1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlb.h> 53 #include <asm/mmu_context.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/mmap.h> 57 58 #include "internal.h" 59 60 #ifndef arch_mmap_check 61 #define arch_mmap_check(addr, len, flags) (0) 62 #endif 63 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 68 #endif 69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 73 #endif 74 75 static bool ignore_rlimit_data; 76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 77 78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 79 struct vm_area_struct *vma, struct vm_area_struct *prev, 80 struct vm_area_struct *next, unsigned long start, 81 unsigned long end); 82 83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 84 { 85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 86 } 87 88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 89 void vma_set_page_prot(struct vm_area_struct *vma) 90 { 91 unsigned long vm_flags = vma->vm_flags; 92 pgprot_t vm_page_prot; 93 94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 95 if (vma_wants_writenotify(vma, vm_page_prot)) { 96 vm_flags &= ~VM_SHARED; 97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 98 } 99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 101 } 102 103 /* 104 * Requires inode->i_mapping->i_mmap_rwsem 105 */ 106 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 107 struct file *file, struct address_space *mapping) 108 { 109 if (vma->vm_flags & VM_SHARED) 110 mapping_unmap_writable(mapping); 111 112 flush_dcache_mmap_lock(mapping); 113 vma_interval_tree_remove(vma, &mapping->i_mmap); 114 flush_dcache_mmap_unlock(mapping); 115 } 116 117 /* 118 * Unlink a file-based vm structure from its interval tree, to hide 119 * vma from rmap and vmtruncate before freeing its page tables. 120 */ 121 void unlink_file_vma(struct vm_area_struct *vma) 122 { 123 struct file *file = vma->vm_file; 124 125 if (file) { 126 struct address_space *mapping = file->f_mapping; 127 i_mmap_lock_write(mapping); 128 __remove_shared_vm_struct(vma, file, mapping); 129 i_mmap_unlock_write(mapping); 130 } 131 } 132 133 /* 134 * Close a vm structure and free it. 135 */ 136 static void remove_vma(struct vm_area_struct *vma) 137 { 138 might_sleep(); 139 if (vma->vm_ops && vma->vm_ops->close) 140 vma->vm_ops->close(vma); 141 if (vma->vm_file) 142 fput(vma->vm_file); 143 mpol_put(vma_policy(vma)); 144 vm_area_free(vma); 145 } 146 147 /* 148 * check_brk_limits() - Use platform specific check of range & verify mlock 149 * limits. 150 * @addr: The address to check 151 * @len: The size of increase. 152 * 153 * Return: 0 on success. 154 */ 155 static int check_brk_limits(unsigned long addr, unsigned long len) 156 { 157 unsigned long mapped_addr; 158 159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 160 if (IS_ERR_VALUE(mapped_addr)) 161 return mapped_addr; 162 163 return mlock_future_check(current->mm, current->mm->def_flags, len); 164 } 165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma, 166 unsigned long newbrk, unsigned long oldbrk, 167 struct list_head *uf); 168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma, 169 unsigned long addr, unsigned long request, unsigned long flags); 170 SYSCALL_DEFINE1(brk, unsigned long, brk) 171 { 172 unsigned long newbrk, oldbrk, origbrk; 173 struct mm_struct *mm = current->mm; 174 struct vm_area_struct *brkvma, *next = NULL; 175 unsigned long min_brk; 176 bool populate; 177 bool downgraded = false; 178 LIST_HEAD(uf); 179 MA_STATE(mas, &mm->mm_mt, 0, 0); 180 181 if (mmap_write_lock_killable(mm)) 182 return -EINTR; 183 184 origbrk = mm->brk; 185 186 #ifdef CONFIG_COMPAT_BRK 187 /* 188 * CONFIG_COMPAT_BRK can still be overridden by setting 189 * randomize_va_space to 2, which will still cause mm->start_brk 190 * to be arbitrarily shifted 191 */ 192 if (current->brk_randomized) 193 min_brk = mm->start_brk; 194 else 195 min_brk = mm->end_data; 196 #else 197 min_brk = mm->start_brk; 198 #endif 199 if (brk < min_brk) 200 goto out; 201 202 /* 203 * Check against rlimit here. If this check is done later after the test 204 * of oldbrk with newbrk then it can escape the test and let the data 205 * segment grow beyond its set limit the in case where the limit is 206 * not page aligned -Ram Gupta 207 */ 208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 209 mm->end_data, mm->start_data)) 210 goto out; 211 212 newbrk = PAGE_ALIGN(brk); 213 oldbrk = PAGE_ALIGN(mm->brk); 214 if (oldbrk == newbrk) { 215 mm->brk = brk; 216 goto success; 217 } 218 219 /* 220 * Always allow shrinking brk. 221 * do_brk_munmap() may downgrade mmap_lock to read. 222 */ 223 if (brk <= mm->brk) { 224 int ret; 225 226 /* Search one past newbrk */ 227 mas_set(&mas, newbrk); 228 brkvma = mas_find(&mas, oldbrk); 229 BUG_ON(brkvma == NULL); 230 if (brkvma->vm_start >= oldbrk) 231 goto out; /* mapping intersects with an existing non-brk vma. */ 232 /* 233 * mm->brk must be protected by write mmap_lock. 234 * do_brk_munmap() may downgrade the lock, so update it 235 * before calling do_brk_munmap(). 236 */ 237 mm->brk = brk; 238 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf); 239 if (ret == 1) { 240 downgraded = true; 241 goto success; 242 } else if (!ret) 243 goto success; 244 245 mm->brk = origbrk; 246 goto out; 247 } 248 249 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 250 goto out; 251 252 /* 253 * Only check if the next VMA is within the stack_guard_gap of the 254 * expansion area 255 */ 256 mas_set(&mas, oldbrk); 257 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap); 258 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 259 goto out; 260 261 brkvma = mas_prev(&mas, mm->start_brk); 262 /* Ok, looks good - let it rip. */ 263 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 264 goto out; 265 266 mm->brk = brk; 267 268 success: 269 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 270 if (downgraded) 271 mmap_read_unlock(mm); 272 else 273 mmap_write_unlock(mm); 274 userfaultfd_unmap_complete(mm, &uf); 275 if (populate) 276 mm_populate(oldbrk, newbrk - oldbrk); 277 return brk; 278 279 out: 280 mmap_write_unlock(mm); 281 return origbrk; 282 } 283 284 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 285 extern void mt_validate(struct maple_tree *mt); 286 extern void mt_dump(const struct maple_tree *mt); 287 288 /* Validate the maple tree */ 289 static void validate_mm_mt(struct mm_struct *mm) 290 { 291 struct maple_tree *mt = &mm->mm_mt; 292 struct vm_area_struct *vma_mt; 293 294 MA_STATE(mas, mt, 0, 0); 295 296 mt_validate(&mm->mm_mt); 297 mas_for_each(&mas, vma_mt, ULONG_MAX) { 298 if ((vma_mt->vm_start != mas.index) || 299 (vma_mt->vm_end - 1 != mas.last)) { 300 pr_emerg("issue in %s\n", current->comm); 301 dump_stack(); 302 dump_vma(vma_mt); 303 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt, 304 mas.index, mas.last); 305 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt, 306 vma_mt->vm_start, vma_mt->vm_end); 307 308 mt_dump(mas.tree); 309 if (vma_mt->vm_end != mas.last + 1) { 310 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n", 311 mm, vma_mt->vm_start, vma_mt->vm_end, 312 mas.index, mas.last); 313 mt_dump(mas.tree); 314 } 315 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm); 316 if (vma_mt->vm_start != mas.index) { 317 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n", 318 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end); 319 mt_dump(mas.tree); 320 } 321 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm); 322 } 323 } 324 } 325 326 static void validate_mm(struct mm_struct *mm) 327 { 328 int bug = 0; 329 int i = 0; 330 struct vm_area_struct *vma; 331 MA_STATE(mas, &mm->mm_mt, 0, 0); 332 333 validate_mm_mt(mm); 334 335 mas_for_each(&mas, vma, ULONG_MAX) { 336 #ifdef CONFIG_DEBUG_VM_RB 337 struct anon_vma *anon_vma = vma->anon_vma; 338 struct anon_vma_chain *avc; 339 340 if (anon_vma) { 341 anon_vma_lock_read(anon_vma); 342 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 343 anon_vma_interval_tree_verify(avc); 344 anon_vma_unlock_read(anon_vma); 345 } 346 #endif 347 i++; 348 } 349 if (i != mm->map_count) { 350 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i); 351 bug = 1; 352 } 353 VM_BUG_ON_MM(bug, mm); 354 } 355 356 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 357 #define validate_mm_mt(root) do { } while (0) 358 #define validate_mm(mm) do { } while (0) 359 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 360 361 /* 362 * vma has some anon_vma assigned, and is already inserted on that 363 * anon_vma's interval trees. 364 * 365 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 366 * vma must be removed from the anon_vma's interval trees using 367 * anon_vma_interval_tree_pre_update_vma(). 368 * 369 * After the update, the vma will be reinserted using 370 * anon_vma_interval_tree_post_update_vma(). 371 * 372 * The entire update must be protected by exclusive mmap_lock and by 373 * the root anon_vma's mutex. 374 */ 375 static inline void 376 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 377 { 378 struct anon_vma_chain *avc; 379 380 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 381 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 382 } 383 384 static inline void 385 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 386 { 387 struct anon_vma_chain *avc; 388 389 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 390 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 391 } 392 393 static unsigned long count_vma_pages_range(struct mm_struct *mm, 394 unsigned long addr, unsigned long end) 395 { 396 VMA_ITERATOR(vmi, mm, addr); 397 struct vm_area_struct *vma; 398 unsigned long nr_pages = 0; 399 400 for_each_vma_range(vmi, vma, end) { 401 unsigned long vm_start = max(addr, vma->vm_start); 402 unsigned long vm_end = min(end, vma->vm_end); 403 404 nr_pages += PHYS_PFN(vm_end - vm_start); 405 } 406 407 return nr_pages; 408 } 409 410 static void __vma_link_file(struct vm_area_struct *vma, 411 struct address_space *mapping) 412 { 413 if (vma->vm_flags & VM_SHARED) 414 mapping_allow_writable(mapping); 415 416 flush_dcache_mmap_lock(mapping); 417 vma_interval_tree_insert(vma, &mapping->i_mmap); 418 flush_dcache_mmap_unlock(mapping); 419 } 420 421 /* 422 * vma_mas_store() - Store a VMA in the maple tree. 423 * @vma: The vm_area_struct 424 * @mas: The maple state 425 * 426 * Efficient way to store a VMA in the maple tree when the @mas has already 427 * walked to the correct location. 428 * 429 * Note: the end address is inclusive in the maple tree. 430 */ 431 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas) 432 { 433 trace_vma_store(mas->tree, vma); 434 mas_set_range(mas, vma->vm_start, vma->vm_end - 1); 435 mas_store_prealloc(mas, vma); 436 } 437 438 /* 439 * vma_mas_remove() - Remove a VMA from the maple tree. 440 * @vma: The vm_area_struct 441 * @mas: The maple state 442 * 443 * Efficient way to remove a VMA from the maple tree when the @mas has already 444 * been established and points to the correct location. 445 * Note: the end address is inclusive in the maple tree. 446 */ 447 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas) 448 { 449 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1); 450 mas->index = vma->vm_start; 451 mas->last = vma->vm_end - 1; 452 mas_store_prealloc(mas, NULL); 453 } 454 455 /* 456 * vma_mas_szero() - Set a given range to zero. Used when modifying a 457 * vm_area_struct start or end. 458 * 459 * @mm: The struct_mm 460 * @start: The start address to zero 461 * @end: The end address to zero. 462 */ 463 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start, 464 unsigned long end) 465 { 466 trace_vma_mas_szero(mas->tree, start, end - 1); 467 mas_set_range(mas, start, end - 1); 468 mas_store_prealloc(mas, NULL); 469 } 470 471 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 472 { 473 MA_STATE(mas, &mm->mm_mt, 0, 0); 474 struct address_space *mapping = NULL; 475 476 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 477 return -ENOMEM; 478 479 if (vma->vm_file) { 480 mapping = vma->vm_file->f_mapping; 481 i_mmap_lock_write(mapping); 482 } 483 484 vma_mas_store(vma, &mas); 485 486 if (mapping) { 487 __vma_link_file(vma, mapping); 488 i_mmap_unlock_write(mapping); 489 } 490 491 mm->map_count++; 492 validate_mm(mm); 493 return 0; 494 } 495 496 /* 497 * vma_expand - Expand an existing VMA 498 * 499 * @mas: The maple state 500 * @vma: The vma to expand 501 * @start: The start of the vma 502 * @end: The exclusive end of the vma 503 * @pgoff: The page offset of vma 504 * @next: The current of next vma. 505 * 506 * Expand @vma to @start and @end. Can expand off the start and end. Will 507 * expand over @next if it's different from @vma and @end == @next->vm_end. 508 * Checking if the @vma can expand and merge with @next needs to be handled by 509 * the caller. 510 * 511 * Returns: 0 on success 512 */ 513 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma, 514 unsigned long start, unsigned long end, pgoff_t pgoff, 515 struct vm_area_struct *next) 516 { 517 struct mm_struct *mm = vma->vm_mm; 518 struct address_space *mapping = NULL; 519 struct rb_root_cached *root = NULL; 520 struct anon_vma *anon_vma = vma->anon_vma; 521 struct file *file = vma->vm_file; 522 bool remove_next = false; 523 524 if (next && (vma != next) && (end == next->vm_end)) { 525 remove_next = true; 526 if (next->anon_vma && !vma->anon_vma) { 527 int error; 528 529 anon_vma = next->anon_vma; 530 vma->anon_vma = anon_vma; 531 error = anon_vma_clone(vma, next); 532 if (error) 533 return error; 534 } 535 } 536 537 /* Not merging but overwriting any part of next is not handled. */ 538 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start); 539 /* Only handles expanding */ 540 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end); 541 542 if (mas_preallocate(mas, vma, GFP_KERNEL)) 543 goto nomem; 544 545 vma_adjust_trans_huge(vma, start, end, 0); 546 547 if (file) { 548 mapping = file->f_mapping; 549 root = &mapping->i_mmap; 550 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 551 i_mmap_lock_write(mapping); 552 } 553 554 if (anon_vma) { 555 anon_vma_lock_write(anon_vma); 556 anon_vma_interval_tree_pre_update_vma(vma); 557 } 558 559 if (file) { 560 flush_dcache_mmap_lock(mapping); 561 vma_interval_tree_remove(vma, root); 562 } 563 564 vma->vm_start = start; 565 vma->vm_end = end; 566 vma->vm_pgoff = pgoff; 567 /* Note: mas must be pointing to the expanding VMA */ 568 vma_mas_store(vma, mas); 569 570 if (file) { 571 vma_interval_tree_insert(vma, root); 572 flush_dcache_mmap_unlock(mapping); 573 } 574 575 /* Expanding over the next vma */ 576 if (remove_next && file) { 577 __remove_shared_vm_struct(next, file, mapping); 578 } 579 580 if (anon_vma) { 581 anon_vma_interval_tree_post_update_vma(vma); 582 anon_vma_unlock_write(anon_vma); 583 } 584 585 if (file) { 586 i_mmap_unlock_write(mapping); 587 uprobe_mmap(vma); 588 } 589 590 if (remove_next) { 591 if (file) { 592 uprobe_munmap(next, next->vm_start, next->vm_end); 593 fput(file); 594 } 595 if (next->anon_vma) 596 anon_vma_merge(vma, next); 597 mm->map_count--; 598 mpol_put(vma_policy(next)); 599 vm_area_free(next); 600 } 601 602 validate_mm(mm); 603 return 0; 604 605 nomem: 606 return -ENOMEM; 607 } 608 609 /* 610 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 611 * is already present in an i_mmap tree without adjusting the tree. 612 * The following helper function should be used when such adjustments 613 * are necessary. The "insert" vma (if any) is to be inserted 614 * before we drop the necessary locks. 615 */ 616 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 617 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 618 struct vm_area_struct *expand) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct vm_area_struct *next_next = NULL; /* uninit var warning */ 622 struct vm_area_struct *next = find_vma(mm, vma->vm_end); 623 struct vm_area_struct *orig_vma = vma; 624 struct address_space *mapping = NULL; 625 struct rb_root_cached *root = NULL; 626 struct anon_vma *anon_vma = NULL; 627 struct file *file = vma->vm_file; 628 bool vma_changed = false; 629 long adjust_next = 0; 630 int remove_next = 0; 631 MA_STATE(mas, &mm->mm_mt, 0, 0); 632 struct vm_area_struct *exporter = NULL, *importer = NULL; 633 634 if (next && !insert) { 635 if (end >= next->vm_end) { 636 /* 637 * vma expands, overlapping all the next, and 638 * perhaps the one after too (mprotect case 6). 639 * The only other cases that gets here are 640 * case 1, case 7 and case 8. 641 */ 642 if (next == expand) { 643 /* 644 * The only case where we don't expand "vma" 645 * and we expand "next" instead is case 8. 646 */ 647 VM_WARN_ON(end != next->vm_end); 648 /* 649 * remove_next == 3 means we're 650 * removing "vma" and that to do so we 651 * swapped "vma" and "next". 652 */ 653 remove_next = 3; 654 VM_WARN_ON(file != next->vm_file); 655 swap(vma, next); 656 } else { 657 VM_WARN_ON(expand != vma); 658 /* 659 * case 1, 6, 7, remove_next == 2 is case 6, 660 * remove_next == 1 is case 1 or 7. 661 */ 662 remove_next = 1 + (end > next->vm_end); 663 if (remove_next == 2) 664 next_next = find_vma(mm, next->vm_end); 665 666 VM_WARN_ON(remove_next == 2 && 667 end != next_next->vm_end); 668 } 669 670 exporter = next; 671 importer = vma; 672 673 /* 674 * If next doesn't have anon_vma, import from vma after 675 * next, if the vma overlaps with it. 676 */ 677 if (remove_next == 2 && !next->anon_vma) 678 exporter = next_next; 679 680 } else if (end > next->vm_start) { 681 /* 682 * vma expands, overlapping part of the next: 683 * mprotect case 5 shifting the boundary up. 684 */ 685 adjust_next = (end - next->vm_start); 686 exporter = next; 687 importer = vma; 688 VM_WARN_ON(expand != importer); 689 } else if (end < vma->vm_end) { 690 /* 691 * vma shrinks, and !insert tells it's not 692 * split_vma inserting another: so it must be 693 * mprotect case 4 shifting the boundary down. 694 */ 695 adjust_next = -(vma->vm_end - end); 696 exporter = vma; 697 importer = next; 698 VM_WARN_ON(expand != importer); 699 } 700 701 /* 702 * Easily overlooked: when mprotect shifts the boundary, 703 * make sure the expanding vma has anon_vma set if the 704 * shrinking vma had, to cover any anon pages imported. 705 */ 706 if (exporter && exporter->anon_vma && !importer->anon_vma) { 707 int error; 708 709 importer->anon_vma = exporter->anon_vma; 710 error = anon_vma_clone(importer, exporter); 711 if (error) 712 return error; 713 } 714 } 715 716 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 717 return -ENOMEM; 718 719 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 720 if (file) { 721 mapping = file->f_mapping; 722 root = &mapping->i_mmap; 723 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 724 725 if (adjust_next) 726 uprobe_munmap(next, next->vm_start, next->vm_end); 727 728 i_mmap_lock_write(mapping); 729 if (insert && insert->vm_file) { 730 /* 731 * Put into interval tree now, so instantiated pages 732 * are visible to arm/parisc __flush_dcache_page 733 * throughout; but we cannot insert into address 734 * space until vma start or end is updated. 735 */ 736 __vma_link_file(insert, insert->vm_file->f_mapping); 737 } 738 } 739 740 anon_vma = vma->anon_vma; 741 if (!anon_vma && adjust_next) 742 anon_vma = next->anon_vma; 743 if (anon_vma) { 744 VM_WARN_ON(adjust_next && next->anon_vma && 745 anon_vma != next->anon_vma); 746 anon_vma_lock_write(anon_vma); 747 anon_vma_interval_tree_pre_update_vma(vma); 748 if (adjust_next) 749 anon_vma_interval_tree_pre_update_vma(next); 750 } 751 752 if (file) { 753 flush_dcache_mmap_lock(mapping); 754 vma_interval_tree_remove(vma, root); 755 if (adjust_next) 756 vma_interval_tree_remove(next, root); 757 } 758 759 if (start != vma->vm_start) { 760 if ((vma->vm_start < start) && 761 (!insert || (insert->vm_end != start))) { 762 vma_mas_szero(&mas, vma->vm_start, start); 763 VM_WARN_ON(insert && insert->vm_start > vma->vm_start); 764 } else { 765 vma_changed = true; 766 } 767 vma->vm_start = start; 768 } 769 if (end != vma->vm_end) { 770 if (vma->vm_end > end) { 771 if (!insert || (insert->vm_start != end)) { 772 vma_mas_szero(&mas, end, vma->vm_end); 773 mas_reset(&mas); 774 VM_WARN_ON(insert && 775 insert->vm_end < vma->vm_end); 776 } 777 } else { 778 vma_changed = true; 779 } 780 vma->vm_end = end; 781 } 782 783 if (vma_changed) 784 vma_mas_store(vma, &mas); 785 786 vma->vm_pgoff = pgoff; 787 if (adjust_next) { 788 next->vm_start += adjust_next; 789 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 790 vma_mas_store(next, &mas); 791 } 792 793 if (file) { 794 if (adjust_next) 795 vma_interval_tree_insert(next, root); 796 vma_interval_tree_insert(vma, root); 797 flush_dcache_mmap_unlock(mapping); 798 } 799 800 if (remove_next && file) { 801 __remove_shared_vm_struct(next, file, mapping); 802 if (remove_next == 2) 803 __remove_shared_vm_struct(next_next, file, mapping); 804 } else if (insert) { 805 /* 806 * split_vma has split insert from vma, and needs 807 * us to insert it before dropping the locks 808 * (it may either follow vma or precede it). 809 */ 810 mas_reset(&mas); 811 vma_mas_store(insert, &mas); 812 mm->map_count++; 813 } 814 815 if (anon_vma) { 816 anon_vma_interval_tree_post_update_vma(vma); 817 if (adjust_next) 818 anon_vma_interval_tree_post_update_vma(next); 819 anon_vma_unlock_write(anon_vma); 820 } 821 822 if (file) { 823 i_mmap_unlock_write(mapping); 824 uprobe_mmap(vma); 825 826 if (adjust_next) 827 uprobe_mmap(next); 828 } 829 830 if (remove_next) { 831 again: 832 if (file) { 833 uprobe_munmap(next, next->vm_start, next->vm_end); 834 fput(file); 835 } 836 if (next->anon_vma) 837 anon_vma_merge(vma, next); 838 mm->map_count--; 839 mpol_put(vma_policy(next)); 840 if (remove_next != 2) 841 BUG_ON(vma->vm_end < next->vm_end); 842 vm_area_free(next); 843 844 /* 845 * In mprotect's case 6 (see comments on vma_merge), 846 * we must remove next_next too. 847 */ 848 if (remove_next == 2) { 849 remove_next = 1; 850 next = next_next; 851 goto again; 852 } 853 } 854 if (insert && file) 855 uprobe_mmap(insert); 856 857 mas_destroy(&mas); 858 validate_mm(mm); 859 860 return 0; 861 } 862 863 /* 864 * If the vma has a ->close operation then the driver probably needs to release 865 * per-vma resources, so we don't attempt to merge those. 866 */ 867 static inline int is_mergeable_vma(struct vm_area_struct *vma, 868 struct file *file, unsigned long vm_flags, 869 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 870 struct anon_vma_name *anon_name) 871 { 872 /* 873 * VM_SOFTDIRTY should not prevent from VMA merging, if we 874 * match the flags but dirty bit -- the caller should mark 875 * merged VMA as dirty. If dirty bit won't be excluded from 876 * comparison, we increase pressure on the memory system forcing 877 * the kernel to generate new VMAs when old one could be 878 * extended instead. 879 */ 880 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 881 return 0; 882 if (vma->vm_file != file) 883 return 0; 884 if (vma->vm_ops && vma->vm_ops->close) 885 return 0; 886 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 887 return 0; 888 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 889 return 0; 890 return 1; 891 } 892 893 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 894 struct anon_vma *anon_vma2, 895 struct vm_area_struct *vma) 896 { 897 /* 898 * The list_is_singular() test is to avoid merging VMA cloned from 899 * parents. This can improve scalability caused by anon_vma lock. 900 */ 901 if ((!anon_vma1 || !anon_vma2) && (!vma || 902 list_is_singular(&vma->anon_vma_chain))) 903 return 1; 904 return anon_vma1 == anon_vma2; 905 } 906 907 /* 908 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 909 * in front of (at a lower virtual address and file offset than) the vma. 910 * 911 * We cannot merge two vmas if they have differently assigned (non-NULL) 912 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 913 * 914 * We don't check here for the merged mmap wrapping around the end of pagecache 915 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 916 * wrap, nor mmaps which cover the final page at index -1UL. 917 */ 918 static int 919 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 920 struct anon_vma *anon_vma, struct file *file, 921 pgoff_t vm_pgoff, 922 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 923 struct anon_vma_name *anon_name) 924 { 925 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 926 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 927 if (vma->vm_pgoff == vm_pgoff) 928 return 1; 929 } 930 return 0; 931 } 932 933 /* 934 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 935 * beyond (at a higher virtual address and file offset than) the vma. 936 * 937 * We cannot merge two vmas if they have differently assigned (non-NULL) 938 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 939 */ 940 static int 941 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 942 struct anon_vma *anon_vma, struct file *file, 943 pgoff_t vm_pgoff, 944 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 945 struct anon_vma_name *anon_name) 946 { 947 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 948 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 949 pgoff_t vm_pglen; 950 vm_pglen = vma_pages(vma); 951 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 952 return 1; 953 } 954 return 0; 955 } 956 957 /* 958 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 959 * figure out whether that can be merged with its predecessor or its 960 * successor. Or both (it neatly fills a hole). 961 * 962 * In most cases - when called for mmap, brk or mremap - [addr,end) is 963 * certain not to be mapped by the time vma_merge is called; but when 964 * called for mprotect, it is certain to be already mapped (either at 965 * an offset within prev, or at the start of next), and the flags of 966 * this area are about to be changed to vm_flags - and the no-change 967 * case has already been eliminated. 968 * 969 * The following mprotect cases have to be considered, where AAAA is 970 * the area passed down from mprotect_fixup, never extending beyond one 971 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 972 * 973 * AAAA AAAA AAAA 974 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 975 * cannot merge might become might become 976 * PPNNNNNNNNNN PPPPPPPPPPNN 977 * mmap, brk or case 4 below case 5 below 978 * mremap move: 979 * AAAA AAAA 980 * PPPP NNNN PPPPNNNNXXXX 981 * might become might become 982 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 983 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 984 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 985 * 986 * It is important for case 8 that the vma NNNN overlapping the 987 * region AAAA is never going to extended over XXXX. Instead XXXX must 988 * be extended in region AAAA and NNNN must be removed. This way in 989 * all cases where vma_merge succeeds, the moment vma_adjust drops the 990 * rmap_locks, the properties of the merged vma will be already 991 * correct for the whole merged range. Some of those properties like 992 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 993 * be correct for the whole merged range immediately after the 994 * rmap_locks are released. Otherwise if XXXX would be removed and 995 * NNNN would be extended over the XXXX range, remove_migration_ptes 996 * or other rmap walkers (if working on addresses beyond the "end" 997 * parameter) may establish ptes with the wrong permissions of NNNN 998 * instead of the right permissions of XXXX. 999 */ 1000 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1001 struct vm_area_struct *prev, unsigned long addr, 1002 unsigned long end, unsigned long vm_flags, 1003 struct anon_vma *anon_vma, struct file *file, 1004 pgoff_t pgoff, struct mempolicy *policy, 1005 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1006 struct anon_vma_name *anon_name) 1007 { 1008 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1009 struct vm_area_struct *mid, *next, *res; 1010 int err = -1; 1011 bool merge_prev = false; 1012 bool merge_next = false; 1013 1014 /* 1015 * We later require that vma->vm_flags == vm_flags, 1016 * so this tests vma->vm_flags & VM_SPECIAL, too. 1017 */ 1018 if (vm_flags & VM_SPECIAL) 1019 return NULL; 1020 1021 next = find_vma(mm, prev ? prev->vm_end : 0); 1022 mid = next; 1023 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1024 next = find_vma(mm, next->vm_end); 1025 1026 /* verify some invariant that must be enforced by the caller */ 1027 VM_WARN_ON(prev && addr <= prev->vm_start); 1028 VM_WARN_ON(mid && end > mid->vm_end); 1029 VM_WARN_ON(addr >= end); 1030 1031 /* Can we merge the predecessor? */ 1032 if (prev && prev->vm_end == addr && 1033 mpol_equal(vma_policy(prev), policy) && 1034 can_vma_merge_after(prev, vm_flags, 1035 anon_vma, file, pgoff, 1036 vm_userfaultfd_ctx, anon_name)) { 1037 merge_prev = true; 1038 } 1039 /* Can we merge the successor? */ 1040 if (next && end == next->vm_start && 1041 mpol_equal(policy, vma_policy(next)) && 1042 can_vma_merge_before(next, vm_flags, 1043 anon_vma, file, pgoff+pglen, 1044 vm_userfaultfd_ctx, anon_name)) { 1045 merge_next = true; 1046 } 1047 /* Can we merge both the predecessor and the successor? */ 1048 if (merge_prev && merge_next && 1049 is_mergeable_anon_vma(prev->anon_vma, 1050 next->anon_vma, NULL)) { /* cases 1, 6 */ 1051 err = __vma_adjust(prev, prev->vm_start, 1052 next->vm_end, prev->vm_pgoff, NULL, 1053 prev); 1054 res = prev; 1055 } else if (merge_prev) { /* cases 2, 5, 7 */ 1056 err = __vma_adjust(prev, prev->vm_start, 1057 end, prev->vm_pgoff, NULL, prev); 1058 res = prev; 1059 } else if (merge_next) { 1060 if (prev && addr < prev->vm_end) /* case 4 */ 1061 err = __vma_adjust(prev, prev->vm_start, 1062 addr, prev->vm_pgoff, NULL, next); 1063 else /* cases 3, 8 */ 1064 err = __vma_adjust(mid, addr, next->vm_end, 1065 next->vm_pgoff - pglen, NULL, next); 1066 res = next; 1067 } 1068 1069 /* 1070 * Cannot merge with predecessor or successor or error in __vma_adjust? 1071 */ 1072 if (err) 1073 return NULL; 1074 khugepaged_enter_vma(res, vm_flags); 1075 return res; 1076 } 1077 1078 /* 1079 * Rough compatibility check to quickly see if it's even worth looking 1080 * at sharing an anon_vma. 1081 * 1082 * They need to have the same vm_file, and the flags can only differ 1083 * in things that mprotect may change. 1084 * 1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1086 * we can merge the two vma's. For example, we refuse to merge a vma if 1087 * there is a vm_ops->close() function, because that indicates that the 1088 * driver is doing some kind of reference counting. But that doesn't 1089 * really matter for the anon_vma sharing case. 1090 */ 1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1092 { 1093 return a->vm_end == b->vm_start && 1094 mpol_equal(vma_policy(a), vma_policy(b)) && 1095 a->vm_file == b->vm_file && 1096 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1097 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1098 } 1099 1100 /* 1101 * Do some basic sanity checking to see if we can re-use the anon_vma 1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1103 * the same as 'old', the other will be the new one that is trying 1104 * to share the anon_vma. 1105 * 1106 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1107 * the anon_vma of 'old' is concurrently in the process of being set up 1108 * by another page fault trying to merge _that_. But that's ok: if it 1109 * is being set up, that automatically means that it will be a singleton 1110 * acceptable for merging, so we can do all of this optimistically. But 1111 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1112 * 1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1115 * is to return an anon_vma that is "complex" due to having gone through 1116 * a fork). 1117 * 1118 * We also make sure that the two vma's are compatible (adjacent, 1119 * and with the same memory policies). That's all stable, even with just 1120 * a read lock on the mmap_lock. 1121 */ 1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1123 { 1124 if (anon_vma_compatible(a, b)) { 1125 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1126 1127 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1128 return anon_vma; 1129 } 1130 return NULL; 1131 } 1132 1133 /* 1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1135 * neighbouring vmas for a suitable anon_vma, before it goes off 1136 * to allocate a new anon_vma. It checks because a repetitive 1137 * sequence of mprotects and faults may otherwise lead to distinct 1138 * anon_vmas being allocated, preventing vma merge in subsequent 1139 * mprotect. 1140 */ 1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1142 { 1143 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1144 struct anon_vma *anon_vma = NULL; 1145 struct vm_area_struct *prev, *next; 1146 1147 /* Try next first. */ 1148 next = mas_walk(&mas); 1149 if (next) { 1150 anon_vma = reusable_anon_vma(next, vma, next); 1151 if (anon_vma) 1152 return anon_vma; 1153 } 1154 1155 prev = mas_prev(&mas, 0); 1156 VM_BUG_ON_VMA(prev != vma, vma); 1157 prev = mas_prev(&mas, 0); 1158 /* Try prev next. */ 1159 if (prev) 1160 anon_vma = reusable_anon_vma(prev, prev, vma); 1161 1162 /* 1163 * We might reach here with anon_vma == NULL if we can't find 1164 * any reusable anon_vma. 1165 * There's no absolute need to look only at touching neighbours: 1166 * we could search further afield for "compatible" anon_vmas. 1167 * But it would probably just be a waste of time searching, 1168 * or lead to too many vmas hanging off the same anon_vma. 1169 * We're trying to allow mprotect remerging later on, 1170 * not trying to minimize memory used for anon_vmas. 1171 */ 1172 return anon_vma; 1173 } 1174 1175 /* 1176 * If a hint addr is less than mmap_min_addr change hint to be as 1177 * low as possible but still greater than mmap_min_addr 1178 */ 1179 static inline unsigned long round_hint_to_min(unsigned long hint) 1180 { 1181 hint &= PAGE_MASK; 1182 if (((void *)hint != NULL) && 1183 (hint < mmap_min_addr)) 1184 return PAGE_ALIGN(mmap_min_addr); 1185 return hint; 1186 } 1187 1188 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1189 unsigned long len) 1190 { 1191 unsigned long locked, lock_limit; 1192 1193 /* mlock MCL_FUTURE? */ 1194 if (flags & VM_LOCKED) { 1195 locked = len >> PAGE_SHIFT; 1196 locked += mm->locked_vm; 1197 lock_limit = rlimit(RLIMIT_MEMLOCK); 1198 lock_limit >>= PAGE_SHIFT; 1199 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1200 return -EAGAIN; 1201 } 1202 return 0; 1203 } 1204 1205 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1206 { 1207 if (S_ISREG(inode->i_mode)) 1208 return MAX_LFS_FILESIZE; 1209 1210 if (S_ISBLK(inode->i_mode)) 1211 return MAX_LFS_FILESIZE; 1212 1213 if (S_ISSOCK(inode->i_mode)) 1214 return MAX_LFS_FILESIZE; 1215 1216 /* Special "we do even unsigned file positions" case */ 1217 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1218 return 0; 1219 1220 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1221 return ULONG_MAX; 1222 } 1223 1224 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1225 unsigned long pgoff, unsigned long len) 1226 { 1227 u64 maxsize = file_mmap_size_max(file, inode); 1228 1229 if (maxsize && len > maxsize) 1230 return false; 1231 maxsize -= len; 1232 if (pgoff > maxsize >> PAGE_SHIFT) 1233 return false; 1234 return true; 1235 } 1236 1237 /* 1238 * The caller must write-lock current->mm->mmap_lock. 1239 */ 1240 unsigned long do_mmap(struct file *file, unsigned long addr, 1241 unsigned long len, unsigned long prot, 1242 unsigned long flags, unsigned long pgoff, 1243 unsigned long *populate, struct list_head *uf) 1244 { 1245 struct mm_struct *mm = current->mm; 1246 vm_flags_t vm_flags; 1247 int pkey = 0; 1248 1249 validate_mm(mm); 1250 *populate = 0; 1251 1252 if (!len) 1253 return -EINVAL; 1254 1255 /* 1256 * Does the application expect PROT_READ to imply PROT_EXEC? 1257 * 1258 * (the exception is when the underlying filesystem is noexec 1259 * mounted, in which case we dont add PROT_EXEC.) 1260 */ 1261 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1262 if (!(file && path_noexec(&file->f_path))) 1263 prot |= PROT_EXEC; 1264 1265 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1266 if (flags & MAP_FIXED_NOREPLACE) 1267 flags |= MAP_FIXED; 1268 1269 if (!(flags & MAP_FIXED)) 1270 addr = round_hint_to_min(addr); 1271 1272 /* Careful about overflows.. */ 1273 len = PAGE_ALIGN(len); 1274 if (!len) 1275 return -ENOMEM; 1276 1277 /* offset overflow? */ 1278 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1279 return -EOVERFLOW; 1280 1281 /* Too many mappings? */ 1282 if (mm->map_count > sysctl_max_map_count) 1283 return -ENOMEM; 1284 1285 /* Obtain the address to map to. we verify (or select) it and ensure 1286 * that it represents a valid section of the address space. 1287 */ 1288 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1289 if (IS_ERR_VALUE(addr)) 1290 return addr; 1291 1292 if (flags & MAP_FIXED_NOREPLACE) { 1293 if (find_vma_intersection(mm, addr, addr + len)) 1294 return -EEXIST; 1295 } 1296 1297 if (prot == PROT_EXEC) { 1298 pkey = execute_only_pkey(mm); 1299 if (pkey < 0) 1300 pkey = 0; 1301 } 1302 1303 /* Do simple checking here so the lower-level routines won't have 1304 * to. we assume access permissions have been handled by the open 1305 * of the memory object, so we don't do any here. 1306 */ 1307 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1308 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1309 1310 if (flags & MAP_LOCKED) 1311 if (!can_do_mlock()) 1312 return -EPERM; 1313 1314 if (mlock_future_check(mm, vm_flags, len)) 1315 return -EAGAIN; 1316 1317 if (file) { 1318 struct inode *inode = file_inode(file); 1319 unsigned long flags_mask; 1320 1321 if (!file_mmap_ok(file, inode, pgoff, len)) 1322 return -EOVERFLOW; 1323 1324 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1325 1326 switch (flags & MAP_TYPE) { 1327 case MAP_SHARED: 1328 /* 1329 * Force use of MAP_SHARED_VALIDATE with non-legacy 1330 * flags. E.g. MAP_SYNC is dangerous to use with 1331 * MAP_SHARED as you don't know which consistency model 1332 * you will get. We silently ignore unsupported flags 1333 * with MAP_SHARED to preserve backward compatibility. 1334 */ 1335 flags &= LEGACY_MAP_MASK; 1336 fallthrough; 1337 case MAP_SHARED_VALIDATE: 1338 if (flags & ~flags_mask) 1339 return -EOPNOTSUPP; 1340 if (prot & PROT_WRITE) { 1341 if (!(file->f_mode & FMODE_WRITE)) 1342 return -EACCES; 1343 if (IS_SWAPFILE(file->f_mapping->host)) 1344 return -ETXTBSY; 1345 } 1346 1347 /* 1348 * Make sure we don't allow writing to an append-only 1349 * file.. 1350 */ 1351 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1352 return -EACCES; 1353 1354 vm_flags |= VM_SHARED | VM_MAYSHARE; 1355 if (!(file->f_mode & FMODE_WRITE)) 1356 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1357 fallthrough; 1358 case MAP_PRIVATE: 1359 if (!(file->f_mode & FMODE_READ)) 1360 return -EACCES; 1361 if (path_noexec(&file->f_path)) { 1362 if (vm_flags & VM_EXEC) 1363 return -EPERM; 1364 vm_flags &= ~VM_MAYEXEC; 1365 } 1366 1367 if (!file->f_op->mmap) 1368 return -ENODEV; 1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1370 return -EINVAL; 1371 break; 1372 1373 default: 1374 return -EINVAL; 1375 } 1376 } else { 1377 switch (flags & MAP_TYPE) { 1378 case MAP_SHARED: 1379 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1380 return -EINVAL; 1381 /* 1382 * Ignore pgoff. 1383 */ 1384 pgoff = 0; 1385 vm_flags |= VM_SHARED | VM_MAYSHARE; 1386 break; 1387 case MAP_PRIVATE: 1388 /* 1389 * Set pgoff according to addr for anon_vma. 1390 */ 1391 pgoff = addr >> PAGE_SHIFT; 1392 break; 1393 default: 1394 return -EINVAL; 1395 } 1396 } 1397 1398 /* 1399 * Set 'VM_NORESERVE' if we should not account for the 1400 * memory use of this mapping. 1401 */ 1402 if (flags & MAP_NORESERVE) { 1403 /* We honor MAP_NORESERVE if allowed to overcommit */ 1404 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1405 vm_flags |= VM_NORESERVE; 1406 1407 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1408 if (file && is_file_hugepages(file)) 1409 vm_flags |= VM_NORESERVE; 1410 } 1411 1412 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1413 if (!IS_ERR_VALUE(addr) && 1414 ((vm_flags & VM_LOCKED) || 1415 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1416 *populate = len; 1417 return addr; 1418 } 1419 1420 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1421 unsigned long prot, unsigned long flags, 1422 unsigned long fd, unsigned long pgoff) 1423 { 1424 struct file *file = NULL; 1425 unsigned long retval; 1426 1427 if (!(flags & MAP_ANONYMOUS)) { 1428 audit_mmap_fd(fd, flags); 1429 file = fget(fd); 1430 if (!file) 1431 return -EBADF; 1432 if (is_file_hugepages(file)) { 1433 len = ALIGN(len, huge_page_size(hstate_file(file))); 1434 } else if (unlikely(flags & MAP_HUGETLB)) { 1435 retval = -EINVAL; 1436 goto out_fput; 1437 } 1438 } else if (flags & MAP_HUGETLB) { 1439 struct hstate *hs; 1440 1441 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1442 if (!hs) 1443 return -EINVAL; 1444 1445 len = ALIGN(len, huge_page_size(hs)); 1446 /* 1447 * VM_NORESERVE is used because the reservations will be 1448 * taken when vm_ops->mmap() is called 1449 */ 1450 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1451 VM_NORESERVE, 1452 HUGETLB_ANONHUGE_INODE, 1453 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1454 if (IS_ERR(file)) 1455 return PTR_ERR(file); 1456 } 1457 1458 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1459 out_fput: 1460 if (file) 1461 fput(file); 1462 return retval; 1463 } 1464 1465 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1466 unsigned long, prot, unsigned long, flags, 1467 unsigned long, fd, unsigned long, pgoff) 1468 { 1469 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1470 } 1471 1472 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1473 struct mmap_arg_struct { 1474 unsigned long addr; 1475 unsigned long len; 1476 unsigned long prot; 1477 unsigned long flags; 1478 unsigned long fd; 1479 unsigned long offset; 1480 }; 1481 1482 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1483 { 1484 struct mmap_arg_struct a; 1485 1486 if (copy_from_user(&a, arg, sizeof(a))) 1487 return -EFAULT; 1488 if (offset_in_page(a.offset)) 1489 return -EINVAL; 1490 1491 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1492 a.offset >> PAGE_SHIFT); 1493 } 1494 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1495 1496 /* 1497 * Some shared mappings will want the pages marked read-only 1498 * to track write events. If so, we'll downgrade vm_page_prot 1499 * to the private version (using protection_map[] without the 1500 * VM_SHARED bit). 1501 */ 1502 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1503 { 1504 vm_flags_t vm_flags = vma->vm_flags; 1505 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1506 1507 /* If it was private or non-writable, the write bit is already clear */ 1508 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1509 return 0; 1510 1511 /* The backer wishes to know when pages are first written to? */ 1512 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1513 return 1; 1514 1515 /* The open routine did something to the protections that pgprot_modify 1516 * won't preserve? */ 1517 if (pgprot_val(vm_page_prot) != 1518 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1519 return 0; 1520 1521 /* 1522 * Do we need to track softdirty? hugetlb does not support softdirty 1523 * tracking yet. 1524 */ 1525 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1526 return 1; 1527 1528 /* Specialty mapping? */ 1529 if (vm_flags & VM_PFNMAP) 1530 return 0; 1531 1532 /* Can the mapping track the dirty pages? */ 1533 return vma->vm_file && vma->vm_file->f_mapping && 1534 mapping_can_writeback(vma->vm_file->f_mapping); 1535 } 1536 1537 /* 1538 * We account for memory if it's a private writeable mapping, 1539 * not hugepages and VM_NORESERVE wasn't set. 1540 */ 1541 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1542 { 1543 /* 1544 * hugetlb has its own accounting separate from the core VM 1545 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1546 */ 1547 if (file && is_file_hugepages(file)) 1548 return 0; 1549 1550 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1551 } 1552 1553 /** 1554 * unmapped_area() - Find an area between the low_limit and the high_limit with 1555 * the correct alignment and offset, all from @info. Note: current->mm is used 1556 * for the search. 1557 * 1558 * @info: The unmapped area information including the range (low_limit - 1559 * hight_limit), the alignment offset and mask. 1560 * 1561 * Return: A memory address or -ENOMEM. 1562 */ 1563 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1564 { 1565 unsigned long length, gap; 1566 1567 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1568 1569 /* Adjust search length to account for worst case alignment overhead */ 1570 length = info->length + info->align_mask; 1571 if (length < info->length) 1572 return -ENOMEM; 1573 1574 if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1, 1575 length)) 1576 return -ENOMEM; 1577 1578 gap = mas.index; 1579 gap += (info->align_offset - gap) & info->align_mask; 1580 return gap; 1581 } 1582 1583 /** 1584 * unmapped_area_topdown() - Find an area between the low_limit and the 1585 * high_limit with * the correct alignment and offset at the highest available 1586 * address, all from @info. Note: current->mm is used for the search. 1587 * 1588 * @info: The unmapped area information including the range (low_limit - 1589 * hight_limit), the alignment offset and mask. 1590 * 1591 * Return: A memory address or -ENOMEM. 1592 */ 1593 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1594 { 1595 unsigned long length, gap; 1596 1597 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1598 /* Adjust search length to account for worst case alignment overhead */ 1599 length = info->length + info->align_mask; 1600 if (length < info->length) 1601 return -ENOMEM; 1602 1603 if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1, 1604 length)) 1605 return -ENOMEM; 1606 1607 gap = mas.last + 1 - info->length; 1608 gap -= (gap - info->align_offset) & info->align_mask; 1609 return gap; 1610 } 1611 1612 /* 1613 * Search for an unmapped address range. 1614 * 1615 * We are looking for a range that: 1616 * - does not intersect with any VMA; 1617 * - is contained within the [low_limit, high_limit) interval; 1618 * - is at least the desired size. 1619 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1620 */ 1621 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1622 { 1623 unsigned long addr; 1624 1625 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1626 addr = unmapped_area_topdown(info); 1627 else 1628 addr = unmapped_area(info); 1629 1630 trace_vm_unmapped_area(addr, info); 1631 return addr; 1632 } 1633 1634 /* Get an address range which is currently unmapped. 1635 * For shmat() with addr=0. 1636 * 1637 * Ugly calling convention alert: 1638 * Return value with the low bits set means error value, 1639 * ie 1640 * if (ret & ~PAGE_MASK) 1641 * error = ret; 1642 * 1643 * This function "knows" that -ENOMEM has the bits set. 1644 */ 1645 unsigned long 1646 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1647 unsigned long len, unsigned long pgoff, 1648 unsigned long flags) 1649 { 1650 struct mm_struct *mm = current->mm; 1651 struct vm_area_struct *vma, *prev; 1652 struct vm_unmapped_area_info info; 1653 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1654 1655 if (len > mmap_end - mmap_min_addr) 1656 return -ENOMEM; 1657 1658 if (flags & MAP_FIXED) 1659 return addr; 1660 1661 if (addr) { 1662 addr = PAGE_ALIGN(addr); 1663 vma = find_vma_prev(mm, addr, &prev); 1664 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1665 (!vma || addr + len <= vm_start_gap(vma)) && 1666 (!prev || addr >= vm_end_gap(prev))) 1667 return addr; 1668 } 1669 1670 info.flags = 0; 1671 info.length = len; 1672 info.low_limit = mm->mmap_base; 1673 info.high_limit = mmap_end; 1674 info.align_mask = 0; 1675 info.align_offset = 0; 1676 return vm_unmapped_area(&info); 1677 } 1678 1679 #ifndef HAVE_ARCH_UNMAPPED_AREA 1680 unsigned long 1681 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1682 unsigned long len, unsigned long pgoff, 1683 unsigned long flags) 1684 { 1685 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1686 } 1687 #endif 1688 1689 /* 1690 * This mmap-allocator allocates new areas top-down from below the 1691 * stack's low limit (the base): 1692 */ 1693 unsigned long 1694 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1695 unsigned long len, unsigned long pgoff, 1696 unsigned long flags) 1697 { 1698 struct vm_area_struct *vma, *prev; 1699 struct mm_struct *mm = current->mm; 1700 struct vm_unmapped_area_info info; 1701 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1702 1703 /* requested length too big for entire address space */ 1704 if (len > mmap_end - mmap_min_addr) 1705 return -ENOMEM; 1706 1707 if (flags & MAP_FIXED) 1708 return addr; 1709 1710 /* requesting a specific address */ 1711 if (addr) { 1712 addr = PAGE_ALIGN(addr); 1713 vma = find_vma_prev(mm, addr, &prev); 1714 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1715 (!vma || addr + len <= vm_start_gap(vma)) && 1716 (!prev || addr >= vm_end_gap(prev))) 1717 return addr; 1718 } 1719 1720 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1721 info.length = len; 1722 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1723 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1724 info.align_mask = 0; 1725 info.align_offset = 0; 1726 addr = vm_unmapped_area(&info); 1727 1728 /* 1729 * A failed mmap() very likely causes application failure, 1730 * so fall back to the bottom-up function here. This scenario 1731 * can happen with large stack limits and large mmap() 1732 * allocations. 1733 */ 1734 if (offset_in_page(addr)) { 1735 VM_BUG_ON(addr != -ENOMEM); 1736 info.flags = 0; 1737 info.low_limit = TASK_UNMAPPED_BASE; 1738 info.high_limit = mmap_end; 1739 addr = vm_unmapped_area(&info); 1740 } 1741 1742 return addr; 1743 } 1744 1745 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1746 unsigned long 1747 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1748 unsigned long len, unsigned long pgoff, 1749 unsigned long flags) 1750 { 1751 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1752 } 1753 #endif 1754 1755 unsigned long 1756 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1757 unsigned long pgoff, unsigned long flags) 1758 { 1759 unsigned long (*get_area)(struct file *, unsigned long, 1760 unsigned long, unsigned long, unsigned long); 1761 1762 unsigned long error = arch_mmap_check(addr, len, flags); 1763 if (error) 1764 return error; 1765 1766 /* Careful about overflows.. */ 1767 if (len > TASK_SIZE) 1768 return -ENOMEM; 1769 1770 get_area = current->mm->get_unmapped_area; 1771 if (file) { 1772 if (file->f_op->get_unmapped_area) 1773 get_area = file->f_op->get_unmapped_area; 1774 } else if (flags & MAP_SHARED) { 1775 /* 1776 * mmap_region() will call shmem_zero_setup() to create a file, 1777 * so use shmem's get_unmapped_area in case it can be huge. 1778 * do_mmap() will clear pgoff, so match alignment. 1779 */ 1780 pgoff = 0; 1781 get_area = shmem_get_unmapped_area; 1782 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1783 /* Ensures that larger anonymous mappings are THP aligned. */ 1784 get_area = thp_get_unmapped_area; 1785 } 1786 1787 addr = get_area(file, addr, len, pgoff, flags); 1788 if (IS_ERR_VALUE(addr)) 1789 return addr; 1790 1791 if (addr > TASK_SIZE - len) 1792 return -ENOMEM; 1793 if (offset_in_page(addr)) 1794 return -EINVAL; 1795 1796 error = security_mmap_addr(addr); 1797 return error ? error : addr; 1798 } 1799 1800 EXPORT_SYMBOL(get_unmapped_area); 1801 1802 /** 1803 * find_vma_intersection() - Look up the first VMA which intersects the interval 1804 * @mm: The process address space. 1805 * @start_addr: The inclusive start user address. 1806 * @end_addr: The exclusive end user address. 1807 * 1808 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1809 * start_addr < end_addr. 1810 */ 1811 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1812 unsigned long start_addr, 1813 unsigned long end_addr) 1814 { 1815 unsigned long index = start_addr; 1816 1817 mmap_assert_locked(mm); 1818 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1819 } 1820 EXPORT_SYMBOL(find_vma_intersection); 1821 1822 /** 1823 * find_vma() - Find the VMA for a given address, or the next VMA. 1824 * @mm: The mm_struct to check 1825 * @addr: The address 1826 * 1827 * Returns: The VMA associated with addr, or the next VMA. 1828 * May return %NULL in the case of no VMA at addr or above. 1829 */ 1830 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1831 { 1832 unsigned long index = addr; 1833 1834 mmap_assert_locked(mm); 1835 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1836 } 1837 EXPORT_SYMBOL(find_vma); 1838 1839 /** 1840 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1841 * set %pprev to the previous VMA, if any. 1842 * @mm: The mm_struct to check 1843 * @addr: The address 1844 * @pprev: The pointer to set to the previous VMA 1845 * 1846 * Note that RCU lock is missing here since the external mmap_lock() is used 1847 * instead. 1848 * 1849 * Returns: The VMA associated with @addr, or the next vma. 1850 * May return %NULL in the case of no vma at addr or above. 1851 */ 1852 struct vm_area_struct * 1853 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1854 struct vm_area_struct **pprev) 1855 { 1856 struct vm_area_struct *vma; 1857 MA_STATE(mas, &mm->mm_mt, addr, addr); 1858 1859 vma = mas_walk(&mas); 1860 *pprev = mas_prev(&mas, 0); 1861 if (!vma) 1862 vma = mas_next(&mas, ULONG_MAX); 1863 return vma; 1864 } 1865 1866 /* 1867 * Verify that the stack growth is acceptable and 1868 * update accounting. This is shared with both the 1869 * grow-up and grow-down cases. 1870 */ 1871 static int acct_stack_growth(struct vm_area_struct *vma, 1872 unsigned long size, unsigned long grow) 1873 { 1874 struct mm_struct *mm = vma->vm_mm; 1875 unsigned long new_start; 1876 1877 /* address space limit tests */ 1878 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1879 return -ENOMEM; 1880 1881 /* Stack limit test */ 1882 if (size > rlimit(RLIMIT_STACK)) 1883 return -ENOMEM; 1884 1885 /* mlock limit tests */ 1886 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1887 return -ENOMEM; 1888 1889 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1890 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1891 vma->vm_end - size; 1892 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1893 return -EFAULT; 1894 1895 /* 1896 * Overcommit.. This must be the final test, as it will 1897 * update security statistics. 1898 */ 1899 if (security_vm_enough_memory_mm(mm, grow)) 1900 return -ENOMEM; 1901 1902 return 0; 1903 } 1904 1905 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1906 /* 1907 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1908 * vma is the last one with address > vma->vm_end. Have to extend vma. 1909 */ 1910 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1911 { 1912 struct mm_struct *mm = vma->vm_mm; 1913 struct vm_area_struct *next; 1914 unsigned long gap_addr; 1915 int error = 0; 1916 MA_STATE(mas, &mm->mm_mt, 0, 0); 1917 1918 if (!(vma->vm_flags & VM_GROWSUP)) 1919 return -EFAULT; 1920 1921 /* Guard against exceeding limits of the address space. */ 1922 address &= PAGE_MASK; 1923 if (address >= (TASK_SIZE & PAGE_MASK)) 1924 return -ENOMEM; 1925 address += PAGE_SIZE; 1926 1927 /* Enforce stack_guard_gap */ 1928 gap_addr = address + stack_guard_gap; 1929 1930 /* Guard against overflow */ 1931 if (gap_addr < address || gap_addr > TASK_SIZE) 1932 gap_addr = TASK_SIZE; 1933 1934 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1935 if (next && vma_is_accessible(next)) { 1936 if (!(next->vm_flags & VM_GROWSUP)) 1937 return -ENOMEM; 1938 /* Check that both stack segments have the same anon_vma? */ 1939 } 1940 1941 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1942 return -ENOMEM; 1943 1944 /* We must make sure the anon_vma is allocated. */ 1945 if (unlikely(anon_vma_prepare(vma))) { 1946 mas_destroy(&mas); 1947 return -ENOMEM; 1948 } 1949 1950 /* 1951 * vma->vm_start/vm_end cannot change under us because the caller 1952 * is required to hold the mmap_lock in read mode. We need the 1953 * anon_vma lock to serialize against concurrent expand_stacks. 1954 */ 1955 anon_vma_lock_write(vma->anon_vma); 1956 1957 /* Somebody else might have raced and expanded it already */ 1958 if (address > vma->vm_end) { 1959 unsigned long size, grow; 1960 1961 size = address - vma->vm_start; 1962 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1963 1964 error = -ENOMEM; 1965 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1966 error = acct_stack_growth(vma, size, grow); 1967 if (!error) { 1968 /* 1969 * We only hold a shared mmap_lock lock here, so 1970 * we need to protect against concurrent vma 1971 * expansions. anon_vma_lock_write() doesn't 1972 * help here, as we don't guarantee that all 1973 * growable vmas in a mm share the same root 1974 * anon vma. So, we reuse mm->page_table_lock 1975 * to guard against concurrent vma expansions. 1976 */ 1977 spin_lock(&mm->page_table_lock); 1978 if (vma->vm_flags & VM_LOCKED) 1979 mm->locked_vm += grow; 1980 vm_stat_account(mm, vma->vm_flags, grow); 1981 anon_vma_interval_tree_pre_update_vma(vma); 1982 vma->vm_end = address; 1983 /* Overwrite old entry in mtree. */ 1984 vma_mas_store(vma, &mas); 1985 anon_vma_interval_tree_post_update_vma(vma); 1986 spin_unlock(&mm->page_table_lock); 1987 1988 perf_event_mmap(vma); 1989 } 1990 } 1991 } 1992 anon_vma_unlock_write(vma->anon_vma); 1993 khugepaged_enter_vma(vma, vma->vm_flags); 1994 mas_destroy(&mas); 1995 return error; 1996 } 1997 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1998 1999 /* 2000 * vma is the first one with address < vma->vm_start. Have to extend vma. 2001 */ 2002 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2003 { 2004 struct mm_struct *mm = vma->vm_mm; 2005 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2006 struct vm_area_struct *prev; 2007 int error = 0; 2008 2009 address &= PAGE_MASK; 2010 if (address < mmap_min_addr) 2011 return -EPERM; 2012 2013 /* Enforce stack_guard_gap */ 2014 prev = mas_prev(&mas, 0); 2015 /* Check that both stack segments have the same anon_vma? */ 2016 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2017 vma_is_accessible(prev)) { 2018 if (address - prev->vm_end < stack_guard_gap) 2019 return -ENOMEM; 2020 } 2021 2022 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2023 return -ENOMEM; 2024 2025 /* We must make sure the anon_vma is allocated. */ 2026 if (unlikely(anon_vma_prepare(vma))) { 2027 mas_destroy(&mas); 2028 return -ENOMEM; 2029 } 2030 2031 /* 2032 * vma->vm_start/vm_end cannot change under us because the caller 2033 * is required to hold the mmap_lock in read mode. We need the 2034 * anon_vma lock to serialize against concurrent expand_stacks. 2035 */ 2036 anon_vma_lock_write(vma->anon_vma); 2037 2038 /* Somebody else might have raced and expanded it already */ 2039 if (address < vma->vm_start) { 2040 unsigned long size, grow; 2041 2042 size = vma->vm_end - address; 2043 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2044 2045 error = -ENOMEM; 2046 if (grow <= vma->vm_pgoff) { 2047 error = acct_stack_growth(vma, size, grow); 2048 if (!error) { 2049 /* 2050 * We only hold a shared mmap_lock lock here, so 2051 * we need to protect against concurrent vma 2052 * expansions. anon_vma_lock_write() doesn't 2053 * help here, as we don't guarantee that all 2054 * growable vmas in a mm share the same root 2055 * anon vma. So, we reuse mm->page_table_lock 2056 * to guard against concurrent vma expansions. 2057 */ 2058 spin_lock(&mm->page_table_lock); 2059 if (vma->vm_flags & VM_LOCKED) 2060 mm->locked_vm += grow; 2061 vm_stat_account(mm, vma->vm_flags, grow); 2062 anon_vma_interval_tree_pre_update_vma(vma); 2063 vma->vm_start = address; 2064 vma->vm_pgoff -= grow; 2065 /* Overwrite old entry in mtree. */ 2066 vma_mas_store(vma, &mas); 2067 anon_vma_interval_tree_post_update_vma(vma); 2068 spin_unlock(&mm->page_table_lock); 2069 2070 perf_event_mmap(vma); 2071 } 2072 } 2073 } 2074 anon_vma_unlock_write(vma->anon_vma); 2075 khugepaged_enter_vma(vma, vma->vm_flags); 2076 mas_destroy(&mas); 2077 return error; 2078 } 2079 2080 /* enforced gap between the expanding stack and other mappings. */ 2081 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2082 2083 static int __init cmdline_parse_stack_guard_gap(char *p) 2084 { 2085 unsigned long val; 2086 char *endptr; 2087 2088 val = simple_strtoul(p, &endptr, 10); 2089 if (!*endptr) 2090 stack_guard_gap = val << PAGE_SHIFT; 2091 2092 return 1; 2093 } 2094 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2095 2096 #ifdef CONFIG_STACK_GROWSUP 2097 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2098 { 2099 return expand_upwards(vma, address); 2100 } 2101 2102 struct vm_area_struct * 2103 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2104 { 2105 struct vm_area_struct *vma, *prev; 2106 2107 addr &= PAGE_MASK; 2108 vma = find_vma_prev(mm, addr, &prev); 2109 if (vma && (vma->vm_start <= addr)) 2110 return vma; 2111 if (!prev || expand_stack(prev, addr)) 2112 return NULL; 2113 if (prev->vm_flags & VM_LOCKED) 2114 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2115 return prev; 2116 } 2117 #else 2118 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2119 { 2120 return expand_downwards(vma, address); 2121 } 2122 2123 struct vm_area_struct * 2124 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2125 { 2126 struct vm_area_struct *vma; 2127 unsigned long start; 2128 2129 addr &= PAGE_MASK; 2130 vma = find_vma(mm, addr); 2131 if (!vma) 2132 return NULL; 2133 if (vma->vm_start <= addr) 2134 return vma; 2135 if (!(vma->vm_flags & VM_GROWSDOWN)) 2136 return NULL; 2137 start = vma->vm_start; 2138 if (expand_stack(vma, addr)) 2139 return NULL; 2140 if (vma->vm_flags & VM_LOCKED) 2141 populate_vma_page_range(vma, addr, start, NULL); 2142 return vma; 2143 } 2144 #endif 2145 2146 EXPORT_SYMBOL_GPL(find_extend_vma); 2147 2148 /* 2149 * Ok - we have the memory areas we should free on a maple tree so release them, 2150 * and do the vma updates. 2151 * 2152 * Called with the mm semaphore held. 2153 */ 2154 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2155 { 2156 unsigned long nr_accounted = 0; 2157 struct vm_area_struct *vma; 2158 2159 /* Update high watermark before we lower total_vm */ 2160 update_hiwater_vm(mm); 2161 mas_for_each(mas, vma, ULONG_MAX) { 2162 long nrpages = vma_pages(vma); 2163 2164 if (vma->vm_flags & VM_ACCOUNT) 2165 nr_accounted += nrpages; 2166 vm_stat_account(mm, vma->vm_flags, -nrpages); 2167 remove_vma(vma); 2168 } 2169 vm_unacct_memory(nr_accounted); 2170 validate_mm(mm); 2171 } 2172 2173 /* 2174 * Get rid of page table information in the indicated region. 2175 * 2176 * Called with the mm semaphore held. 2177 */ 2178 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt, 2179 struct vm_area_struct *vma, struct vm_area_struct *prev, 2180 struct vm_area_struct *next, 2181 unsigned long start, unsigned long end) 2182 { 2183 struct mmu_gather tlb; 2184 2185 lru_add_drain(); 2186 tlb_gather_mmu(&tlb, mm); 2187 update_hiwater_rss(mm); 2188 unmap_vmas(&tlb, mt, vma, start, end); 2189 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2190 next ? next->vm_start : USER_PGTABLES_CEILING); 2191 tlb_finish_mmu(&tlb); 2192 } 2193 2194 /* 2195 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2196 * has already been checked or doesn't make sense to fail. 2197 */ 2198 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2199 unsigned long addr, int new_below) 2200 { 2201 struct vm_area_struct *new; 2202 int err; 2203 validate_mm_mt(mm); 2204 2205 if (vma->vm_ops && vma->vm_ops->may_split) { 2206 err = vma->vm_ops->may_split(vma, addr); 2207 if (err) 2208 return err; 2209 } 2210 2211 new = vm_area_dup(vma); 2212 if (!new) 2213 return -ENOMEM; 2214 2215 if (new_below) 2216 new->vm_end = addr; 2217 else { 2218 new->vm_start = addr; 2219 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2220 } 2221 2222 err = vma_dup_policy(vma, new); 2223 if (err) 2224 goto out_free_vma; 2225 2226 err = anon_vma_clone(new, vma); 2227 if (err) 2228 goto out_free_mpol; 2229 2230 if (new->vm_file) 2231 get_file(new->vm_file); 2232 2233 if (new->vm_ops && new->vm_ops->open) 2234 new->vm_ops->open(new); 2235 2236 if (new_below) 2237 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2238 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2239 else 2240 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2241 2242 /* Success. */ 2243 if (!err) 2244 return 0; 2245 2246 /* Avoid vm accounting in close() operation */ 2247 new->vm_start = new->vm_end; 2248 new->vm_pgoff = 0; 2249 /* Clean everything up if vma_adjust failed. */ 2250 if (new->vm_ops && new->vm_ops->close) 2251 new->vm_ops->close(new); 2252 if (new->vm_file) 2253 fput(new->vm_file); 2254 unlink_anon_vmas(new); 2255 out_free_mpol: 2256 mpol_put(vma_policy(new)); 2257 out_free_vma: 2258 vm_area_free(new); 2259 validate_mm_mt(mm); 2260 return err; 2261 } 2262 2263 /* 2264 * Split a vma into two pieces at address 'addr', a new vma is allocated 2265 * either for the first part or the tail. 2266 */ 2267 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2268 unsigned long addr, int new_below) 2269 { 2270 if (mm->map_count >= sysctl_max_map_count) 2271 return -ENOMEM; 2272 2273 return __split_vma(mm, vma, addr, new_below); 2274 } 2275 2276 static inline int munmap_sidetree(struct vm_area_struct *vma, 2277 struct ma_state *mas_detach) 2278 { 2279 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1); 2280 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL)) 2281 return -ENOMEM; 2282 2283 if (vma->vm_flags & VM_LOCKED) 2284 vma->vm_mm->locked_vm -= vma_pages(vma); 2285 2286 return 0; 2287 } 2288 2289 /* 2290 * do_mas_align_munmap() - munmap the aligned region from @start to @end. 2291 * @mas: The maple_state, ideally set up to alter the correct tree location. 2292 * @vma: The starting vm_area_struct 2293 * @mm: The mm_struct 2294 * @start: The aligned start address to munmap. 2295 * @end: The aligned end address to munmap. 2296 * @uf: The userfaultfd list_head 2297 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem 2298 * 2299 * If @downgrade is true, check return code for potential release of the lock. 2300 */ 2301 static int 2302 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma, 2303 struct mm_struct *mm, unsigned long start, 2304 unsigned long end, struct list_head *uf, bool downgrade) 2305 { 2306 struct vm_area_struct *prev, *next = NULL; 2307 struct maple_tree mt_detach; 2308 int count = 0; 2309 int error = -ENOMEM; 2310 MA_STATE(mas_detach, &mt_detach, 0, 0); 2311 mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN); 2312 mt_set_external_lock(&mt_detach, &mm->mmap_lock); 2313 2314 if (mas_preallocate(mas, vma, GFP_KERNEL)) 2315 return -ENOMEM; 2316 2317 mas->last = end - 1; 2318 /* 2319 * If we need to split any vma, do it now to save pain later. 2320 * 2321 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2322 * unmapped vm_area_struct will remain in use: so lower split_vma 2323 * places tmp vma above, and higher split_vma places tmp vma below. 2324 */ 2325 2326 /* Does it split the first one? */ 2327 if (start > vma->vm_start) { 2328 2329 /* 2330 * Make sure that map_count on return from munmap() will 2331 * not exceed its limit; but let map_count go just above 2332 * its limit temporarily, to help free resources as expected. 2333 */ 2334 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2335 goto map_count_exceeded; 2336 2337 /* 2338 * mas_pause() is not needed since mas->index needs to be set 2339 * differently than vma->vm_end anyways. 2340 */ 2341 error = __split_vma(mm, vma, start, 0); 2342 if (error) 2343 goto start_split_failed; 2344 2345 mas_set(mas, start); 2346 vma = mas_walk(mas); 2347 } 2348 2349 prev = mas_prev(mas, 0); 2350 if (unlikely((!prev))) 2351 mas_set(mas, start); 2352 2353 /* 2354 * Detach a range of VMAs from the mm. Using next as a temp variable as 2355 * it is always overwritten. 2356 */ 2357 mas_for_each(mas, next, end - 1) { 2358 /* Does it split the end? */ 2359 if (next->vm_end > end) { 2360 struct vm_area_struct *split; 2361 2362 error = __split_vma(mm, next, end, 1); 2363 if (error) 2364 goto end_split_failed; 2365 2366 mas_set(mas, end); 2367 split = mas_prev(mas, 0); 2368 error = munmap_sidetree(split, &mas_detach); 2369 if (error) 2370 goto munmap_sidetree_failed; 2371 2372 count++; 2373 if (vma == next) 2374 vma = split; 2375 break; 2376 } 2377 error = munmap_sidetree(next, &mas_detach); 2378 if (error) 2379 goto munmap_sidetree_failed; 2380 2381 count++; 2382 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2383 BUG_ON(next->vm_start < start); 2384 BUG_ON(next->vm_start > end); 2385 #endif 2386 } 2387 2388 if (!next) 2389 next = mas_next(mas, ULONG_MAX); 2390 2391 if (unlikely(uf)) { 2392 /* 2393 * If userfaultfd_unmap_prep returns an error the vmas 2394 * will remain split, but userland will get a 2395 * highly unexpected error anyway. This is no 2396 * different than the case where the first of the two 2397 * __split_vma fails, but we don't undo the first 2398 * split, despite we could. This is unlikely enough 2399 * failure that it's not worth optimizing it for. 2400 */ 2401 error = userfaultfd_unmap_prep(mm, start, end, uf); 2402 2403 if (error) 2404 goto userfaultfd_error; 2405 } 2406 2407 /* Point of no return */ 2408 mas_set_range(mas, start, end - 1); 2409 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2410 /* Make sure no VMAs are about to be lost. */ 2411 { 2412 MA_STATE(test, &mt_detach, start, end - 1); 2413 struct vm_area_struct *vma_mas, *vma_test; 2414 int test_count = 0; 2415 2416 rcu_read_lock(); 2417 vma_test = mas_find(&test, end - 1); 2418 mas_for_each(mas, vma_mas, end - 1) { 2419 BUG_ON(vma_mas != vma_test); 2420 test_count++; 2421 vma_test = mas_next(&test, end - 1); 2422 } 2423 rcu_read_unlock(); 2424 BUG_ON(count != test_count); 2425 mas_set_range(mas, start, end - 1); 2426 } 2427 #endif 2428 mas_store_prealloc(mas, NULL); 2429 mm->map_count -= count; 2430 /* 2431 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2432 * VM_GROWSUP VMA. Such VMAs can change their size under 2433 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2434 */ 2435 if (downgrade) { 2436 if (next && (next->vm_flags & VM_GROWSDOWN)) 2437 downgrade = false; 2438 else if (prev && (prev->vm_flags & VM_GROWSUP)) 2439 downgrade = false; 2440 else 2441 mmap_write_downgrade(mm); 2442 } 2443 2444 unmap_region(mm, &mt_detach, vma, prev, next, start, end); 2445 /* Statistics and freeing VMAs */ 2446 mas_set(&mas_detach, start); 2447 remove_mt(mm, &mas_detach); 2448 __mt_destroy(&mt_detach); 2449 2450 2451 validate_mm(mm); 2452 return downgrade ? 1 : 0; 2453 2454 userfaultfd_error: 2455 munmap_sidetree_failed: 2456 end_split_failed: 2457 __mt_destroy(&mt_detach); 2458 start_split_failed: 2459 map_count_exceeded: 2460 mas_destroy(mas); 2461 return error; 2462 } 2463 2464 /* 2465 * do_mas_munmap() - munmap a given range. 2466 * @mas: The maple state 2467 * @mm: The mm_struct 2468 * @start: The start address to munmap 2469 * @len: The length of the range to munmap 2470 * @uf: The userfaultfd list_head 2471 * @downgrade: set to true if the user wants to attempt to write_downgrade the 2472 * mmap_sem 2473 * 2474 * This function takes a @mas that is either pointing to the previous VMA or set 2475 * to MA_START and sets it up to remove the mapping(s). The @len will be 2476 * aligned and any arch_unmap work will be preformed. 2477 * 2478 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise. 2479 */ 2480 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2481 unsigned long start, size_t len, struct list_head *uf, 2482 bool downgrade) 2483 { 2484 unsigned long end; 2485 struct vm_area_struct *vma; 2486 2487 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2488 return -EINVAL; 2489 2490 end = start + PAGE_ALIGN(len); 2491 if (end == start) 2492 return -EINVAL; 2493 2494 /* arch_unmap() might do unmaps itself. */ 2495 arch_unmap(mm, start, end); 2496 2497 /* Find the first overlapping VMA */ 2498 vma = mas_find(mas, end - 1); 2499 if (!vma) 2500 return 0; 2501 2502 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade); 2503 } 2504 2505 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2506 * @mm: The mm_struct 2507 * @start: The start address to munmap 2508 * @len: The length to be munmapped. 2509 * @uf: The userfaultfd list_head 2510 */ 2511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2512 struct list_head *uf) 2513 { 2514 MA_STATE(mas, &mm->mm_mt, start, start); 2515 2516 return do_mas_munmap(&mas, mm, start, len, uf, false); 2517 } 2518 2519 unsigned long mmap_region(struct file *file, unsigned long addr, 2520 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2521 struct list_head *uf) 2522 { 2523 struct mm_struct *mm = current->mm; 2524 struct vm_area_struct *vma = NULL; 2525 struct vm_area_struct *next, *prev, *merge; 2526 pgoff_t pglen = len >> PAGE_SHIFT; 2527 unsigned long charged = 0; 2528 unsigned long end = addr + len; 2529 unsigned long merge_start = addr, merge_end = end; 2530 pgoff_t vm_pgoff; 2531 int error; 2532 MA_STATE(mas, &mm->mm_mt, addr, end - 1); 2533 2534 /* Check against address space limit. */ 2535 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2536 unsigned long nr_pages; 2537 2538 /* 2539 * MAP_FIXED may remove pages of mappings that intersects with 2540 * requested mapping. Account for the pages it would unmap. 2541 */ 2542 nr_pages = count_vma_pages_range(mm, addr, end); 2543 2544 if (!may_expand_vm(mm, vm_flags, 2545 (len >> PAGE_SHIFT) - nr_pages)) 2546 return -ENOMEM; 2547 } 2548 2549 /* Unmap any existing mapping in the area */ 2550 if (do_mas_munmap(&mas, mm, addr, len, uf, false)) 2551 return -ENOMEM; 2552 2553 /* 2554 * Private writable mapping: check memory availability 2555 */ 2556 if (accountable_mapping(file, vm_flags)) { 2557 charged = len >> PAGE_SHIFT; 2558 if (security_vm_enough_memory_mm(mm, charged)) 2559 return -ENOMEM; 2560 vm_flags |= VM_ACCOUNT; 2561 } 2562 2563 next = mas_next(&mas, ULONG_MAX); 2564 prev = mas_prev(&mas, 0); 2565 if (vm_flags & VM_SPECIAL) 2566 goto cannot_expand; 2567 2568 /* Attempt to expand an old mapping */ 2569 /* Check next */ 2570 if (next && next->vm_start == end && !vma_policy(next) && 2571 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2572 NULL_VM_UFFD_CTX, NULL)) { 2573 merge_end = next->vm_end; 2574 vma = next; 2575 vm_pgoff = next->vm_pgoff - pglen; 2576 } 2577 2578 /* Check prev */ 2579 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2580 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2581 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2582 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2583 NULL_VM_UFFD_CTX, NULL))) { 2584 merge_start = prev->vm_start; 2585 vma = prev; 2586 vm_pgoff = prev->vm_pgoff; 2587 } 2588 2589 2590 /* Actually expand, if possible */ 2591 if (vma && 2592 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) { 2593 khugepaged_enter_vma(vma, vm_flags); 2594 goto expanded; 2595 } 2596 2597 mas.index = addr; 2598 mas.last = end - 1; 2599 cannot_expand: 2600 /* 2601 * Determine the object being mapped and call the appropriate 2602 * specific mapper. the address has already been validated, but 2603 * not unmapped, but the maps are removed from the list. 2604 */ 2605 vma = vm_area_alloc(mm); 2606 if (!vma) { 2607 error = -ENOMEM; 2608 goto unacct_error; 2609 } 2610 2611 vma->vm_start = addr; 2612 vma->vm_end = end; 2613 vma->vm_flags = vm_flags; 2614 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2615 vma->vm_pgoff = pgoff; 2616 2617 if (file) { 2618 if (vm_flags & VM_SHARED) { 2619 error = mapping_map_writable(file->f_mapping); 2620 if (error) 2621 goto free_vma; 2622 } 2623 2624 vma->vm_file = get_file(file); 2625 error = call_mmap(file, vma); 2626 if (error) 2627 goto unmap_and_free_vma; 2628 2629 /* 2630 * Expansion is handled above, merging is handled below. 2631 * Drivers should not alter the address of the VMA. 2632 */ 2633 if (WARN_ON((addr != vma->vm_start))) { 2634 error = -EINVAL; 2635 goto close_and_free_vma; 2636 } 2637 mas_reset(&mas); 2638 2639 /* 2640 * If vm_flags changed after call_mmap(), we should try merge 2641 * vma again as we may succeed this time. 2642 */ 2643 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2644 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 2645 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 2646 if (merge) { 2647 /* 2648 * ->mmap() can change vma->vm_file and fput 2649 * the original file. So fput the vma->vm_file 2650 * here or we would add an extra fput for file 2651 * and cause general protection fault 2652 * ultimately. 2653 */ 2654 fput(vma->vm_file); 2655 vm_area_free(vma); 2656 vma = merge; 2657 /* Update vm_flags to pick up the change. */ 2658 vm_flags = vma->vm_flags; 2659 goto unmap_writable; 2660 } 2661 } 2662 2663 vm_flags = vma->vm_flags; 2664 } else if (vm_flags & VM_SHARED) { 2665 error = shmem_zero_setup(vma); 2666 if (error) 2667 goto free_vma; 2668 } else { 2669 vma_set_anonymous(vma); 2670 } 2671 2672 /* Allow architectures to sanity-check the vm_flags */ 2673 if (!arch_validate_flags(vma->vm_flags)) { 2674 error = -EINVAL; 2675 if (file) 2676 goto close_and_free_vma; 2677 else if (vma->vm_file) 2678 goto unmap_and_free_vma; 2679 else 2680 goto free_vma; 2681 } 2682 2683 if (mas_preallocate(&mas, vma, GFP_KERNEL)) { 2684 error = -ENOMEM; 2685 if (file) 2686 goto close_and_free_vma; 2687 else if (vma->vm_file) 2688 goto unmap_and_free_vma; 2689 else 2690 goto free_vma; 2691 } 2692 2693 if (vma->vm_file) 2694 i_mmap_lock_write(vma->vm_file->f_mapping); 2695 2696 vma_mas_store(vma, &mas); 2697 mm->map_count++; 2698 if (vma->vm_file) { 2699 if (vma->vm_flags & VM_SHARED) 2700 mapping_allow_writable(vma->vm_file->f_mapping); 2701 2702 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2703 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2704 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2705 i_mmap_unlock_write(vma->vm_file->f_mapping); 2706 } 2707 2708 /* 2709 * vma_merge() calls khugepaged_enter_vma() either, the below 2710 * call covers the non-merge case. 2711 */ 2712 khugepaged_enter_vma(vma, vma->vm_flags); 2713 2714 /* Once vma denies write, undo our temporary denial count */ 2715 unmap_writable: 2716 if (file && vm_flags & VM_SHARED) 2717 mapping_unmap_writable(file->f_mapping); 2718 file = vma->vm_file; 2719 expanded: 2720 perf_event_mmap(vma); 2721 2722 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2723 if (vm_flags & VM_LOCKED) { 2724 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2725 is_vm_hugetlb_page(vma) || 2726 vma == get_gate_vma(current->mm)) 2727 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 2728 else 2729 mm->locked_vm += (len >> PAGE_SHIFT); 2730 } 2731 2732 if (file) 2733 uprobe_mmap(vma); 2734 2735 /* 2736 * New (or expanded) vma always get soft dirty status. 2737 * Otherwise user-space soft-dirty page tracker won't 2738 * be able to distinguish situation when vma area unmapped, 2739 * then new mapped in-place (which must be aimed as 2740 * a completely new data area). 2741 */ 2742 vma->vm_flags |= VM_SOFTDIRTY; 2743 2744 vma_set_page_prot(vma); 2745 2746 validate_mm(mm); 2747 return addr; 2748 2749 close_and_free_vma: 2750 if (vma->vm_ops && vma->vm_ops->close) 2751 vma->vm_ops->close(vma); 2752 unmap_and_free_vma: 2753 fput(vma->vm_file); 2754 vma->vm_file = NULL; 2755 2756 /* Undo any partial mapping done by a device driver. */ 2757 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end); 2758 if (file && (vm_flags & VM_SHARED)) 2759 mapping_unmap_writable(file->f_mapping); 2760 free_vma: 2761 vm_area_free(vma); 2762 unacct_error: 2763 if (charged) 2764 vm_unacct_memory(charged); 2765 validate_mm(mm); 2766 return error; 2767 } 2768 2769 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2770 { 2771 int ret; 2772 struct mm_struct *mm = current->mm; 2773 LIST_HEAD(uf); 2774 MA_STATE(mas, &mm->mm_mt, start, start); 2775 2776 if (mmap_write_lock_killable(mm)) 2777 return -EINTR; 2778 2779 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade); 2780 /* 2781 * Returning 1 indicates mmap_lock is downgraded. 2782 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2783 * it to 0 before return. 2784 */ 2785 if (ret == 1) { 2786 mmap_read_unlock(mm); 2787 ret = 0; 2788 } else 2789 mmap_write_unlock(mm); 2790 2791 userfaultfd_unmap_complete(mm, &uf); 2792 return ret; 2793 } 2794 2795 int vm_munmap(unsigned long start, size_t len) 2796 { 2797 return __vm_munmap(start, len, false); 2798 } 2799 EXPORT_SYMBOL(vm_munmap); 2800 2801 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2802 { 2803 addr = untagged_addr(addr); 2804 return __vm_munmap(addr, len, true); 2805 } 2806 2807 2808 /* 2809 * Emulation of deprecated remap_file_pages() syscall. 2810 */ 2811 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2812 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2813 { 2814 2815 struct mm_struct *mm = current->mm; 2816 struct vm_area_struct *vma; 2817 unsigned long populate = 0; 2818 unsigned long ret = -EINVAL; 2819 struct file *file; 2820 2821 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2822 current->comm, current->pid); 2823 2824 if (prot) 2825 return ret; 2826 start = start & PAGE_MASK; 2827 size = size & PAGE_MASK; 2828 2829 if (start + size <= start) 2830 return ret; 2831 2832 /* Does pgoff wrap? */ 2833 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2834 return ret; 2835 2836 if (mmap_write_lock_killable(mm)) 2837 return -EINTR; 2838 2839 vma = vma_lookup(mm, start); 2840 2841 if (!vma || !(vma->vm_flags & VM_SHARED)) 2842 goto out; 2843 2844 if (start + size > vma->vm_end) { 2845 VMA_ITERATOR(vmi, mm, vma->vm_end); 2846 struct vm_area_struct *next, *prev = vma; 2847 2848 for_each_vma_range(vmi, next, start + size) { 2849 /* hole between vmas ? */ 2850 if (next->vm_start != prev->vm_end) 2851 goto out; 2852 2853 if (next->vm_file != vma->vm_file) 2854 goto out; 2855 2856 if (next->vm_flags != vma->vm_flags) 2857 goto out; 2858 2859 if (start + size <= next->vm_end) 2860 break; 2861 2862 prev = next; 2863 } 2864 2865 if (!next) 2866 goto out; 2867 } 2868 2869 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2870 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2871 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2872 2873 flags &= MAP_NONBLOCK; 2874 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2875 if (vma->vm_flags & VM_LOCKED) 2876 flags |= MAP_LOCKED; 2877 2878 file = get_file(vma->vm_file); 2879 ret = do_mmap(vma->vm_file, start, size, 2880 prot, flags, pgoff, &populate, NULL); 2881 fput(file); 2882 out: 2883 mmap_write_unlock(mm); 2884 if (populate) 2885 mm_populate(ret, populate); 2886 if (!IS_ERR_VALUE(ret)) 2887 ret = 0; 2888 return ret; 2889 } 2890 2891 /* 2892 * brk_munmap() - Unmap a parital vma. 2893 * @mas: The maple tree state. 2894 * @vma: The vma to be modified 2895 * @newbrk: the start of the address to unmap 2896 * @oldbrk: The end of the address to unmap 2897 * @uf: The userfaultfd list_head 2898 * 2899 * Returns: 1 on success. 2900 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if 2901 * possible. 2902 */ 2903 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma, 2904 unsigned long newbrk, unsigned long oldbrk, 2905 struct list_head *uf) 2906 { 2907 struct mm_struct *mm = vma->vm_mm; 2908 int ret; 2909 2910 arch_unmap(mm, newbrk, oldbrk); 2911 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true); 2912 validate_mm_mt(mm); 2913 return ret; 2914 } 2915 2916 /* 2917 * do_brk_flags() - Increase the brk vma if the flags match. 2918 * @mas: The maple tree state. 2919 * @addr: The start address 2920 * @len: The length of the increase 2921 * @vma: The vma, 2922 * @flags: The VMA Flags 2923 * 2924 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2925 * do not match then create a new anonymous VMA. Eventually we may be able to 2926 * do some brk-specific accounting here. 2927 */ 2928 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma, 2929 unsigned long addr, unsigned long len, unsigned long flags) 2930 { 2931 struct mm_struct *mm = current->mm; 2932 2933 validate_mm_mt(mm); 2934 /* 2935 * Check against address space limits by the changed size 2936 * Note: This happens *after* clearing old mappings in some code paths. 2937 */ 2938 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2939 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2940 return -ENOMEM; 2941 2942 if (mm->map_count > sysctl_max_map_count) 2943 return -ENOMEM; 2944 2945 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2946 return -ENOMEM; 2947 2948 /* 2949 * Expand the existing vma if possible; Note that singular lists do not 2950 * occur after forking, so the expand will only happen on new VMAs. 2951 */ 2952 if (vma && 2953 (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) && 2954 ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) { 2955 mas_set_range(mas, vma->vm_start, addr + len - 1); 2956 if (mas_preallocate(mas, vma, GFP_KERNEL)) 2957 return -ENOMEM; 2958 2959 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 2960 if (vma->anon_vma) { 2961 anon_vma_lock_write(vma->anon_vma); 2962 anon_vma_interval_tree_pre_update_vma(vma); 2963 } 2964 vma->vm_end = addr + len; 2965 vma->vm_flags |= VM_SOFTDIRTY; 2966 mas_store_prealloc(mas, vma); 2967 2968 if (vma->anon_vma) { 2969 anon_vma_interval_tree_post_update_vma(vma); 2970 anon_vma_unlock_write(vma->anon_vma); 2971 } 2972 khugepaged_enter_vma(vma, flags); 2973 goto out; 2974 } 2975 2976 /* create a vma struct for an anonymous mapping */ 2977 vma = vm_area_alloc(mm); 2978 if (!vma) 2979 goto vma_alloc_fail; 2980 2981 vma_set_anonymous(vma); 2982 vma->vm_start = addr; 2983 vma->vm_end = addr + len; 2984 vma->vm_pgoff = addr >> PAGE_SHIFT; 2985 vma->vm_flags = flags; 2986 vma->vm_page_prot = vm_get_page_prot(flags); 2987 mas_set_range(mas, vma->vm_start, addr + len - 1); 2988 if (mas_store_gfp(mas, vma, GFP_KERNEL)) 2989 goto mas_store_fail; 2990 2991 mm->map_count++; 2992 out: 2993 perf_event_mmap(vma); 2994 mm->total_vm += len >> PAGE_SHIFT; 2995 mm->data_vm += len >> PAGE_SHIFT; 2996 if (flags & VM_LOCKED) 2997 mm->locked_vm += (len >> PAGE_SHIFT); 2998 vma->vm_flags |= VM_SOFTDIRTY; 2999 validate_mm(mm); 3000 return 0; 3001 3002 mas_store_fail: 3003 vm_area_free(vma); 3004 vma_alloc_fail: 3005 vm_unacct_memory(len >> PAGE_SHIFT); 3006 return -ENOMEM; 3007 } 3008 3009 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3010 { 3011 struct mm_struct *mm = current->mm; 3012 struct vm_area_struct *vma = NULL; 3013 unsigned long len; 3014 int ret; 3015 bool populate; 3016 LIST_HEAD(uf); 3017 MA_STATE(mas, &mm->mm_mt, addr, addr); 3018 3019 len = PAGE_ALIGN(request); 3020 if (len < request) 3021 return -ENOMEM; 3022 if (!len) 3023 return 0; 3024 3025 if (mmap_write_lock_killable(mm)) 3026 return -EINTR; 3027 3028 /* Until we need other flags, refuse anything except VM_EXEC. */ 3029 if ((flags & (~VM_EXEC)) != 0) 3030 return -EINVAL; 3031 3032 ret = check_brk_limits(addr, len); 3033 if (ret) 3034 goto limits_failed; 3035 3036 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0); 3037 if (ret) 3038 goto munmap_failed; 3039 3040 vma = mas_prev(&mas, 0); 3041 if (!vma || vma->vm_end != addr || vma_policy(vma) || 3042 !can_vma_merge_after(vma, flags, NULL, NULL, 3043 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) 3044 vma = NULL; 3045 3046 ret = do_brk_flags(&mas, vma, addr, len, flags); 3047 populate = ((mm->def_flags & VM_LOCKED) != 0); 3048 mmap_write_unlock(mm); 3049 userfaultfd_unmap_complete(mm, &uf); 3050 if (populate && !ret) 3051 mm_populate(addr, len); 3052 return ret; 3053 3054 munmap_failed: 3055 limits_failed: 3056 mmap_write_unlock(mm); 3057 return ret; 3058 } 3059 EXPORT_SYMBOL(vm_brk_flags); 3060 3061 int vm_brk(unsigned long addr, unsigned long len) 3062 { 3063 return vm_brk_flags(addr, len, 0); 3064 } 3065 EXPORT_SYMBOL(vm_brk); 3066 3067 /* Release all mmaps. */ 3068 void exit_mmap(struct mm_struct *mm) 3069 { 3070 struct mmu_gather tlb; 3071 struct vm_area_struct *vma; 3072 unsigned long nr_accounted = 0; 3073 MA_STATE(mas, &mm->mm_mt, 0, 0); 3074 int count = 0; 3075 3076 /* mm's last user has gone, and its about to be pulled down */ 3077 mmu_notifier_release(mm); 3078 3079 mmap_read_lock(mm); 3080 arch_exit_mmap(mm); 3081 3082 vma = mas_find(&mas, ULONG_MAX); 3083 if (!vma) { 3084 /* Can happen if dup_mmap() received an OOM */ 3085 mmap_read_unlock(mm); 3086 return; 3087 } 3088 3089 lru_add_drain(); 3090 flush_cache_mm(mm); 3091 tlb_gather_mmu_fullmm(&tlb, mm); 3092 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3093 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3094 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX); 3095 mmap_read_unlock(mm); 3096 3097 /* 3098 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3099 * because the memory has been already freed. 3100 */ 3101 set_bit(MMF_OOM_SKIP, &mm->flags); 3102 mmap_write_lock(mm); 3103 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS, 3104 USER_PGTABLES_CEILING); 3105 tlb_finish_mmu(&tlb); 3106 3107 /* 3108 * Walk the list again, actually closing and freeing it, with preemption 3109 * enabled, without holding any MM locks besides the unreachable 3110 * mmap_write_lock. 3111 */ 3112 do { 3113 if (vma->vm_flags & VM_ACCOUNT) 3114 nr_accounted += vma_pages(vma); 3115 remove_vma(vma); 3116 count++; 3117 cond_resched(); 3118 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3119 3120 BUG_ON(count != mm->map_count); 3121 3122 trace_exit_mmap(mm); 3123 __mt_destroy(&mm->mm_mt); 3124 mmap_write_unlock(mm); 3125 vm_unacct_memory(nr_accounted); 3126 } 3127 3128 /* Insert vm structure into process list sorted by address 3129 * and into the inode's i_mmap tree. If vm_file is non-NULL 3130 * then i_mmap_rwsem is taken here. 3131 */ 3132 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3133 { 3134 unsigned long charged = vma_pages(vma); 3135 3136 3137 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3138 return -ENOMEM; 3139 3140 if ((vma->vm_flags & VM_ACCOUNT) && 3141 security_vm_enough_memory_mm(mm, charged)) 3142 return -ENOMEM; 3143 3144 /* 3145 * The vm_pgoff of a purely anonymous vma should be irrelevant 3146 * until its first write fault, when page's anon_vma and index 3147 * are set. But now set the vm_pgoff it will almost certainly 3148 * end up with (unless mremap moves it elsewhere before that 3149 * first wfault), so /proc/pid/maps tells a consistent story. 3150 * 3151 * By setting it to reflect the virtual start address of the 3152 * vma, merges and splits can happen in a seamless way, just 3153 * using the existing file pgoff checks and manipulations. 3154 * Similarly in do_mmap and in do_brk_flags. 3155 */ 3156 if (vma_is_anonymous(vma)) { 3157 BUG_ON(vma->anon_vma); 3158 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3159 } 3160 3161 if (vma_link(mm, vma)) { 3162 vm_unacct_memory(charged); 3163 return -ENOMEM; 3164 } 3165 3166 return 0; 3167 } 3168 3169 /* 3170 * Copy the vma structure to a new location in the same mm, 3171 * prior to moving page table entries, to effect an mremap move. 3172 */ 3173 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3174 unsigned long addr, unsigned long len, pgoff_t pgoff, 3175 bool *need_rmap_locks) 3176 { 3177 struct vm_area_struct *vma = *vmap; 3178 unsigned long vma_start = vma->vm_start; 3179 struct mm_struct *mm = vma->vm_mm; 3180 struct vm_area_struct *new_vma, *prev; 3181 bool faulted_in_anon_vma = true; 3182 3183 validate_mm_mt(mm); 3184 /* 3185 * If anonymous vma has not yet been faulted, update new pgoff 3186 * to match new location, to increase its chance of merging. 3187 */ 3188 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3189 pgoff = addr >> PAGE_SHIFT; 3190 faulted_in_anon_vma = false; 3191 } 3192 3193 new_vma = find_vma_prev(mm, addr, &prev); 3194 if (new_vma && new_vma->vm_start < addr + len) 3195 return NULL; /* should never get here */ 3196 3197 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3198 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3199 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3200 if (new_vma) { 3201 /* 3202 * Source vma may have been merged into new_vma 3203 */ 3204 if (unlikely(vma_start >= new_vma->vm_start && 3205 vma_start < new_vma->vm_end)) { 3206 /* 3207 * The only way we can get a vma_merge with 3208 * self during an mremap is if the vma hasn't 3209 * been faulted in yet and we were allowed to 3210 * reset the dst vma->vm_pgoff to the 3211 * destination address of the mremap to allow 3212 * the merge to happen. mremap must change the 3213 * vm_pgoff linearity between src and dst vmas 3214 * (in turn preventing a vma_merge) to be 3215 * safe. It is only safe to keep the vm_pgoff 3216 * linear if there are no pages mapped yet. 3217 */ 3218 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3219 *vmap = vma = new_vma; 3220 } 3221 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3222 } else { 3223 new_vma = vm_area_dup(vma); 3224 if (!new_vma) 3225 goto out; 3226 new_vma->vm_start = addr; 3227 new_vma->vm_end = addr + len; 3228 new_vma->vm_pgoff = pgoff; 3229 if (vma_dup_policy(vma, new_vma)) 3230 goto out_free_vma; 3231 if (anon_vma_clone(new_vma, vma)) 3232 goto out_free_mempol; 3233 if (new_vma->vm_file) 3234 get_file(new_vma->vm_file); 3235 if (new_vma->vm_ops && new_vma->vm_ops->open) 3236 new_vma->vm_ops->open(new_vma); 3237 if (vma_link(mm, new_vma)) 3238 goto out_vma_link; 3239 *need_rmap_locks = false; 3240 } 3241 validate_mm_mt(mm); 3242 return new_vma; 3243 3244 out_vma_link: 3245 if (new_vma->vm_ops && new_vma->vm_ops->close) 3246 new_vma->vm_ops->close(new_vma); 3247 3248 if (new_vma->vm_file) 3249 fput(new_vma->vm_file); 3250 3251 unlink_anon_vmas(new_vma); 3252 out_free_mempol: 3253 mpol_put(vma_policy(new_vma)); 3254 out_free_vma: 3255 vm_area_free(new_vma); 3256 out: 3257 validate_mm_mt(mm); 3258 return NULL; 3259 } 3260 3261 /* 3262 * Return true if the calling process may expand its vm space by the passed 3263 * number of pages 3264 */ 3265 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3266 { 3267 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3268 return false; 3269 3270 if (is_data_mapping(flags) && 3271 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3272 /* Workaround for Valgrind */ 3273 if (rlimit(RLIMIT_DATA) == 0 && 3274 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3275 return true; 3276 3277 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3278 current->comm, current->pid, 3279 (mm->data_vm + npages) << PAGE_SHIFT, 3280 rlimit(RLIMIT_DATA), 3281 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3282 3283 if (!ignore_rlimit_data) 3284 return false; 3285 } 3286 3287 return true; 3288 } 3289 3290 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3291 { 3292 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3293 3294 if (is_exec_mapping(flags)) 3295 mm->exec_vm += npages; 3296 else if (is_stack_mapping(flags)) 3297 mm->stack_vm += npages; 3298 else if (is_data_mapping(flags)) 3299 mm->data_vm += npages; 3300 } 3301 3302 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3303 3304 /* 3305 * Having a close hook prevents vma merging regardless of flags. 3306 */ 3307 static void special_mapping_close(struct vm_area_struct *vma) 3308 { 3309 } 3310 3311 static const char *special_mapping_name(struct vm_area_struct *vma) 3312 { 3313 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3314 } 3315 3316 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3317 { 3318 struct vm_special_mapping *sm = new_vma->vm_private_data; 3319 3320 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3321 return -EFAULT; 3322 3323 if (sm->mremap) 3324 return sm->mremap(sm, new_vma); 3325 3326 return 0; 3327 } 3328 3329 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3330 { 3331 /* 3332 * Forbid splitting special mappings - kernel has expectations over 3333 * the number of pages in mapping. Together with VM_DONTEXPAND 3334 * the size of vma should stay the same over the special mapping's 3335 * lifetime. 3336 */ 3337 return -EINVAL; 3338 } 3339 3340 static const struct vm_operations_struct special_mapping_vmops = { 3341 .close = special_mapping_close, 3342 .fault = special_mapping_fault, 3343 .mremap = special_mapping_mremap, 3344 .name = special_mapping_name, 3345 /* vDSO code relies that VVAR can't be accessed remotely */ 3346 .access = NULL, 3347 .may_split = special_mapping_split, 3348 }; 3349 3350 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3351 .close = special_mapping_close, 3352 .fault = special_mapping_fault, 3353 }; 3354 3355 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3356 { 3357 struct vm_area_struct *vma = vmf->vma; 3358 pgoff_t pgoff; 3359 struct page **pages; 3360 3361 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3362 pages = vma->vm_private_data; 3363 } else { 3364 struct vm_special_mapping *sm = vma->vm_private_data; 3365 3366 if (sm->fault) 3367 return sm->fault(sm, vmf->vma, vmf); 3368 3369 pages = sm->pages; 3370 } 3371 3372 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3373 pgoff--; 3374 3375 if (*pages) { 3376 struct page *page = *pages; 3377 get_page(page); 3378 vmf->page = page; 3379 return 0; 3380 } 3381 3382 return VM_FAULT_SIGBUS; 3383 } 3384 3385 static struct vm_area_struct *__install_special_mapping( 3386 struct mm_struct *mm, 3387 unsigned long addr, unsigned long len, 3388 unsigned long vm_flags, void *priv, 3389 const struct vm_operations_struct *ops) 3390 { 3391 int ret; 3392 struct vm_area_struct *vma; 3393 3394 validate_mm_mt(mm); 3395 vma = vm_area_alloc(mm); 3396 if (unlikely(vma == NULL)) 3397 return ERR_PTR(-ENOMEM); 3398 3399 vma->vm_start = addr; 3400 vma->vm_end = addr + len; 3401 3402 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3403 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 3404 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3405 3406 vma->vm_ops = ops; 3407 vma->vm_private_data = priv; 3408 3409 ret = insert_vm_struct(mm, vma); 3410 if (ret) 3411 goto out; 3412 3413 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3414 3415 perf_event_mmap(vma); 3416 3417 validate_mm_mt(mm); 3418 return vma; 3419 3420 out: 3421 vm_area_free(vma); 3422 validate_mm_mt(mm); 3423 return ERR_PTR(ret); 3424 } 3425 3426 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3427 const struct vm_special_mapping *sm) 3428 { 3429 return vma->vm_private_data == sm && 3430 (vma->vm_ops == &special_mapping_vmops || 3431 vma->vm_ops == &legacy_special_mapping_vmops); 3432 } 3433 3434 /* 3435 * Called with mm->mmap_lock held for writing. 3436 * Insert a new vma covering the given region, with the given flags. 3437 * Its pages are supplied by the given array of struct page *. 3438 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3439 * The region past the last page supplied will always produce SIGBUS. 3440 * The array pointer and the pages it points to are assumed to stay alive 3441 * for as long as this mapping might exist. 3442 */ 3443 struct vm_area_struct *_install_special_mapping( 3444 struct mm_struct *mm, 3445 unsigned long addr, unsigned long len, 3446 unsigned long vm_flags, const struct vm_special_mapping *spec) 3447 { 3448 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3449 &special_mapping_vmops); 3450 } 3451 3452 int install_special_mapping(struct mm_struct *mm, 3453 unsigned long addr, unsigned long len, 3454 unsigned long vm_flags, struct page **pages) 3455 { 3456 struct vm_area_struct *vma = __install_special_mapping( 3457 mm, addr, len, vm_flags, (void *)pages, 3458 &legacy_special_mapping_vmops); 3459 3460 return PTR_ERR_OR_ZERO(vma); 3461 } 3462 3463 static DEFINE_MUTEX(mm_all_locks_mutex); 3464 3465 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3466 { 3467 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3468 /* 3469 * The LSB of head.next can't change from under us 3470 * because we hold the mm_all_locks_mutex. 3471 */ 3472 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3473 /* 3474 * We can safely modify head.next after taking the 3475 * anon_vma->root->rwsem. If some other vma in this mm shares 3476 * the same anon_vma we won't take it again. 3477 * 3478 * No need of atomic instructions here, head.next 3479 * can't change from under us thanks to the 3480 * anon_vma->root->rwsem. 3481 */ 3482 if (__test_and_set_bit(0, (unsigned long *) 3483 &anon_vma->root->rb_root.rb_root.rb_node)) 3484 BUG(); 3485 } 3486 } 3487 3488 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3489 { 3490 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3491 /* 3492 * AS_MM_ALL_LOCKS can't change from under us because 3493 * we hold the mm_all_locks_mutex. 3494 * 3495 * Operations on ->flags have to be atomic because 3496 * even if AS_MM_ALL_LOCKS is stable thanks to the 3497 * mm_all_locks_mutex, there may be other cpus 3498 * changing other bitflags in parallel to us. 3499 */ 3500 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3501 BUG(); 3502 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3503 } 3504 } 3505 3506 /* 3507 * This operation locks against the VM for all pte/vma/mm related 3508 * operations that could ever happen on a certain mm. This includes 3509 * vmtruncate, try_to_unmap, and all page faults. 3510 * 3511 * The caller must take the mmap_lock in write mode before calling 3512 * mm_take_all_locks(). The caller isn't allowed to release the 3513 * mmap_lock until mm_drop_all_locks() returns. 3514 * 3515 * mmap_lock in write mode is required in order to block all operations 3516 * that could modify pagetables and free pages without need of 3517 * altering the vma layout. It's also needed in write mode to avoid new 3518 * anon_vmas to be associated with existing vmas. 3519 * 3520 * A single task can't take more than one mm_take_all_locks() in a row 3521 * or it would deadlock. 3522 * 3523 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3524 * mapping->flags avoid to take the same lock twice, if more than one 3525 * vma in this mm is backed by the same anon_vma or address_space. 3526 * 3527 * We take locks in following order, accordingly to comment at beginning 3528 * of mm/rmap.c: 3529 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3530 * hugetlb mapping); 3531 * - all i_mmap_rwsem locks; 3532 * - all anon_vma->rwseml 3533 * 3534 * We can take all locks within these types randomly because the VM code 3535 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3536 * mm_all_locks_mutex. 3537 * 3538 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3539 * that may have to take thousand of locks. 3540 * 3541 * mm_take_all_locks() can fail if it's interrupted by signals. 3542 */ 3543 int mm_take_all_locks(struct mm_struct *mm) 3544 { 3545 struct vm_area_struct *vma; 3546 struct anon_vma_chain *avc; 3547 MA_STATE(mas, &mm->mm_mt, 0, 0); 3548 3549 mmap_assert_write_locked(mm); 3550 3551 mutex_lock(&mm_all_locks_mutex); 3552 3553 mas_for_each(&mas, vma, ULONG_MAX) { 3554 if (signal_pending(current)) 3555 goto out_unlock; 3556 if (vma->vm_file && vma->vm_file->f_mapping && 3557 is_vm_hugetlb_page(vma)) 3558 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3559 } 3560 3561 mas_set(&mas, 0); 3562 mas_for_each(&mas, vma, ULONG_MAX) { 3563 if (signal_pending(current)) 3564 goto out_unlock; 3565 if (vma->vm_file && vma->vm_file->f_mapping && 3566 !is_vm_hugetlb_page(vma)) 3567 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3568 } 3569 3570 mas_set(&mas, 0); 3571 mas_for_each(&mas, vma, ULONG_MAX) { 3572 if (signal_pending(current)) 3573 goto out_unlock; 3574 if (vma->anon_vma) 3575 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3576 vm_lock_anon_vma(mm, avc->anon_vma); 3577 } 3578 3579 return 0; 3580 3581 out_unlock: 3582 mm_drop_all_locks(mm); 3583 return -EINTR; 3584 } 3585 3586 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3587 { 3588 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3589 /* 3590 * The LSB of head.next can't change to 0 from under 3591 * us because we hold the mm_all_locks_mutex. 3592 * 3593 * We must however clear the bitflag before unlocking 3594 * the vma so the users using the anon_vma->rb_root will 3595 * never see our bitflag. 3596 * 3597 * No need of atomic instructions here, head.next 3598 * can't change from under us until we release the 3599 * anon_vma->root->rwsem. 3600 */ 3601 if (!__test_and_clear_bit(0, (unsigned long *) 3602 &anon_vma->root->rb_root.rb_root.rb_node)) 3603 BUG(); 3604 anon_vma_unlock_write(anon_vma); 3605 } 3606 } 3607 3608 static void vm_unlock_mapping(struct address_space *mapping) 3609 { 3610 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3611 /* 3612 * AS_MM_ALL_LOCKS can't change to 0 from under us 3613 * because we hold the mm_all_locks_mutex. 3614 */ 3615 i_mmap_unlock_write(mapping); 3616 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3617 &mapping->flags)) 3618 BUG(); 3619 } 3620 } 3621 3622 /* 3623 * The mmap_lock cannot be released by the caller until 3624 * mm_drop_all_locks() returns. 3625 */ 3626 void mm_drop_all_locks(struct mm_struct *mm) 3627 { 3628 struct vm_area_struct *vma; 3629 struct anon_vma_chain *avc; 3630 MA_STATE(mas, &mm->mm_mt, 0, 0); 3631 3632 mmap_assert_write_locked(mm); 3633 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3634 3635 mas_for_each(&mas, vma, ULONG_MAX) { 3636 if (vma->anon_vma) 3637 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3638 vm_unlock_anon_vma(avc->anon_vma); 3639 if (vma->vm_file && vma->vm_file->f_mapping) 3640 vm_unlock_mapping(vma->vm_file->f_mapping); 3641 } 3642 3643 mutex_unlock(&mm_all_locks_mutex); 3644 } 3645 3646 /* 3647 * initialise the percpu counter for VM 3648 */ 3649 void __init mmap_init(void) 3650 { 3651 int ret; 3652 3653 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3654 VM_BUG_ON(ret); 3655 } 3656 3657 /* 3658 * Initialise sysctl_user_reserve_kbytes. 3659 * 3660 * This is intended to prevent a user from starting a single memory hogging 3661 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3662 * mode. 3663 * 3664 * The default value is min(3% of free memory, 128MB) 3665 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3666 */ 3667 static int init_user_reserve(void) 3668 { 3669 unsigned long free_kbytes; 3670 3671 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3672 3673 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3674 return 0; 3675 } 3676 subsys_initcall(init_user_reserve); 3677 3678 /* 3679 * Initialise sysctl_admin_reserve_kbytes. 3680 * 3681 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3682 * to log in and kill a memory hogging process. 3683 * 3684 * Systems with more than 256MB will reserve 8MB, enough to recover 3685 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3686 * only reserve 3% of free pages by default. 3687 */ 3688 static int init_admin_reserve(void) 3689 { 3690 unsigned long free_kbytes; 3691 3692 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3693 3694 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3695 return 0; 3696 } 3697 subsys_initcall(init_admin_reserve); 3698 3699 /* 3700 * Reinititalise user and admin reserves if memory is added or removed. 3701 * 3702 * The default user reserve max is 128MB, and the default max for the 3703 * admin reserve is 8MB. These are usually, but not always, enough to 3704 * enable recovery from a memory hogging process using login/sshd, a shell, 3705 * and tools like top. It may make sense to increase or even disable the 3706 * reserve depending on the existence of swap or variations in the recovery 3707 * tools. So, the admin may have changed them. 3708 * 3709 * If memory is added and the reserves have been eliminated or increased above 3710 * the default max, then we'll trust the admin. 3711 * 3712 * If memory is removed and there isn't enough free memory, then we 3713 * need to reset the reserves. 3714 * 3715 * Otherwise keep the reserve set by the admin. 3716 */ 3717 static int reserve_mem_notifier(struct notifier_block *nb, 3718 unsigned long action, void *data) 3719 { 3720 unsigned long tmp, free_kbytes; 3721 3722 switch (action) { 3723 case MEM_ONLINE: 3724 /* Default max is 128MB. Leave alone if modified by operator. */ 3725 tmp = sysctl_user_reserve_kbytes; 3726 if (0 < tmp && tmp < (1UL << 17)) 3727 init_user_reserve(); 3728 3729 /* Default max is 8MB. Leave alone if modified by operator. */ 3730 tmp = sysctl_admin_reserve_kbytes; 3731 if (0 < tmp && tmp < (1UL << 13)) 3732 init_admin_reserve(); 3733 3734 break; 3735 case MEM_OFFLINE: 3736 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3737 3738 if (sysctl_user_reserve_kbytes > free_kbytes) { 3739 init_user_reserve(); 3740 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3741 sysctl_user_reserve_kbytes); 3742 } 3743 3744 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3745 init_admin_reserve(); 3746 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3747 sysctl_admin_reserve_kbytes); 3748 } 3749 break; 3750 default: 3751 break; 3752 } 3753 return NOTIFY_OK; 3754 } 3755 3756 static struct notifier_block reserve_mem_nb = { 3757 .notifier_call = reserve_mem_notifier, 3758 }; 3759 3760 static int __meminit init_reserve_notifier(void) 3761 { 3762 if (register_hotmemory_notifier(&reserve_mem_nb)) 3763 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3764 3765 return 0; 3766 } 3767 subsys_initcall(init_reserve_notifier); 3768