can't change from under us
3476 		 * because we hold the mm_all_locks_mutex.
3477 		 */
3478 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3479 		/*
3480 		 * We can safely modify head.next after taking the
3481 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3482 		 * the same anon_vma we won't take it again.
3483 		 *
3484 		 * No need of atomic instructions here, head.next
3485 		 * can't change from under us thanks to the
3486 		 * anon_vma->root->rwsem.
3487 		 */
3488 		if (__test_and_set_bit(0, (unsigned long *)
3489 				       &anon_vma->root->rb_root.rb_root.rb_node))
3490 			BUG();
3491 	}
3492 }
3493 
3494 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3495 {
3496 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3497 		/*
3498 		 * AS_MM_ALL_LOCKS can't change from under us because
3499 		 * we hold the mm_all_locks_mutex.
3500 		 *
3501 		 * Operations on ->flags have to be atomic because
3502 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3503 		 * mm_all_locks_mutex, there may be other cpus
3504 		 * changing other bitflags in parallel to us.
3505 		 */
3506 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3507 			BUG();
3508 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3509 	}
3510 }
3511 
3512 /*
3513  * This operation locks against the VM for all pte/vma/mm related
3514  * operations that could ever happen on a certain mm. This includes
3515  * vmtruncate, try_to_unmap, and all page faults.
3516  *
3517  * The caller must take the mmap_lock in write mode before calling
3518  * mm_take_all_locks(). The caller isn't allowed to release the
3519  * mmap_lock until mm_drop_all_locks() returns.
3520  *
3521  * mmap_lock in write mode is required in order to block all operations
3522  * that could modify pagetables and free pages without need of
3523  * altering the vma layout. It's also needed in write mode to avoid new
3524  * anon_vmas to be associated with existing vmas.
3525  *
3526  * A single task can't take more than one mm_take_all_locks() in a row
3527  * or it would deadlock.
3528  *
3529  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3530  * mapping->flags avoid to take the same lock twice, if more than one
3531  * vma in this mm is backed by the same anon_vma or address_space.
3532  *
3533  * We take locks in following order, accordingly to comment at beginning
3534  * of mm/rmap.c:
3535  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3536  *     hugetlb mapping);
3537  *   - all i_mmap_rwsem locks;
3538  *   - all anon_vma->rwseml
3539  *
3540  * We can take all locks within these types randomly because the VM code
3541  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3542  * mm_all_locks_mutex.
3543  *
3544  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3545  * that may have to take thousand of locks.
3546  *
3547  * mm_take_all_locks() can fail if it's interrupted by signals.
3548  */
3549 int mm_take_all_locks(struct mm_struct *mm)
3550 {
3551 	struct vm_area_struct *vma;
3552 	struct anon_vma_chain *avc;
3553 
3554 	mmap_assert_write_locked(mm);
3555 
3556 	mutex_lock(&mm_all_locks_mutex);
3557 
3558 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 		if (signal_pending(current))
3560 			goto out_unlock;
3561 		if (vma->vm_file && vma->vm_file->f_mapping &&
3562 				is_vm_hugetlb_page(vma))
3563 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3564 	}
3565 
3566 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567 		if (signal_pending(current))
3568 			goto out_unlock;
3569 		if (vma->vm_file && vma->vm_file->f_mapping &&
3570 				!is_vm_hugetlb_page(vma))
3571 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572 	}
3573 
3574 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575 		if (signal_pending(current))
3576 			goto out_unlock;
3577 		if (vma->anon_vma)
3578 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3579 				vm_lock_anon_vma(mm, avc->anon_vma);
3580 	}
3581 
3582 	return 0;
3583 
3584 out_unlock:
3585 	mm_drop_all_locks(mm);
3586 	return -EINTR;
3587 }
3588 
3589 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3590 {
3591 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3592 		/*
3593 		 * The LSB of head.next can't change to 0 from under
3594 		 * us because we hold the mm_all_locks_mutex.
3595 		 *
3596 		 * We must however clear the bitflag before unlocking
3597 		 * the vma so the users using the anon_vma->rb_root will
3598 		 * never see our bitflag.
3599 		 *
3600 		 * No need of atomic instructions here, head.next
3601 		 * can't change from under us until we release the
3602 		 * anon_vma->root->rwsem.
3603 		 */
3604 		if (!__test_and_clear_bit(0, (unsigned long *)
3605 					  &anon_vma->root->rb_root.rb_root.rb_node))
3606 			BUG();
3607 		anon_vma_unlock_write(anon_vma);
3608 	}
3609 }
3610 
3611 static void vm_unlock_mapping(struct address_space *mapping)
3612 {
3613 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3614 		/*
3615 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3616 		 * because we hold the mm_all_locks_mutex.
3617 		 */
3618 		i_mmap_unlock_write(mapping);
3619 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3620 					&mapping->flags))
3621 			BUG();
3622 	}
3623 }
3624 
3625 /*
3626  * The mmap_lock cannot be released by the caller until
3627  * mm_drop_all_locks() returns.
3628  */
3629 void mm_drop_all_locks(struct mm_struct *mm)
3630 {
3631 	struct vm_area_struct *vma;
3632 	struct anon_vma_chain *avc;
3633 
3634 	mmap_assert_write_locked(mm);
3635 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3636 
3637 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3638 		if (vma->anon_vma)
3639 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3640 				vm_unlock_anon_vma(avc->anon_vma);
3641 		if (vma->vm_file && vma->vm_file->f_mapping)
3642 			vm_unlock_mapping(vma->vm_file->f_mapping);
3643 	}
3644 
3645 	mutex_unlock(&mm_all_locks_mutex);
3646 }
3647 
3648 /*
3649  * initialise the percpu counter for VM
3650  */
3651 void __init mmap_init(void)
3652 {
3653 	int ret;
3654 
3655 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3656 	VM_BUG_ON(ret);
3657 }
3658 
3659 /*
3660  * Initialise sysctl_user_reserve_kbytes.
3661  *
3662  * This is intended to prevent a user from starting a single memory hogging
3663  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3664  * mode.
3665  *
3666  * The default value is min(3% of free memory, 128MB)
3667  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3668  */
3669 static int init_user_reserve(void)
3670 {
3671 	unsigned long free_kbytes;
3672 
3673 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3674 
3675 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3676 	return 0;
3677 }
3678 subsys_initcall(init_user_reserve);
3679 
3680 /*
3681  * Initialise sysctl_admin_reserve_kbytes.
3682  *
3683  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3684  * to log in and kill a memory hogging process.
3685  *
3686  * Systems with more than 256MB will reserve 8MB, enough to recover
3687  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3688  * only reserve 3% of free pages by default.
3689  */
3690 static int init_admin_reserve(void)
3691 {
3692 	unsigned long free_kbytes;
3693 
3694 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695 
3696 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3697 	return 0;
3698 }
3699 subsys_initcall(init_admin_reserve);
3700 
3701 /*
3702  * Reinititalise user and admin reserves if memory is added or removed.
3703  *
3704  * The default user reserve max is 128MB, and the default max for the
3705  * admin reserve is 8MB. These are usually, but not always, enough to
3706  * enable recovery from a memory hogging process using login/sshd, a shell,
3707  * and tools like top. It may make sense to increase or even disable the
3708  * reserve depending on the existence of swap or variations in the recovery
3709  * tools. So, the admin may have changed them.
3710  *
3711  * If memory is added and the reserves have been eliminated or increased above
3712  * the default max, then we'll trust the admin.
3713  *
3714  * If memory is removed and there isn't enough free memory, then we
3715  * need to reset the reserves.
3716  *
3717  * Otherwise keep the reserve set by the admin.
3718  */
3719 static int reserve_mem_notifier(struct notifier_block *nb,
3720 			     unsigned long action, void *data)
3721 {
3722 	unsigned long tmp, free_kbytes;
3723 
3724 	switch (action) {
3725 	case MEM_ONLINE:
3726 		/* Default max is 128MB. Leave alone if modified by operator. */
3727 		tmp = sysctl_user_reserve_kbytes;
3728 		if (0 < tmp && tmp < (1UL << 17))
3729 			init_user_reserve();
3730 
3731 		/* Default max is 8MB.  Leave alone if modified by operator. */
3732 		tmp = sysctl_admin_reserve_kbytes;
3733 		if (0 < tmp && tmp < (1UL << 13))
3734 			init_admin_reserve();
3735 
3736 		break;
3737 	case MEM_OFFLINE:
3738 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3739 
3740 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3741 			init_user_reserve();
3742 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3743 				sysctl_user_reserve_kbytes);
3744 		}
3745 
3746 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3747 			init_admin_reserve();
3748 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3749 				sysctl_admin_reserve_kbytes);
3750 		}
3751 		break;
3752 	default:
3753 		break;
3754 	}
3755 	return NOTIFY_OK;
3756 }
3757 
3758 static struct notifier_block reserve_mem_nb = {
3759 	.notifier_call = reserve_mem_notifier,
3760 };
3761 
3762 static int __meminit init_reserve_notifier(void)
3763 {
3764 	if (register_hotmemory_notifier(&reserve_mem_nb))
3765 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3766 
3767 	return 0;
3768 }
3769 subsys_initcall(init_reserve_notifier);
3770