1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlb.h> 53 #include <asm/mmu_context.h> 54 55 #include "internal.h" 56 57 #ifndef arch_mmap_check 58 #define arch_mmap_check(addr, len, flags) (0) 59 #endif 60 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 65 #endif 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 70 #endif 71 72 static bool ignore_rlimit_data; 73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 74 75 static void unmap_region(struct mm_struct *mm, 76 struct vm_area_struct *vma, struct vm_area_struct *prev, 77 unsigned long start, unsigned long end); 78 79 /* description of effects of mapping type and prot in current implementation. 80 * this is due to the limited x86 page protection hardware. The expected 81 * behavior is in parens: 82 * 83 * map_type prot 84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 86 * w: (no) no w: (no) no w: (yes) yes w: (no) no 87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 88 * 89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (copy) copy w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 94 * MAP_PRIVATE: 95 * r: (no) no 96 * w: (no) no 97 * x: (yes) yes 98 */ 99 pgprot_t protection_map[16] __ro_after_init = { 100 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 101 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 102 }; 103 104 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 105 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 106 { 107 return prot; 108 } 109 #endif 110 111 pgprot_t vm_get_page_prot(unsigned long vm_flags) 112 { 113 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 114 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 115 pgprot_val(arch_vm_get_page_prot(vm_flags))); 116 117 return arch_filter_pgprot(ret); 118 } 119 EXPORT_SYMBOL(vm_get_page_prot); 120 121 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 122 { 123 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 124 } 125 126 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 127 void vma_set_page_prot(struct vm_area_struct *vma) 128 { 129 unsigned long vm_flags = vma->vm_flags; 130 pgprot_t vm_page_prot; 131 132 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 133 if (vma_wants_writenotify(vma, vm_page_prot)) { 134 vm_flags &= ~VM_SHARED; 135 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 136 } 137 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 138 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 139 } 140 141 /* 142 * Requires inode->i_mapping->i_mmap_rwsem 143 */ 144 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 145 struct file *file, struct address_space *mapping) 146 { 147 if (vma->vm_flags & VM_DENYWRITE) 148 atomic_inc(&file_inode(file)->i_writecount); 149 if (vma->vm_flags & VM_SHARED) 150 mapping_unmap_writable(mapping); 151 152 flush_dcache_mmap_lock(mapping); 153 vma_interval_tree_remove(vma, &mapping->i_mmap); 154 flush_dcache_mmap_unlock(mapping); 155 } 156 157 /* 158 * Unlink a file-based vm structure from its interval tree, to hide 159 * vma from rmap and vmtruncate before freeing its page tables. 160 */ 161 void unlink_file_vma(struct vm_area_struct *vma) 162 { 163 struct file *file = vma->vm_file; 164 165 if (file) { 166 struct address_space *mapping = file->f_mapping; 167 i_mmap_lock_write(mapping); 168 __remove_shared_vm_struct(vma, file, mapping); 169 i_mmap_unlock_write(mapping); 170 } 171 } 172 173 /* 174 * Close a vm structure and free it, returning the next. 175 */ 176 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 177 { 178 struct vm_area_struct *next = vma->vm_next; 179 180 might_sleep(); 181 if (vma->vm_ops && vma->vm_ops->close) 182 vma->vm_ops->close(vma); 183 if (vma->vm_file) 184 fput(vma->vm_file); 185 mpol_put(vma_policy(vma)); 186 vm_area_free(vma); 187 return next; 188 } 189 190 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 191 struct list_head *uf); 192 SYSCALL_DEFINE1(brk, unsigned long, brk) 193 { 194 unsigned long retval; 195 unsigned long newbrk, oldbrk, origbrk; 196 struct mm_struct *mm = current->mm; 197 struct vm_area_struct *next; 198 unsigned long min_brk; 199 bool populate; 200 bool downgraded = false; 201 LIST_HEAD(uf); 202 203 if (down_write_killable(&mm->mmap_sem)) 204 return -EINTR; 205 206 origbrk = mm->brk; 207 208 #ifdef CONFIG_COMPAT_BRK 209 /* 210 * CONFIG_COMPAT_BRK can still be overridden by setting 211 * randomize_va_space to 2, which will still cause mm->start_brk 212 * to be arbitrarily shifted 213 */ 214 if (current->brk_randomized) 215 min_brk = mm->start_brk; 216 else 217 min_brk = mm->end_data; 218 #else 219 min_brk = mm->start_brk; 220 #endif 221 if (brk < min_brk) 222 goto out; 223 224 /* 225 * Check against rlimit here. If this check is done later after the test 226 * of oldbrk with newbrk then it can escape the test and let the data 227 * segment grow beyond its set limit the in case where the limit is 228 * not page aligned -Ram Gupta 229 */ 230 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 231 mm->end_data, mm->start_data)) 232 goto out; 233 234 newbrk = PAGE_ALIGN(brk); 235 oldbrk = PAGE_ALIGN(mm->brk); 236 if (oldbrk == newbrk) { 237 mm->brk = brk; 238 goto success; 239 } 240 241 /* 242 * Always allow shrinking brk. 243 * __do_munmap() may downgrade mmap_sem to read. 244 */ 245 if (brk <= mm->brk) { 246 int ret; 247 248 /* 249 * mm->brk must to be protected by write mmap_sem so update it 250 * before downgrading mmap_sem. When __do_munmap() fails, 251 * mm->brk will be restored from origbrk. 252 */ 253 mm->brk = brk; 254 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 255 if (ret < 0) { 256 mm->brk = origbrk; 257 goto out; 258 } else if (ret == 1) { 259 downgraded = true; 260 } 261 goto success; 262 } 263 264 /* Check against existing mmap mappings. */ 265 next = find_vma(mm, oldbrk); 266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 267 goto out; 268 269 /* Ok, looks good - let it rip. */ 270 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 271 goto out; 272 mm->brk = brk; 273 274 success: 275 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 276 if (downgraded) 277 up_read(&mm->mmap_sem); 278 else 279 up_write(&mm->mmap_sem); 280 userfaultfd_unmap_complete(mm, &uf); 281 if (populate) 282 mm_populate(oldbrk, newbrk - oldbrk); 283 return brk; 284 285 out: 286 retval = origbrk; 287 up_write(&mm->mmap_sem); 288 return retval; 289 } 290 291 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 292 { 293 unsigned long max, prev_end, subtree_gap; 294 295 /* 296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 297 * allow two stack_guard_gaps between them here, and when choosing 298 * an unmapped area; whereas when expanding we only require one. 299 * That's a little inconsistent, but keeps the code here simpler. 300 */ 301 max = vm_start_gap(vma); 302 if (vma->vm_prev) { 303 prev_end = vm_end_gap(vma->vm_prev); 304 if (max > prev_end) 305 max -= prev_end; 306 else 307 max = 0; 308 } 309 if (vma->vm_rb.rb_left) { 310 subtree_gap = rb_entry(vma->vm_rb.rb_left, 311 struct vm_area_struct, vm_rb)->rb_subtree_gap; 312 if (subtree_gap > max) 313 max = subtree_gap; 314 } 315 if (vma->vm_rb.rb_right) { 316 subtree_gap = rb_entry(vma->vm_rb.rb_right, 317 struct vm_area_struct, vm_rb)->rb_subtree_gap; 318 if (subtree_gap > max) 319 max = subtree_gap; 320 } 321 return max; 322 } 323 324 #ifdef CONFIG_DEBUG_VM_RB 325 static int browse_rb(struct mm_struct *mm) 326 { 327 struct rb_root *root = &mm->mm_rb; 328 int i = 0, j, bug = 0; 329 struct rb_node *nd, *pn = NULL; 330 unsigned long prev = 0, pend = 0; 331 332 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 333 struct vm_area_struct *vma; 334 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 335 if (vma->vm_start < prev) { 336 pr_emerg("vm_start %lx < prev %lx\n", 337 vma->vm_start, prev); 338 bug = 1; 339 } 340 if (vma->vm_start < pend) { 341 pr_emerg("vm_start %lx < pend %lx\n", 342 vma->vm_start, pend); 343 bug = 1; 344 } 345 if (vma->vm_start > vma->vm_end) { 346 pr_emerg("vm_start %lx > vm_end %lx\n", 347 vma->vm_start, vma->vm_end); 348 bug = 1; 349 } 350 spin_lock(&mm->page_table_lock); 351 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 352 pr_emerg("free gap %lx, correct %lx\n", 353 vma->rb_subtree_gap, 354 vma_compute_subtree_gap(vma)); 355 bug = 1; 356 } 357 spin_unlock(&mm->page_table_lock); 358 i++; 359 pn = nd; 360 prev = vma->vm_start; 361 pend = vma->vm_end; 362 } 363 j = 0; 364 for (nd = pn; nd; nd = rb_prev(nd)) 365 j++; 366 if (i != j) { 367 pr_emerg("backwards %d, forwards %d\n", j, i); 368 bug = 1; 369 } 370 return bug ? -1 : i; 371 } 372 373 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 378 struct vm_area_struct *vma; 379 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 380 VM_BUG_ON_VMA(vma != ignore && 381 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 382 vma); 383 } 384 } 385 386 static void validate_mm(struct mm_struct *mm) 387 { 388 int bug = 0; 389 int i = 0; 390 unsigned long highest_address = 0; 391 struct vm_area_struct *vma = mm->mmap; 392 393 while (vma) { 394 struct anon_vma *anon_vma = vma->anon_vma; 395 struct anon_vma_chain *avc; 396 397 if (anon_vma) { 398 anon_vma_lock_read(anon_vma); 399 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 400 anon_vma_interval_tree_verify(avc); 401 anon_vma_unlock_read(anon_vma); 402 } 403 404 highest_address = vm_end_gap(vma); 405 vma = vma->vm_next; 406 i++; 407 } 408 if (i != mm->map_count) { 409 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 410 bug = 1; 411 } 412 if (highest_address != mm->highest_vm_end) { 413 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 414 mm->highest_vm_end, highest_address); 415 bug = 1; 416 } 417 i = browse_rb(mm); 418 if (i != mm->map_count) { 419 if (i != -1) 420 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 421 bug = 1; 422 } 423 VM_BUG_ON_MM(bug, mm); 424 } 425 #else 426 #define validate_mm_rb(root, ignore) do { } while (0) 427 #define validate_mm(mm) do { } while (0) 428 #endif 429 430 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 431 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 432 433 /* 434 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 435 * vma->vm_prev->vm_end values changed, without modifying the vma's position 436 * in the rbtree. 437 */ 438 static void vma_gap_update(struct vm_area_struct *vma) 439 { 440 /* 441 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 442 * function that does exactly what we want. 443 */ 444 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 445 } 446 447 static inline void vma_rb_insert(struct vm_area_struct *vma, 448 struct rb_root *root) 449 { 450 /* All rb_subtree_gap values must be consistent prior to insertion */ 451 validate_mm_rb(root, NULL); 452 453 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 454 } 455 456 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 457 { 458 /* 459 * Note rb_erase_augmented is a fairly large inline function, 460 * so make sure we instantiate it only once with our desired 461 * augmented rbtree callbacks. 462 */ 463 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 464 } 465 466 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 467 struct rb_root *root, 468 struct vm_area_struct *ignore) 469 { 470 /* 471 * All rb_subtree_gap values must be consistent prior to erase, 472 * with the possible exception of the "next" vma being erased if 473 * next->vm_start was reduced. 474 */ 475 validate_mm_rb(root, ignore); 476 477 __vma_rb_erase(vma, root); 478 } 479 480 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 481 struct rb_root *root) 482 { 483 /* 484 * All rb_subtree_gap values must be consistent prior to erase, 485 * with the possible exception of the vma being erased. 486 */ 487 validate_mm_rb(root, vma); 488 489 __vma_rb_erase(vma, root); 490 } 491 492 /* 493 * vma has some anon_vma assigned, and is already inserted on that 494 * anon_vma's interval trees. 495 * 496 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 497 * vma must be removed from the anon_vma's interval trees using 498 * anon_vma_interval_tree_pre_update_vma(). 499 * 500 * After the update, the vma will be reinserted using 501 * anon_vma_interval_tree_post_update_vma(). 502 * 503 * The entire update must be protected by exclusive mmap_sem and by 504 * the root anon_vma's mutex. 505 */ 506 static inline void 507 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 508 { 509 struct anon_vma_chain *avc; 510 511 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 512 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 513 } 514 515 static inline void 516 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 517 { 518 struct anon_vma_chain *avc; 519 520 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 521 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 522 } 523 524 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 525 unsigned long end, struct vm_area_struct **pprev, 526 struct rb_node ***rb_link, struct rb_node **rb_parent) 527 { 528 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 529 530 __rb_link = &mm->mm_rb.rb_node; 531 rb_prev = __rb_parent = NULL; 532 533 while (*__rb_link) { 534 struct vm_area_struct *vma_tmp; 535 536 __rb_parent = *__rb_link; 537 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 538 539 if (vma_tmp->vm_end > addr) { 540 /* Fail if an existing vma overlaps the area */ 541 if (vma_tmp->vm_start < end) 542 return -ENOMEM; 543 __rb_link = &__rb_parent->rb_left; 544 } else { 545 rb_prev = __rb_parent; 546 __rb_link = &__rb_parent->rb_right; 547 } 548 } 549 550 *pprev = NULL; 551 if (rb_prev) 552 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 553 *rb_link = __rb_link; 554 *rb_parent = __rb_parent; 555 return 0; 556 } 557 558 static unsigned long count_vma_pages_range(struct mm_struct *mm, 559 unsigned long addr, unsigned long end) 560 { 561 unsigned long nr_pages = 0; 562 struct vm_area_struct *vma; 563 564 /* Find first overlaping mapping */ 565 vma = find_vma_intersection(mm, addr, end); 566 if (!vma) 567 return 0; 568 569 nr_pages = (min(end, vma->vm_end) - 570 max(addr, vma->vm_start)) >> PAGE_SHIFT; 571 572 /* Iterate over the rest of the overlaps */ 573 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 574 unsigned long overlap_len; 575 576 if (vma->vm_start > end) 577 break; 578 579 overlap_len = min(end, vma->vm_end) - vma->vm_start; 580 nr_pages += overlap_len >> PAGE_SHIFT; 581 } 582 583 return nr_pages; 584 } 585 586 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 587 struct rb_node **rb_link, struct rb_node *rb_parent) 588 { 589 /* Update tracking information for the gap following the new vma. */ 590 if (vma->vm_next) 591 vma_gap_update(vma->vm_next); 592 else 593 mm->highest_vm_end = vm_end_gap(vma); 594 595 /* 596 * vma->vm_prev wasn't known when we followed the rbtree to find the 597 * correct insertion point for that vma. As a result, we could not 598 * update the vma vm_rb parents rb_subtree_gap values on the way down. 599 * So, we first insert the vma with a zero rb_subtree_gap value 600 * (to be consistent with what we did on the way down), and then 601 * immediately update the gap to the correct value. Finally we 602 * rebalance the rbtree after all augmented values have been set. 603 */ 604 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 605 vma->rb_subtree_gap = 0; 606 vma_gap_update(vma); 607 vma_rb_insert(vma, &mm->mm_rb); 608 } 609 610 static void __vma_link_file(struct vm_area_struct *vma) 611 { 612 struct file *file; 613 614 file = vma->vm_file; 615 if (file) { 616 struct address_space *mapping = file->f_mapping; 617 618 if (vma->vm_flags & VM_DENYWRITE) 619 atomic_dec(&file_inode(file)->i_writecount); 620 if (vma->vm_flags & VM_SHARED) 621 atomic_inc(&mapping->i_mmap_writable); 622 623 flush_dcache_mmap_lock(mapping); 624 vma_interval_tree_insert(vma, &mapping->i_mmap); 625 flush_dcache_mmap_unlock(mapping); 626 } 627 } 628 629 static void 630 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 631 struct vm_area_struct *prev, struct rb_node **rb_link, 632 struct rb_node *rb_parent) 633 { 634 __vma_link_list(mm, vma, prev, rb_parent); 635 __vma_link_rb(mm, vma, rb_link, rb_parent); 636 } 637 638 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 639 struct vm_area_struct *prev, struct rb_node **rb_link, 640 struct rb_node *rb_parent) 641 { 642 struct address_space *mapping = NULL; 643 644 if (vma->vm_file) { 645 mapping = vma->vm_file->f_mapping; 646 i_mmap_lock_write(mapping); 647 } 648 649 __vma_link(mm, vma, prev, rb_link, rb_parent); 650 __vma_link_file(vma); 651 652 if (mapping) 653 i_mmap_unlock_write(mapping); 654 655 mm->map_count++; 656 validate_mm(mm); 657 } 658 659 /* 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 661 * mm's list and rbtree. It has already been inserted into the interval tree. 662 */ 663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 664 { 665 struct vm_area_struct *prev; 666 struct rb_node **rb_link, *rb_parent; 667 668 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 669 &prev, &rb_link, &rb_parent)) 670 BUG(); 671 __vma_link(mm, vma, prev, rb_link, rb_parent); 672 mm->map_count++; 673 } 674 675 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 676 struct vm_area_struct *vma, 677 struct vm_area_struct *prev, 678 bool has_prev, 679 struct vm_area_struct *ignore) 680 { 681 struct vm_area_struct *next; 682 683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 684 next = vma->vm_next; 685 if (has_prev) 686 prev->vm_next = next; 687 else { 688 prev = vma->vm_prev; 689 if (prev) 690 prev->vm_next = next; 691 else 692 mm->mmap = next; 693 } 694 if (next) 695 next->vm_prev = prev; 696 697 /* Kill the cache */ 698 vmacache_invalidate(mm); 699 } 700 701 static inline void __vma_unlink_prev(struct mm_struct *mm, 702 struct vm_area_struct *vma, 703 struct vm_area_struct *prev) 704 { 705 __vma_unlink_common(mm, vma, prev, true, vma); 706 } 707 708 /* 709 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 710 * is already present in an i_mmap tree without adjusting the tree. 711 * The following helper function should be used when such adjustments 712 * are necessary. The "insert" vma (if any) is to be inserted 713 * before we drop the necessary locks. 714 */ 715 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 716 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 717 struct vm_area_struct *expand) 718 { 719 struct mm_struct *mm = vma->vm_mm; 720 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 721 struct address_space *mapping = NULL; 722 struct rb_root_cached *root = NULL; 723 struct anon_vma *anon_vma = NULL; 724 struct file *file = vma->vm_file; 725 bool start_changed = false, end_changed = false; 726 long adjust_next = 0; 727 int remove_next = 0; 728 729 if (next && !insert) { 730 struct vm_area_struct *exporter = NULL, *importer = NULL; 731 732 if (end >= next->vm_end) { 733 /* 734 * vma expands, overlapping all the next, and 735 * perhaps the one after too (mprotect case 6). 736 * The only other cases that gets here are 737 * case 1, case 7 and case 8. 738 */ 739 if (next == expand) { 740 /* 741 * The only case where we don't expand "vma" 742 * and we expand "next" instead is case 8. 743 */ 744 VM_WARN_ON(end != next->vm_end); 745 /* 746 * remove_next == 3 means we're 747 * removing "vma" and that to do so we 748 * swapped "vma" and "next". 749 */ 750 remove_next = 3; 751 VM_WARN_ON(file != next->vm_file); 752 swap(vma, next); 753 } else { 754 VM_WARN_ON(expand != vma); 755 /* 756 * case 1, 6, 7, remove_next == 2 is case 6, 757 * remove_next == 1 is case 1 or 7. 758 */ 759 remove_next = 1 + (end > next->vm_end); 760 VM_WARN_ON(remove_next == 2 && 761 end != next->vm_next->vm_end); 762 VM_WARN_ON(remove_next == 1 && 763 end != next->vm_end); 764 /* trim end to next, for case 6 first pass */ 765 end = next->vm_end; 766 } 767 768 exporter = next; 769 importer = vma; 770 771 /* 772 * If next doesn't have anon_vma, import from vma after 773 * next, if the vma overlaps with it. 774 */ 775 if (remove_next == 2 && !next->anon_vma) 776 exporter = next->vm_next; 777 778 } else if (end > next->vm_start) { 779 /* 780 * vma expands, overlapping part of the next: 781 * mprotect case 5 shifting the boundary up. 782 */ 783 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 784 exporter = next; 785 importer = vma; 786 VM_WARN_ON(expand != importer); 787 } else if (end < vma->vm_end) { 788 /* 789 * vma shrinks, and !insert tells it's not 790 * split_vma inserting another: so it must be 791 * mprotect case 4 shifting the boundary down. 792 */ 793 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 794 exporter = vma; 795 importer = next; 796 VM_WARN_ON(expand != importer); 797 } 798 799 /* 800 * Easily overlooked: when mprotect shifts the boundary, 801 * make sure the expanding vma has anon_vma set if the 802 * shrinking vma had, to cover any anon pages imported. 803 */ 804 if (exporter && exporter->anon_vma && !importer->anon_vma) { 805 int error; 806 807 importer->anon_vma = exporter->anon_vma; 808 error = anon_vma_clone(importer, exporter); 809 if (error) 810 return error; 811 } 812 } 813 again: 814 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 815 816 if (file) { 817 mapping = file->f_mapping; 818 root = &mapping->i_mmap; 819 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 820 821 if (adjust_next) 822 uprobe_munmap(next, next->vm_start, next->vm_end); 823 824 i_mmap_lock_write(mapping); 825 if (insert) { 826 /* 827 * Put into interval tree now, so instantiated pages 828 * are visible to arm/parisc __flush_dcache_page 829 * throughout; but we cannot insert into address 830 * space until vma start or end is updated. 831 */ 832 __vma_link_file(insert); 833 } 834 } 835 836 anon_vma = vma->anon_vma; 837 if (!anon_vma && adjust_next) 838 anon_vma = next->anon_vma; 839 if (anon_vma) { 840 VM_WARN_ON(adjust_next && next->anon_vma && 841 anon_vma != next->anon_vma); 842 anon_vma_lock_write(anon_vma); 843 anon_vma_interval_tree_pre_update_vma(vma); 844 if (adjust_next) 845 anon_vma_interval_tree_pre_update_vma(next); 846 } 847 848 if (root) { 849 flush_dcache_mmap_lock(mapping); 850 vma_interval_tree_remove(vma, root); 851 if (adjust_next) 852 vma_interval_tree_remove(next, root); 853 } 854 855 if (start != vma->vm_start) { 856 vma->vm_start = start; 857 start_changed = true; 858 } 859 if (end != vma->vm_end) { 860 vma->vm_end = end; 861 end_changed = true; 862 } 863 vma->vm_pgoff = pgoff; 864 if (adjust_next) { 865 next->vm_start += adjust_next << PAGE_SHIFT; 866 next->vm_pgoff += adjust_next; 867 } 868 869 if (root) { 870 if (adjust_next) 871 vma_interval_tree_insert(next, root); 872 vma_interval_tree_insert(vma, root); 873 flush_dcache_mmap_unlock(mapping); 874 } 875 876 if (remove_next) { 877 /* 878 * vma_merge has merged next into vma, and needs 879 * us to remove next before dropping the locks. 880 */ 881 if (remove_next != 3) 882 __vma_unlink_prev(mm, next, vma); 883 else 884 /* 885 * vma is not before next if they've been 886 * swapped. 887 * 888 * pre-swap() next->vm_start was reduced so 889 * tell validate_mm_rb to ignore pre-swap() 890 * "next" (which is stored in post-swap() 891 * "vma"). 892 */ 893 __vma_unlink_common(mm, next, NULL, false, vma); 894 if (file) 895 __remove_shared_vm_struct(next, file, mapping); 896 } else if (insert) { 897 /* 898 * split_vma has split insert from vma, and needs 899 * us to insert it before dropping the locks 900 * (it may either follow vma or precede it). 901 */ 902 __insert_vm_struct(mm, insert); 903 } else { 904 if (start_changed) 905 vma_gap_update(vma); 906 if (end_changed) { 907 if (!next) 908 mm->highest_vm_end = vm_end_gap(vma); 909 else if (!adjust_next) 910 vma_gap_update(next); 911 } 912 } 913 914 if (anon_vma) { 915 anon_vma_interval_tree_post_update_vma(vma); 916 if (adjust_next) 917 anon_vma_interval_tree_post_update_vma(next); 918 anon_vma_unlock_write(anon_vma); 919 } 920 if (mapping) 921 i_mmap_unlock_write(mapping); 922 923 if (root) { 924 uprobe_mmap(vma); 925 926 if (adjust_next) 927 uprobe_mmap(next); 928 } 929 930 if (remove_next) { 931 if (file) { 932 uprobe_munmap(next, next->vm_start, next->vm_end); 933 fput(file); 934 } 935 if (next->anon_vma) 936 anon_vma_merge(vma, next); 937 mm->map_count--; 938 mpol_put(vma_policy(next)); 939 vm_area_free(next); 940 /* 941 * In mprotect's case 6 (see comments on vma_merge), 942 * we must remove another next too. It would clutter 943 * up the code too much to do both in one go. 944 */ 945 if (remove_next != 3) { 946 /* 947 * If "next" was removed and vma->vm_end was 948 * expanded (up) over it, in turn 949 * "next->vm_prev->vm_end" changed and the 950 * "vma->vm_next" gap must be updated. 951 */ 952 next = vma->vm_next; 953 } else { 954 /* 955 * For the scope of the comment "next" and 956 * "vma" considered pre-swap(): if "vma" was 957 * removed, next->vm_start was expanded (down) 958 * over it and the "next" gap must be updated. 959 * Because of the swap() the post-swap() "vma" 960 * actually points to pre-swap() "next" 961 * (post-swap() "next" as opposed is now a 962 * dangling pointer). 963 */ 964 next = vma; 965 } 966 if (remove_next == 2) { 967 remove_next = 1; 968 end = next->vm_end; 969 goto again; 970 } 971 else if (next) 972 vma_gap_update(next); 973 else { 974 /* 975 * If remove_next == 2 we obviously can't 976 * reach this path. 977 * 978 * If remove_next == 3 we can't reach this 979 * path because pre-swap() next is always not 980 * NULL. pre-swap() "next" is not being 981 * removed and its next->vm_end is not altered 982 * (and furthermore "end" already matches 983 * next->vm_end in remove_next == 3). 984 * 985 * We reach this only in the remove_next == 1 986 * case if the "next" vma that was removed was 987 * the highest vma of the mm. However in such 988 * case next->vm_end == "end" and the extended 989 * "vma" has vma->vm_end == next->vm_end so 990 * mm->highest_vm_end doesn't need any update 991 * in remove_next == 1 case. 992 */ 993 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 994 } 995 } 996 if (insert && file) 997 uprobe_mmap(insert); 998 999 validate_mm(mm); 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * If the vma has a ->close operation then the driver probably needs to release 1006 * per-vma resources, so we don't attempt to merge those. 1007 */ 1008 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1009 struct file *file, unsigned long vm_flags, 1010 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1011 { 1012 /* 1013 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1014 * match the flags but dirty bit -- the caller should mark 1015 * merged VMA as dirty. If dirty bit won't be excluded from 1016 * comparison, we increase pressure on the memory system forcing 1017 * the kernel to generate new VMAs when old one could be 1018 * extended instead. 1019 */ 1020 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1021 return 0; 1022 if (vma->vm_file != file) 1023 return 0; 1024 if (vma->vm_ops && vma->vm_ops->close) 1025 return 0; 1026 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1027 return 0; 1028 return 1; 1029 } 1030 1031 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1032 struct anon_vma *anon_vma2, 1033 struct vm_area_struct *vma) 1034 { 1035 /* 1036 * The list_is_singular() test is to avoid merging VMA cloned from 1037 * parents. This can improve scalability caused by anon_vma lock. 1038 */ 1039 if ((!anon_vma1 || !anon_vma2) && (!vma || 1040 list_is_singular(&vma->anon_vma_chain))) 1041 return 1; 1042 return anon_vma1 == anon_vma2; 1043 } 1044 1045 /* 1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1047 * in front of (at a lower virtual address and file offset than) the vma. 1048 * 1049 * We cannot merge two vmas if they have differently assigned (non-NULL) 1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1051 * 1052 * We don't check here for the merged mmap wrapping around the end of pagecache 1053 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1054 * wrap, nor mmaps which cover the final page at index -1UL. 1055 */ 1056 static int 1057 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1058 struct anon_vma *anon_vma, struct file *file, 1059 pgoff_t vm_pgoff, 1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1061 { 1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1064 if (vma->vm_pgoff == vm_pgoff) 1065 return 1; 1066 } 1067 return 0; 1068 } 1069 1070 /* 1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1072 * beyond (at a higher virtual address and file offset than) the vma. 1073 * 1074 * We cannot merge two vmas if they have differently assigned (non-NULL) 1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1076 */ 1077 static int 1078 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1079 struct anon_vma *anon_vma, struct file *file, 1080 pgoff_t vm_pgoff, 1081 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1082 { 1083 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1084 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1085 pgoff_t vm_pglen; 1086 vm_pglen = vma_pages(vma); 1087 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1088 return 1; 1089 } 1090 return 0; 1091 } 1092 1093 /* 1094 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1095 * whether that can be merged with its predecessor or its successor. 1096 * Or both (it neatly fills a hole). 1097 * 1098 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1099 * certain not to be mapped by the time vma_merge is called; but when 1100 * called for mprotect, it is certain to be already mapped (either at 1101 * an offset within prev, or at the start of next), and the flags of 1102 * this area are about to be changed to vm_flags - and the no-change 1103 * case has already been eliminated. 1104 * 1105 * The following mprotect cases have to be considered, where AAAA is 1106 * the area passed down from mprotect_fixup, never extending beyond one 1107 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1108 * 1109 * AAAA AAAA AAAA AAAA 1110 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1111 * cannot merge might become might become might become 1112 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1113 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1114 * mremap move: PPPPXXXXXXXX 8 1115 * AAAA 1116 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1117 * might become case 1 below case 2 below case 3 below 1118 * 1119 * It is important for case 8 that the vma NNNN overlapping the 1120 * region AAAA is never going to extended over XXXX. Instead XXXX must 1121 * be extended in region AAAA and NNNN must be removed. This way in 1122 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1123 * rmap_locks, the properties of the merged vma will be already 1124 * correct for the whole merged range. Some of those properties like 1125 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1126 * be correct for the whole merged range immediately after the 1127 * rmap_locks are released. Otherwise if XXXX would be removed and 1128 * NNNN would be extended over the XXXX range, remove_migration_ptes 1129 * or other rmap walkers (if working on addresses beyond the "end" 1130 * parameter) may establish ptes with the wrong permissions of NNNN 1131 * instead of the right permissions of XXXX. 1132 */ 1133 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1134 struct vm_area_struct *prev, unsigned long addr, 1135 unsigned long end, unsigned long vm_flags, 1136 struct anon_vma *anon_vma, struct file *file, 1137 pgoff_t pgoff, struct mempolicy *policy, 1138 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1139 { 1140 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1141 struct vm_area_struct *area, *next; 1142 int err; 1143 1144 /* 1145 * We later require that vma->vm_flags == vm_flags, 1146 * so this tests vma->vm_flags & VM_SPECIAL, too. 1147 */ 1148 if (vm_flags & VM_SPECIAL) 1149 return NULL; 1150 1151 if (prev) 1152 next = prev->vm_next; 1153 else 1154 next = mm->mmap; 1155 area = next; 1156 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1157 next = next->vm_next; 1158 1159 /* verify some invariant that must be enforced by the caller */ 1160 VM_WARN_ON(prev && addr <= prev->vm_start); 1161 VM_WARN_ON(area && end > area->vm_end); 1162 VM_WARN_ON(addr >= end); 1163 1164 /* 1165 * Can it merge with the predecessor? 1166 */ 1167 if (prev && prev->vm_end == addr && 1168 mpol_equal(vma_policy(prev), policy) && 1169 can_vma_merge_after(prev, vm_flags, 1170 anon_vma, file, pgoff, 1171 vm_userfaultfd_ctx)) { 1172 /* 1173 * OK, it can. Can we now merge in the successor as well? 1174 */ 1175 if (next && end == next->vm_start && 1176 mpol_equal(policy, vma_policy(next)) && 1177 can_vma_merge_before(next, vm_flags, 1178 anon_vma, file, 1179 pgoff+pglen, 1180 vm_userfaultfd_ctx) && 1181 is_mergeable_anon_vma(prev->anon_vma, 1182 next->anon_vma, NULL)) { 1183 /* cases 1, 6 */ 1184 err = __vma_adjust(prev, prev->vm_start, 1185 next->vm_end, prev->vm_pgoff, NULL, 1186 prev); 1187 } else /* cases 2, 5, 7 */ 1188 err = __vma_adjust(prev, prev->vm_start, 1189 end, prev->vm_pgoff, NULL, prev); 1190 if (err) 1191 return NULL; 1192 khugepaged_enter_vma_merge(prev, vm_flags); 1193 return prev; 1194 } 1195 1196 /* 1197 * Can this new request be merged in front of next? 1198 */ 1199 if (next && end == next->vm_start && 1200 mpol_equal(policy, vma_policy(next)) && 1201 can_vma_merge_before(next, vm_flags, 1202 anon_vma, file, pgoff+pglen, 1203 vm_userfaultfd_ctx)) { 1204 if (prev && addr < prev->vm_end) /* case 4 */ 1205 err = __vma_adjust(prev, prev->vm_start, 1206 addr, prev->vm_pgoff, NULL, next); 1207 else { /* cases 3, 8 */ 1208 err = __vma_adjust(area, addr, next->vm_end, 1209 next->vm_pgoff - pglen, NULL, next); 1210 /* 1211 * In case 3 area is already equal to next and 1212 * this is a noop, but in case 8 "area" has 1213 * been removed and next was expanded over it. 1214 */ 1215 area = next; 1216 } 1217 if (err) 1218 return NULL; 1219 khugepaged_enter_vma_merge(area, vm_flags); 1220 return area; 1221 } 1222 1223 return NULL; 1224 } 1225 1226 /* 1227 * Rough compatbility check to quickly see if it's even worth looking 1228 * at sharing an anon_vma. 1229 * 1230 * They need to have the same vm_file, and the flags can only differ 1231 * in things that mprotect may change. 1232 * 1233 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1234 * we can merge the two vma's. For example, we refuse to merge a vma if 1235 * there is a vm_ops->close() function, because that indicates that the 1236 * driver is doing some kind of reference counting. But that doesn't 1237 * really matter for the anon_vma sharing case. 1238 */ 1239 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1240 { 1241 return a->vm_end == b->vm_start && 1242 mpol_equal(vma_policy(a), vma_policy(b)) && 1243 a->vm_file == b->vm_file && 1244 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1245 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1246 } 1247 1248 /* 1249 * Do some basic sanity checking to see if we can re-use the anon_vma 1250 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1251 * the same as 'old', the other will be the new one that is trying 1252 * to share the anon_vma. 1253 * 1254 * NOTE! This runs with mm_sem held for reading, so it is possible that 1255 * the anon_vma of 'old' is concurrently in the process of being set up 1256 * by another page fault trying to merge _that_. But that's ok: if it 1257 * is being set up, that automatically means that it will be a singleton 1258 * acceptable for merging, so we can do all of this optimistically. But 1259 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1260 * 1261 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1262 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1263 * is to return an anon_vma that is "complex" due to having gone through 1264 * a fork). 1265 * 1266 * We also make sure that the two vma's are compatible (adjacent, 1267 * and with the same memory policies). That's all stable, even with just 1268 * a read lock on the mm_sem. 1269 */ 1270 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1271 { 1272 if (anon_vma_compatible(a, b)) { 1273 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1274 1275 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1276 return anon_vma; 1277 } 1278 return NULL; 1279 } 1280 1281 /* 1282 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1283 * neighbouring vmas for a suitable anon_vma, before it goes off 1284 * to allocate a new anon_vma. It checks because a repetitive 1285 * sequence of mprotects and faults may otherwise lead to distinct 1286 * anon_vmas being allocated, preventing vma merge in subsequent 1287 * mprotect. 1288 */ 1289 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1290 { 1291 struct anon_vma *anon_vma; 1292 struct vm_area_struct *near; 1293 1294 near = vma->vm_next; 1295 if (!near) 1296 goto try_prev; 1297 1298 anon_vma = reusable_anon_vma(near, vma, near); 1299 if (anon_vma) 1300 return anon_vma; 1301 try_prev: 1302 near = vma->vm_prev; 1303 if (!near) 1304 goto none; 1305 1306 anon_vma = reusable_anon_vma(near, near, vma); 1307 if (anon_vma) 1308 return anon_vma; 1309 none: 1310 /* 1311 * There's no absolute need to look only at touching neighbours: 1312 * we could search further afield for "compatible" anon_vmas. 1313 * But it would probably just be a waste of time searching, 1314 * or lead to too many vmas hanging off the same anon_vma. 1315 * We're trying to allow mprotect remerging later on, 1316 * not trying to minimize memory used for anon_vmas. 1317 */ 1318 return NULL; 1319 } 1320 1321 /* 1322 * If a hint addr is less than mmap_min_addr change hint to be as 1323 * low as possible but still greater than mmap_min_addr 1324 */ 1325 static inline unsigned long round_hint_to_min(unsigned long hint) 1326 { 1327 hint &= PAGE_MASK; 1328 if (((void *)hint != NULL) && 1329 (hint < mmap_min_addr)) 1330 return PAGE_ALIGN(mmap_min_addr); 1331 return hint; 1332 } 1333 1334 static inline int mlock_future_check(struct mm_struct *mm, 1335 unsigned long flags, 1336 unsigned long len) 1337 { 1338 unsigned long locked, lock_limit; 1339 1340 /* mlock MCL_FUTURE? */ 1341 if (flags & VM_LOCKED) { 1342 locked = len >> PAGE_SHIFT; 1343 locked += mm->locked_vm; 1344 lock_limit = rlimit(RLIMIT_MEMLOCK); 1345 lock_limit >>= PAGE_SHIFT; 1346 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1347 return -EAGAIN; 1348 } 1349 return 0; 1350 } 1351 1352 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1353 { 1354 if (S_ISREG(inode->i_mode)) 1355 return MAX_LFS_FILESIZE; 1356 1357 if (S_ISBLK(inode->i_mode)) 1358 return MAX_LFS_FILESIZE; 1359 1360 /* Special "we do even unsigned file positions" case */ 1361 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1362 return 0; 1363 1364 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1365 return ULONG_MAX; 1366 } 1367 1368 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1369 unsigned long pgoff, unsigned long len) 1370 { 1371 u64 maxsize = file_mmap_size_max(file, inode); 1372 1373 if (maxsize && len > maxsize) 1374 return false; 1375 maxsize -= len; 1376 if (pgoff > maxsize >> PAGE_SHIFT) 1377 return false; 1378 return true; 1379 } 1380 1381 /* 1382 * The caller must hold down_write(¤t->mm->mmap_sem). 1383 */ 1384 unsigned long do_mmap(struct file *file, unsigned long addr, 1385 unsigned long len, unsigned long prot, 1386 unsigned long flags, vm_flags_t vm_flags, 1387 unsigned long pgoff, unsigned long *populate, 1388 struct list_head *uf) 1389 { 1390 struct mm_struct *mm = current->mm; 1391 int pkey = 0; 1392 1393 *populate = 0; 1394 1395 if (!len) 1396 return -EINVAL; 1397 1398 /* 1399 * Does the application expect PROT_READ to imply PROT_EXEC? 1400 * 1401 * (the exception is when the underlying filesystem is noexec 1402 * mounted, in which case we dont add PROT_EXEC.) 1403 */ 1404 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1405 if (!(file && path_noexec(&file->f_path))) 1406 prot |= PROT_EXEC; 1407 1408 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1409 if (flags & MAP_FIXED_NOREPLACE) 1410 flags |= MAP_FIXED; 1411 1412 if (!(flags & MAP_FIXED)) 1413 addr = round_hint_to_min(addr); 1414 1415 /* Careful about overflows.. */ 1416 len = PAGE_ALIGN(len); 1417 if (!len) 1418 return -ENOMEM; 1419 1420 /* offset overflow? */ 1421 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1422 return -EOVERFLOW; 1423 1424 /* Too many mappings? */ 1425 if (mm->map_count > sysctl_max_map_count) 1426 return -ENOMEM; 1427 1428 /* Obtain the address to map to. we verify (or select) it and ensure 1429 * that it represents a valid section of the address space. 1430 */ 1431 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1432 if (offset_in_page(addr)) 1433 return addr; 1434 1435 if (flags & MAP_FIXED_NOREPLACE) { 1436 struct vm_area_struct *vma = find_vma(mm, addr); 1437 1438 if (vma && vma->vm_start < addr + len) 1439 return -EEXIST; 1440 } 1441 1442 if (prot == PROT_EXEC) { 1443 pkey = execute_only_pkey(mm); 1444 if (pkey < 0) 1445 pkey = 0; 1446 } 1447 1448 /* Do simple checking here so the lower-level routines won't have 1449 * to. we assume access permissions have been handled by the open 1450 * of the memory object, so we don't do any here. 1451 */ 1452 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1453 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1454 1455 if (flags & MAP_LOCKED) 1456 if (!can_do_mlock()) 1457 return -EPERM; 1458 1459 if (mlock_future_check(mm, vm_flags, len)) 1460 return -EAGAIN; 1461 1462 if (file) { 1463 struct inode *inode = file_inode(file); 1464 unsigned long flags_mask; 1465 1466 if (!file_mmap_ok(file, inode, pgoff, len)) 1467 return -EOVERFLOW; 1468 1469 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1470 1471 switch (flags & MAP_TYPE) { 1472 case MAP_SHARED: 1473 /* 1474 * Force use of MAP_SHARED_VALIDATE with non-legacy 1475 * flags. E.g. MAP_SYNC is dangerous to use with 1476 * MAP_SHARED as you don't know which consistency model 1477 * you will get. We silently ignore unsupported flags 1478 * with MAP_SHARED to preserve backward compatibility. 1479 */ 1480 flags &= LEGACY_MAP_MASK; 1481 /* fall through */ 1482 case MAP_SHARED_VALIDATE: 1483 if (flags & ~flags_mask) 1484 return -EOPNOTSUPP; 1485 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1486 return -EACCES; 1487 1488 /* 1489 * Make sure we don't allow writing to an append-only 1490 * file.. 1491 */ 1492 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1493 return -EACCES; 1494 1495 /* 1496 * Make sure there are no mandatory locks on the file. 1497 */ 1498 if (locks_verify_locked(file)) 1499 return -EAGAIN; 1500 1501 vm_flags |= VM_SHARED | VM_MAYSHARE; 1502 if (!(file->f_mode & FMODE_WRITE)) 1503 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1504 1505 /* fall through */ 1506 case MAP_PRIVATE: 1507 if (!(file->f_mode & FMODE_READ)) 1508 return -EACCES; 1509 if (path_noexec(&file->f_path)) { 1510 if (vm_flags & VM_EXEC) 1511 return -EPERM; 1512 vm_flags &= ~VM_MAYEXEC; 1513 } 1514 1515 if (!file->f_op->mmap) 1516 return -ENODEV; 1517 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1518 return -EINVAL; 1519 break; 1520 1521 default: 1522 return -EINVAL; 1523 } 1524 } else { 1525 switch (flags & MAP_TYPE) { 1526 case MAP_SHARED: 1527 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1528 return -EINVAL; 1529 /* 1530 * Ignore pgoff. 1531 */ 1532 pgoff = 0; 1533 vm_flags |= VM_SHARED | VM_MAYSHARE; 1534 break; 1535 case MAP_PRIVATE: 1536 /* 1537 * Set pgoff according to addr for anon_vma. 1538 */ 1539 pgoff = addr >> PAGE_SHIFT; 1540 break; 1541 default: 1542 return -EINVAL; 1543 } 1544 } 1545 1546 /* 1547 * Set 'VM_NORESERVE' if we should not account for the 1548 * memory use of this mapping. 1549 */ 1550 if (flags & MAP_NORESERVE) { 1551 /* We honor MAP_NORESERVE if allowed to overcommit */ 1552 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1553 vm_flags |= VM_NORESERVE; 1554 1555 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1556 if (file && is_file_hugepages(file)) 1557 vm_flags |= VM_NORESERVE; 1558 } 1559 1560 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1561 if (!IS_ERR_VALUE(addr) && 1562 ((vm_flags & VM_LOCKED) || 1563 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1564 *populate = len; 1565 return addr; 1566 } 1567 1568 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1569 unsigned long prot, unsigned long flags, 1570 unsigned long fd, unsigned long pgoff) 1571 { 1572 struct file *file = NULL; 1573 unsigned long retval; 1574 1575 if (!(flags & MAP_ANONYMOUS)) { 1576 audit_mmap_fd(fd, flags); 1577 file = fget(fd); 1578 if (!file) 1579 return -EBADF; 1580 if (is_file_hugepages(file)) 1581 len = ALIGN(len, huge_page_size(hstate_file(file))); 1582 retval = -EINVAL; 1583 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1584 goto out_fput; 1585 } else if (flags & MAP_HUGETLB) { 1586 struct user_struct *user = NULL; 1587 struct hstate *hs; 1588 1589 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1590 if (!hs) 1591 return -EINVAL; 1592 1593 len = ALIGN(len, huge_page_size(hs)); 1594 /* 1595 * VM_NORESERVE is used because the reservations will be 1596 * taken when vm_ops->mmap() is called 1597 * A dummy user value is used because we are not locking 1598 * memory so no accounting is necessary 1599 */ 1600 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1601 VM_NORESERVE, 1602 &user, HUGETLB_ANONHUGE_INODE, 1603 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1604 if (IS_ERR(file)) 1605 return PTR_ERR(file); 1606 } 1607 1608 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1609 1610 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1611 out_fput: 1612 if (file) 1613 fput(file); 1614 return retval; 1615 } 1616 1617 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1618 unsigned long, prot, unsigned long, flags, 1619 unsigned long, fd, unsigned long, pgoff) 1620 { 1621 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1622 } 1623 1624 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1625 struct mmap_arg_struct { 1626 unsigned long addr; 1627 unsigned long len; 1628 unsigned long prot; 1629 unsigned long flags; 1630 unsigned long fd; 1631 unsigned long offset; 1632 }; 1633 1634 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1635 { 1636 struct mmap_arg_struct a; 1637 1638 if (copy_from_user(&a, arg, sizeof(a))) 1639 return -EFAULT; 1640 if (offset_in_page(a.offset)) 1641 return -EINVAL; 1642 1643 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1644 a.offset >> PAGE_SHIFT); 1645 } 1646 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1647 1648 /* 1649 * Some shared mappings will want the pages marked read-only 1650 * to track write events. If so, we'll downgrade vm_page_prot 1651 * to the private version (using protection_map[] without the 1652 * VM_SHARED bit). 1653 */ 1654 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1655 { 1656 vm_flags_t vm_flags = vma->vm_flags; 1657 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1658 1659 /* If it was private or non-writable, the write bit is already clear */ 1660 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1661 return 0; 1662 1663 /* The backer wishes to know when pages are first written to? */ 1664 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1665 return 1; 1666 1667 /* The open routine did something to the protections that pgprot_modify 1668 * won't preserve? */ 1669 if (pgprot_val(vm_page_prot) != 1670 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1671 return 0; 1672 1673 /* Do we need to track softdirty? */ 1674 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1675 return 1; 1676 1677 /* Specialty mapping? */ 1678 if (vm_flags & VM_PFNMAP) 1679 return 0; 1680 1681 /* Can the mapping track the dirty pages? */ 1682 return vma->vm_file && vma->vm_file->f_mapping && 1683 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1684 } 1685 1686 /* 1687 * We account for memory if it's a private writeable mapping, 1688 * not hugepages and VM_NORESERVE wasn't set. 1689 */ 1690 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1691 { 1692 /* 1693 * hugetlb has its own accounting separate from the core VM 1694 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1695 */ 1696 if (file && is_file_hugepages(file)) 1697 return 0; 1698 1699 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1700 } 1701 1702 unsigned long mmap_region(struct file *file, unsigned long addr, 1703 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1704 struct list_head *uf) 1705 { 1706 struct mm_struct *mm = current->mm; 1707 struct vm_area_struct *vma, *prev; 1708 int error; 1709 struct rb_node **rb_link, *rb_parent; 1710 unsigned long charged = 0; 1711 1712 /* Check against address space limit. */ 1713 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1714 unsigned long nr_pages; 1715 1716 /* 1717 * MAP_FIXED may remove pages of mappings that intersects with 1718 * requested mapping. Account for the pages it would unmap. 1719 */ 1720 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1721 1722 if (!may_expand_vm(mm, vm_flags, 1723 (len >> PAGE_SHIFT) - nr_pages)) 1724 return -ENOMEM; 1725 } 1726 1727 /* Clear old maps */ 1728 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1729 &rb_parent)) { 1730 if (do_munmap(mm, addr, len, uf)) 1731 return -ENOMEM; 1732 } 1733 1734 /* 1735 * Private writable mapping: check memory availability 1736 */ 1737 if (accountable_mapping(file, vm_flags)) { 1738 charged = len >> PAGE_SHIFT; 1739 if (security_vm_enough_memory_mm(mm, charged)) 1740 return -ENOMEM; 1741 vm_flags |= VM_ACCOUNT; 1742 } 1743 1744 /* 1745 * Can we just expand an old mapping? 1746 */ 1747 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1748 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1749 if (vma) 1750 goto out; 1751 1752 /* 1753 * Determine the object being mapped and call the appropriate 1754 * specific mapper. the address has already been validated, but 1755 * not unmapped, but the maps are removed from the list. 1756 */ 1757 vma = vm_area_alloc(mm); 1758 if (!vma) { 1759 error = -ENOMEM; 1760 goto unacct_error; 1761 } 1762 1763 vma->vm_start = addr; 1764 vma->vm_end = addr + len; 1765 vma->vm_flags = vm_flags; 1766 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1767 vma->vm_pgoff = pgoff; 1768 1769 if (file) { 1770 if (vm_flags & VM_DENYWRITE) { 1771 error = deny_write_access(file); 1772 if (error) 1773 goto free_vma; 1774 } 1775 if (vm_flags & VM_SHARED) { 1776 error = mapping_map_writable(file->f_mapping); 1777 if (error) 1778 goto allow_write_and_free_vma; 1779 } 1780 1781 /* ->mmap() can change vma->vm_file, but must guarantee that 1782 * vma_link() below can deny write-access if VM_DENYWRITE is set 1783 * and map writably if VM_SHARED is set. This usually means the 1784 * new file must not have been exposed to user-space, yet. 1785 */ 1786 vma->vm_file = get_file(file); 1787 error = call_mmap(file, vma); 1788 if (error) 1789 goto unmap_and_free_vma; 1790 1791 /* Can addr have changed?? 1792 * 1793 * Answer: Yes, several device drivers can do it in their 1794 * f_op->mmap method. -DaveM 1795 * Bug: If addr is changed, prev, rb_link, rb_parent should 1796 * be updated for vma_link() 1797 */ 1798 WARN_ON_ONCE(addr != vma->vm_start); 1799 1800 addr = vma->vm_start; 1801 vm_flags = vma->vm_flags; 1802 } else if (vm_flags & VM_SHARED) { 1803 error = shmem_zero_setup(vma); 1804 if (error) 1805 goto free_vma; 1806 } else { 1807 vma_set_anonymous(vma); 1808 } 1809 1810 vma_link(mm, vma, prev, rb_link, rb_parent); 1811 /* Once vma denies write, undo our temporary denial count */ 1812 if (file) { 1813 if (vm_flags & VM_SHARED) 1814 mapping_unmap_writable(file->f_mapping); 1815 if (vm_flags & VM_DENYWRITE) 1816 allow_write_access(file); 1817 } 1818 file = vma->vm_file; 1819 out: 1820 perf_event_mmap(vma); 1821 1822 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1823 if (vm_flags & VM_LOCKED) { 1824 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1825 is_vm_hugetlb_page(vma) || 1826 vma == get_gate_vma(current->mm)) 1827 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1828 else 1829 mm->locked_vm += (len >> PAGE_SHIFT); 1830 } 1831 1832 if (file) 1833 uprobe_mmap(vma); 1834 1835 /* 1836 * New (or expanded) vma always get soft dirty status. 1837 * Otherwise user-space soft-dirty page tracker won't 1838 * be able to distinguish situation when vma area unmapped, 1839 * then new mapped in-place (which must be aimed as 1840 * a completely new data area). 1841 */ 1842 vma->vm_flags |= VM_SOFTDIRTY; 1843 1844 vma_set_page_prot(vma); 1845 1846 return addr; 1847 1848 unmap_and_free_vma: 1849 vma->vm_file = NULL; 1850 fput(file); 1851 1852 /* Undo any partial mapping done by a device driver. */ 1853 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1854 charged = 0; 1855 if (vm_flags & VM_SHARED) 1856 mapping_unmap_writable(file->f_mapping); 1857 allow_write_and_free_vma: 1858 if (vm_flags & VM_DENYWRITE) 1859 allow_write_access(file); 1860 free_vma: 1861 vm_area_free(vma); 1862 unacct_error: 1863 if (charged) 1864 vm_unacct_memory(charged); 1865 return error; 1866 } 1867 1868 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1869 { 1870 /* 1871 * We implement the search by looking for an rbtree node that 1872 * immediately follows a suitable gap. That is, 1873 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1874 * - gap_end = vma->vm_start >= info->low_limit + length; 1875 * - gap_end - gap_start >= length 1876 */ 1877 1878 struct mm_struct *mm = current->mm; 1879 struct vm_area_struct *vma; 1880 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1881 1882 /* Adjust search length to account for worst case alignment overhead */ 1883 length = info->length + info->align_mask; 1884 if (length < info->length) 1885 return -ENOMEM; 1886 1887 /* Adjust search limits by the desired length */ 1888 if (info->high_limit < length) 1889 return -ENOMEM; 1890 high_limit = info->high_limit - length; 1891 1892 if (info->low_limit > high_limit) 1893 return -ENOMEM; 1894 low_limit = info->low_limit + length; 1895 1896 /* Check if rbtree root looks promising */ 1897 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1898 goto check_highest; 1899 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1900 if (vma->rb_subtree_gap < length) 1901 goto check_highest; 1902 1903 while (true) { 1904 /* Visit left subtree if it looks promising */ 1905 gap_end = vm_start_gap(vma); 1906 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1907 struct vm_area_struct *left = 1908 rb_entry(vma->vm_rb.rb_left, 1909 struct vm_area_struct, vm_rb); 1910 if (left->rb_subtree_gap >= length) { 1911 vma = left; 1912 continue; 1913 } 1914 } 1915 1916 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1917 check_current: 1918 /* Check if current node has a suitable gap */ 1919 if (gap_start > high_limit) 1920 return -ENOMEM; 1921 if (gap_end >= low_limit && 1922 gap_end > gap_start && gap_end - gap_start >= length) 1923 goto found; 1924 1925 /* Visit right subtree if it looks promising */ 1926 if (vma->vm_rb.rb_right) { 1927 struct vm_area_struct *right = 1928 rb_entry(vma->vm_rb.rb_right, 1929 struct vm_area_struct, vm_rb); 1930 if (right->rb_subtree_gap >= length) { 1931 vma = right; 1932 continue; 1933 } 1934 } 1935 1936 /* Go back up the rbtree to find next candidate node */ 1937 while (true) { 1938 struct rb_node *prev = &vma->vm_rb; 1939 if (!rb_parent(prev)) 1940 goto check_highest; 1941 vma = rb_entry(rb_parent(prev), 1942 struct vm_area_struct, vm_rb); 1943 if (prev == vma->vm_rb.rb_left) { 1944 gap_start = vm_end_gap(vma->vm_prev); 1945 gap_end = vm_start_gap(vma); 1946 goto check_current; 1947 } 1948 } 1949 } 1950 1951 check_highest: 1952 /* Check highest gap, which does not precede any rbtree node */ 1953 gap_start = mm->highest_vm_end; 1954 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1955 if (gap_start > high_limit) 1956 return -ENOMEM; 1957 1958 found: 1959 /* We found a suitable gap. Clip it with the original low_limit. */ 1960 if (gap_start < info->low_limit) 1961 gap_start = info->low_limit; 1962 1963 /* Adjust gap address to the desired alignment */ 1964 gap_start += (info->align_offset - gap_start) & info->align_mask; 1965 1966 VM_BUG_ON(gap_start + info->length > info->high_limit); 1967 VM_BUG_ON(gap_start + info->length > gap_end); 1968 return gap_start; 1969 } 1970 1971 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1972 { 1973 struct mm_struct *mm = current->mm; 1974 struct vm_area_struct *vma; 1975 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1976 1977 /* Adjust search length to account for worst case alignment overhead */ 1978 length = info->length + info->align_mask; 1979 if (length < info->length) 1980 return -ENOMEM; 1981 1982 /* 1983 * Adjust search limits by the desired length. 1984 * See implementation comment at top of unmapped_area(). 1985 */ 1986 gap_end = info->high_limit; 1987 if (gap_end < length) 1988 return -ENOMEM; 1989 high_limit = gap_end - length; 1990 1991 if (info->low_limit > high_limit) 1992 return -ENOMEM; 1993 low_limit = info->low_limit + length; 1994 1995 /* Check highest gap, which does not precede any rbtree node */ 1996 gap_start = mm->highest_vm_end; 1997 if (gap_start <= high_limit) 1998 goto found_highest; 1999 2000 /* Check if rbtree root looks promising */ 2001 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2002 return -ENOMEM; 2003 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2004 if (vma->rb_subtree_gap < length) 2005 return -ENOMEM; 2006 2007 while (true) { 2008 /* Visit right subtree if it looks promising */ 2009 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2010 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2011 struct vm_area_struct *right = 2012 rb_entry(vma->vm_rb.rb_right, 2013 struct vm_area_struct, vm_rb); 2014 if (right->rb_subtree_gap >= length) { 2015 vma = right; 2016 continue; 2017 } 2018 } 2019 2020 check_current: 2021 /* Check if current node has a suitable gap */ 2022 gap_end = vm_start_gap(vma); 2023 if (gap_end < low_limit) 2024 return -ENOMEM; 2025 if (gap_start <= high_limit && 2026 gap_end > gap_start && gap_end - gap_start >= length) 2027 goto found; 2028 2029 /* Visit left subtree if it looks promising */ 2030 if (vma->vm_rb.rb_left) { 2031 struct vm_area_struct *left = 2032 rb_entry(vma->vm_rb.rb_left, 2033 struct vm_area_struct, vm_rb); 2034 if (left->rb_subtree_gap >= length) { 2035 vma = left; 2036 continue; 2037 } 2038 } 2039 2040 /* Go back up the rbtree to find next candidate node */ 2041 while (true) { 2042 struct rb_node *prev = &vma->vm_rb; 2043 if (!rb_parent(prev)) 2044 return -ENOMEM; 2045 vma = rb_entry(rb_parent(prev), 2046 struct vm_area_struct, vm_rb); 2047 if (prev == vma->vm_rb.rb_right) { 2048 gap_start = vma->vm_prev ? 2049 vm_end_gap(vma->vm_prev) : 0; 2050 goto check_current; 2051 } 2052 } 2053 } 2054 2055 found: 2056 /* We found a suitable gap. Clip it with the original high_limit. */ 2057 if (gap_end > info->high_limit) 2058 gap_end = info->high_limit; 2059 2060 found_highest: 2061 /* Compute highest gap address at the desired alignment */ 2062 gap_end -= info->length; 2063 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2064 2065 VM_BUG_ON(gap_end < info->low_limit); 2066 VM_BUG_ON(gap_end < gap_start); 2067 return gap_end; 2068 } 2069 2070 2071 #ifndef arch_get_mmap_end 2072 #define arch_get_mmap_end(addr) (TASK_SIZE) 2073 #endif 2074 2075 #ifndef arch_get_mmap_base 2076 #define arch_get_mmap_base(addr, base) (base) 2077 #endif 2078 2079 /* Get an address range which is currently unmapped. 2080 * For shmat() with addr=0. 2081 * 2082 * Ugly calling convention alert: 2083 * Return value with the low bits set means error value, 2084 * ie 2085 * if (ret & ~PAGE_MASK) 2086 * error = ret; 2087 * 2088 * This function "knows" that -ENOMEM has the bits set. 2089 */ 2090 #ifndef HAVE_ARCH_UNMAPPED_AREA 2091 unsigned long 2092 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2093 unsigned long len, unsigned long pgoff, unsigned long flags) 2094 { 2095 struct mm_struct *mm = current->mm; 2096 struct vm_area_struct *vma, *prev; 2097 struct vm_unmapped_area_info info; 2098 const unsigned long mmap_end = arch_get_mmap_end(addr); 2099 2100 if (len > mmap_end - mmap_min_addr) 2101 return -ENOMEM; 2102 2103 if (flags & MAP_FIXED) 2104 return addr; 2105 2106 if (addr) { 2107 addr = PAGE_ALIGN(addr); 2108 vma = find_vma_prev(mm, addr, &prev); 2109 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2110 (!vma || addr + len <= vm_start_gap(vma)) && 2111 (!prev || addr >= vm_end_gap(prev))) 2112 return addr; 2113 } 2114 2115 info.flags = 0; 2116 info.length = len; 2117 info.low_limit = mm->mmap_base; 2118 info.high_limit = mmap_end; 2119 info.align_mask = 0; 2120 return vm_unmapped_area(&info); 2121 } 2122 #endif 2123 2124 /* 2125 * This mmap-allocator allocates new areas top-down from below the 2126 * stack's low limit (the base): 2127 */ 2128 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2129 unsigned long 2130 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2131 unsigned long len, unsigned long pgoff, 2132 unsigned long flags) 2133 { 2134 struct vm_area_struct *vma, *prev; 2135 struct mm_struct *mm = current->mm; 2136 struct vm_unmapped_area_info info; 2137 const unsigned long mmap_end = arch_get_mmap_end(addr); 2138 2139 /* requested length too big for entire address space */ 2140 if (len > mmap_end - mmap_min_addr) 2141 return -ENOMEM; 2142 2143 if (flags & MAP_FIXED) 2144 return addr; 2145 2146 /* requesting a specific address */ 2147 if (addr) { 2148 addr = PAGE_ALIGN(addr); 2149 vma = find_vma_prev(mm, addr, &prev); 2150 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2151 (!vma || addr + len <= vm_start_gap(vma)) && 2152 (!prev || addr >= vm_end_gap(prev))) 2153 return addr; 2154 } 2155 2156 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2157 info.length = len; 2158 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2159 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2160 info.align_mask = 0; 2161 addr = vm_unmapped_area(&info); 2162 2163 /* 2164 * A failed mmap() very likely causes application failure, 2165 * so fall back to the bottom-up function here. This scenario 2166 * can happen with large stack limits and large mmap() 2167 * allocations. 2168 */ 2169 if (offset_in_page(addr)) { 2170 VM_BUG_ON(addr != -ENOMEM); 2171 info.flags = 0; 2172 info.low_limit = TASK_UNMAPPED_BASE; 2173 info.high_limit = mmap_end; 2174 addr = vm_unmapped_area(&info); 2175 } 2176 2177 return addr; 2178 } 2179 #endif 2180 2181 unsigned long 2182 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2183 unsigned long pgoff, unsigned long flags) 2184 { 2185 unsigned long (*get_area)(struct file *, unsigned long, 2186 unsigned long, unsigned long, unsigned long); 2187 2188 unsigned long error = arch_mmap_check(addr, len, flags); 2189 if (error) 2190 return error; 2191 2192 /* Careful about overflows.. */ 2193 if (len > TASK_SIZE) 2194 return -ENOMEM; 2195 2196 get_area = current->mm->get_unmapped_area; 2197 if (file) { 2198 if (file->f_op->get_unmapped_area) 2199 get_area = file->f_op->get_unmapped_area; 2200 } else if (flags & MAP_SHARED) { 2201 /* 2202 * mmap_region() will call shmem_zero_setup() to create a file, 2203 * so use shmem's get_unmapped_area in case it can be huge. 2204 * do_mmap_pgoff() will clear pgoff, so match alignment. 2205 */ 2206 pgoff = 0; 2207 get_area = shmem_get_unmapped_area; 2208 } 2209 2210 addr = get_area(file, addr, len, pgoff, flags); 2211 if (IS_ERR_VALUE(addr)) 2212 return addr; 2213 2214 if (addr > TASK_SIZE - len) 2215 return -ENOMEM; 2216 if (offset_in_page(addr)) 2217 return -EINVAL; 2218 2219 error = security_mmap_addr(addr); 2220 return error ? error : addr; 2221 } 2222 2223 EXPORT_SYMBOL(get_unmapped_area); 2224 2225 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2226 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2227 { 2228 struct rb_node *rb_node; 2229 struct vm_area_struct *vma; 2230 2231 /* Check the cache first. */ 2232 vma = vmacache_find(mm, addr); 2233 if (likely(vma)) 2234 return vma; 2235 2236 rb_node = mm->mm_rb.rb_node; 2237 2238 while (rb_node) { 2239 struct vm_area_struct *tmp; 2240 2241 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2242 2243 if (tmp->vm_end > addr) { 2244 vma = tmp; 2245 if (tmp->vm_start <= addr) 2246 break; 2247 rb_node = rb_node->rb_left; 2248 } else 2249 rb_node = rb_node->rb_right; 2250 } 2251 2252 if (vma) 2253 vmacache_update(addr, vma); 2254 return vma; 2255 } 2256 2257 EXPORT_SYMBOL(find_vma); 2258 2259 /* 2260 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2261 */ 2262 struct vm_area_struct * 2263 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2264 struct vm_area_struct **pprev) 2265 { 2266 struct vm_area_struct *vma; 2267 2268 vma = find_vma(mm, addr); 2269 if (vma) { 2270 *pprev = vma->vm_prev; 2271 } else { 2272 struct rb_node *rb_node = mm->mm_rb.rb_node; 2273 *pprev = NULL; 2274 while (rb_node) { 2275 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2276 rb_node = rb_node->rb_right; 2277 } 2278 } 2279 return vma; 2280 } 2281 2282 /* 2283 * Verify that the stack growth is acceptable and 2284 * update accounting. This is shared with both the 2285 * grow-up and grow-down cases. 2286 */ 2287 static int acct_stack_growth(struct vm_area_struct *vma, 2288 unsigned long size, unsigned long grow) 2289 { 2290 struct mm_struct *mm = vma->vm_mm; 2291 unsigned long new_start; 2292 2293 /* address space limit tests */ 2294 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2295 return -ENOMEM; 2296 2297 /* Stack limit test */ 2298 if (size > rlimit(RLIMIT_STACK)) 2299 return -ENOMEM; 2300 2301 /* mlock limit tests */ 2302 if (vma->vm_flags & VM_LOCKED) { 2303 unsigned long locked; 2304 unsigned long limit; 2305 locked = mm->locked_vm + grow; 2306 limit = rlimit(RLIMIT_MEMLOCK); 2307 limit >>= PAGE_SHIFT; 2308 if (locked > limit && !capable(CAP_IPC_LOCK)) 2309 return -ENOMEM; 2310 } 2311 2312 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2313 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2314 vma->vm_end - size; 2315 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2316 return -EFAULT; 2317 2318 /* 2319 * Overcommit.. This must be the final test, as it will 2320 * update security statistics. 2321 */ 2322 if (security_vm_enough_memory_mm(mm, grow)) 2323 return -ENOMEM; 2324 2325 return 0; 2326 } 2327 2328 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2329 /* 2330 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2331 * vma is the last one with address > vma->vm_end. Have to extend vma. 2332 */ 2333 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2334 { 2335 struct mm_struct *mm = vma->vm_mm; 2336 struct vm_area_struct *next; 2337 unsigned long gap_addr; 2338 int error = 0; 2339 2340 if (!(vma->vm_flags & VM_GROWSUP)) 2341 return -EFAULT; 2342 2343 /* Guard against exceeding limits of the address space. */ 2344 address &= PAGE_MASK; 2345 if (address >= (TASK_SIZE & PAGE_MASK)) 2346 return -ENOMEM; 2347 address += PAGE_SIZE; 2348 2349 /* Enforce stack_guard_gap */ 2350 gap_addr = address + stack_guard_gap; 2351 2352 /* Guard against overflow */ 2353 if (gap_addr < address || gap_addr > TASK_SIZE) 2354 gap_addr = TASK_SIZE; 2355 2356 next = vma->vm_next; 2357 if (next && next->vm_start < gap_addr && 2358 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2359 if (!(next->vm_flags & VM_GROWSUP)) 2360 return -ENOMEM; 2361 /* Check that both stack segments have the same anon_vma? */ 2362 } 2363 2364 /* We must make sure the anon_vma is allocated. */ 2365 if (unlikely(anon_vma_prepare(vma))) 2366 return -ENOMEM; 2367 2368 /* 2369 * vma->vm_start/vm_end cannot change under us because the caller 2370 * is required to hold the mmap_sem in read mode. We need the 2371 * anon_vma lock to serialize against concurrent expand_stacks. 2372 */ 2373 anon_vma_lock_write(vma->anon_vma); 2374 2375 /* Somebody else might have raced and expanded it already */ 2376 if (address > vma->vm_end) { 2377 unsigned long size, grow; 2378 2379 size = address - vma->vm_start; 2380 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2381 2382 error = -ENOMEM; 2383 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2384 error = acct_stack_growth(vma, size, grow); 2385 if (!error) { 2386 /* 2387 * vma_gap_update() doesn't support concurrent 2388 * updates, but we only hold a shared mmap_sem 2389 * lock here, so we need to protect against 2390 * concurrent vma expansions. 2391 * anon_vma_lock_write() doesn't help here, as 2392 * we don't guarantee that all growable vmas 2393 * in a mm share the same root anon vma. 2394 * So, we reuse mm->page_table_lock to guard 2395 * against concurrent vma expansions. 2396 */ 2397 spin_lock(&mm->page_table_lock); 2398 if (vma->vm_flags & VM_LOCKED) 2399 mm->locked_vm += grow; 2400 vm_stat_account(mm, vma->vm_flags, grow); 2401 anon_vma_interval_tree_pre_update_vma(vma); 2402 vma->vm_end = address; 2403 anon_vma_interval_tree_post_update_vma(vma); 2404 if (vma->vm_next) 2405 vma_gap_update(vma->vm_next); 2406 else 2407 mm->highest_vm_end = vm_end_gap(vma); 2408 spin_unlock(&mm->page_table_lock); 2409 2410 perf_event_mmap(vma); 2411 } 2412 } 2413 } 2414 anon_vma_unlock_write(vma->anon_vma); 2415 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2416 validate_mm(mm); 2417 return error; 2418 } 2419 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2420 2421 /* 2422 * vma is the first one with address < vma->vm_start. Have to extend vma. 2423 */ 2424 int expand_downwards(struct vm_area_struct *vma, 2425 unsigned long address) 2426 { 2427 struct mm_struct *mm = vma->vm_mm; 2428 struct vm_area_struct *prev; 2429 int error = 0; 2430 2431 address &= PAGE_MASK; 2432 if (address < mmap_min_addr) 2433 return -EPERM; 2434 2435 /* Enforce stack_guard_gap */ 2436 prev = vma->vm_prev; 2437 /* Check that both stack segments have the same anon_vma? */ 2438 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2439 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2440 if (address - prev->vm_end < stack_guard_gap) 2441 return -ENOMEM; 2442 } 2443 2444 /* We must make sure the anon_vma is allocated. */ 2445 if (unlikely(anon_vma_prepare(vma))) 2446 return -ENOMEM; 2447 2448 /* 2449 * vma->vm_start/vm_end cannot change under us because the caller 2450 * is required to hold the mmap_sem in read mode. We need the 2451 * anon_vma lock to serialize against concurrent expand_stacks. 2452 */ 2453 anon_vma_lock_write(vma->anon_vma); 2454 2455 /* Somebody else might have raced and expanded it already */ 2456 if (address < vma->vm_start) { 2457 unsigned long size, grow; 2458 2459 size = vma->vm_end - address; 2460 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2461 2462 error = -ENOMEM; 2463 if (grow <= vma->vm_pgoff) { 2464 error = acct_stack_growth(vma, size, grow); 2465 if (!error) { 2466 /* 2467 * vma_gap_update() doesn't support concurrent 2468 * updates, but we only hold a shared mmap_sem 2469 * lock here, so we need to protect against 2470 * concurrent vma expansions. 2471 * anon_vma_lock_write() doesn't help here, as 2472 * we don't guarantee that all growable vmas 2473 * in a mm share the same root anon vma. 2474 * So, we reuse mm->page_table_lock to guard 2475 * against concurrent vma expansions. 2476 */ 2477 spin_lock(&mm->page_table_lock); 2478 if (vma->vm_flags & VM_LOCKED) 2479 mm->locked_vm += grow; 2480 vm_stat_account(mm, vma->vm_flags, grow); 2481 anon_vma_interval_tree_pre_update_vma(vma); 2482 vma->vm_start = address; 2483 vma->vm_pgoff -= grow; 2484 anon_vma_interval_tree_post_update_vma(vma); 2485 vma_gap_update(vma); 2486 spin_unlock(&mm->page_table_lock); 2487 2488 perf_event_mmap(vma); 2489 } 2490 } 2491 } 2492 anon_vma_unlock_write(vma->anon_vma); 2493 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2494 validate_mm(mm); 2495 return error; 2496 } 2497 2498 /* enforced gap between the expanding stack and other mappings. */ 2499 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2500 2501 static int __init cmdline_parse_stack_guard_gap(char *p) 2502 { 2503 unsigned long val; 2504 char *endptr; 2505 2506 val = simple_strtoul(p, &endptr, 10); 2507 if (!*endptr) 2508 stack_guard_gap = val << PAGE_SHIFT; 2509 2510 return 0; 2511 } 2512 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2513 2514 #ifdef CONFIG_STACK_GROWSUP 2515 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2516 { 2517 return expand_upwards(vma, address); 2518 } 2519 2520 struct vm_area_struct * 2521 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2522 { 2523 struct vm_area_struct *vma, *prev; 2524 2525 addr &= PAGE_MASK; 2526 vma = find_vma_prev(mm, addr, &prev); 2527 if (vma && (vma->vm_start <= addr)) 2528 return vma; 2529 /* don't alter vm_end if the coredump is running */ 2530 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2531 return NULL; 2532 if (prev->vm_flags & VM_LOCKED) 2533 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2534 return prev; 2535 } 2536 #else 2537 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2538 { 2539 return expand_downwards(vma, address); 2540 } 2541 2542 struct vm_area_struct * 2543 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2544 { 2545 struct vm_area_struct *vma; 2546 unsigned long start; 2547 2548 addr &= PAGE_MASK; 2549 vma = find_vma(mm, addr); 2550 if (!vma) 2551 return NULL; 2552 if (vma->vm_start <= addr) 2553 return vma; 2554 if (!(vma->vm_flags & VM_GROWSDOWN)) 2555 return NULL; 2556 /* don't alter vm_start if the coredump is running */ 2557 if (!mmget_still_valid(mm)) 2558 return NULL; 2559 start = vma->vm_start; 2560 if (expand_stack(vma, addr)) 2561 return NULL; 2562 if (vma->vm_flags & VM_LOCKED) 2563 populate_vma_page_range(vma, addr, start, NULL); 2564 return vma; 2565 } 2566 #endif 2567 2568 EXPORT_SYMBOL_GPL(find_extend_vma); 2569 2570 /* 2571 * Ok - we have the memory areas we should free on the vma list, 2572 * so release them, and do the vma updates. 2573 * 2574 * Called with the mm semaphore held. 2575 */ 2576 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2577 { 2578 unsigned long nr_accounted = 0; 2579 2580 /* Update high watermark before we lower total_vm */ 2581 update_hiwater_vm(mm); 2582 do { 2583 long nrpages = vma_pages(vma); 2584 2585 if (vma->vm_flags & VM_ACCOUNT) 2586 nr_accounted += nrpages; 2587 vm_stat_account(mm, vma->vm_flags, -nrpages); 2588 vma = remove_vma(vma); 2589 } while (vma); 2590 vm_unacct_memory(nr_accounted); 2591 validate_mm(mm); 2592 } 2593 2594 /* 2595 * Get rid of page table information in the indicated region. 2596 * 2597 * Called with the mm semaphore held. 2598 */ 2599 static void unmap_region(struct mm_struct *mm, 2600 struct vm_area_struct *vma, struct vm_area_struct *prev, 2601 unsigned long start, unsigned long end) 2602 { 2603 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2604 struct mmu_gather tlb; 2605 2606 lru_add_drain(); 2607 tlb_gather_mmu(&tlb, mm, start, end); 2608 update_hiwater_rss(mm); 2609 unmap_vmas(&tlb, vma, start, end); 2610 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2611 next ? next->vm_start : USER_PGTABLES_CEILING); 2612 tlb_finish_mmu(&tlb, start, end); 2613 } 2614 2615 /* 2616 * Create a list of vma's touched by the unmap, removing them from the mm's 2617 * vma list as we go.. 2618 */ 2619 static void 2620 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2621 struct vm_area_struct *prev, unsigned long end) 2622 { 2623 struct vm_area_struct **insertion_point; 2624 struct vm_area_struct *tail_vma = NULL; 2625 2626 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2627 vma->vm_prev = NULL; 2628 do { 2629 vma_rb_erase(vma, &mm->mm_rb); 2630 mm->map_count--; 2631 tail_vma = vma; 2632 vma = vma->vm_next; 2633 } while (vma && vma->vm_start < end); 2634 *insertion_point = vma; 2635 if (vma) { 2636 vma->vm_prev = prev; 2637 vma_gap_update(vma); 2638 } else 2639 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2640 tail_vma->vm_next = NULL; 2641 2642 /* Kill the cache */ 2643 vmacache_invalidate(mm); 2644 } 2645 2646 /* 2647 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2648 * has already been checked or doesn't make sense to fail. 2649 */ 2650 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2651 unsigned long addr, int new_below) 2652 { 2653 struct vm_area_struct *new; 2654 int err; 2655 2656 if (vma->vm_ops && vma->vm_ops->split) { 2657 err = vma->vm_ops->split(vma, addr); 2658 if (err) 2659 return err; 2660 } 2661 2662 new = vm_area_dup(vma); 2663 if (!new) 2664 return -ENOMEM; 2665 2666 if (new_below) 2667 new->vm_end = addr; 2668 else { 2669 new->vm_start = addr; 2670 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2671 } 2672 2673 err = vma_dup_policy(vma, new); 2674 if (err) 2675 goto out_free_vma; 2676 2677 err = anon_vma_clone(new, vma); 2678 if (err) 2679 goto out_free_mpol; 2680 2681 if (new->vm_file) 2682 get_file(new->vm_file); 2683 2684 if (new->vm_ops && new->vm_ops->open) 2685 new->vm_ops->open(new); 2686 2687 if (new_below) 2688 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2689 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2690 else 2691 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2692 2693 /* Success. */ 2694 if (!err) 2695 return 0; 2696 2697 /* Clean everything up if vma_adjust failed. */ 2698 if (new->vm_ops && new->vm_ops->close) 2699 new->vm_ops->close(new); 2700 if (new->vm_file) 2701 fput(new->vm_file); 2702 unlink_anon_vmas(new); 2703 out_free_mpol: 2704 mpol_put(vma_policy(new)); 2705 out_free_vma: 2706 vm_area_free(new); 2707 return err; 2708 } 2709 2710 /* 2711 * Split a vma into two pieces at address 'addr', a new vma is allocated 2712 * either for the first part or the tail. 2713 */ 2714 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2715 unsigned long addr, int new_below) 2716 { 2717 if (mm->map_count >= sysctl_max_map_count) 2718 return -ENOMEM; 2719 2720 return __split_vma(mm, vma, addr, new_below); 2721 } 2722 2723 /* Munmap is split into 2 main parts -- this part which finds 2724 * what needs doing, and the areas themselves, which do the 2725 * work. This now handles partial unmappings. 2726 * Jeremy Fitzhardinge <jeremy@goop.org> 2727 */ 2728 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2729 struct list_head *uf, bool downgrade) 2730 { 2731 unsigned long end; 2732 struct vm_area_struct *vma, *prev, *last; 2733 2734 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2735 return -EINVAL; 2736 2737 len = PAGE_ALIGN(len); 2738 end = start + len; 2739 if (len == 0) 2740 return -EINVAL; 2741 2742 /* 2743 * arch_unmap() might do unmaps itself. It must be called 2744 * and finish any rbtree manipulation before this code 2745 * runs and also starts to manipulate the rbtree. 2746 */ 2747 arch_unmap(mm, start, end); 2748 2749 /* Find the first overlapping VMA */ 2750 vma = find_vma(mm, start); 2751 if (!vma) 2752 return 0; 2753 prev = vma->vm_prev; 2754 /* we have start < vma->vm_end */ 2755 2756 /* if it doesn't overlap, we have nothing.. */ 2757 if (vma->vm_start >= end) 2758 return 0; 2759 2760 /* 2761 * If we need to split any vma, do it now to save pain later. 2762 * 2763 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2764 * unmapped vm_area_struct will remain in use: so lower split_vma 2765 * places tmp vma above, and higher split_vma places tmp vma below. 2766 */ 2767 if (start > vma->vm_start) { 2768 int error; 2769 2770 /* 2771 * Make sure that map_count on return from munmap() will 2772 * not exceed its limit; but let map_count go just above 2773 * its limit temporarily, to help free resources as expected. 2774 */ 2775 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2776 return -ENOMEM; 2777 2778 error = __split_vma(mm, vma, start, 0); 2779 if (error) 2780 return error; 2781 prev = vma; 2782 } 2783 2784 /* Does it split the last one? */ 2785 last = find_vma(mm, end); 2786 if (last && end > last->vm_start) { 2787 int error = __split_vma(mm, last, end, 1); 2788 if (error) 2789 return error; 2790 } 2791 vma = prev ? prev->vm_next : mm->mmap; 2792 2793 if (unlikely(uf)) { 2794 /* 2795 * If userfaultfd_unmap_prep returns an error the vmas 2796 * will remain splitted, but userland will get a 2797 * highly unexpected error anyway. This is no 2798 * different than the case where the first of the two 2799 * __split_vma fails, but we don't undo the first 2800 * split, despite we could. This is unlikely enough 2801 * failure that it's not worth optimizing it for. 2802 */ 2803 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2804 if (error) 2805 return error; 2806 } 2807 2808 /* 2809 * unlock any mlock()ed ranges before detaching vmas 2810 */ 2811 if (mm->locked_vm) { 2812 struct vm_area_struct *tmp = vma; 2813 while (tmp && tmp->vm_start < end) { 2814 if (tmp->vm_flags & VM_LOCKED) { 2815 mm->locked_vm -= vma_pages(tmp); 2816 munlock_vma_pages_all(tmp); 2817 } 2818 2819 tmp = tmp->vm_next; 2820 } 2821 } 2822 2823 /* Detach vmas from rbtree */ 2824 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2825 2826 if (downgrade) 2827 downgrade_write(&mm->mmap_sem); 2828 2829 unmap_region(mm, vma, prev, start, end); 2830 2831 /* Fix up all other VM information */ 2832 remove_vma_list(mm, vma); 2833 2834 return downgrade ? 1 : 0; 2835 } 2836 2837 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2838 struct list_head *uf) 2839 { 2840 return __do_munmap(mm, start, len, uf, false); 2841 } 2842 2843 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2844 { 2845 int ret; 2846 struct mm_struct *mm = current->mm; 2847 LIST_HEAD(uf); 2848 2849 if (down_write_killable(&mm->mmap_sem)) 2850 return -EINTR; 2851 2852 ret = __do_munmap(mm, start, len, &uf, downgrade); 2853 /* 2854 * Returning 1 indicates mmap_sem is downgraded. 2855 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2856 * it to 0 before return. 2857 */ 2858 if (ret == 1) { 2859 up_read(&mm->mmap_sem); 2860 ret = 0; 2861 } else 2862 up_write(&mm->mmap_sem); 2863 2864 userfaultfd_unmap_complete(mm, &uf); 2865 return ret; 2866 } 2867 2868 int vm_munmap(unsigned long start, size_t len) 2869 { 2870 return __vm_munmap(start, len, false); 2871 } 2872 EXPORT_SYMBOL(vm_munmap); 2873 2874 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2875 { 2876 profile_munmap(addr); 2877 return __vm_munmap(addr, len, true); 2878 } 2879 2880 2881 /* 2882 * Emulation of deprecated remap_file_pages() syscall. 2883 */ 2884 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2885 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2886 { 2887 2888 struct mm_struct *mm = current->mm; 2889 struct vm_area_struct *vma; 2890 unsigned long populate = 0; 2891 unsigned long ret = -EINVAL; 2892 struct file *file; 2893 2894 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2895 current->comm, current->pid); 2896 2897 if (prot) 2898 return ret; 2899 start = start & PAGE_MASK; 2900 size = size & PAGE_MASK; 2901 2902 if (start + size <= start) 2903 return ret; 2904 2905 /* Does pgoff wrap? */ 2906 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2907 return ret; 2908 2909 if (down_write_killable(&mm->mmap_sem)) 2910 return -EINTR; 2911 2912 vma = find_vma(mm, start); 2913 2914 if (!vma || !(vma->vm_flags & VM_SHARED)) 2915 goto out; 2916 2917 if (start < vma->vm_start) 2918 goto out; 2919 2920 if (start + size > vma->vm_end) { 2921 struct vm_area_struct *next; 2922 2923 for (next = vma->vm_next; next; next = next->vm_next) { 2924 /* hole between vmas ? */ 2925 if (next->vm_start != next->vm_prev->vm_end) 2926 goto out; 2927 2928 if (next->vm_file != vma->vm_file) 2929 goto out; 2930 2931 if (next->vm_flags != vma->vm_flags) 2932 goto out; 2933 2934 if (start + size <= next->vm_end) 2935 break; 2936 } 2937 2938 if (!next) 2939 goto out; 2940 } 2941 2942 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2943 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2944 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2945 2946 flags &= MAP_NONBLOCK; 2947 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2948 if (vma->vm_flags & VM_LOCKED) { 2949 struct vm_area_struct *tmp; 2950 flags |= MAP_LOCKED; 2951 2952 /* drop PG_Mlocked flag for over-mapped range */ 2953 for (tmp = vma; tmp->vm_start >= start + size; 2954 tmp = tmp->vm_next) { 2955 /* 2956 * Split pmd and munlock page on the border 2957 * of the range. 2958 */ 2959 vma_adjust_trans_huge(tmp, start, start + size, 0); 2960 2961 munlock_vma_pages_range(tmp, 2962 max(tmp->vm_start, start), 2963 min(tmp->vm_end, start + size)); 2964 } 2965 } 2966 2967 file = get_file(vma->vm_file); 2968 ret = do_mmap_pgoff(vma->vm_file, start, size, 2969 prot, flags, pgoff, &populate, NULL); 2970 fput(file); 2971 out: 2972 up_write(&mm->mmap_sem); 2973 if (populate) 2974 mm_populate(ret, populate); 2975 if (!IS_ERR_VALUE(ret)) 2976 ret = 0; 2977 return ret; 2978 } 2979 2980 /* 2981 * this is really a simplified "do_mmap". it only handles 2982 * anonymous maps. eventually we may be able to do some 2983 * brk-specific accounting here. 2984 */ 2985 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2986 { 2987 struct mm_struct *mm = current->mm; 2988 struct vm_area_struct *vma, *prev; 2989 struct rb_node **rb_link, *rb_parent; 2990 pgoff_t pgoff = addr >> PAGE_SHIFT; 2991 int error; 2992 2993 /* Until we need other flags, refuse anything except VM_EXEC. */ 2994 if ((flags & (~VM_EXEC)) != 0) 2995 return -EINVAL; 2996 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2997 2998 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2999 if (offset_in_page(error)) 3000 return error; 3001 3002 error = mlock_future_check(mm, mm->def_flags, len); 3003 if (error) 3004 return error; 3005 3006 /* 3007 * Clear old maps. this also does some error checking for us 3008 */ 3009 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3010 &rb_parent)) { 3011 if (do_munmap(mm, addr, len, uf)) 3012 return -ENOMEM; 3013 } 3014 3015 /* Check against address space limits *after* clearing old maps... */ 3016 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3017 return -ENOMEM; 3018 3019 if (mm->map_count > sysctl_max_map_count) 3020 return -ENOMEM; 3021 3022 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3023 return -ENOMEM; 3024 3025 /* Can we just expand an old private anonymous mapping? */ 3026 vma = vma_merge(mm, prev, addr, addr + len, flags, 3027 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3028 if (vma) 3029 goto out; 3030 3031 /* 3032 * create a vma struct for an anonymous mapping 3033 */ 3034 vma = vm_area_alloc(mm); 3035 if (!vma) { 3036 vm_unacct_memory(len >> PAGE_SHIFT); 3037 return -ENOMEM; 3038 } 3039 3040 vma_set_anonymous(vma); 3041 vma->vm_start = addr; 3042 vma->vm_end = addr + len; 3043 vma->vm_pgoff = pgoff; 3044 vma->vm_flags = flags; 3045 vma->vm_page_prot = vm_get_page_prot(flags); 3046 vma_link(mm, vma, prev, rb_link, rb_parent); 3047 out: 3048 perf_event_mmap(vma); 3049 mm->total_vm += len >> PAGE_SHIFT; 3050 mm->data_vm += len >> PAGE_SHIFT; 3051 if (flags & VM_LOCKED) 3052 mm->locked_vm += (len >> PAGE_SHIFT); 3053 vma->vm_flags |= VM_SOFTDIRTY; 3054 return 0; 3055 } 3056 3057 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3058 { 3059 struct mm_struct *mm = current->mm; 3060 unsigned long len; 3061 int ret; 3062 bool populate; 3063 LIST_HEAD(uf); 3064 3065 len = PAGE_ALIGN(request); 3066 if (len < request) 3067 return -ENOMEM; 3068 if (!len) 3069 return 0; 3070 3071 if (down_write_killable(&mm->mmap_sem)) 3072 return -EINTR; 3073 3074 ret = do_brk_flags(addr, len, flags, &uf); 3075 populate = ((mm->def_flags & VM_LOCKED) != 0); 3076 up_write(&mm->mmap_sem); 3077 userfaultfd_unmap_complete(mm, &uf); 3078 if (populate && !ret) 3079 mm_populate(addr, len); 3080 return ret; 3081 } 3082 EXPORT_SYMBOL(vm_brk_flags); 3083 3084 int vm_brk(unsigned long addr, unsigned long len) 3085 { 3086 return vm_brk_flags(addr, len, 0); 3087 } 3088 EXPORT_SYMBOL(vm_brk); 3089 3090 /* Release all mmaps. */ 3091 void exit_mmap(struct mm_struct *mm) 3092 { 3093 struct mmu_gather tlb; 3094 struct vm_area_struct *vma; 3095 unsigned long nr_accounted = 0; 3096 3097 /* mm's last user has gone, and its about to be pulled down */ 3098 mmu_notifier_release(mm); 3099 3100 if (unlikely(mm_is_oom_victim(mm))) { 3101 /* 3102 * Manually reap the mm to free as much memory as possible. 3103 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3104 * this mm from further consideration. Taking mm->mmap_sem for 3105 * write after setting MMF_OOM_SKIP will guarantee that the oom 3106 * reaper will not run on this mm again after mmap_sem is 3107 * dropped. 3108 * 3109 * Nothing can be holding mm->mmap_sem here and the above call 3110 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3111 * __oom_reap_task_mm() will not block. 3112 * 3113 * This needs to be done before calling munlock_vma_pages_all(), 3114 * which clears VM_LOCKED, otherwise the oom reaper cannot 3115 * reliably test it. 3116 */ 3117 (void)__oom_reap_task_mm(mm); 3118 3119 set_bit(MMF_OOM_SKIP, &mm->flags); 3120 down_write(&mm->mmap_sem); 3121 up_write(&mm->mmap_sem); 3122 } 3123 3124 if (mm->locked_vm) { 3125 vma = mm->mmap; 3126 while (vma) { 3127 if (vma->vm_flags & VM_LOCKED) 3128 munlock_vma_pages_all(vma); 3129 vma = vma->vm_next; 3130 } 3131 } 3132 3133 arch_exit_mmap(mm); 3134 3135 vma = mm->mmap; 3136 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3137 return; 3138 3139 lru_add_drain(); 3140 flush_cache_mm(mm); 3141 tlb_gather_mmu(&tlb, mm, 0, -1); 3142 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3143 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3144 unmap_vmas(&tlb, vma, 0, -1); 3145 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3146 tlb_finish_mmu(&tlb, 0, -1); 3147 3148 /* 3149 * Walk the list again, actually closing and freeing it, 3150 * with preemption enabled, without holding any MM locks. 3151 */ 3152 while (vma) { 3153 if (vma->vm_flags & VM_ACCOUNT) 3154 nr_accounted += vma_pages(vma); 3155 vma = remove_vma(vma); 3156 } 3157 vm_unacct_memory(nr_accounted); 3158 } 3159 3160 /* Insert vm structure into process list sorted by address 3161 * and into the inode's i_mmap tree. If vm_file is non-NULL 3162 * then i_mmap_rwsem is taken here. 3163 */ 3164 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3165 { 3166 struct vm_area_struct *prev; 3167 struct rb_node **rb_link, *rb_parent; 3168 3169 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3170 &prev, &rb_link, &rb_parent)) 3171 return -ENOMEM; 3172 if ((vma->vm_flags & VM_ACCOUNT) && 3173 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3174 return -ENOMEM; 3175 3176 /* 3177 * The vm_pgoff of a purely anonymous vma should be irrelevant 3178 * until its first write fault, when page's anon_vma and index 3179 * are set. But now set the vm_pgoff it will almost certainly 3180 * end up with (unless mremap moves it elsewhere before that 3181 * first wfault), so /proc/pid/maps tells a consistent story. 3182 * 3183 * By setting it to reflect the virtual start address of the 3184 * vma, merges and splits can happen in a seamless way, just 3185 * using the existing file pgoff checks and manipulations. 3186 * Similarly in do_mmap_pgoff and in do_brk. 3187 */ 3188 if (vma_is_anonymous(vma)) { 3189 BUG_ON(vma->anon_vma); 3190 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3191 } 3192 3193 vma_link(mm, vma, prev, rb_link, rb_parent); 3194 return 0; 3195 } 3196 3197 /* 3198 * Copy the vma structure to a new location in the same mm, 3199 * prior to moving page table entries, to effect an mremap move. 3200 */ 3201 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3202 unsigned long addr, unsigned long len, pgoff_t pgoff, 3203 bool *need_rmap_locks) 3204 { 3205 struct vm_area_struct *vma = *vmap; 3206 unsigned long vma_start = vma->vm_start; 3207 struct mm_struct *mm = vma->vm_mm; 3208 struct vm_area_struct *new_vma, *prev; 3209 struct rb_node **rb_link, *rb_parent; 3210 bool faulted_in_anon_vma = true; 3211 3212 /* 3213 * If anonymous vma has not yet been faulted, update new pgoff 3214 * to match new location, to increase its chance of merging. 3215 */ 3216 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3217 pgoff = addr >> PAGE_SHIFT; 3218 faulted_in_anon_vma = false; 3219 } 3220 3221 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3222 return NULL; /* should never get here */ 3223 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3224 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3225 vma->vm_userfaultfd_ctx); 3226 if (new_vma) { 3227 /* 3228 * Source vma may have been merged into new_vma 3229 */ 3230 if (unlikely(vma_start >= new_vma->vm_start && 3231 vma_start < new_vma->vm_end)) { 3232 /* 3233 * The only way we can get a vma_merge with 3234 * self during an mremap is if the vma hasn't 3235 * been faulted in yet and we were allowed to 3236 * reset the dst vma->vm_pgoff to the 3237 * destination address of the mremap to allow 3238 * the merge to happen. mremap must change the 3239 * vm_pgoff linearity between src and dst vmas 3240 * (in turn preventing a vma_merge) to be 3241 * safe. It is only safe to keep the vm_pgoff 3242 * linear if there are no pages mapped yet. 3243 */ 3244 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3245 *vmap = vma = new_vma; 3246 } 3247 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3248 } else { 3249 new_vma = vm_area_dup(vma); 3250 if (!new_vma) 3251 goto out; 3252 new_vma->vm_start = addr; 3253 new_vma->vm_end = addr + len; 3254 new_vma->vm_pgoff = pgoff; 3255 if (vma_dup_policy(vma, new_vma)) 3256 goto out_free_vma; 3257 if (anon_vma_clone(new_vma, vma)) 3258 goto out_free_mempol; 3259 if (new_vma->vm_file) 3260 get_file(new_vma->vm_file); 3261 if (new_vma->vm_ops && new_vma->vm_ops->open) 3262 new_vma->vm_ops->open(new_vma); 3263 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3264 *need_rmap_locks = false; 3265 } 3266 return new_vma; 3267 3268 out_free_mempol: 3269 mpol_put(vma_policy(new_vma)); 3270 out_free_vma: 3271 vm_area_free(new_vma); 3272 out: 3273 return NULL; 3274 } 3275 3276 /* 3277 * Return true if the calling process may expand its vm space by the passed 3278 * number of pages 3279 */ 3280 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3281 { 3282 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3283 return false; 3284 3285 if (is_data_mapping(flags) && 3286 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3287 /* Workaround for Valgrind */ 3288 if (rlimit(RLIMIT_DATA) == 0 && 3289 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3290 return true; 3291 3292 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3293 current->comm, current->pid, 3294 (mm->data_vm + npages) << PAGE_SHIFT, 3295 rlimit(RLIMIT_DATA), 3296 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3297 3298 if (!ignore_rlimit_data) 3299 return false; 3300 } 3301 3302 return true; 3303 } 3304 3305 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3306 { 3307 mm->total_vm += npages; 3308 3309 if (is_exec_mapping(flags)) 3310 mm->exec_vm += npages; 3311 else if (is_stack_mapping(flags)) 3312 mm->stack_vm += npages; 3313 else if (is_data_mapping(flags)) 3314 mm->data_vm += npages; 3315 } 3316 3317 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3318 3319 /* 3320 * Having a close hook prevents vma merging regardless of flags. 3321 */ 3322 static void special_mapping_close(struct vm_area_struct *vma) 3323 { 3324 } 3325 3326 static const char *special_mapping_name(struct vm_area_struct *vma) 3327 { 3328 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3329 } 3330 3331 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3332 { 3333 struct vm_special_mapping *sm = new_vma->vm_private_data; 3334 3335 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3336 return -EFAULT; 3337 3338 if (sm->mremap) 3339 return sm->mremap(sm, new_vma); 3340 3341 return 0; 3342 } 3343 3344 static const struct vm_operations_struct special_mapping_vmops = { 3345 .close = special_mapping_close, 3346 .fault = special_mapping_fault, 3347 .mremap = special_mapping_mremap, 3348 .name = special_mapping_name, 3349 }; 3350 3351 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3352 .close = special_mapping_close, 3353 .fault = special_mapping_fault, 3354 }; 3355 3356 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3357 { 3358 struct vm_area_struct *vma = vmf->vma; 3359 pgoff_t pgoff; 3360 struct page **pages; 3361 3362 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3363 pages = vma->vm_private_data; 3364 } else { 3365 struct vm_special_mapping *sm = vma->vm_private_data; 3366 3367 if (sm->fault) 3368 return sm->fault(sm, vmf->vma, vmf); 3369 3370 pages = sm->pages; 3371 } 3372 3373 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3374 pgoff--; 3375 3376 if (*pages) { 3377 struct page *page = *pages; 3378 get_page(page); 3379 vmf->page = page; 3380 return 0; 3381 } 3382 3383 return VM_FAULT_SIGBUS; 3384 } 3385 3386 static struct vm_area_struct *__install_special_mapping( 3387 struct mm_struct *mm, 3388 unsigned long addr, unsigned long len, 3389 unsigned long vm_flags, void *priv, 3390 const struct vm_operations_struct *ops) 3391 { 3392 int ret; 3393 struct vm_area_struct *vma; 3394 3395 vma = vm_area_alloc(mm); 3396 if (unlikely(vma == NULL)) 3397 return ERR_PTR(-ENOMEM); 3398 3399 vma->vm_start = addr; 3400 vma->vm_end = addr + len; 3401 3402 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3403 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3404 3405 vma->vm_ops = ops; 3406 vma->vm_private_data = priv; 3407 3408 ret = insert_vm_struct(mm, vma); 3409 if (ret) 3410 goto out; 3411 3412 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3413 3414 perf_event_mmap(vma); 3415 3416 return vma; 3417 3418 out: 3419 vm_area_free(vma); 3420 return ERR_PTR(ret); 3421 } 3422 3423 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3424 const struct vm_special_mapping *sm) 3425 { 3426 return vma->vm_private_data == sm && 3427 (vma->vm_ops == &special_mapping_vmops || 3428 vma->vm_ops == &legacy_special_mapping_vmops); 3429 } 3430 3431 /* 3432 * Called with mm->mmap_sem held for writing. 3433 * Insert a new vma covering the given region, with the given flags. 3434 * Its pages are supplied by the given array of struct page *. 3435 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3436 * The region past the last page supplied will always produce SIGBUS. 3437 * The array pointer and the pages it points to are assumed to stay alive 3438 * for as long as this mapping might exist. 3439 */ 3440 struct vm_area_struct *_install_special_mapping( 3441 struct mm_struct *mm, 3442 unsigned long addr, unsigned long len, 3443 unsigned long vm_flags, const struct vm_special_mapping *spec) 3444 { 3445 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3446 &special_mapping_vmops); 3447 } 3448 3449 int install_special_mapping(struct mm_struct *mm, 3450 unsigned long addr, unsigned long len, 3451 unsigned long vm_flags, struct page **pages) 3452 { 3453 struct vm_area_struct *vma = __install_special_mapping( 3454 mm, addr, len, vm_flags, (void *)pages, 3455 &legacy_special_mapping_vmops); 3456 3457 return PTR_ERR_OR_ZERO(vma); 3458 } 3459 3460 static DEFINE_MUTEX(mm_all_locks_mutex); 3461 3462 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3463 { 3464 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3465 /* 3466 * The LSB of head.next can't change from under us 3467 * because we hold the mm_all_locks_mutex. 3468 */ 3469 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3470 /* 3471 * We can safely modify head.next after taking the 3472 * anon_vma->root->rwsem. If some other vma in this mm shares 3473 * the same anon_vma we won't take it again. 3474 * 3475 * No need of atomic instructions here, head.next 3476 * can't change from under us thanks to the 3477 * anon_vma->root->rwsem. 3478 */ 3479 if (__test_and_set_bit(0, (unsigned long *) 3480 &anon_vma->root->rb_root.rb_root.rb_node)) 3481 BUG(); 3482 } 3483 } 3484 3485 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3486 { 3487 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3488 /* 3489 * AS_MM_ALL_LOCKS can't change from under us because 3490 * we hold the mm_all_locks_mutex. 3491 * 3492 * Operations on ->flags have to be atomic because 3493 * even if AS_MM_ALL_LOCKS is stable thanks to the 3494 * mm_all_locks_mutex, there may be other cpus 3495 * changing other bitflags in parallel to us. 3496 */ 3497 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3498 BUG(); 3499 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3500 } 3501 } 3502 3503 /* 3504 * This operation locks against the VM for all pte/vma/mm related 3505 * operations that could ever happen on a certain mm. This includes 3506 * vmtruncate, try_to_unmap, and all page faults. 3507 * 3508 * The caller must take the mmap_sem in write mode before calling 3509 * mm_take_all_locks(). The caller isn't allowed to release the 3510 * mmap_sem until mm_drop_all_locks() returns. 3511 * 3512 * mmap_sem in write mode is required in order to block all operations 3513 * that could modify pagetables and free pages without need of 3514 * altering the vma layout. It's also needed in write mode to avoid new 3515 * anon_vmas to be associated with existing vmas. 3516 * 3517 * A single task can't take more than one mm_take_all_locks() in a row 3518 * or it would deadlock. 3519 * 3520 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3521 * mapping->flags avoid to take the same lock twice, if more than one 3522 * vma in this mm is backed by the same anon_vma or address_space. 3523 * 3524 * We take locks in following order, accordingly to comment at beginning 3525 * of mm/rmap.c: 3526 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3527 * hugetlb mapping); 3528 * - all i_mmap_rwsem locks; 3529 * - all anon_vma->rwseml 3530 * 3531 * We can take all locks within these types randomly because the VM code 3532 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3533 * mm_all_locks_mutex. 3534 * 3535 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3536 * that may have to take thousand of locks. 3537 * 3538 * mm_take_all_locks() can fail if it's interrupted by signals. 3539 */ 3540 int mm_take_all_locks(struct mm_struct *mm) 3541 { 3542 struct vm_area_struct *vma; 3543 struct anon_vma_chain *avc; 3544 3545 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3546 3547 mutex_lock(&mm_all_locks_mutex); 3548 3549 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3550 if (signal_pending(current)) 3551 goto out_unlock; 3552 if (vma->vm_file && vma->vm_file->f_mapping && 3553 is_vm_hugetlb_page(vma)) 3554 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3555 } 3556 3557 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3558 if (signal_pending(current)) 3559 goto out_unlock; 3560 if (vma->vm_file && vma->vm_file->f_mapping && 3561 !is_vm_hugetlb_page(vma)) 3562 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3563 } 3564 3565 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3566 if (signal_pending(current)) 3567 goto out_unlock; 3568 if (vma->anon_vma) 3569 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3570 vm_lock_anon_vma(mm, avc->anon_vma); 3571 } 3572 3573 return 0; 3574 3575 out_unlock: 3576 mm_drop_all_locks(mm); 3577 return -EINTR; 3578 } 3579 3580 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3581 { 3582 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3583 /* 3584 * The LSB of head.next can't change to 0 from under 3585 * us because we hold the mm_all_locks_mutex. 3586 * 3587 * We must however clear the bitflag before unlocking 3588 * the vma so the users using the anon_vma->rb_root will 3589 * never see our bitflag. 3590 * 3591 * No need of atomic instructions here, head.next 3592 * can't change from under us until we release the 3593 * anon_vma->root->rwsem. 3594 */ 3595 if (!__test_and_clear_bit(0, (unsigned long *) 3596 &anon_vma->root->rb_root.rb_root.rb_node)) 3597 BUG(); 3598 anon_vma_unlock_write(anon_vma); 3599 } 3600 } 3601 3602 static void vm_unlock_mapping(struct address_space *mapping) 3603 { 3604 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3605 /* 3606 * AS_MM_ALL_LOCKS can't change to 0 from under us 3607 * because we hold the mm_all_locks_mutex. 3608 */ 3609 i_mmap_unlock_write(mapping); 3610 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3611 &mapping->flags)) 3612 BUG(); 3613 } 3614 } 3615 3616 /* 3617 * The mmap_sem cannot be released by the caller until 3618 * mm_drop_all_locks() returns. 3619 */ 3620 void mm_drop_all_locks(struct mm_struct *mm) 3621 { 3622 struct vm_area_struct *vma; 3623 struct anon_vma_chain *avc; 3624 3625 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3626 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3627 3628 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3629 if (vma->anon_vma) 3630 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3631 vm_unlock_anon_vma(avc->anon_vma); 3632 if (vma->vm_file && vma->vm_file->f_mapping) 3633 vm_unlock_mapping(vma->vm_file->f_mapping); 3634 } 3635 3636 mutex_unlock(&mm_all_locks_mutex); 3637 } 3638 3639 /* 3640 * initialise the percpu counter for VM 3641 */ 3642 void __init mmap_init(void) 3643 { 3644 int ret; 3645 3646 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3647 VM_BUG_ON(ret); 3648 } 3649 3650 /* 3651 * Initialise sysctl_user_reserve_kbytes. 3652 * 3653 * This is intended to prevent a user from starting a single memory hogging 3654 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3655 * mode. 3656 * 3657 * The default value is min(3% of free memory, 128MB) 3658 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3659 */ 3660 static int init_user_reserve(void) 3661 { 3662 unsigned long free_kbytes; 3663 3664 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3665 3666 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3667 return 0; 3668 } 3669 subsys_initcall(init_user_reserve); 3670 3671 /* 3672 * Initialise sysctl_admin_reserve_kbytes. 3673 * 3674 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3675 * to log in and kill a memory hogging process. 3676 * 3677 * Systems with more than 256MB will reserve 8MB, enough to recover 3678 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3679 * only reserve 3% of free pages by default. 3680 */ 3681 static int init_admin_reserve(void) 3682 { 3683 unsigned long free_kbytes; 3684 3685 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3686 3687 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3688 return 0; 3689 } 3690 subsys_initcall(init_admin_reserve); 3691 3692 /* 3693 * Reinititalise user and admin reserves if memory is added or removed. 3694 * 3695 * The default user reserve max is 128MB, and the default max for the 3696 * admin reserve is 8MB. These are usually, but not always, enough to 3697 * enable recovery from a memory hogging process using login/sshd, a shell, 3698 * and tools like top. It may make sense to increase or even disable the 3699 * reserve depending on the existence of swap or variations in the recovery 3700 * tools. So, the admin may have changed them. 3701 * 3702 * If memory is added and the reserves have been eliminated or increased above 3703 * the default max, then we'll trust the admin. 3704 * 3705 * If memory is removed and there isn't enough free memory, then we 3706 * need to reset the reserves. 3707 * 3708 * Otherwise keep the reserve set by the admin. 3709 */ 3710 static int reserve_mem_notifier(struct notifier_block *nb, 3711 unsigned long action, void *data) 3712 { 3713 unsigned long tmp, free_kbytes; 3714 3715 switch (action) { 3716 case MEM_ONLINE: 3717 /* Default max is 128MB. Leave alone if modified by operator. */ 3718 tmp = sysctl_user_reserve_kbytes; 3719 if (0 < tmp && tmp < (1UL << 17)) 3720 init_user_reserve(); 3721 3722 /* Default max is 8MB. Leave alone if modified by operator. */ 3723 tmp = sysctl_admin_reserve_kbytes; 3724 if (0 < tmp && tmp < (1UL << 13)) 3725 init_admin_reserve(); 3726 3727 break; 3728 case MEM_OFFLINE: 3729 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3730 3731 if (sysctl_user_reserve_kbytes > free_kbytes) { 3732 init_user_reserve(); 3733 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3734 sysctl_user_reserve_kbytes); 3735 } 3736 3737 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3738 init_admin_reserve(); 3739 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3740 sysctl_admin_reserve_kbytes); 3741 } 3742 break; 3743 default: 3744 break; 3745 } 3746 return NOTIFY_OK; 3747 } 3748 3749 static struct notifier_block reserve_mem_nb = { 3750 .notifier_call = reserve_mem_notifier, 3751 }; 3752 3753 static int __meminit init_reserve_notifier(void) 3754 { 3755 if (register_hotmemory_notifier(&reserve_mem_nb)) 3756 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3757 3758 return 0; 3759 } 3760 subsys_initcall(init_reserve_notifier); 3761