1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/vmacache.h> 18 #include <linux/shm.h> 19 #include <linux/mman.h> 20 #include <linux/pagemap.h> 21 #include <linux/swap.h> 22 #include <linux/syscalls.h> 23 #include <linux/capability.h> 24 #include <linux/init.h> 25 #include <linux/file.h> 26 #include <linux/fs.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/profile.h> 32 #include <linux/export.h> 33 #include <linux/mount.h> 34 #include <linux/mempolicy.h> 35 #include <linux/rmap.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/mmdebug.h> 38 #include <linux/perf_event.h> 39 #include <linux/audit.h> 40 #include <linux/khugepaged.h> 41 #include <linux/uprobes.h> 42 #include <linux/rbtree_augmented.h> 43 #include <linux/notifier.h> 44 #include <linux/memory.h> 45 #include <linux/printk.h> 46 #include <linux/userfaultfd_k.h> 47 #include <linux/moduleparam.h> 48 #include <linux/pkeys.h> 49 #include <linux/oom.h> 50 #include <linux/sched/mm.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/cacheflush.h> 54 #include <asm/tlb.h> 55 #include <asm/mmu_context.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/mmap.h> 59 60 #include "internal.h" 61 62 #ifndef arch_mmap_check 63 #define arch_mmap_check(addr, len, flags) (0) 64 #endif 65 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 70 #endif 71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 75 #endif 76 77 static bool ignore_rlimit_data; 78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 79 80 static void unmap_region(struct mm_struct *mm, 81 struct vm_area_struct *vma, struct vm_area_struct *prev, 82 unsigned long start, unsigned long end); 83 84 /* description of effects of mapping type and prot in current implementation. 85 * this is due to the limited x86 page protection hardware. The expected 86 * behavior is in parens: 87 * 88 * map_type prot 89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (yes) yes w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 95 * w: (no) no w: (no) no w: (copy) copy w: (no) no 96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 97 * 98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 99 * MAP_PRIVATE (with Enhanced PAN supported): 100 * r: (no) no 101 * w: (no) no 102 * x: (yes) yes 103 */ 104 pgprot_t protection_map[16] __ro_after_init = { 105 [VM_NONE] = __P000, 106 [VM_READ] = __P001, 107 [VM_WRITE] = __P010, 108 [VM_WRITE | VM_READ] = __P011, 109 [VM_EXEC] = __P100, 110 [VM_EXEC | VM_READ] = __P101, 111 [VM_EXEC | VM_WRITE] = __P110, 112 [VM_EXEC | VM_WRITE | VM_READ] = __P111, 113 [VM_SHARED] = __S000, 114 [VM_SHARED | VM_READ] = __S001, 115 [VM_SHARED | VM_WRITE] = __S010, 116 [VM_SHARED | VM_WRITE | VM_READ] = __S011, 117 [VM_SHARED | VM_EXEC] = __S100, 118 [VM_SHARED | VM_EXEC | VM_READ] = __S101, 119 [VM_SHARED | VM_EXEC | VM_WRITE] = __S110, 120 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __S111 121 }; 122 123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT 124 pgprot_t vm_get_page_prot(unsigned long vm_flags) 125 { 126 return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 127 } 128 EXPORT_SYMBOL(vm_get_page_prot); 129 #endif /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */ 130 131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 132 { 133 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 134 } 135 136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 137 void vma_set_page_prot(struct vm_area_struct *vma) 138 { 139 unsigned long vm_flags = vma->vm_flags; 140 pgprot_t vm_page_prot; 141 142 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 143 if (vma_wants_writenotify(vma, vm_page_prot)) { 144 vm_flags &= ~VM_SHARED; 145 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 146 } 147 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 148 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 149 } 150 151 /* 152 * Requires inode->i_mapping->i_mmap_rwsem 153 */ 154 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 155 struct file *file, struct address_space *mapping) 156 { 157 if (vma->vm_flags & VM_SHARED) 158 mapping_unmap_writable(mapping); 159 160 flush_dcache_mmap_lock(mapping); 161 vma_interval_tree_remove(vma, &mapping->i_mmap); 162 flush_dcache_mmap_unlock(mapping); 163 } 164 165 /* 166 * Unlink a file-based vm structure from its interval tree, to hide 167 * vma from rmap and vmtruncate before freeing its page tables. 168 */ 169 void unlink_file_vma(struct vm_area_struct *vma) 170 { 171 struct file *file = vma->vm_file; 172 173 if (file) { 174 struct address_space *mapping = file->f_mapping; 175 i_mmap_lock_write(mapping); 176 __remove_shared_vm_struct(vma, file, mapping); 177 i_mmap_unlock_write(mapping); 178 } 179 } 180 181 /* 182 * Close a vm structure and free it, returning the next. 183 */ 184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 185 { 186 struct vm_area_struct *next = vma->vm_next; 187 188 might_sleep(); 189 if (vma->vm_ops && vma->vm_ops->close) 190 vma->vm_ops->close(vma); 191 if (vma->vm_file) 192 fput(vma->vm_file); 193 mpol_put(vma_policy(vma)); 194 vm_area_free(vma); 195 return next; 196 } 197 198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 199 struct list_head *uf); 200 SYSCALL_DEFINE1(brk, unsigned long, brk) 201 { 202 unsigned long newbrk, oldbrk, origbrk; 203 struct mm_struct *mm = current->mm; 204 struct vm_area_struct *next; 205 unsigned long min_brk; 206 bool populate; 207 bool downgraded = false; 208 LIST_HEAD(uf); 209 210 if (mmap_write_lock_killable(mm)) 211 return -EINTR; 212 213 origbrk = mm->brk; 214 215 #ifdef CONFIG_COMPAT_BRK 216 /* 217 * CONFIG_COMPAT_BRK can still be overridden by setting 218 * randomize_va_space to 2, which will still cause mm->start_brk 219 * to be arbitrarily shifted 220 */ 221 if (current->brk_randomized) 222 min_brk = mm->start_brk; 223 else 224 min_brk = mm->end_data; 225 #else 226 min_brk = mm->start_brk; 227 #endif 228 if (brk < min_brk) 229 goto out; 230 231 /* 232 * Check against rlimit here. If this check is done later after the test 233 * of oldbrk with newbrk then it can escape the test and let the data 234 * segment grow beyond its set limit the in case where the limit is 235 * not page aligned -Ram Gupta 236 */ 237 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 238 mm->end_data, mm->start_data)) 239 goto out; 240 241 newbrk = PAGE_ALIGN(brk); 242 oldbrk = PAGE_ALIGN(mm->brk); 243 if (oldbrk == newbrk) { 244 mm->brk = brk; 245 goto success; 246 } 247 248 /* 249 * Always allow shrinking brk. 250 * __do_munmap() may downgrade mmap_lock to read. 251 */ 252 if (brk <= mm->brk) { 253 int ret; 254 255 /* 256 * mm->brk must to be protected by write mmap_lock so update it 257 * before downgrading mmap_lock. When __do_munmap() fails, 258 * mm->brk will be restored from origbrk. 259 */ 260 mm->brk = brk; 261 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 262 if (ret < 0) { 263 mm->brk = origbrk; 264 goto out; 265 } else if (ret == 1) { 266 downgraded = true; 267 } 268 goto success; 269 } 270 271 /* Check against existing mmap mappings. */ 272 next = find_vma(mm, oldbrk); 273 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 274 goto out; 275 276 /* Ok, looks good - let it rip. */ 277 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 278 goto out; 279 mm->brk = brk; 280 281 success: 282 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 283 if (downgraded) 284 mmap_read_unlock(mm); 285 else 286 mmap_write_unlock(mm); 287 userfaultfd_unmap_complete(mm, &uf); 288 if (populate) 289 mm_populate(oldbrk, newbrk - oldbrk); 290 return brk; 291 292 out: 293 mmap_write_unlock(mm); 294 return origbrk; 295 } 296 297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 298 { 299 unsigned long gap, prev_end; 300 301 /* 302 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 303 * allow two stack_guard_gaps between them here, and when choosing 304 * an unmapped area; whereas when expanding we only require one. 305 * That's a little inconsistent, but keeps the code here simpler. 306 */ 307 gap = vm_start_gap(vma); 308 if (vma->vm_prev) { 309 prev_end = vm_end_gap(vma->vm_prev); 310 if (gap > prev_end) 311 gap -= prev_end; 312 else 313 gap = 0; 314 } 315 return gap; 316 } 317 318 #ifdef CONFIG_DEBUG_VM_RB 319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 320 { 321 unsigned long max = vma_compute_gap(vma), subtree_gap; 322 if (vma->vm_rb.rb_left) { 323 subtree_gap = rb_entry(vma->vm_rb.rb_left, 324 struct vm_area_struct, vm_rb)->rb_subtree_gap; 325 if (subtree_gap > max) 326 max = subtree_gap; 327 } 328 if (vma->vm_rb.rb_right) { 329 subtree_gap = rb_entry(vma->vm_rb.rb_right, 330 struct vm_area_struct, vm_rb)->rb_subtree_gap; 331 if (subtree_gap > max) 332 max = subtree_gap; 333 } 334 return max; 335 } 336 337 static int browse_rb(struct mm_struct *mm) 338 { 339 struct rb_root *root = &mm->mm_rb; 340 int i = 0, j, bug = 0; 341 struct rb_node *nd, *pn = NULL; 342 unsigned long prev = 0, pend = 0; 343 344 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 345 struct vm_area_struct *vma; 346 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 347 if (vma->vm_start < prev) { 348 pr_emerg("vm_start %lx < prev %lx\n", 349 vma->vm_start, prev); 350 bug = 1; 351 } 352 if (vma->vm_start < pend) { 353 pr_emerg("vm_start %lx < pend %lx\n", 354 vma->vm_start, pend); 355 bug = 1; 356 } 357 if (vma->vm_start > vma->vm_end) { 358 pr_emerg("vm_start %lx > vm_end %lx\n", 359 vma->vm_start, vma->vm_end); 360 bug = 1; 361 } 362 spin_lock(&mm->page_table_lock); 363 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 364 pr_emerg("free gap %lx, correct %lx\n", 365 vma->rb_subtree_gap, 366 vma_compute_subtree_gap(vma)); 367 bug = 1; 368 } 369 spin_unlock(&mm->page_table_lock); 370 i++; 371 pn = nd; 372 prev = vma->vm_start; 373 pend = vma->vm_end; 374 } 375 j = 0; 376 for (nd = pn; nd; nd = rb_prev(nd)) 377 j++; 378 if (i != j) { 379 pr_emerg("backwards %d, forwards %d\n", j, i); 380 bug = 1; 381 } 382 return bug ? -1 : i; 383 } 384 385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 386 { 387 struct rb_node *nd; 388 389 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 390 struct vm_area_struct *vma; 391 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 392 VM_BUG_ON_VMA(vma != ignore && 393 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 394 vma); 395 } 396 } 397 398 static void validate_mm(struct mm_struct *mm) 399 { 400 int bug = 0; 401 int i = 0; 402 unsigned long highest_address = 0; 403 struct vm_area_struct *vma = mm->mmap; 404 405 while (vma) { 406 struct anon_vma *anon_vma = vma->anon_vma; 407 struct anon_vma_chain *avc; 408 409 if (anon_vma) { 410 anon_vma_lock_read(anon_vma); 411 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 412 anon_vma_interval_tree_verify(avc); 413 anon_vma_unlock_read(anon_vma); 414 } 415 416 highest_address = vm_end_gap(vma); 417 vma = vma->vm_next; 418 i++; 419 } 420 if (i != mm->map_count) { 421 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 422 bug = 1; 423 } 424 if (highest_address != mm->highest_vm_end) { 425 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 426 mm->highest_vm_end, highest_address); 427 bug = 1; 428 } 429 i = browse_rb(mm); 430 if (i != mm->map_count) { 431 if (i != -1) 432 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 433 bug = 1; 434 } 435 VM_BUG_ON_MM(bug, mm); 436 } 437 #else 438 #define validate_mm_rb(root, ignore) do { } while (0) 439 #define validate_mm(mm) do { } while (0) 440 #endif 441 442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 443 struct vm_area_struct, vm_rb, 444 unsigned long, rb_subtree_gap, vma_compute_gap) 445 446 /* 447 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 448 * vma->vm_prev->vm_end values changed, without modifying the vma's position 449 * in the rbtree. 450 */ 451 static void vma_gap_update(struct vm_area_struct *vma) 452 { 453 /* 454 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 455 * a callback function that does exactly what we want. 456 */ 457 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 458 } 459 460 static inline void vma_rb_insert(struct vm_area_struct *vma, 461 struct rb_root *root) 462 { 463 /* All rb_subtree_gap values must be consistent prior to insertion */ 464 validate_mm_rb(root, NULL); 465 466 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 467 } 468 469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 470 { 471 /* 472 * Note rb_erase_augmented is a fairly large inline function, 473 * so make sure we instantiate it only once with our desired 474 * augmented rbtree callbacks. 475 */ 476 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 477 } 478 479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 480 struct rb_root *root, 481 struct vm_area_struct *ignore) 482 { 483 /* 484 * All rb_subtree_gap values must be consistent prior to erase, 485 * with the possible exception of 486 * 487 * a. the "next" vma being erased if next->vm_start was reduced in 488 * __vma_adjust() -> __vma_unlink() 489 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 490 * vma_rb_erase() 491 */ 492 validate_mm_rb(root, ignore); 493 494 __vma_rb_erase(vma, root); 495 } 496 497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 498 struct rb_root *root) 499 { 500 vma_rb_erase_ignore(vma, root, vma); 501 } 502 503 /* 504 * vma has some anon_vma assigned, and is already inserted on that 505 * anon_vma's interval trees. 506 * 507 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 508 * vma must be removed from the anon_vma's interval trees using 509 * anon_vma_interval_tree_pre_update_vma(). 510 * 511 * After the update, the vma will be reinserted using 512 * anon_vma_interval_tree_post_update_vma(). 513 * 514 * The entire update must be protected by exclusive mmap_lock and by 515 * the root anon_vma's mutex. 516 */ 517 static inline void 518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 519 { 520 struct anon_vma_chain *avc; 521 522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 523 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 524 } 525 526 static inline void 527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 528 { 529 struct anon_vma_chain *avc; 530 531 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 532 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 533 } 534 535 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 536 unsigned long end, struct vm_area_struct **pprev, 537 struct rb_node ***rb_link, struct rb_node **rb_parent) 538 { 539 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 540 541 mmap_assert_locked(mm); 542 __rb_link = &mm->mm_rb.rb_node; 543 rb_prev = __rb_parent = NULL; 544 545 while (*__rb_link) { 546 struct vm_area_struct *vma_tmp; 547 548 __rb_parent = *__rb_link; 549 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 550 551 if (vma_tmp->vm_end > addr) { 552 /* Fail if an existing vma overlaps the area */ 553 if (vma_tmp->vm_start < end) 554 return -ENOMEM; 555 __rb_link = &__rb_parent->rb_left; 556 } else { 557 rb_prev = __rb_parent; 558 __rb_link = &__rb_parent->rb_right; 559 } 560 } 561 562 *pprev = NULL; 563 if (rb_prev) 564 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 565 *rb_link = __rb_link; 566 *rb_parent = __rb_parent; 567 return 0; 568 } 569 570 /* 571 * vma_next() - Get the next VMA. 572 * @mm: The mm_struct. 573 * @vma: The current vma. 574 * 575 * If @vma is NULL, return the first vma in the mm. 576 * 577 * Returns: The next VMA after @vma. 578 */ 579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 580 struct vm_area_struct *vma) 581 { 582 if (!vma) 583 return mm->mmap; 584 585 return vma->vm_next; 586 } 587 588 /* 589 * munmap_vma_range() - munmap VMAs that overlap a range. 590 * @mm: The mm struct 591 * @start: The start of the range. 592 * @len: The length of the range. 593 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 594 * @rb_link: the rb_node 595 * @rb_parent: the parent rb_node 596 * 597 * Find all the vm_area_struct that overlap from @start to 598 * @end and munmap them. Set @pprev to the previous vm_area_struct. 599 * 600 * Returns: -ENOMEM on munmap failure or 0 on success. 601 */ 602 static inline int 603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 604 struct vm_area_struct **pprev, struct rb_node ***link, 605 struct rb_node **parent, struct list_head *uf) 606 { 607 608 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 609 if (do_munmap(mm, start, len, uf)) 610 return -ENOMEM; 611 612 return 0; 613 } 614 static unsigned long count_vma_pages_range(struct mm_struct *mm, 615 unsigned long addr, unsigned long end) 616 { 617 unsigned long nr_pages = 0; 618 struct vm_area_struct *vma; 619 620 /* Find first overlapping mapping */ 621 vma = find_vma_intersection(mm, addr, end); 622 if (!vma) 623 return 0; 624 625 nr_pages = (min(end, vma->vm_end) - 626 max(addr, vma->vm_start)) >> PAGE_SHIFT; 627 628 /* Iterate over the rest of the overlaps */ 629 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 630 unsigned long overlap_len; 631 632 if (vma->vm_start > end) 633 break; 634 635 overlap_len = min(end, vma->vm_end) - vma->vm_start; 636 nr_pages += overlap_len >> PAGE_SHIFT; 637 } 638 639 return nr_pages; 640 } 641 642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 643 struct rb_node **rb_link, struct rb_node *rb_parent) 644 { 645 /* Update tracking information for the gap following the new vma. */ 646 if (vma->vm_next) 647 vma_gap_update(vma->vm_next); 648 else 649 mm->highest_vm_end = vm_end_gap(vma); 650 651 /* 652 * vma->vm_prev wasn't known when we followed the rbtree to find the 653 * correct insertion point for that vma. As a result, we could not 654 * update the vma vm_rb parents rb_subtree_gap values on the way down. 655 * So, we first insert the vma with a zero rb_subtree_gap value 656 * (to be consistent with what we did on the way down), and then 657 * immediately update the gap to the correct value. Finally we 658 * rebalance the rbtree after all augmented values have been set. 659 */ 660 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 661 vma->rb_subtree_gap = 0; 662 vma_gap_update(vma); 663 vma_rb_insert(vma, &mm->mm_rb); 664 } 665 666 static void __vma_link_file(struct vm_area_struct *vma) 667 { 668 struct file *file; 669 670 file = vma->vm_file; 671 if (file) { 672 struct address_space *mapping = file->f_mapping; 673 674 if (vma->vm_flags & VM_SHARED) 675 mapping_allow_writable(mapping); 676 677 flush_dcache_mmap_lock(mapping); 678 vma_interval_tree_insert(vma, &mapping->i_mmap); 679 flush_dcache_mmap_unlock(mapping); 680 } 681 } 682 683 static void 684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 685 struct vm_area_struct *prev, struct rb_node **rb_link, 686 struct rb_node *rb_parent) 687 { 688 __vma_link_list(mm, vma, prev); 689 __vma_link_rb(mm, vma, rb_link, rb_parent); 690 } 691 692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 693 struct vm_area_struct *prev, struct rb_node **rb_link, 694 struct rb_node *rb_parent) 695 { 696 struct address_space *mapping = NULL; 697 698 if (vma->vm_file) { 699 mapping = vma->vm_file->f_mapping; 700 i_mmap_lock_write(mapping); 701 } 702 703 __vma_link(mm, vma, prev, rb_link, rb_parent); 704 __vma_link_file(vma); 705 706 if (mapping) 707 i_mmap_unlock_write(mapping); 708 709 mm->map_count++; 710 validate_mm(mm); 711 } 712 713 /* 714 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 715 * mm's list and rbtree. It has already been inserted into the interval tree. 716 */ 717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 718 { 719 struct vm_area_struct *prev; 720 struct rb_node **rb_link, *rb_parent; 721 722 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 723 &prev, &rb_link, &rb_parent)) 724 BUG(); 725 __vma_link(mm, vma, prev, rb_link, rb_parent); 726 mm->map_count++; 727 } 728 729 static __always_inline void __vma_unlink(struct mm_struct *mm, 730 struct vm_area_struct *vma, 731 struct vm_area_struct *ignore) 732 { 733 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 734 __vma_unlink_list(mm, vma); 735 /* Kill the cache */ 736 vmacache_invalidate(mm); 737 } 738 739 /* 740 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 741 * is already present in an i_mmap tree without adjusting the tree. 742 * The following helper function should be used when such adjustments 743 * are necessary. The "insert" vma (if any) is to be inserted 744 * before we drop the necessary locks. 745 */ 746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 747 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 748 struct vm_area_struct *expand) 749 { 750 struct mm_struct *mm = vma->vm_mm; 751 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 752 struct address_space *mapping = NULL; 753 struct rb_root_cached *root = NULL; 754 struct anon_vma *anon_vma = NULL; 755 struct file *file = vma->vm_file; 756 bool start_changed = false, end_changed = false; 757 long adjust_next = 0; 758 int remove_next = 0; 759 760 if (next && !insert) { 761 struct vm_area_struct *exporter = NULL, *importer = NULL; 762 763 if (end >= next->vm_end) { 764 /* 765 * vma expands, overlapping all the next, and 766 * perhaps the one after too (mprotect case 6). 767 * The only other cases that gets here are 768 * case 1, case 7 and case 8. 769 */ 770 if (next == expand) { 771 /* 772 * The only case where we don't expand "vma" 773 * and we expand "next" instead is case 8. 774 */ 775 VM_WARN_ON(end != next->vm_end); 776 /* 777 * remove_next == 3 means we're 778 * removing "vma" and that to do so we 779 * swapped "vma" and "next". 780 */ 781 remove_next = 3; 782 VM_WARN_ON(file != next->vm_file); 783 swap(vma, next); 784 } else { 785 VM_WARN_ON(expand != vma); 786 /* 787 * case 1, 6, 7, remove_next == 2 is case 6, 788 * remove_next == 1 is case 1 or 7. 789 */ 790 remove_next = 1 + (end > next->vm_end); 791 VM_WARN_ON(remove_next == 2 && 792 end != next->vm_next->vm_end); 793 /* trim end to next, for case 6 first pass */ 794 end = next->vm_end; 795 } 796 797 exporter = next; 798 importer = vma; 799 800 /* 801 * If next doesn't have anon_vma, import from vma after 802 * next, if the vma overlaps with it. 803 */ 804 if (remove_next == 2 && !next->anon_vma) 805 exporter = next->vm_next; 806 807 } else if (end > next->vm_start) { 808 /* 809 * vma expands, overlapping part of the next: 810 * mprotect case 5 shifting the boundary up. 811 */ 812 adjust_next = (end - next->vm_start); 813 exporter = next; 814 importer = vma; 815 VM_WARN_ON(expand != importer); 816 } else if (end < vma->vm_end) { 817 /* 818 * vma shrinks, and !insert tells it's not 819 * split_vma inserting another: so it must be 820 * mprotect case 4 shifting the boundary down. 821 */ 822 adjust_next = -(vma->vm_end - end); 823 exporter = vma; 824 importer = next; 825 VM_WARN_ON(expand != importer); 826 } 827 828 /* 829 * Easily overlooked: when mprotect shifts the boundary, 830 * make sure the expanding vma has anon_vma set if the 831 * shrinking vma had, to cover any anon pages imported. 832 */ 833 if (exporter && exporter->anon_vma && !importer->anon_vma) { 834 int error; 835 836 importer->anon_vma = exporter->anon_vma; 837 error = anon_vma_clone(importer, exporter); 838 if (error) 839 return error; 840 } 841 } 842 again: 843 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 844 845 if (file) { 846 mapping = file->f_mapping; 847 root = &mapping->i_mmap; 848 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 849 850 if (adjust_next) 851 uprobe_munmap(next, next->vm_start, next->vm_end); 852 853 i_mmap_lock_write(mapping); 854 if (insert) { 855 /* 856 * Put into interval tree now, so instantiated pages 857 * are visible to arm/parisc __flush_dcache_page 858 * throughout; but we cannot insert into address 859 * space until vma start or end is updated. 860 */ 861 __vma_link_file(insert); 862 } 863 } 864 865 anon_vma = vma->anon_vma; 866 if (!anon_vma && adjust_next) 867 anon_vma = next->anon_vma; 868 if (anon_vma) { 869 VM_WARN_ON(adjust_next && next->anon_vma && 870 anon_vma != next->anon_vma); 871 anon_vma_lock_write(anon_vma); 872 anon_vma_interval_tree_pre_update_vma(vma); 873 if (adjust_next) 874 anon_vma_interval_tree_pre_update_vma(next); 875 } 876 877 if (file) { 878 flush_dcache_mmap_lock(mapping); 879 vma_interval_tree_remove(vma, root); 880 if (adjust_next) 881 vma_interval_tree_remove(next, root); 882 } 883 884 if (start != vma->vm_start) { 885 vma->vm_start = start; 886 start_changed = true; 887 } 888 if (end != vma->vm_end) { 889 vma->vm_end = end; 890 end_changed = true; 891 } 892 vma->vm_pgoff = pgoff; 893 if (adjust_next) { 894 next->vm_start += adjust_next; 895 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 896 } 897 898 if (file) { 899 if (adjust_next) 900 vma_interval_tree_insert(next, root); 901 vma_interval_tree_insert(vma, root); 902 flush_dcache_mmap_unlock(mapping); 903 } 904 905 if (remove_next) { 906 /* 907 * vma_merge has merged next into vma, and needs 908 * us to remove next before dropping the locks. 909 */ 910 if (remove_next != 3) 911 __vma_unlink(mm, next, next); 912 else 913 /* 914 * vma is not before next if they've been 915 * swapped. 916 * 917 * pre-swap() next->vm_start was reduced so 918 * tell validate_mm_rb to ignore pre-swap() 919 * "next" (which is stored in post-swap() 920 * "vma"). 921 */ 922 __vma_unlink(mm, next, vma); 923 if (file) 924 __remove_shared_vm_struct(next, file, mapping); 925 } else if (insert) { 926 /* 927 * split_vma has split insert from vma, and needs 928 * us to insert it before dropping the locks 929 * (it may either follow vma or precede it). 930 */ 931 __insert_vm_struct(mm, insert); 932 } else { 933 if (start_changed) 934 vma_gap_update(vma); 935 if (end_changed) { 936 if (!next) 937 mm->highest_vm_end = vm_end_gap(vma); 938 else if (!adjust_next) 939 vma_gap_update(next); 940 } 941 } 942 943 if (anon_vma) { 944 anon_vma_interval_tree_post_update_vma(vma); 945 if (adjust_next) 946 anon_vma_interval_tree_post_update_vma(next); 947 anon_vma_unlock_write(anon_vma); 948 } 949 950 if (file) { 951 i_mmap_unlock_write(mapping); 952 uprobe_mmap(vma); 953 954 if (adjust_next) 955 uprobe_mmap(next); 956 } 957 958 if (remove_next) { 959 if (file) { 960 uprobe_munmap(next, next->vm_start, next->vm_end); 961 fput(file); 962 } 963 if (next->anon_vma) 964 anon_vma_merge(vma, next); 965 mm->map_count--; 966 mpol_put(vma_policy(next)); 967 vm_area_free(next); 968 /* 969 * In mprotect's case 6 (see comments on vma_merge), 970 * we must remove another next too. It would clutter 971 * up the code too much to do both in one go. 972 */ 973 if (remove_next != 3) { 974 /* 975 * If "next" was removed and vma->vm_end was 976 * expanded (up) over it, in turn 977 * "next->vm_prev->vm_end" changed and the 978 * "vma->vm_next" gap must be updated. 979 */ 980 next = vma->vm_next; 981 } else { 982 /* 983 * For the scope of the comment "next" and 984 * "vma" considered pre-swap(): if "vma" was 985 * removed, next->vm_start was expanded (down) 986 * over it and the "next" gap must be updated. 987 * Because of the swap() the post-swap() "vma" 988 * actually points to pre-swap() "next" 989 * (post-swap() "next" as opposed is now a 990 * dangling pointer). 991 */ 992 next = vma; 993 } 994 if (remove_next == 2) { 995 remove_next = 1; 996 end = next->vm_end; 997 goto again; 998 } 999 else if (next) 1000 vma_gap_update(next); 1001 else { 1002 /* 1003 * If remove_next == 2 we obviously can't 1004 * reach this path. 1005 * 1006 * If remove_next == 3 we can't reach this 1007 * path because pre-swap() next is always not 1008 * NULL. pre-swap() "next" is not being 1009 * removed and its next->vm_end is not altered 1010 * (and furthermore "end" already matches 1011 * next->vm_end in remove_next == 3). 1012 * 1013 * We reach this only in the remove_next == 1 1014 * case if the "next" vma that was removed was 1015 * the highest vma of the mm. However in such 1016 * case next->vm_end == "end" and the extended 1017 * "vma" has vma->vm_end == next->vm_end so 1018 * mm->highest_vm_end doesn't need any update 1019 * in remove_next == 1 case. 1020 */ 1021 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1022 } 1023 } 1024 if (insert && file) 1025 uprobe_mmap(insert); 1026 1027 validate_mm(mm); 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * If the vma has a ->close operation then the driver probably needs to release 1034 * per-vma resources, so we don't attempt to merge those. 1035 */ 1036 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1037 struct file *file, unsigned long vm_flags, 1038 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1039 struct anon_vma_name *anon_name) 1040 { 1041 /* 1042 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1043 * match the flags but dirty bit -- the caller should mark 1044 * merged VMA as dirty. If dirty bit won't be excluded from 1045 * comparison, we increase pressure on the memory system forcing 1046 * the kernel to generate new VMAs when old one could be 1047 * extended instead. 1048 */ 1049 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1050 return 0; 1051 if (vma->vm_file != file) 1052 return 0; 1053 if (vma->vm_ops && vma->vm_ops->close) 1054 return 0; 1055 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1056 return 0; 1057 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 1058 return 0; 1059 return 1; 1060 } 1061 1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1063 struct anon_vma *anon_vma2, 1064 struct vm_area_struct *vma) 1065 { 1066 /* 1067 * The list_is_singular() test is to avoid merging VMA cloned from 1068 * parents. This can improve scalability caused by anon_vma lock. 1069 */ 1070 if ((!anon_vma1 || !anon_vma2) && (!vma || 1071 list_is_singular(&vma->anon_vma_chain))) 1072 return 1; 1073 return anon_vma1 == anon_vma2; 1074 } 1075 1076 /* 1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1078 * in front of (at a lower virtual address and file offset than) the vma. 1079 * 1080 * We cannot merge two vmas if they have differently assigned (non-NULL) 1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1082 * 1083 * We don't check here for the merged mmap wrapping around the end of pagecache 1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1085 * wrap, nor mmaps which cover the final page at index -1UL. 1086 */ 1087 static int 1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1089 struct anon_vma *anon_vma, struct file *file, 1090 pgoff_t vm_pgoff, 1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1092 struct anon_vma_name *anon_name) 1093 { 1094 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1095 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1096 if (vma->vm_pgoff == vm_pgoff) 1097 return 1; 1098 } 1099 return 0; 1100 } 1101 1102 /* 1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1104 * beyond (at a higher virtual address and file offset than) the vma. 1105 * 1106 * We cannot merge two vmas if they have differently assigned (non-NULL) 1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1108 */ 1109 static int 1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1111 struct anon_vma *anon_vma, struct file *file, 1112 pgoff_t vm_pgoff, 1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1114 struct anon_vma_name *anon_name) 1115 { 1116 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1117 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1118 pgoff_t vm_pglen; 1119 vm_pglen = vma_pages(vma); 1120 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1121 return 1; 1122 } 1123 return 0; 1124 } 1125 1126 /* 1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 1128 * figure out whether that can be merged with its predecessor or its 1129 * successor. Or both (it neatly fills a hole). 1130 * 1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1132 * certain not to be mapped by the time vma_merge is called; but when 1133 * called for mprotect, it is certain to be already mapped (either at 1134 * an offset within prev, or at the start of next), and the flags of 1135 * this area are about to be changed to vm_flags - and the no-change 1136 * case has already been eliminated. 1137 * 1138 * The following mprotect cases have to be considered, where AAAA is 1139 * the area passed down from mprotect_fixup, never extending beyond one 1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1141 * 1142 * AAAA AAAA AAAA 1143 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1144 * cannot merge might become might become 1145 * PPNNNNNNNNNN PPPPPPPPPPNN 1146 * mmap, brk or case 4 below case 5 below 1147 * mremap move: 1148 * AAAA AAAA 1149 * PPPP NNNN PPPPNNNNXXXX 1150 * might become might become 1151 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1152 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1153 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1154 * 1155 * It is important for case 8 that the vma NNNN overlapping the 1156 * region AAAA is never going to extended over XXXX. Instead XXXX must 1157 * be extended in region AAAA and NNNN must be removed. This way in 1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1159 * rmap_locks, the properties of the merged vma will be already 1160 * correct for the whole merged range. Some of those properties like 1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1162 * be correct for the whole merged range immediately after the 1163 * rmap_locks are released. Otherwise if XXXX would be removed and 1164 * NNNN would be extended over the XXXX range, remove_migration_ptes 1165 * or other rmap walkers (if working on addresses beyond the "end" 1166 * parameter) may establish ptes with the wrong permissions of NNNN 1167 * instead of the right permissions of XXXX. 1168 */ 1169 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1170 struct vm_area_struct *prev, unsigned long addr, 1171 unsigned long end, unsigned long vm_flags, 1172 struct anon_vma *anon_vma, struct file *file, 1173 pgoff_t pgoff, struct mempolicy *policy, 1174 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1175 struct anon_vma_name *anon_name) 1176 { 1177 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1178 struct vm_area_struct *area, *next; 1179 int err; 1180 1181 /* 1182 * We later require that vma->vm_flags == vm_flags, 1183 * so this tests vma->vm_flags & VM_SPECIAL, too. 1184 */ 1185 if (vm_flags & VM_SPECIAL) 1186 return NULL; 1187 1188 next = vma_next(mm, prev); 1189 area = next; 1190 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1191 next = next->vm_next; 1192 1193 /* verify some invariant that must be enforced by the caller */ 1194 VM_WARN_ON(prev && addr <= prev->vm_start); 1195 VM_WARN_ON(area && end > area->vm_end); 1196 VM_WARN_ON(addr >= end); 1197 1198 /* 1199 * Can it merge with the predecessor? 1200 */ 1201 if (prev && prev->vm_end == addr && 1202 mpol_equal(vma_policy(prev), policy) && 1203 can_vma_merge_after(prev, vm_flags, 1204 anon_vma, file, pgoff, 1205 vm_userfaultfd_ctx, anon_name)) { 1206 /* 1207 * OK, it can. Can we now merge in the successor as well? 1208 */ 1209 if (next && end == next->vm_start && 1210 mpol_equal(policy, vma_policy(next)) && 1211 can_vma_merge_before(next, vm_flags, 1212 anon_vma, file, 1213 pgoff+pglen, 1214 vm_userfaultfd_ctx, anon_name) && 1215 is_mergeable_anon_vma(prev->anon_vma, 1216 next->anon_vma, NULL)) { 1217 /* cases 1, 6 */ 1218 err = __vma_adjust(prev, prev->vm_start, 1219 next->vm_end, prev->vm_pgoff, NULL, 1220 prev); 1221 } else /* cases 2, 5, 7 */ 1222 err = __vma_adjust(prev, prev->vm_start, 1223 end, prev->vm_pgoff, NULL, prev); 1224 if (err) 1225 return NULL; 1226 khugepaged_enter_vma_merge(prev, vm_flags); 1227 return prev; 1228 } 1229 1230 /* 1231 * Can this new request be merged in front of next? 1232 */ 1233 if (next && end == next->vm_start && 1234 mpol_equal(policy, vma_policy(next)) && 1235 can_vma_merge_before(next, vm_flags, 1236 anon_vma, file, pgoff+pglen, 1237 vm_userfaultfd_ctx, anon_name)) { 1238 if (prev && addr < prev->vm_end) /* case 4 */ 1239 err = __vma_adjust(prev, prev->vm_start, 1240 addr, prev->vm_pgoff, NULL, next); 1241 else { /* cases 3, 8 */ 1242 err = __vma_adjust(area, addr, next->vm_end, 1243 next->vm_pgoff - pglen, NULL, next); 1244 /* 1245 * In case 3 area is already equal to next and 1246 * this is a noop, but in case 8 "area" has 1247 * been removed and next was expanded over it. 1248 */ 1249 area = next; 1250 } 1251 if (err) 1252 return NULL; 1253 khugepaged_enter_vma_merge(area, vm_flags); 1254 return area; 1255 } 1256 1257 return NULL; 1258 } 1259 1260 /* 1261 * Rough compatibility check to quickly see if it's even worth looking 1262 * at sharing an anon_vma. 1263 * 1264 * They need to have the same vm_file, and the flags can only differ 1265 * in things that mprotect may change. 1266 * 1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1268 * we can merge the two vma's. For example, we refuse to merge a vma if 1269 * there is a vm_ops->close() function, because that indicates that the 1270 * driver is doing some kind of reference counting. But that doesn't 1271 * really matter for the anon_vma sharing case. 1272 */ 1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1274 { 1275 return a->vm_end == b->vm_start && 1276 mpol_equal(vma_policy(a), vma_policy(b)) && 1277 a->vm_file == b->vm_file && 1278 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1279 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1280 } 1281 1282 /* 1283 * Do some basic sanity checking to see if we can re-use the anon_vma 1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1285 * the same as 'old', the other will be the new one that is trying 1286 * to share the anon_vma. 1287 * 1288 * NOTE! This runs with mm_sem held for reading, so it is possible that 1289 * the anon_vma of 'old' is concurrently in the process of being set up 1290 * by another page fault trying to merge _that_. But that's ok: if it 1291 * is being set up, that automatically means that it will be a singleton 1292 * acceptable for merging, so we can do all of this optimistically. But 1293 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1294 * 1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1297 * is to return an anon_vma that is "complex" due to having gone through 1298 * a fork). 1299 * 1300 * We also make sure that the two vma's are compatible (adjacent, 1301 * and with the same memory policies). That's all stable, even with just 1302 * a read lock on the mm_sem. 1303 */ 1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1305 { 1306 if (anon_vma_compatible(a, b)) { 1307 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1308 1309 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1310 return anon_vma; 1311 } 1312 return NULL; 1313 } 1314 1315 /* 1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1317 * neighbouring vmas for a suitable anon_vma, before it goes off 1318 * to allocate a new anon_vma. It checks because a repetitive 1319 * sequence of mprotects and faults may otherwise lead to distinct 1320 * anon_vmas being allocated, preventing vma merge in subsequent 1321 * mprotect. 1322 */ 1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1324 { 1325 struct anon_vma *anon_vma = NULL; 1326 1327 /* Try next first. */ 1328 if (vma->vm_next) { 1329 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1330 if (anon_vma) 1331 return anon_vma; 1332 } 1333 1334 /* Try prev next. */ 1335 if (vma->vm_prev) 1336 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1337 1338 /* 1339 * We might reach here with anon_vma == NULL if we can't find 1340 * any reusable anon_vma. 1341 * There's no absolute need to look only at touching neighbours: 1342 * we could search further afield for "compatible" anon_vmas. 1343 * But it would probably just be a waste of time searching, 1344 * or lead to too many vmas hanging off the same anon_vma. 1345 * We're trying to allow mprotect remerging later on, 1346 * not trying to minimize memory used for anon_vmas. 1347 */ 1348 return anon_vma; 1349 } 1350 1351 /* 1352 * If a hint addr is less than mmap_min_addr change hint to be as 1353 * low as possible but still greater than mmap_min_addr 1354 */ 1355 static inline unsigned long round_hint_to_min(unsigned long hint) 1356 { 1357 hint &= PAGE_MASK; 1358 if (((void *)hint != NULL) && 1359 (hint < mmap_min_addr)) 1360 return PAGE_ALIGN(mmap_min_addr); 1361 return hint; 1362 } 1363 1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1365 unsigned long len) 1366 { 1367 unsigned long locked, lock_limit; 1368 1369 /* mlock MCL_FUTURE? */ 1370 if (flags & VM_LOCKED) { 1371 locked = len >> PAGE_SHIFT; 1372 locked += mm->locked_vm; 1373 lock_limit = rlimit(RLIMIT_MEMLOCK); 1374 lock_limit >>= PAGE_SHIFT; 1375 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1376 return -EAGAIN; 1377 } 1378 return 0; 1379 } 1380 1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1382 { 1383 if (S_ISREG(inode->i_mode)) 1384 return MAX_LFS_FILESIZE; 1385 1386 if (S_ISBLK(inode->i_mode)) 1387 return MAX_LFS_FILESIZE; 1388 1389 if (S_ISSOCK(inode->i_mode)) 1390 return MAX_LFS_FILESIZE; 1391 1392 /* Special "we do even unsigned file positions" case */ 1393 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1394 return 0; 1395 1396 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1397 return ULONG_MAX; 1398 } 1399 1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1401 unsigned long pgoff, unsigned long len) 1402 { 1403 u64 maxsize = file_mmap_size_max(file, inode); 1404 1405 if (maxsize && len > maxsize) 1406 return false; 1407 maxsize -= len; 1408 if (pgoff > maxsize >> PAGE_SHIFT) 1409 return false; 1410 return true; 1411 } 1412 1413 /* 1414 * The caller must write-lock current->mm->mmap_lock. 1415 */ 1416 unsigned long do_mmap(struct file *file, unsigned long addr, 1417 unsigned long len, unsigned long prot, 1418 unsigned long flags, unsigned long pgoff, 1419 unsigned long *populate, struct list_head *uf) 1420 { 1421 struct mm_struct *mm = current->mm; 1422 vm_flags_t vm_flags; 1423 int pkey = 0; 1424 1425 *populate = 0; 1426 1427 if (!len) 1428 return -EINVAL; 1429 1430 /* 1431 * Does the application expect PROT_READ to imply PROT_EXEC? 1432 * 1433 * (the exception is when the underlying filesystem is noexec 1434 * mounted, in which case we dont add PROT_EXEC.) 1435 */ 1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1437 if (!(file && path_noexec(&file->f_path))) 1438 prot |= PROT_EXEC; 1439 1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1441 if (flags & MAP_FIXED_NOREPLACE) 1442 flags |= MAP_FIXED; 1443 1444 if (!(flags & MAP_FIXED)) 1445 addr = round_hint_to_min(addr); 1446 1447 /* Careful about overflows.. */ 1448 len = PAGE_ALIGN(len); 1449 if (!len) 1450 return -ENOMEM; 1451 1452 /* offset overflow? */ 1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1454 return -EOVERFLOW; 1455 1456 /* Too many mappings? */ 1457 if (mm->map_count > sysctl_max_map_count) 1458 return -ENOMEM; 1459 1460 /* Obtain the address to map to. we verify (or select) it and ensure 1461 * that it represents a valid section of the address space. 1462 */ 1463 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1464 if (IS_ERR_VALUE(addr)) 1465 return addr; 1466 1467 if (flags & MAP_FIXED_NOREPLACE) { 1468 if (find_vma_intersection(mm, addr, addr + len)) 1469 return -EEXIST; 1470 } 1471 1472 if (prot == PROT_EXEC) { 1473 pkey = execute_only_pkey(mm); 1474 if (pkey < 0) 1475 pkey = 0; 1476 } 1477 1478 /* Do simple checking here so the lower-level routines won't have 1479 * to. we assume access permissions have been handled by the open 1480 * of the memory object, so we don't do any here. 1481 */ 1482 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1483 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1484 1485 if (flags & MAP_LOCKED) 1486 if (!can_do_mlock()) 1487 return -EPERM; 1488 1489 if (mlock_future_check(mm, vm_flags, len)) 1490 return -EAGAIN; 1491 1492 if (file) { 1493 struct inode *inode = file_inode(file); 1494 unsigned long flags_mask; 1495 1496 if (!file_mmap_ok(file, inode, pgoff, len)) 1497 return -EOVERFLOW; 1498 1499 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1500 1501 switch (flags & MAP_TYPE) { 1502 case MAP_SHARED: 1503 /* 1504 * Force use of MAP_SHARED_VALIDATE with non-legacy 1505 * flags. E.g. MAP_SYNC is dangerous to use with 1506 * MAP_SHARED as you don't know which consistency model 1507 * you will get. We silently ignore unsupported flags 1508 * with MAP_SHARED to preserve backward compatibility. 1509 */ 1510 flags &= LEGACY_MAP_MASK; 1511 fallthrough; 1512 case MAP_SHARED_VALIDATE: 1513 if (flags & ~flags_mask) 1514 return -EOPNOTSUPP; 1515 if (prot & PROT_WRITE) { 1516 if (!(file->f_mode & FMODE_WRITE)) 1517 return -EACCES; 1518 if (IS_SWAPFILE(file->f_mapping->host)) 1519 return -ETXTBSY; 1520 } 1521 1522 /* 1523 * Make sure we don't allow writing to an append-only 1524 * file.. 1525 */ 1526 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1527 return -EACCES; 1528 1529 vm_flags |= VM_SHARED | VM_MAYSHARE; 1530 if (!(file->f_mode & FMODE_WRITE)) 1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1532 fallthrough; 1533 case MAP_PRIVATE: 1534 if (!(file->f_mode & FMODE_READ)) 1535 return -EACCES; 1536 if (path_noexec(&file->f_path)) { 1537 if (vm_flags & VM_EXEC) 1538 return -EPERM; 1539 vm_flags &= ~VM_MAYEXEC; 1540 } 1541 1542 if (!file->f_op->mmap) 1543 return -ENODEV; 1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1545 return -EINVAL; 1546 break; 1547 1548 default: 1549 return -EINVAL; 1550 } 1551 } else { 1552 switch (flags & MAP_TYPE) { 1553 case MAP_SHARED: 1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1555 return -EINVAL; 1556 /* 1557 * Ignore pgoff. 1558 */ 1559 pgoff = 0; 1560 vm_flags |= VM_SHARED | VM_MAYSHARE; 1561 break; 1562 case MAP_PRIVATE: 1563 /* 1564 * Set pgoff according to addr for anon_vma. 1565 */ 1566 pgoff = addr >> PAGE_SHIFT; 1567 break; 1568 default: 1569 return -EINVAL; 1570 } 1571 } 1572 1573 /* 1574 * Set 'VM_NORESERVE' if we should not account for the 1575 * memory use of this mapping. 1576 */ 1577 if (flags & MAP_NORESERVE) { 1578 /* We honor MAP_NORESERVE if allowed to overcommit */ 1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1580 vm_flags |= VM_NORESERVE; 1581 1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1583 if (file && is_file_hugepages(file)) 1584 vm_flags |= VM_NORESERVE; 1585 } 1586 1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1588 if (!IS_ERR_VALUE(addr) && 1589 ((vm_flags & VM_LOCKED) || 1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1591 *populate = len; 1592 return addr; 1593 } 1594 1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1596 unsigned long prot, unsigned long flags, 1597 unsigned long fd, unsigned long pgoff) 1598 { 1599 struct file *file = NULL; 1600 unsigned long retval; 1601 1602 if (!(flags & MAP_ANONYMOUS)) { 1603 audit_mmap_fd(fd, flags); 1604 file = fget(fd); 1605 if (!file) 1606 return -EBADF; 1607 if (is_file_hugepages(file)) { 1608 len = ALIGN(len, huge_page_size(hstate_file(file))); 1609 } else if (unlikely(flags & MAP_HUGETLB)) { 1610 retval = -EINVAL; 1611 goto out_fput; 1612 } 1613 } else if (flags & MAP_HUGETLB) { 1614 struct hstate *hs; 1615 1616 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1617 if (!hs) 1618 return -EINVAL; 1619 1620 len = ALIGN(len, huge_page_size(hs)); 1621 /* 1622 * VM_NORESERVE is used because the reservations will be 1623 * taken when vm_ops->mmap() is called 1624 */ 1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1626 VM_NORESERVE, 1627 HUGETLB_ANONHUGE_INODE, 1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1629 if (IS_ERR(file)) 1630 return PTR_ERR(file); 1631 } 1632 1633 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1634 out_fput: 1635 if (file) 1636 fput(file); 1637 return retval; 1638 } 1639 1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1641 unsigned long, prot, unsigned long, flags, 1642 unsigned long, fd, unsigned long, pgoff) 1643 { 1644 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1645 } 1646 1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1648 struct mmap_arg_struct { 1649 unsigned long addr; 1650 unsigned long len; 1651 unsigned long prot; 1652 unsigned long flags; 1653 unsigned long fd; 1654 unsigned long offset; 1655 }; 1656 1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1658 { 1659 struct mmap_arg_struct a; 1660 1661 if (copy_from_user(&a, arg, sizeof(a))) 1662 return -EFAULT; 1663 if (offset_in_page(a.offset)) 1664 return -EINVAL; 1665 1666 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1667 a.offset >> PAGE_SHIFT); 1668 } 1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1670 1671 /* 1672 * Some shared mappings will want the pages marked read-only 1673 * to track write events. If so, we'll downgrade vm_page_prot 1674 * to the private version (using protection_map[] without the 1675 * VM_SHARED bit). 1676 */ 1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1678 { 1679 vm_flags_t vm_flags = vma->vm_flags; 1680 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1681 1682 /* If it was private or non-writable, the write bit is already clear */ 1683 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1684 return 0; 1685 1686 /* The backer wishes to know when pages are first written to? */ 1687 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1688 return 1; 1689 1690 /* The open routine did something to the protections that pgprot_modify 1691 * won't preserve? */ 1692 if (pgprot_val(vm_page_prot) != 1693 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1694 return 0; 1695 1696 /* Do we need to track softdirty? */ 1697 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1698 return 1; 1699 1700 /* Specialty mapping? */ 1701 if (vm_flags & VM_PFNMAP) 1702 return 0; 1703 1704 /* Can the mapping track the dirty pages? */ 1705 return vma->vm_file && vma->vm_file->f_mapping && 1706 mapping_can_writeback(vma->vm_file->f_mapping); 1707 } 1708 1709 /* 1710 * We account for memory if it's a private writeable mapping, 1711 * not hugepages and VM_NORESERVE wasn't set. 1712 */ 1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1714 { 1715 /* 1716 * hugetlb has its own accounting separate from the core VM 1717 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1718 */ 1719 if (file && is_file_hugepages(file)) 1720 return 0; 1721 1722 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1723 } 1724 1725 unsigned long mmap_region(struct file *file, unsigned long addr, 1726 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1727 struct list_head *uf) 1728 { 1729 struct mm_struct *mm = current->mm; 1730 struct vm_area_struct *vma, *prev, *merge; 1731 int error; 1732 struct rb_node **rb_link, *rb_parent; 1733 unsigned long charged = 0; 1734 1735 /* Check against address space limit. */ 1736 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1737 unsigned long nr_pages; 1738 1739 /* 1740 * MAP_FIXED may remove pages of mappings that intersects with 1741 * requested mapping. Account for the pages it would unmap. 1742 */ 1743 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1744 1745 if (!may_expand_vm(mm, vm_flags, 1746 (len >> PAGE_SHIFT) - nr_pages)) 1747 return -ENOMEM; 1748 } 1749 1750 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1751 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1752 return -ENOMEM; 1753 /* 1754 * Private writable mapping: check memory availability 1755 */ 1756 if (accountable_mapping(file, vm_flags)) { 1757 charged = len >> PAGE_SHIFT; 1758 if (security_vm_enough_memory_mm(mm, charged)) 1759 return -ENOMEM; 1760 vm_flags |= VM_ACCOUNT; 1761 } 1762 1763 /* 1764 * Can we just expand an old mapping? 1765 */ 1766 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1767 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1768 if (vma) 1769 goto out; 1770 1771 /* 1772 * Determine the object being mapped and call the appropriate 1773 * specific mapper. the address has already been validated, but 1774 * not unmapped, but the maps are removed from the list. 1775 */ 1776 vma = vm_area_alloc(mm); 1777 if (!vma) { 1778 error = -ENOMEM; 1779 goto unacct_error; 1780 } 1781 1782 vma->vm_start = addr; 1783 vma->vm_end = addr + len; 1784 vma->vm_flags = vm_flags; 1785 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1786 vma->vm_pgoff = pgoff; 1787 1788 if (file) { 1789 if (vm_flags & VM_SHARED) { 1790 error = mapping_map_writable(file->f_mapping); 1791 if (error) 1792 goto free_vma; 1793 } 1794 1795 vma->vm_file = get_file(file); 1796 error = call_mmap(file, vma); 1797 if (error) 1798 goto unmap_and_free_vma; 1799 1800 /* Can addr have changed?? 1801 * 1802 * Answer: Yes, several device drivers can do it in their 1803 * f_op->mmap method. -DaveM 1804 * Bug: If addr is changed, prev, rb_link, rb_parent should 1805 * be updated for vma_link() 1806 */ 1807 WARN_ON_ONCE(addr != vma->vm_start); 1808 1809 addr = vma->vm_start; 1810 1811 /* If vm_flags changed after call_mmap(), we should try merge vma again 1812 * as we may succeed this time. 1813 */ 1814 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1815 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1816 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1817 if (merge) { 1818 /* ->mmap() can change vma->vm_file and fput the original file. So 1819 * fput the vma->vm_file here or we would add an extra fput for file 1820 * and cause general protection fault ultimately. 1821 */ 1822 fput(vma->vm_file); 1823 vm_area_free(vma); 1824 vma = merge; 1825 /* Update vm_flags to pick up the change. */ 1826 vm_flags = vma->vm_flags; 1827 goto unmap_writable; 1828 } 1829 } 1830 1831 vm_flags = vma->vm_flags; 1832 } else if (vm_flags & VM_SHARED) { 1833 error = shmem_zero_setup(vma); 1834 if (error) 1835 goto free_vma; 1836 } else { 1837 vma_set_anonymous(vma); 1838 } 1839 1840 /* Allow architectures to sanity-check the vm_flags */ 1841 if (!arch_validate_flags(vma->vm_flags)) { 1842 error = -EINVAL; 1843 if (file) 1844 goto unmap_and_free_vma; 1845 else 1846 goto free_vma; 1847 } 1848 1849 vma_link(mm, vma, prev, rb_link, rb_parent); 1850 /* Once vma denies write, undo our temporary denial count */ 1851 unmap_writable: 1852 if (file && vm_flags & VM_SHARED) 1853 mapping_unmap_writable(file->f_mapping); 1854 file = vma->vm_file; 1855 out: 1856 perf_event_mmap(vma); 1857 1858 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1859 if (vm_flags & VM_LOCKED) { 1860 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1861 is_vm_hugetlb_page(vma) || 1862 vma == get_gate_vma(current->mm)) 1863 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1864 else 1865 mm->locked_vm += (len >> PAGE_SHIFT); 1866 } 1867 1868 if (file) 1869 uprobe_mmap(vma); 1870 1871 /* 1872 * New (or expanded) vma always get soft dirty status. 1873 * Otherwise user-space soft-dirty page tracker won't 1874 * be able to distinguish situation when vma area unmapped, 1875 * then new mapped in-place (which must be aimed as 1876 * a completely new data area). 1877 */ 1878 vma->vm_flags |= VM_SOFTDIRTY; 1879 1880 vma_set_page_prot(vma); 1881 1882 return addr; 1883 1884 unmap_and_free_vma: 1885 fput(vma->vm_file); 1886 vma->vm_file = NULL; 1887 1888 /* Undo any partial mapping done by a device driver. */ 1889 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1890 charged = 0; 1891 if (vm_flags & VM_SHARED) 1892 mapping_unmap_writable(file->f_mapping); 1893 free_vma: 1894 vm_area_free(vma); 1895 unacct_error: 1896 if (charged) 1897 vm_unacct_memory(charged); 1898 return error; 1899 } 1900 1901 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1902 { 1903 /* 1904 * We implement the search by looking for an rbtree node that 1905 * immediately follows a suitable gap. That is, 1906 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1907 * - gap_end = vma->vm_start >= info->low_limit + length; 1908 * - gap_end - gap_start >= length 1909 */ 1910 1911 struct mm_struct *mm = current->mm; 1912 struct vm_area_struct *vma; 1913 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1914 1915 /* Adjust search length to account for worst case alignment overhead */ 1916 length = info->length + info->align_mask; 1917 if (length < info->length) 1918 return -ENOMEM; 1919 1920 /* Adjust search limits by the desired length */ 1921 if (info->high_limit < length) 1922 return -ENOMEM; 1923 high_limit = info->high_limit - length; 1924 1925 if (info->low_limit > high_limit) 1926 return -ENOMEM; 1927 low_limit = info->low_limit + length; 1928 1929 /* Check if rbtree root looks promising */ 1930 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1931 goto check_highest; 1932 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1933 if (vma->rb_subtree_gap < length) 1934 goto check_highest; 1935 1936 while (true) { 1937 /* Visit left subtree if it looks promising */ 1938 gap_end = vm_start_gap(vma); 1939 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1940 struct vm_area_struct *left = 1941 rb_entry(vma->vm_rb.rb_left, 1942 struct vm_area_struct, vm_rb); 1943 if (left->rb_subtree_gap >= length) { 1944 vma = left; 1945 continue; 1946 } 1947 } 1948 1949 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1950 check_current: 1951 /* Check if current node has a suitable gap */ 1952 if (gap_start > high_limit) 1953 return -ENOMEM; 1954 if (gap_end >= low_limit && 1955 gap_end > gap_start && gap_end - gap_start >= length) 1956 goto found; 1957 1958 /* Visit right subtree if it looks promising */ 1959 if (vma->vm_rb.rb_right) { 1960 struct vm_area_struct *right = 1961 rb_entry(vma->vm_rb.rb_right, 1962 struct vm_area_struct, vm_rb); 1963 if (right->rb_subtree_gap >= length) { 1964 vma = right; 1965 continue; 1966 } 1967 } 1968 1969 /* Go back up the rbtree to find next candidate node */ 1970 while (true) { 1971 struct rb_node *prev = &vma->vm_rb; 1972 if (!rb_parent(prev)) 1973 goto check_highest; 1974 vma = rb_entry(rb_parent(prev), 1975 struct vm_area_struct, vm_rb); 1976 if (prev == vma->vm_rb.rb_left) { 1977 gap_start = vm_end_gap(vma->vm_prev); 1978 gap_end = vm_start_gap(vma); 1979 goto check_current; 1980 } 1981 } 1982 } 1983 1984 check_highest: 1985 /* Check highest gap, which does not precede any rbtree node */ 1986 gap_start = mm->highest_vm_end; 1987 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1988 if (gap_start > high_limit) 1989 return -ENOMEM; 1990 1991 found: 1992 /* We found a suitable gap. Clip it with the original low_limit. */ 1993 if (gap_start < info->low_limit) 1994 gap_start = info->low_limit; 1995 1996 /* Adjust gap address to the desired alignment */ 1997 gap_start += (info->align_offset - gap_start) & info->align_mask; 1998 1999 VM_BUG_ON(gap_start + info->length > info->high_limit); 2000 VM_BUG_ON(gap_start + info->length > gap_end); 2001 return gap_start; 2002 } 2003 2004 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2005 { 2006 struct mm_struct *mm = current->mm; 2007 struct vm_area_struct *vma; 2008 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2009 2010 /* Adjust search length to account for worst case alignment overhead */ 2011 length = info->length + info->align_mask; 2012 if (length < info->length) 2013 return -ENOMEM; 2014 2015 /* 2016 * Adjust search limits by the desired length. 2017 * See implementation comment at top of unmapped_area(). 2018 */ 2019 gap_end = info->high_limit; 2020 if (gap_end < length) 2021 return -ENOMEM; 2022 high_limit = gap_end - length; 2023 2024 if (info->low_limit > high_limit) 2025 return -ENOMEM; 2026 low_limit = info->low_limit + length; 2027 2028 /* Check highest gap, which does not precede any rbtree node */ 2029 gap_start = mm->highest_vm_end; 2030 if (gap_start <= high_limit) 2031 goto found_highest; 2032 2033 /* Check if rbtree root looks promising */ 2034 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2035 return -ENOMEM; 2036 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2037 if (vma->rb_subtree_gap < length) 2038 return -ENOMEM; 2039 2040 while (true) { 2041 /* Visit right subtree if it looks promising */ 2042 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2043 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2044 struct vm_area_struct *right = 2045 rb_entry(vma->vm_rb.rb_right, 2046 struct vm_area_struct, vm_rb); 2047 if (right->rb_subtree_gap >= length) { 2048 vma = right; 2049 continue; 2050 } 2051 } 2052 2053 check_current: 2054 /* Check if current node has a suitable gap */ 2055 gap_end = vm_start_gap(vma); 2056 if (gap_end < low_limit) 2057 return -ENOMEM; 2058 if (gap_start <= high_limit && 2059 gap_end > gap_start && gap_end - gap_start >= length) 2060 goto found; 2061 2062 /* Visit left subtree if it looks promising */ 2063 if (vma->vm_rb.rb_left) { 2064 struct vm_area_struct *left = 2065 rb_entry(vma->vm_rb.rb_left, 2066 struct vm_area_struct, vm_rb); 2067 if (left->rb_subtree_gap >= length) { 2068 vma = left; 2069 continue; 2070 } 2071 } 2072 2073 /* Go back up the rbtree to find next candidate node */ 2074 while (true) { 2075 struct rb_node *prev = &vma->vm_rb; 2076 if (!rb_parent(prev)) 2077 return -ENOMEM; 2078 vma = rb_entry(rb_parent(prev), 2079 struct vm_area_struct, vm_rb); 2080 if (prev == vma->vm_rb.rb_right) { 2081 gap_start = vma->vm_prev ? 2082 vm_end_gap(vma->vm_prev) : 0; 2083 goto check_current; 2084 } 2085 } 2086 } 2087 2088 found: 2089 /* We found a suitable gap. Clip it with the original high_limit. */ 2090 if (gap_end > info->high_limit) 2091 gap_end = info->high_limit; 2092 2093 found_highest: 2094 /* Compute highest gap address at the desired alignment */ 2095 gap_end -= info->length; 2096 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2097 2098 VM_BUG_ON(gap_end < info->low_limit); 2099 VM_BUG_ON(gap_end < gap_start); 2100 return gap_end; 2101 } 2102 2103 /* 2104 * Search for an unmapped address range. 2105 * 2106 * We are looking for a range that: 2107 * - does not intersect with any VMA; 2108 * - is contained within the [low_limit, high_limit) interval; 2109 * - is at least the desired size. 2110 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2111 */ 2112 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2113 { 2114 unsigned long addr; 2115 2116 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2117 addr = unmapped_area_topdown(info); 2118 else 2119 addr = unmapped_area(info); 2120 2121 trace_vm_unmapped_area(addr, info); 2122 return addr; 2123 } 2124 2125 /* Get an address range which is currently unmapped. 2126 * For shmat() with addr=0. 2127 * 2128 * Ugly calling convention alert: 2129 * Return value with the low bits set means error value, 2130 * ie 2131 * if (ret & ~PAGE_MASK) 2132 * error = ret; 2133 * 2134 * This function "knows" that -ENOMEM has the bits set. 2135 */ 2136 #ifndef HAVE_ARCH_UNMAPPED_AREA 2137 unsigned long 2138 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2139 unsigned long len, unsigned long pgoff, unsigned long flags) 2140 { 2141 struct mm_struct *mm = current->mm; 2142 struct vm_area_struct *vma, *prev; 2143 struct vm_unmapped_area_info info; 2144 const unsigned long mmap_end = arch_get_mmap_end(addr); 2145 2146 if (len > mmap_end - mmap_min_addr) 2147 return -ENOMEM; 2148 2149 if (flags & MAP_FIXED) 2150 return addr; 2151 2152 if (addr) { 2153 addr = PAGE_ALIGN(addr); 2154 vma = find_vma_prev(mm, addr, &prev); 2155 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2156 (!vma || addr + len <= vm_start_gap(vma)) && 2157 (!prev || addr >= vm_end_gap(prev))) 2158 return addr; 2159 } 2160 2161 info.flags = 0; 2162 info.length = len; 2163 info.low_limit = mm->mmap_base; 2164 info.high_limit = mmap_end; 2165 info.align_mask = 0; 2166 info.align_offset = 0; 2167 return vm_unmapped_area(&info); 2168 } 2169 #endif 2170 2171 /* 2172 * This mmap-allocator allocates new areas top-down from below the 2173 * stack's low limit (the base): 2174 */ 2175 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2176 unsigned long 2177 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2178 unsigned long len, unsigned long pgoff, 2179 unsigned long flags) 2180 { 2181 struct vm_area_struct *vma, *prev; 2182 struct mm_struct *mm = current->mm; 2183 struct vm_unmapped_area_info info; 2184 const unsigned long mmap_end = arch_get_mmap_end(addr); 2185 2186 /* requested length too big for entire address space */ 2187 if (len > mmap_end - mmap_min_addr) 2188 return -ENOMEM; 2189 2190 if (flags & MAP_FIXED) 2191 return addr; 2192 2193 /* requesting a specific address */ 2194 if (addr) { 2195 addr = PAGE_ALIGN(addr); 2196 vma = find_vma_prev(mm, addr, &prev); 2197 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2198 (!vma || addr + len <= vm_start_gap(vma)) && 2199 (!prev || addr >= vm_end_gap(prev))) 2200 return addr; 2201 } 2202 2203 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2204 info.length = len; 2205 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2206 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2207 info.align_mask = 0; 2208 info.align_offset = 0; 2209 addr = vm_unmapped_area(&info); 2210 2211 /* 2212 * A failed mmap() very likely causes application failure, 2213 * so fall back to the bottom-up function here. This scenario 2214 * can happen with large stack limits and large mmap() 2215 * allocations. 2216 */ 2217 if (offset_in_page(addr)) { 2218 VM_BUG_ON(addr != -ENOMEM); 2219 info.flags = 0; 2220 info.low_limit = TASK_UNMAPPED_BASE; 2221 info.high_limit = mmap_end; 2222 addr = vm_unmapped_area(&info); 2223 } 2224 2225 return addr; 2226 } 2227 #endif 2228 2229 unsigned long 2230 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2231 unsigned long pgoff, unsigned long flags) 2232 { 2233 unsigned long (*get_area)(struct file *, unsigned long, 2234 unsigned long, unsigned long, unsigned long); 2235 2236 unsigned long error = arch_mmap_check(addr, len, flags); 2237 if (error) 2238 return error; 2239 2240 /* Careful about overflows.. */ 2241 if (len > TASK_SIZE) 2242 return -ENOMEM; 2243 2244 get_area = current->mm->get_unmapped_area; 2245 if (file) { 2246 if (file->f_op->get_unmapped_area) 2247 get_area = file->f_op->get_unmapped_area; 2248 } else if (flags & MAP_SHARED) { 2249 /* 2250 * mmap_region() will call shmem_zero_setup() to create a file, 2251 * so use shmem's get_unmapped_area in case it can be huge. 2252 * do_mmap() will clear pgoff, so match alignment. 2253 */ 2254 pgoff = 0; 2255 get_area = shmem_get_unmapped_area; 2256 } 2257 2258 addr = get_area(file, addr, len, pgoff, flags); 2259 if (IS_ERR_VALUE(addr)) 2260 return addr; 2261 2262 if (addr > TASK_SIZE - len) 2263 return -ENOMEM; 2264 if (offset_in_page(addr)) 2265 return -EINVAL; 2266 2267 error = security_mmap_addr(addr); 2268 return error ? error : addr; 2269 } 2270 2271 EXPORT_SYMBOL(get_unmapped_area); 2272 2273 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2274 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2275 { 2276 struct rb_node *rb_node; 2277 struct vm_area_struct *vma; 2278 2279 mmap_assert_locked(mm); 2280 /* Check the cache first. */ 2281 vma = vmacache_find(mm, addr); 2282 if (likely(vma)) 2283 return vma; 2284 2285 rb_node = mm->mm_rb.rb_node; 2286 2287 while (rb_node) { 2288 struct vm_area_struct *tmp; 2289 2290 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2291 2292 if (tmp->vm_end > addr) { 2293 vma = tmp; 2294 if (tmp->vm_start <= addr) 2295 break; 2296 rb_node = rb_node->rb_left; 2297 } else 2298 rb_node = rb_node->rb_right; 2299 } 2300 2301 if (vma) 2302 vmacache_update(addr, vma); 2303 return vma; 2304 } 2305 2306 EXPORT_SYMBOL(find_vma); 2307 2308 /* 2309 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2310 */ 2311 struct vm_area_struct * 2312 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2313 struct vm_area_struct **pprev) 2314 { 2315 struct vm_area_struct *vma; 2316 2317 vma = find_vma(mm, addr); 2318 if (vma) { 2319 *pprev = vma->vm_prev; 2320 } else { 2321 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2322 2323 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2324 } 2325 return vma; 2326 } 2327 2328 /* 2329 * Verify that the stack growth is acceptable and 2330 * update accounting. This is shared with both the 2331 * grow-up and grow-down cases. 2332 */ 2333 static int acct_stack_growth(struct vm_area_struct *vma, 2334 unsigned long size, unsigned long grow) 2335 { 2336 struct mm_struct *mm = vma->vm_mm; 2337 unsigned long new_start; 2338 2339 /* address space limit tests */ 2340 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2341 return -ENOMEM; 2342 2343 /* Stack limit test */ 2344 if (size > rlimit(RLIMIT_STACK)) 2345 return -ENOMEM; 2346 2347 /* mlock limit tests */ 2348 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2349 return -ENOMEM; 2350 2351 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2352 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2353 vma->vm_end - size; 2354 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2355 return -EFAULT; 2356 2357 /* 2358 * Overcommit.. This must be the final test, as it will 2359 * update security statistics. 2360 */ 2361 if (security_vm_enough_memory_mm(mm, grow)) 2362 return -ENOMEM; 2363 2364 return 0; 2365 } 2366 2367 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2368 /* 2369 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2370 * vma is the last one with address > vma->vm_end. Have to extend vma. 2371 */ 2372 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2373 { 2374 struct mm_struct *mm = vma->vm_mm; 2375 struct vm_area_struct *next; 2376 unsigned long gap_addr; 2377 int error = 0; 2378 2379 if (!(vma->vm_flags & VM_GROWSUP)) 2380 return -EFAULT; 2381 2382 /* Guard against exceeding limits of the address space. */ 2383 address &= PAGE_MASK; 2384 if (address >= (TASK_SIZE & PAGE_MASK)) 2385 return -ENOMEM; 2386 address += PAGE_SIZE; 2387 2388 /* Enforce stack_guard_gap */ 2389 gap_addr = address + stack_guard_gap; 2390 2391 /* Guard against overflow */ 2392 if (gap_addr < address || gap_addr > TASK_SIZE) 2393 gap_addr = TASK_SIZE; 2394 2395 next = vma->vm_next; 2396 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2397 if (!(next->vm_flags & VM_GROWSUP)) 2398 return -ENOMEM; 2399 /* Check that both stack segments have the same anon_vma? */ 2400 } 2401 2402 /* We must make sure the anon_vma is allocated. */ 2403 if (unlikely(anon_vma_prepare(vma))) 2404 return -ENOMEM; 2405 2406 /* 2407 * vma->vm_start/vm_end cannot change under us because the caller 2408 * is required to hold the mmap_lock in read mode. We need the 2409 * anon_vma lock to serialize against concurrent expand_stacks. 2410 */ 2411 anon_vma_lock_write(vma->anon_vma); 2412 2413 /* Somebody else might have raced and expanded it already */ 2414 if (address > vma->vm_end) { 2415 unsigned long size, grow; 2416 2417 size = address - vma->vm_start; 2418 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2419 2420 error = -ENOMEM; 2421 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2422 error = acct_stack_growth(vma, size, grow); 2423 if (!error) { 2424 /* 2425 * vma_gap_update() doesn't support concurrent 2426 * updates, but we only hold a shared mmap_lock 2427 * lock here, so we need to protect against 2428 * concurrent vma expansions. 2429 * anon_vma_lock_write() doesn't help here, as 2430 * we don't guarantee that all growable vmas 2431 * in a mm share the same root anon vma. 2432 * So, we reuse mm->page_table_lock to guard 2433 * against concurrent vma expansions. 2434 */ 2435 spin_lock(&mm->page_table_lock); 2436 if (vma->vm_flags & VM_LOCKED) 2437 mm->locked_vm += grow; 2438 vm_stat_account(mm, vma->vm_flags, grow); 2439 anon_vma_interval_tree_pre_update_vma(vma); 2440 vma->vm_end = address; 2441 anon_vma_interval_tree_post_update_vma(vma); 2442 if (vma->vm_next) 2443 vma_gap_update(vma->vm_next); 2444 else 2445 mm->highest_vm_end = vm_end_gap(vma); 2446 spin_unlock(&mm->page_table_lock); 2447 2448 perf_event_mmap(vma); 2449 } 2450 } 2451 } 2452 anon_vma_unlock_write(vma->anon_vma); 2453 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2454 validate_mm(mm); 2455 return error; 2456 } 2457 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2458 2459 /* 2460 * vma is the first one with address < vma->vm_start. Have to extend vma. 2461 */ 2462 int expand_downwards(struct vm_area_struct *vma, 2463 unsigned long address) 2464 { 2465 struct mm_struct *mm = vma->vm_mm; 2466 struct vm_area_struct *prev; 2467 int error = 0; 2468 2469 address &= PAGE_MASK; 2470 if (address < mmap_min_addr) 2471 return -EPERM; 2472 2473 /* Enforce stack_guard_gap */ 2474 prev = vma->vm_prev; 2475 /* Check that both stack segments have the same anon_vma? */ 2476 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2477 vma_is_accessible(prev)) { 2478 if (address - prev->vm_end < stack_guard_gap) 2479 return -ENOMEM; 2480 } 2481 2482 /* We must make sure the anon_vma is allocated. */ 2483 if (unlikely(anon_vma_prepare(vma))) 2484 return -ENOMEM; 2485 2486 /* 2487 * vma->vm_start/vm_end cannot change under us because the caller 2488 * is required to hold the mmap_lock in read mode. We need the 2489 * anon_vma lock to serialize against concurrent expand_stacks. 2490 */ 2491 anon_vma_lock_write(vma->anon_vma); 2492 2493 /* Somebody else might have raced and expanded it already */ 2494 if (address < vma->vm_start) { 2495 unsigned long size, grow; 2496 2497 size = vma->vm_end - address; 2498 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2499 2500 error = -ENOMEM; 2501 if (grow <= vma->vm_pgoff) { 2502 error = acct_stack_growth(vma, size, grow); 2503 if (!error) { 2504 /* 2505 * vma_gap_update() doesn't support concurrent 2506 * updates, but we only hold a shared mmap_lock 2507 * lock here, so we need to protect against 2508 * concurrent vma expansions. 2509 * anon_vma_lock_write() doesn't help here, as 2510 * we don't guarantee that all growable vmas 2511 * in a mm share the same root anon vma. 2512 * So, we reuse mm->page_table_lock to guard 2513 * against concurrent vma expansions. 2514 */ 2515 spin_lock(&mm->page_table_lock); 2516 if (vma->vm_flags & VM_LOCKED) 2517 mm->locked_vm += grow; 2518 vm_stat_account(mm, vma->vm_flags, grow); 2519 anon_vma_interval_tree_pre_update_vma(vma); 2520 vma->vm_start = address; 2521 vma->vm_pgoff -= grow; 2522 anon_vma_interval_tree_post_update_vma(vma); 2523 vma_gap_update(vma); 2524 spin_unlock(&mm->page_table_lock); 2525 2526 perf_event_mmap(vma); 2527 } 2528 } 2529 } 2530 anon_vma_unlock_write(vma->anon_vma); 2531 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2532 validate_mm(mm); 2533 return error; 2534 } 2535 2536 /* enforced gap between the expanding stack and other mappings. */ 2537 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2538 2539 static int __init cmdline_parse_stack_guard_gap(char *p) 2540 { 2541 unsigned long val; 2542 char *endptr; 2543 2544 val = simple_strtoul(p, &endptr, 10); 2545 if (!*endptr) 2546 stack_guard_gap = val << PAGE_SHIFT; 2547 2548 return 1; 2549 } 2550 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2551 2552 #ifdef CONFIG_STACK_GROWSUP 2553 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2554 { 2555 return expand_upwards(vma, address); 2556 } 2557 2558 struct vm_area_struct * 2559 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2560 { 2561 struct vm_area_struct *vma, *prev; 2562 2563 addr &= PAGE_MASK; 2564 vma = find_vma_prev(mm, addr, &prev); 2565 if (vma && (vma->vm_start <= addr)) 2566 return vma; 2567 /* don't alter vm_end if the coredump is running */ 2568 if (!prev || expand_stack(prev, addr)) 2569 return NULL; 2570 if (prev->vm_flags & VM_LOCKED) 2571 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2572 return prev; 2573 } 2574 #else 2575 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2576 { 2577 return expand_downwards(vma, address); 2578 } 2579 2580 struct vm_area_struct * 2581 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2582 { 2583 struct vm_area_struct *vma; 2584 unsigned long start; 2585 2586 addr &= PAGE_MASK; 2587 vma = find_vma(mm, addr); 2588 if (!vma) 2589 return NULL; 2590 if (vma->vm_start <= addr) 2591 return vma; 2592 if (!(vma->vm_flags & VM_GROWSDOWN)) 2593 return NULL; 2594 start = vma->vm_start; 2595 if (expand_stack(vma, addr)) 2596 return NULL; 2597 if (vma->vm_flags & VM_LOCKED) 2598 populate_vma_page_range(vma, addr, start, NULL); 2599 return vma; 2600 } 2601 #endif 2602 2603 EXPORT_SYMBOL_GPL(find_extend_vma); 2604 2605 /* 2606 * Ok - we have the memory areas we should free on the vma list, 2607 * so release them, and do the vma updates. 2608 * 2609 * Called with the mm semaphore held. 2610 */ 2611 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2612 { 2613 unsigned long nr_accounted = 0; 2614 2615 /* Update high watermark before we lower total_vm */ 2616 update_hiwater_vm(mm); 2617 do { 2618 long nrpages = vma_pages(vma); 2619 2620 if (vma->vm_flags & VM_ACCOUNT) 2621 nr_accounted += nrpages; 2622 vm_stat_account(mm, vma->vm_flags, -nrpages); 2623 vma = remove_vma(vma); 2624 } while (vma); 2625 vm_unacct_memory(nr_accounted); 2626 validate_mm(mm); 2627 } 2628 2629 /* 2630 * Get rid of page table information in the indicated region. 2631 * 2632 * Called with the mm semaphore held. 2633 */ 2634 static void unmap_region(struct mm_struct *mm, 2635 struct vm_area_struct *vma, struct vm_area_struct *prev, 2636 unsigned long start, unsigned long end) 2637 { 2638 struct vm_area_struct *next = vma_next(mm, prev); 2639 struct mmu_gather tlb; 2640 2641 lru_add_drain(); 2642 tlb_gather_mmu(&tlb, mm); 2643 update_hiwater_rss(mm); 2644 unmap_vmas(&tlb, vma, start, end); 2645 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2646 next ? next->vm_start : USER_PGTABLES_CEILING); 2647 tlb_finish_mmu(&tlb); 2648 } 2649 2650 /* 2651 * Create a list of vma's touched by the unmap, removing them from the mm's 2652 * vma list as we go.. 2653 */ 2654 static bool 2655 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2656 struct vm_area_struct *prev, unsigned long end) 2657 { 2658 struct vm_area_struct **insertion_point; 2659 struct vm_area_struct *tail_vma = NULL; 2660 2661 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2662 vma->vm_prev = NULL; 2663 do { 2664 vma_rb_erase(vma, &mm->mm_rb); 2665 if (vma->vm_flags & VM_LOCKED) 2666 mm->locked_vm -= vma_pages(vma); 2667 mm->map_count--; 2668 tail_vma = vma; 2669 vma = vma->vm_next; 2670 } while (vma && vma->vm_start < end); 2671 *insertion_point = vma; 2672 if (vma) { 2673 vma->vm_prev = prev; 2674 vma_gap_update(vma); 2675 } else 2676 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2677 tail_vma->vm_next = NULL; 2678 2679 /* Kill the cache */ 2680 vmacache_invalidate(mm); 2681 2682 /* 2683 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2684 * VM_GROWSUP VMA. Such VMAs can change their size under 2685 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2686 */ 2687 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2688 return false; 2689 if (prev && (prev->vm_flags & VM_GROWSUP)) 2690 return false; 2691 return true; 2692 } 2693 2694 /* 2695 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2696 * has already been checked or doesn't make sense to fail. 2697 */ 2698 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2699 unsigned long addr, int new_below) 2700 { 2701 struct vm_area_struct *new; 2702 int err; 2703 2704 if (vma->vm_ops && vma->vm_ops->may_split) { 2705 err = vma->vm_ops->may_split(vma, addr); 2706 if (err) 2707 return err; 2708 } 2709 2710 new = vm_area_dup(vma); 2711 if (!new) 2712 return -ENOMEM; 2713 2714 if (new_below) 2715 new->vm_end = addr; 2716 else { 2717 new->vm_start = addr; 2718 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2719 } 2720 2721 err = vma_dup_policy(vma, new); 2722 if (err) 2723 goto out_free_vma; 2724 2725 err = anon_vma_clone(new, vma); 2726 if (err) 2727 goto out_free_mpol; 2728 2729 if (new->vm_file) 2730 get_file(new->vm_file); 2731 2732 if (new->vm_ops && new->vm_ops->open) 2733 new->vm_ops->open(new); 2734 2735 if (new_below) 2736 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2737 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2738 else 2739 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2740 2741 /* Success. */ 2742 if (!err) 2743 return 0; 2744 2745 /* Clean everything up if vma_adjust failed. */ 2746 if (new->vm_ops && new->vm_ops->close) 2747 new->vm_ops->close(new); 2748 if (new->vm_file) 2749 fput(new->vm_file); 2750 unlink_anon_vmas(new); 2751 out_free_mpol: 2752 mpol_put(vma_policy(new)); 2753 out_free_vma: 2754 vm_area_free(new); 2755 return err; 2756 } 2757 2758 /* 2759 * Split a vma into two pieces at address 'addr', a new vma is allocated 2760 * either for the first part or the tail. 2761 */ 2762 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2763 unsigned long addr, int new_below) 2764 { 2765 if (mm->map_count >= sysctl_max_map_count) 2766 return -ENOMEM; 2767 2768 return __split_vma(mm, vma, addr, new_below); 2769 } 2770 2771 /* Munmap is split into 2 main parts -- this part which finds 2772 * what needs doing, and the areas themselves, which do the 2773 * work. This now handles partial unmappings. 2774 * Jeremy Fitzhardinge <jeremy@goop.org> 2775 */ 2776 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2777 struct list_head *uf, bool downgrade) 2778 { 2779 unsigned long end; 2780 struct vm_area_struct *vma, *prev, *last; 2781 2782 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2783 return -EINVAL; 2784 2785 len = PAGE_ALIGN(len); 2786 end = start + len; 2787 if (len == 0) 2788 return -EINVAL; 2789 2790 /* 2791 * arch_unmap() might do unmaps itself. It must be called 2792 * and finish any rbtree manipulation before this code 2793 * runs and also starts to manipulate the rbtree. 2794 */ 2795 arch_unmap(mm, start, end); 2796 2797 /* Find the first overlapping VMA where start < vma->vm_end */ 2798 vma = find_vma_intersection(mm, start, end); 2799 if (!vma) 2800 return 0; 2801 prev = vma->vm_prev; 2802 2803 /* 2804 * If we need to split any vma, do it now to save pain later. 2805 * 2806 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2807 * unmapped vm_area_struct will remain in use: so lower split_vma 2808 * places tmp vma above, and higher split_vma places tmp vma below. 2809 */ 2810 if (start > vma->vm_start) { 2811 int error; 2812 2813 /* 2814 * Make sure that map_count on return from munmap() will 2815 * not exceed its limit; but let map_count go just above 2816 * its limit temporarily, to help free resources as expected. 2817 */ 2818 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2819 return -ENOMEM; 2820 2821 error = __split_vma(mm, vma, start, 0); 2822 if (error) 2823 return error; 2824 prev = vma; 2825 } 2826 2827 /* Does it split the last one? */ 2828 last = find_vma(mm, end); 2829 if (last && end > last->vm_start) { 2830 int error = __split_vma(mm, last, end, 1); 2831 if (error) 2832 return error; 2833 } 2834 vma = vma_next(mm, prev); 2835 2836 if (unlikely(uf)) { 2837 /* 2838 * If userfaultfd_unmap_prep returns an error the vmas 2839 * will remain split, but userland will get a 2840 * highly unexpected error anyway. This is no 2841 * different than the case where the first of the two 2842 * __split_vma fails, but we don't undo the first 2843 * split, despite we could. This is unlikely enough 2844 * failure that it's not worth optimizing it for. 2845 */ 2846 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2847 if (error) 2848 return error; 2849 } 2850 2851 /* Detach vmas from rbtree */ 2852 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2853 downgrade = false; 2854 2855 if (downgrade) 2856 mmap_write_downgrade(mm); 2857 2858 unmap_region(mm, vma, prev, start, end); 2859 2860 /* Fix up all other VM information */ 2861 remove_vma_list(mm, vma); 2862 2863 return downgrade ? 1 : 0; 2864 } 2865 2866 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2867 struct list_head *uf) 2868 { 2869 return __do_munmap(mm, start, len, uf, false); 2870 } 2871 2872 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2873 { 2874 int ret; 2875 struct mm_struct *mm = current->mm; 2876 LIST_HEAD(uf); 2877 2878 if (mmap_write_lock_killable(mm)) 2879 return -EINTR; 2880 2881 ret = __do_munmap(mm, start, len, &uf, downgrade); 2882 /* 2883 * Returning 1 indicates mmap_lock is downgraded. 2884 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2885 * it to 0 before return. 2886 */ 2887 if (ret == 1) { 2888 mmap_read_unlock(mm); 2889 ret = 0; 2890 } else 2891 mmap_write_unlock(mm); 2892 2893 userfaultfd_unmap_complete(mm, &uf); 2894 return ret; 2895 } 2896 2897 int vm_munmap(unsigned long start, size_t len) 2898 { 2899 return __vm_munmap(start, len, false); 2900 } 2901 EXPORT_SYMBOL(vm_munmap); 2902 2903 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2904 { 2905 addr = untagged_addr(addr); 2906 return __vm_munmap(addr, len, true); 2907 } 2908 2909 2910 /* 2911 * Emulation of deprecated remap_file_pages() syscall. 2912 */ 2913 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2914 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2915 { 2916 2917 struct mm_struct *mm = current->mm; 2918 struct vm_area_struct *vma; 2919 unsigned long populate = 0; 2920 unsigned long ret = -EINVAL; 2921 struct file *file; 2922 2923 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2924 current->comm, current->pid); 2925 2926 if (prot) 2927 return ret; 2928 start = start & PAGE_MASK; 2929 size = size & PAGE_MASK; 2930 2931 if (start + size <= start) 2932 return ret; 2933 2934 /* Does pgoff wrap? */ 2935 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2936 return ret; 2937 2938 if (mmap_write_lock_killable(mm)) 2939 return -EINTR; 2940 2941 vma = vma_lookup(mm, start); 2942 2943 if (!vma || !(vma->vm_flags & VM_SHARED)) 2944 goto out; 2945 2946 if (start + size > vma->vm_end) { 2947 struct vm_area_struct *next; 2948 2949 for (next = vma->vm_next; next; next = next->vm_next) { 2950 /* hole between vmas ? */ 2951 if (next->vm_start != next->vm_prev->vm_end) 2952 goto out; 2953 2954 if (next->vm_file != vma->vm_file) 2955 goto out; 2956 2957 if (next->vm_flags != vma->vm_flags) 2958 goto out; 2959 2960 if (start + size <= next->vm_end) 2961 break; 2962 } 2963 2964 if (!next) 2965 goto out; 2966 } 2967 2968 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2969 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2970 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2971 2972 flags &= MAP_NONBLOCK; 2973 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2974 if (vma->vm_flags & VM_LOCKED) 2975 flags |= MAP_LOCKED; 2976 2977 file = get_file(vma->vm_file); 2978 ret = do_mmap(vma->vm_file, start, size, 2979 prot, flags, pgoff, &populate, NULL); 2980 fput(file); 2981 out: 2982 mmap_write_unlock(mm); 2983 if (populate) 2984 mm_populate(ret, populate); 2985 if (!IS_ERR_VALUE(ret)) 2986 ret = 0; 2987 return ret; 2988 } 2989 2990 /* 2991 * this is really a simplified "do_mmap". it only handles 2992 * anonymous maps. eventually we may be able to do some 2993 * brk-specific accounting here. 2994 */ 2995 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2996 { 2997 struct mm_struct *mm = current->mm; 2998 struct vm_area_struct *vma, *prev; 2999 struct rb_node **rb_link, *rb_parent; 3000 pgoff_t pgoff = addr >> PAGE_SHIFT; 3001 int error; 3002 unsigned long mapped_addr; 3003 3004 /* Until we need other flags, refuse anything except VM_EXEC. */ 3005 if ((flags & (~VM_EXEC)) != 0) 3006 return -EINVAL; 3007 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3008 3009 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3010 if (IS_ERR_VALUE(mapped_addr)) 3011 return mapped_addr; 3012 3013 error = mlock_future_check(mm, mm->def_flags, len); 3014 if (error) 3015 return error; 3016 3017 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3018 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3019 return -ENOMEM; 3020 3021 /* Check against address space limits *after* clearing old maps... */ 3022 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3023 return -ENOMEM; 3024 3025 if (mm->map_count > sysctl_max_map_count) 3026 return -ENOMEM; 3027 3028 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3029 return -ENOMEM; 3030 3031 /* Can we just expand an old private anonymous mapping? */ 3032 vma = vma_merge(mm, prev, addr, addr + len, flags, 3033 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 3034 if (vma) 3035 goto out; 3036 3037 /* 3038 * create a vma struct for an anonymous mapping 3039 */ 3040 vma = vm_area_alloc(mm); 3041 if (!vma) { 3042 vm_unacct_memory(len >> PAGE_SHIFT); 3043 return -ENOMEM; 3044 } 3045 3046 vma_set_anonymous(vma); 3047 vma->vm_start = addr; 3048 vma->vm_end = addr + len; 3049 vma->vm_pgoff = pgoff; 3050 vma->vm_flags = flags; 3051 vma->vm_page_prot = vm_get_page_prot(flags); 3052 vma_link(mm, vma, prev, rb_link, rb_parent); 3053 out: 3054 perf_event_mmap(vma); 3055 mm->total_vm += len >> PAGE_SHIFT; 3056 mm->data_vm += len >> PAGE_SHIFT; 3057 if (flags & VM_LOCKED) 3058 mm->locked_vm += (len >> PAGE_SHIFT); 3059 vma->vm_flags |= VM_SOFTDIRTY; 3060 return 0; 3061 } 3062 3063 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3064 { 3065 struct mm_struct *mm = current->mm; 3066 unsigned long len; 3067 int ret; 3068 bool populate; 3069 LIST_HEAD(uf); 3070 3071 len = PAGE_ALIGN(request); 3072 if (len < request) 3073 return -ENOMEM; 3074 if (!len) 3075 return 0; 3076 3077 if (mmap_write_lock_killable(mm)) 3078 return -EINTR; 3079 3080 ret = do_brk_flags(addr, len, flags, &uf); 3081 populate = ((mm->def_flags & VM_LOCKED) != 0); 3082 mmap_write_unlock(mm); 3083 userfaultfd_unmap_complete(mm, &uf); 3084 if (populate && !ret) 3085 mm_populate(addr, len); 3086 return ret; 3087 } 3088 EXPORT_SYMBOL(vm_brk_flags); 3089 3090 int vm_brk(unsigned long addr, unsigned long len) 3091 { 3092 return vm_brk_flags(addr, len, 0); 3093 } 3094 EXPORT_SYMBOL(vm_brk); 3095 3096 /* Release all mmaps. */ 3097 void exit_mmap(struct mm_struct *mm) 3098 { 3099 struct mmu_gather tlb; 3100 struct vm_area_struct *vma; 3101 unsigned long nr_accounted = 0; 3102 3103 /* mm's last user has gone, and its about to be pulled down */ 3104 mmu_notifier_release(mm); 3105 3106 if (unlikely(mm_is_oom_victim(mm))) { 3107 /* 3108 * Manually reap the mm to free as much memory as possible. 3109 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3110 * this mm from further consideration. Taking mm->mmap_lock for 3111 * write after setting MMF_OOM_SKIP will guarantee that the oom 3112 * reaper will not run on this mm again after mmap_lock is 3113 * dropped. 3114 * 3115 * Nothing can be holding mm->mmap_lock here and the above call 3116 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3117 * __oom_reap_task_mm() will not block. 3118 */ 3119 (void)__oom_reap_task_mm(mm); 3120 set_bit(MMF_OOM_SKIP, &mm->flags); 3121 } 3122 3123 mmap_write_lock(mm); 3124 arch_exit_mmap(mm); 3125 3126 vma = mm->mmap; 3127 if (!vma) { 3128 /* Can happen if dup_mmap() received an OOM */ 3129 mmap_write_unlock(mm); 3130 return; 3131 } 3132 3133 lru_add_drain(); 3134 flush_cache_mm(mm); 3135 tlb_gather_mmu_fullmm(&tlb, mm); 3136 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3137 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3138 unmap_vmas(&tlb, vma, 0, -1); 3139 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3140 tlb_finish_mmu(&tlb); 3141 3142 /* Walk the list again, actually closing and freeing it. */ 3143 while (vma) { 3144 if (vma->vm_flags & VM_ACCOUNT) 3145 nr_accounted += vma_pages(vma); 3146 vma = remove_vma(vma); 3147 cond_resched(); 3148 } 3149 mm->mmap = NULL; 3150 mmap_write_unlock(mm); 3151 vm_unacct_memory(nr_accounted); 3152 } 3153 3154 /* Insert vm structure into process list sorted by address 3155 * and into the inode's i_mmap tree. If vm_file is non-NULL 3156 * then i_mmap_rwsem is taken here. 3157 */ 3158 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3159 { 3160 struct vm_area_struct *prev; 3161 struct rb_node **rb_link, *rb_parent; 3162 3163 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3164 &prev, &rb_link, &rb_parent)) 3165 return -ENOMEM; 3166 if ((vma->vm_flags & VM_ACCOUNT) && 3167 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3168 return -ENOMEM; 3169 3170 /* 3171 * The vm_pgoff of a purely anonymous vma should be irrelevant 3172 * until its first write fault, when page's anon_vma and index 3173 * are set. But now set the vm_pgoff it will almost certainly 3174 * end up with (unless mremap moves it elsewhere before that 3175 * first wfault), so /proc/pid/maps tells a consistent story. 3176 * 3177 * By setting it to reflect the virtual start address of the 3178 * vma, merges and splits can happen in a seamless way, just 3179 * using the existing file pgoff checks and manipulations. 3180 * Similarly in do_mmap and in do_brk_flags. 3181 */ 3182 if (vma_is_anonymous(vma)) { 3183 BUG_ON(vma->anon_vma); 3184 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3185 } 3186 3187 vma_link(mm, vma, prev, rb_link, rb_parent); 3188 return 0; 3189 } 3190 3191 /* 3192 * Copy the vma structure to a new location in the same mm, 3193 * prior to moving page table entries, to effect an mremap move. 3194 */ 3195 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3196 unsigned long addr, unsigned long len, pgoff_t pgoff, 3197 bool *need_rmap_locks) 3198 { 3199 struct vm_area_struct *vma = *vmap; 3200 unsigned long vma_start = vma->vm_start; 3201 struct mm_struct *mm = vma->vm_mm; 3202 struct vm_area_struct *new_vma, *prev; 3203 struct rb_node **rb_link, *rb_parent; 3204 bool faulted_in_anon_vma = true; 3205 3206 /* 3207 * If anonymous vma has not yet been faulted, update new pgoff 3208 * to match new location, to increase its chance of merging. 3209 */ 3210 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3211 pgoff = addr >> PAGE_SHIFT; 3212 faulted_in_anon_vma = false; 3213 } 3214 3215 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3216 return NULL; /* should never get here */ 3217 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3218 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3219 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3220 if (new_vma) { 3221 /* 3222 * Source vma may have been merged into new_vma 3223 */ 3224 if (unlikely(vma_start >= new_vma->vm_start && 3225 vma_start < new_vma->vm_end)) { 3226 /* 3227 * The only way we can get a vma_merge with 3228 * self during an mremap is if the vma hasn't 3229 * been faulted in yet and we were allowed to 3230 * reset the dst vma->vm_pgoff to the 3231 * destination address of the mremap to allow 3232 * the merge to happen. mremap must change the 3233 * vm_pgoff linearity between src and dst vmas 3234 * (in turn preventing a vma_merge) to be 3235 * safe. It is only safe to keep the vm_pgoff 3236 * linear if there are no pages mapped yet. 3237 */ 3238 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3239 *vmap = vma = new_vma; 3240 } 3241 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3242 } else { 3243 new_vma = vm_area_dup(vma); 3244 if (!new_vma) 3245 goto out; 3246 new_vma->vm_start = addr; 3247 new_vma->vm_end = addr + len; 3248 new_vma->vm_pgoff = pgoff; 3249 if (vma_dup_policy(vma, new_vma)) 3250 goto out_free_vma; 3251 if (anon_vma_clone(new_vma, vma)) 3252 goto out_free_mempol; 3253 if (new_vma->vm_file) 3254 get_file(new_vma->vm_file); 3255 if (new_vma->vm_ops && new_vma->vm_ops->open) 3256 new_vma->vm_ops->open(new_vma); 3257 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3258 *need_rmap_locks = false; 3259 } 3260 return new_vma; 3261 3262 out_free_mempol: 3263 mpol_put(vma_policy(new_vma)); 3264 out_free_vma: 3265 vm_area_free(new_vma); 3266 out: 3267 return NULL; 3268 } 3269 3270 /* 3271 * Return true if the calling process may expand its vm space by the passed 3272 * number of pages 3273 */ 3274 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3275 { 3276 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3277 return false; 3278 3279 if (is_data_mapping(flags) && 3280 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3281 /* Workaround for Valgrind */ 3282 if (rlimit(RLIMIT_DATA) == 0 && 3283 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3284 return true; 3285 3286 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3287 current->comm, current->pid, 3288 (mm->data_vm + npages) << PAGE_SHIFT, 3289 rlimit(RLIMIT_DATA), 3290 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3291 3292 if (!ignore_rlimit_data) 3293 return false; 3294 } 3295 3296 return true; 3297 } 3298 3299 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3300 { 3301 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3302 3303 if (is_exec_mapping(flags)) 3304 mm->exec_vm += npages; 3305 else if (is_stack_mapping(flags)) 3306 mm->stack_vm += npages; 3307 else if (is_data_mapping(flags)) 3308 mm->data_vm += npages; 3309 } 3310 3311 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3312 3313 /* 3314 * Having a close hook prevents vma merging regardless of flags. 3315 */ 3316 static void special_mapping_close(struct vm_area_struct *vma) 3317 { 3318 } 3319 3320 static const char *special_mapping_name(struct vm_area_struct *vma) 3321 { 3322 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3323 } 3324 3325 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3326 { 3327 struct vm_special_mapping *sm = new_vma->vm_private_data; 3328 3329 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3330 return -EFAULT; 3331 3332 if (sm->mremap) 3333 return sm->mremap(sm, new_vma); 3334 3335 return 0; 3336 } 3337 3338 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3339 { 3340 /* 3341 * Forbid splitting special mappings - kernel has expectations over 3342 * the number of pages in mapping. Together with VM_DONTEXPAND 3343 * the size of vma should stay the same over the special mapping's 3344 * lifetime. 3345 */ 3346 return -EINVAL; 3347 } 3348 3349 static const struct vm_operations_struct special_mapping_vmops = { 3350 .close = special_mapping_close, 3351 .fault = special_mapping_fault, 3352 .mremap = special_mapping_mremap, 3353 .name = special_mapping_name, 3354 /* vDSO code relies that VVAR can't be accessed remotely */ 3355 .access = NULL, 3356 .may_split = special_mapping_split, 3357 }; 3358 3359 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3360 .close = special_mapping_close, 3361 .fault = special_mapping_fault, 3362 }; 3363 3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3365 { 3366 struct vm_area_struct *vma = vmf->vma; 3367 pgoff_t pgoff; 3368 struct page **pages; 3369 3370 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3371 pages = vma->vm_private_data; 3372 } else { 3373 struct vm_special_mapping *sm = vma->vm_private_data; 3374 3375 if (sm->fault) 3376 return sm->fault(sm, vmf->vma, vmf); 3377 3378 pages = sm->pages; 3379 } 3380 3381 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3382 pgoff--; 3383 3384 if (*pages) { 3385 struct page *page = *pages; 3386 get_page(page); 3387 vmf->page = page; 3388 return 0; 3389 } 3390 3391 return VM_FAULT_SIGBUS; 3392 } 3393 3394 static struct vm_area_struct *__install_special_mapping( 3395 struct mm_struct *mm, 3396 unsigned long addr, unsigned long len, 3397 unsigned long vm_flags, void *priv, 3398 const struct vm_operations_struct *ops) 3399 { 3400 int ret; 3401 struct vm_area_struct *vma; 3402 3403 vma = vm_area_alloc(mm); 3404 if (unlikely(vma == NULL)) 3405 return ERR_PTR(-ENOMEM); 3406 3407 vma->vm_start = addr; 3408 vma->vm_end = addr + len; 3409 3410 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3411 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 3412 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3413 3414 vma->vm_ops = ops; 3415 vma->vm_private_data = priv; 3416 3417 ret = insert_vm_struct(mm, vma); 3418 if (ret) 3419 goto out; 3420 3421 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3422 3423 perf_event_mmap(vma); 3424 3425 return vma; 3426 3427 out: 3428 vm_area_free(vma); 3429 return ERR_PTR(ret); 3430 } 3431 3432 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3433 const struct vm_special_mapping *sm) 3434 { 3435 return vma->vm_private_data == sm && 3436 (vma->vm_ops == &special_mapping_vmops || 3437 vma->vm_ops == &legacy_special_mapping_vmops); 3438 } 3439 3440 /* 3441 * Called with mm->mmap_lock held for writing. 3442 * Insert a new vma covering the given region, with the given flags. 3443 * Its pages are supplied by the given array of struct page *. 3444 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3445 * The region past the last page supplied will always produce SIGBUS. 3446 * The array pointer and the pages it points to are assumed to stay alive 3447 * for as long as this mapping might exist. 3448 */ 3449 struct vm_area_struct *_install_special_mapping( 3450 struct mm_struct *mm, 3451 unsigned long addr, unsigned long len, 3452 unsigned long vm_flags, const struct vm_special_mapping *spec) 3453 { 3454 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3455 &special_mapping_vmops); 3456 } 3457 3458 int install_special_mapping(struct mm_struct *mm, 3459 unsigned long addr, unsigned long len, 3460 unsigned long vm_flags, struct page **pages) 3461 { 3462 struct vm_area_struct *vma = __install_special_mapping( 3463 mm, addr, len, vm_flags, (void *)pages, 3464 &legacy_special_mapping_vmops); 3465 3466 return PTR_ERR_OR_ZERO(vma); 3467 } 3468 3469 static DEFINE_MUTEX(mm_all_locks_mutex); 3470 3471 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3472 { 3473 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3474 /* 3475 * The LSB of head.next can't change from under us 3476 * because we hold the mm_all_locks_mutex. 3477 */ 3478 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3479 /* 3480 * We can safely modify head.next after taking the 3481 * anon_vma->root->rwsem. If some other vma in this mm shares 3482 * the same anon_vma we won't take it again. 3483 * 3484 * No need of atomic instructions here, head.next 3485 * can't change from under us thanks to the 3486 * anon_vma->root->rwsem. 3487 */ 3488 if (__test_and_set_bit(0, (unsigned long *) 3489 &anon_vma->root->rb_root.rb_root.rb_node)) 3490 BUG(); 3491 } 3492 } 3493 3494 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3495 { 3496 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3497 /* 3498 * AS_MM_ALL_LOCKS can't change from under us because 3499 * we hold the mm_all_locks_mutex. 3500 * 3501 * Operations on ->flags have to be atomic because 3502 * even if AS_MM_ALL_LOCKS is stable thanks to the 3503 * mm_all_locks_mutex, there may be other cpus 3504 * changing other bitflags in parallel to us. 3505 */ 3506 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3507 BUG(); 3508 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3509 } 3510 } 3511 3512 /* 3513 * This operation locks against the VM for all pte/vma/mm related 3514 * operations that could ever happen on a certain mm. This includes 3515 * vmtruncate, try_to_unmap, and all page faults. 3516 * 3517 * The caller must take the mmap_lock in write mode before calling 3518 * mm_take_all_locks(). The caller isn't allowed to release the 3519 * mmap_lock until mm_drop_all_locks() returns. 3520 * 3521 * mmap_lock in write mode is required in order to block all operations 3522 * that could modify pagetables and free pages without need of 3523 * altering the vma layout. It's also needed in write mode to avoid new 3524 * anon_vmas to be associated with existing vmas. 3525 * 3526 * A single task can't take more than one mm_take_all_locks() in a row 3527 * or it would deadlock. 3528 * 3529 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3530 * mapping->flags avoid to take the same lock twice, if more than one 3531 * vma in this mm is backed by the same anon_vma or address_space. 3532 * 3533 * We take locks in following order, accordingly to comment at beginning 3534 * of mm/rmap.c: 3535 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3536 * hugetlb mapping); 3537 * - all i_mmap_rwsem locks; 3538 * - all anon_vma->rwseml 3539 * 3540 * We can take all locks within these types randomly because the VM code 3541 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3542 * mm_all_locks_mutex. 3543 * 3544 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3545 * that may have to take thousand of locks. 3546 * 3547 * mm_take_all_locks() can fail if it's interrupted by signals. 3548 */ 3549 int mm_take_all_locks(struct mm_struct *mm) 3550 { 3551 struct vm_area_struct *vma; 3552 struct anon_vma_chain *avc; 3553 3554 mmap_assert_write_locked(mm); 3555 3556 mutex_lock(&mm_all_locks_mutex); 3557 3558 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3559 if (signal_pending(current)) 3560 goto out_unlock; 3561 if (vma->vm_file && vma->vm_file->f_mapping && 3562 is_vm_hugetlb_page(vma)) 3563 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3564 } 3565 3566 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3567 if (signal_pending(current)) 3568 goto out_unlock; 3569 if (vma->vm_file && vma->vm_file->f_mapping && 3570 !is_vm_hugetlb_page(vma)) 3571 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3572 } 3573 3574 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3575 if (signal_pending(current)) 3576 goto out_unlock; 3577 if (vma->anon_vma) 3578 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3579 vm_lock_anon_vma(mm, avc->anon_vma); 3580 } 3581 3582 return 0; 3583 3584 out_unlock: 3585 mm_drop_all_locks(mm); 3586 return -EINTR; 3587 } 3588 3589 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3590 { 3591 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3592 /* 3593 * The LSB of head.next can't change to 0 from under 3594 * us because we hold the mm_all_locks_mutex. 3595 * 3596 * We must however clear the bitflag before unlocking 3597 * the vma so the users using the anon_vma->rb_root will 3598 * never see our bitflag. 3599 * 3600 * No need of atomic instructions here, head.next 3601 * can't change from under us until we release the 3602 * anon_vma->root->rwsem. 3603 */ 3604 if (!__test_and_clear_bit(0, (unsigned long *) 3605 &anon_vma->root->rb_root.rb_root.rb_node)) 3606 BUG(); 3607 anon_vma_unlock_write(anon_vma); 3608 } 3609 } 3610 3611 static void vm_unlock_mapping(struct address_space *mapping) 3612 { 3613 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3614 /* 3615 * AS_MM_ALL_LOCKS can't change to 0 from under us 3616 * because we hold the mm_all_locks_mutex. 3617 */ 3618 i_mmap_unlock_write(mapping); 3619 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3620 &mapping->flags)) 3621 BUG(); 3622 } 3623 } 3624 3625 /* 3626 * The mmap_lock cannot be released by the caller until 3627 * mm_drop_all_locks() returns. 3628 */ 3629 void mm_drop_all_locks(struct mm_struct *mm) 3630 { 3631 struct vm_area_struct *vma; 3632 struct anon_vma_chain *avc; 3633 3634 mmap_assert_write_locked(mm); 3635 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3636 3637 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3638 if (vma->anon_vma) 3639 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3640 vm_unlock_anon_vma(avc->anon_vma); 3641 if (vma->vm_file && vma->vm_file->f_mapping) 3642 vm_unlock_mapping(vma->vm_file->f_mapping); 3643 } 3644 3645 mutex_unlock(&mm_all_locks_mutex); 3646 } 3647 3648 /* 3649 * initialise the percpu counter for VM 3650 */ 3651 void __init mmap_init(void) 3652 { 3653 int ret; 3654 3655 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3656 VM_BUG_ON(ret); 3657 } 3658 3659 /* 3660 * Initialise sysctl_user_reserve_kbytes. 3661 * 3662 * This is intended to prevent a user from starting a single memory hogging 3663 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3664 * mode. 3665 * 3666 * The default value is min(3% of free memory, 128MB) 3667 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3668 */ 3669 static int init_user_reserve(void) 3670 { 3671 unsigned long free_kbytes; 3672 3673 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3674 3675 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3676 return 0; 3677 } 3678 subsys_initcall(init_user_reserve); 3679 3680 /* 3681 * Initialise sysctl_admin_reserve_kbytes. 3682 * 3683 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3684 * to log in and kill a memory hogging process. 3685 * 3686 * Systems with more than 256MB will reserve 8MB, enough to recover 3687 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3688 * only reserve 3% of free pages by default. 3689 */ 3690 static int init_admin_reserve(void) 3691 { 3692 unsigned long free_kbytes; 3693 3694 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3695 3696 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3697 return 0; 3698 } 3699 subsys_initcall(init_admin_reserve); 3700 3701 /* 3702 * Reinititalise user and admin reserves if memory is added or removed. 3703 * 3704 * The default user reserve max is 128MB, and the default max for the 3705 * admin reserve is 8MB. These are usually, but not always, enough to 3706 * enable recovery from a memory hogging process using login/sshd, a shell, 3707 * and tools like top. It may make sense to increase or even disable the 3708 * reserve depending on the existence of swap or variations in the recovery 3709 * tools. So, the admin may have changed them. 3710 * 3711 * If memory is added and the reserves have been eliminated or increased above 3712 * the default max, then we'll trust the admin. 3713 * 3714 * If memory is removed and there isn't enough free memory, then we 3715 * need to reset the reserves. 3716 * 3717 * Otherwise keep the reserve set by the admin. 3718 */ 3719 static int reserve_mem_notifier(struct notifier_block *nb, 3720 unsigned long action, void *data) 3721 { 3722 unsigned long tmp, free_kbytes; 3723 3724 switch (action) { 3725 case MEM_ONLINE: 3726 /* Default max is 128MB. Leave alone if modified by operator. */ 3727 tmp = sysctl_user_reserve_kbytes; 3728 if (0 < tmp && tmp < (1UL << 17)) 3729 init_user_reserve(); 3730 3731 /* Default max is 8MB. Leave alone if modified by operator. */ 3732 tmp = sysctl_admin_reserve_kbytes; 3733 if (0 < tmp && tmp < (1UL << 13)) 3734 init_admin_reserve(); 3735 3736 break; 3737 case MEM_OFFLINE: 3738 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3739 3740 if (sysctl_user_reserve_kbytes > free_kbytes) { 3741 init_user_reserve(); 3742 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3743 sysctl_user_reserve_kbytes); 3744 } 3745 3746 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3747 init_admin_reserve(); 3748 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3749 sysctl_admin_reserve_kbytes); 3750 } 3751 break; 3752 default: 3753 break; 3754 } 3755 return NOTIFY_OK; 3756 } 3757 3758 static struct notifier_block reserve_mem_nb = { 3759 .notifier_call = reserve_mem_notifier, 3760 }; 3761 3762 static int __meminit init_reserve_notifier(void) 3763 { 3764 if (register_hotmemory_notifier(&reserve_mem_nb)) 3765 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3766 3767 return 0; 3768 } 3769 subsys_initcall(init_reserve_notifier); 3770