1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlb.h> 52 #include <asm/mmu_context.h> 53 54 #include "internal.h" 55 56 #ifndef arch_mmap_check 57 #define arch_mmap_check(addr, len, flags) (0) 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 69 #endif 70 71 static bool ignore_rlimit_data; 72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 73 74 static void unmap_region(struct mm_struct *mm, 75 struct vm_area_struct *vma, struct vm_area_struct *prev, 76 unsigned long start, unsigned long end); 77 78 /* description of effects of mapping type and prot in current implementation. 79 * this is due to the limited x86 page protection hardware. The expected 80 * behavior is in parens: 81 * 82 * map_type prot 83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 85 * w: (no) no w: (no) no w: (yes) yes w: (no) no 86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 87 * 88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 89 * w: (no) no w: (no) no w: (copy) copy w: (no) no 90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 91 * 92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 93 * MAP_PRIVATE: 94 * r: (no) no 95 * w: (no) no 96 * x: (yes) yes 97 */ 98 pgprot_t protection_map[16] __ro_after_init = { 99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 101 }; 102 103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 105 { 106 return prot; 107 } 108 #endif 109 110 pgprot_t vm_get_page_prot(unsigned long vm_flags) 111 { 112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 114 pgprot_val(arch_vm_get_page_prot(vm_flags))); 115 116 return arch_filter_pgprot(ret); 117 } 118 EXPORT_SYMBOL(vm_get_page_prot); 119 120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 121 { 122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 123 } 124 125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 126 void vma_set_page_prot(struct vm_area_struct *vma) 127 { 128 unsigned long vm_flags = vma->vm_flags; 129 pgprot_t vm_page_prot; 130 131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 132 if (vma_wants_writenotify(vma, vm_page_prot)) { 133 vm_flags &= ~VM_SHARED; 134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 135 } 136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 138 } 139 140 /* 141 * Requires inode->i_mapping->i_mmap_rwsem 142 */ 143 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 144 struct file *file, struct address_space *mapping) 145 { 146 if (vma->vm_flags & VM_DENYWRITE) 147 atomic_inc(&file_inode(file)->i_writecount); 148 if (vma->vm_flags & VM_SHARED) 149 mapping_unmap_writable(mapping); 150 151 flush_dcache_mmap_lock(mapping); 152 vma_interval_tree_remove(vma, &mapping->i_mmap); 153 flush_dcache_mmap_unlock(mapping); 154 } 155 156 /* 157 * Unlink a file-based vm structure from its interval tree, to hide 158 * vma from rmap and vmtruncate before freeing its page tables. 159 */ 160 void unlink_file_vma(struct vm_area_struct *vma) 161 { 162 struct file *file = vma->vm_file; 163 164 if (file) { 165 struct address_space *mapping = file->f_mapping; 166 i_mmap_lock_write(mapping); 167 __remove_shared_vm_struct(vma, file, mapping); 168 i_mmap_unlock_write(mapping); 169 } 170 } 171 172 /* 173 * Close a vm structure and free it, returning the next. 174 */ 175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 176 { 177 struct vm_area_struct *next = vma->vm_next; 178 179 might_sleep(); 180 if (vma->vm_ops && vma->vm_ops->close) 181 vma->vm_ops->close(vma); 182 if (vma->vm_file) 183 fput(vma->vm_file); 184 mpol_put(vma_policy(vma)); 185 kmem_cache_free(vm_area_cachep, vma); 186 return next; 187 } 188 189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 190 struct list_head *uf); 191 SYSCALL_DEFINE1(brk, unsigned long, brk) 192 { 193 unsigned long retval; 194 unsigned long newbrk, oldbrk; 195 struct mm_struct *mm = current->mm; 196 struct vm_area_struct *next; 197 unsigned long min_brk; 198 bool populate; 199 LIST_HEAD(uf); 200 201 if (down_write_killable(&mm->mmap_sem)) 202 return -EINTR; 203 204 #ifdef CONFIG_COMPAT_BRK 205 /* 206 * CONFIG_COMPAT_BRK can still be overridden by setting 207 * randomize_va_space to 2, which will still cause mm->start_brk 208 * to be arbitrarily shifted 209 */ 210 if (current->brk_randomized) 211 min_brk = mm->start_brk; 212 else 213 min_brk = mm->end_data; 214 #else 215 min_brk = mm->start_brk; 216 #endif 217 if (brk < min_brk) 218 goto out; 219 220 /* 221 * Check against rlimit here. If this check is done later after the test 222 * of oldbrk with newbrk then it can escape the test and let the data 223 * segment grow beyond its set limit the in case where the limit is 224 * not page aligned -Ram Gupta 225 */ 226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 227 mm->end_data, mm->start_data)) 228 goto out; 229 230 newbrk = PAGE_ALIGN(brk); 231 oldbrk = PAGE_ALIGN(mm->brk); 232 if (oldbrk == newbrk) 233 goto set_brk; 234 235 /* Always allow shrinking brk. */ 236 if (brk <= mm->brk) { 237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf)) 238 goto set_brk; 239 goto out; 240 } 241 242 /* Check against existing mmap mappings. */ 243 next = find_vma(mm, oldbrk); 244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 245 goto out; 246 247 /* Ok, looks good - let it rip. */ 248 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 249 goto out; 250 251 set_brk: 252 mm->brk = brk; 253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 254 up_write(&mm->mmap_sem); 255 userfaultfd_unmap_complete(mm, &uf); 256 if (populate) 257 mm_populate(oldbrk, newbrk - oldbrk); 258 return brk; 259 260 out: 261 retval = mm->brk; 262 up_write(&mm->mmap_sem); 263 return retval; 264 } 265 266 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 267 { 268 unsigned long max, prev_end, subtree_gap; 269 270 /* 271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 272 * allow two stack_guard_gaps between them here, and when choosing 273 * an unmapped area; whereas when expanding we only require one. 274 * That's a little inconsistent, but keeps the code here simpler. 275 */ 276 max = vm_start_gap(vma); 277 if (vma->vm_prev) { 278 prev_end = vm_end_gap(vma->vm_prev); 279 if (max > prev_end) 280 max -= prev_end; 281 else 282 max = 0; 283 } 284 if (vma->vm_rb.rb_left) { 285 subtree_gap = rb_entry(vma->vm_rb.rb_left, 286 struct vm_area_struct, vm_rb)->rb_subtree_gap; 287 if (subtree_gap > max) 288 max = subtree_gap; 289 } 290 if (vma->vm_rb.rb_right) { 291 subtree_gap = rb_entry(vma->vm_rb.rb_right, 292 struct vm_area_struct, vm_rb)->rb_subtree_gap; 293 if (subtree_gap > max) 294 max = subtree_gap; 295 } 296 return max; 297 } 298 299 #ifdef CONFIG_DEBUG_VM_RB 300 static int browse_rb(struct mm_struct *mm) 301 { 302 struct rb_root *root = &mm->mm_rb; 303 int i = 0, j, bug = 0; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) { 311 pr_emerg("vm_start %lx < prev %lx\n", 312 vma->vm_start, prev); 313 bug = 1; 314 } 315 if (vma->vm_start < pend) { 316 pr_emerg("vm_start %lx < pend %lx\n", 317 vma->vm_start, pend); 318 bug = 1; 319 } 320 if (vma->vm_start > vma->vm_end) { 321 pr_emerg("vm_start %lx > vm_end %lx\n", 322 vma->vm_start, vma->vm_end); 323 bug = 1; 324 } 325 spin_lock(&mm->page_table_lock); 326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 327 pr_emerg("free gap %lx, correct %lx\n", 328 vma->rb_subtree_gap, 329 vma_compute_subtree_gap(vma)); 330 bug = 1; 331 } 332 spin_unlock(&mm->page_table_lock); 333 i++; 334 pn = nd; 335 prev = vma->vm_start; 336 pend = vma->vm_end; 337 } 338 j = 0; 339 for (nd = pn; nd; nd = rb_prev(nd)) 340 j++; 341 if (i != j) { 342 pr_emerg("backwards %d, forwards %d\n", j, i); 343 bug = 1; 344 } 345 return bug ? -1 : i; 346 } 347 348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 349 { 350 struct rb_node *nd; 351 352 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 353 struct vm_area_struct *vma; 354 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 355 VM_BUG_ON_VMA(vma != ignore && 356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 357 vma); 358 } 359 } 360 361 static void validate_mm(struct mm_struct *mm) 362 { 363 int bug = 0; 364 int i = 0; 365 unsigned long highest_address = 0; 366 struct vm_area_struct *vma = mm->mmap; 367 368 while (vma) { 369 struct anon_vma *anon_vma = vma->anon_vma; 370 struct anon_vma_chain *avc; 371 372 if (anon_vma) { 373 anon_vma_lock_read(anon_vma); 374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 375 anon_vma_interval_tree_verify(avc); 376 anon_vma_unlock_read(anon_vma); 377 } 378 379 highest_address = vm_end_gap(vma); 380 vma = vma->vm_next; 381 i++; 382 } 383 if (i != mm->map_count) { 384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 385 bug = 1; 386 } 387 if (highest_address != mm->highest_vm_end) { 388 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 389 mm->highest_vm_end, highest_address); 390 bug = 1; 391 } 392 i = browse_rb(mm); 393 if (i != mm->map_count) { 394 if (i != -1) 395 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 396 bug = 1; 397 } 398 VM_BUG_ON_MM(bug, mm); 399 } 400 #else 401 #define validate_mm_rb(root, ignore) do { } while (0) 402 #define validate_mm(mm) do { } while (0) 403 #endif 404 405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 407 408 /* 409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 410 * vma->vm_prev->vm_end values changed, without modifying the vma's position 411 * in the rbtree. 412 */ 413 static void vma_gap_update(struct vm_area_struct *vma) 414 { 415 /* 416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 417 * function that does exacltly what we want. 418 */ 419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 420 } 421 422 static inline void vma_rb_insert(struct vm_area_struct *vma, 423 struct rb_root *root) 424 { 425 /* All rb_subtree_gap values must be consistent prior to insertion */ 426 validate_mm_rb(root, NULL); 427 428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 429 } 430 431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 432 { 433 /* 434 * Note rb_erase_augmented is a fairly large inline function, 435 * so make sure we instantiate it only once with our desired 436 * augmented rbtree callbacks. 437 */ 438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 439 } 440 441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 442 struct rb_root *root, 443 struct vm_area_struct *ignore) 444 { 445 /* 446 * All rb_subtree_gap values must be consistent prior to erase, 447 * with the possible exception of the "next" vma being erased if 448 * next->vm_start was reduced. 449 */ 450 validate_mm_rb(root, ignore); 451 452 __vma_rb_erase(vma, root); 453 } 454 455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 456 struct rb_root *root) 457 { 458 /* 459 * All rb_subtree_gap values must be consistent prior to erase, 460 * with the possible exception of the vma being erased. 461 */ 462 validate_mm_rb(root, vma); 463 464 __vma_rb_erase(vma, root); 465 } 466 467 /* 468 * vma has some anon_vma assigned, and is already inserted on that 469 * anon_vma's interval trees. 470 * 471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 472 * vma must be removed from the anon_vma's interval trees using 473 * anon_vma_interval_tree_pre_update_vma(). 474 * 475 * After the update, the vma will be reinserted using 476 * anon_vma_interval_tree_post_update_vma(). 477 * 478 * The entire update must be protected by exclusive mmap_sem and by 479 * the root anon_vma's mutex. 480 */ 481 static inline void 482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 483 { 484 struct anon_vma_chain *avc; 485 486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 488 } 489 490 static inline void 491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 492 { 493 struct anon_vma_chain *avc; 494 495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 497 } 498 499 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 500 unsigned long end, struct vm_area_struct **pprev, 501 struct rb_node ***rb_link, struct rb_node **rb_parent) 502 { 503 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 504 505 __rb_link = &mm->mm_rb.rb_node; 506 rb_prev = __rb_parent = NULL; 507 508 while (*__rb_link) { 509 struct vm_area_struct *vma_tmp; 510 511 __rb_parent = *__rb_link; 512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 513 514 if (vma_tmp->vm_end > addr) { 515 /* Fail if an existing vma overlaps the area */ 516 if (vma_tmp->vm_start < end) 517 return -ENOMEM; 518 __rb_link = &__rb_parent->rb_left; 519 } else { 520 rb_prev = __rb_parent; 521 __rb_link = &__rb_parent->rb_right; 522 } 523 } 524 525 *pprev = NULL; 526 if (rb_prev) 527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 528 *rb_link = __rb_link; 529 *rb_parent = __rb_parent; 530 return 0; 531 } 532 533 static unsigned long count_vma_pages_range(struct mm_struct *mm, 534 unsigned long addr, unsigned long end) 535 { 536 unsigned long nr_pages = 0; 537 struct vm_area_struct *vma; 538 539 /* Find first overlaping mapping */ 540 vma = find_vma_intersection(mm, addr, end); 541 if (!vma) 542 return 0; 543 544 nr_pages = (min(end, vma->vm_end) - 545 max(addr, vma->vm_start)) >> PAGE_SHIFT; 546 547 /* Iterate over the rest of the overlaps */ 548 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 549 unsigned long overlap_len; 550 551 if (vma->vm_start > end) 552 break; 553 554 overlap_len = min(end, vma->vm_end) - vma->vm_start; 555 nr_pages += overlap_len >> PAGE_SHIFT; 556 } 557 558 return nr_pages; 559 } 560 561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 562 struct rb_node **rb_link, struct rb_node *rb_parent) 563 { 564 /* Update tracking information for the gap following the new vma. */ 565 if (vma->vm_next) 566 vma_gap_update(vma->vm_next); 567 else 568 mm->highest_vm_end = vm_end_gap(vma); 569 570 /* 571 * vma->vm_prev wasn't known when we followed the rbtree to find the 572 * correct insertion point for that vma. As a result, we could not 573 * update the vma vm_rb parents rb_subtree_gap values on the way down. 574 * So, we first insert the vma with a zero rb_subtree_gap value 575 * (to be consistent with what we did on the way down), and then 576 * immediately update the gap to the correct value. Finally we 577 * rebalance the rbtree after all augmented values have been set. 578 */ 579 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 580 vma->rb_subtree_gap = 0; 581 vma_gap_update(vma); 582 vma_rb_insert(vma, &mm->mm_rb); 583 } 584 585 static void __vma_link_file(struct vm_area_struct *vma) 586 { 587 struct file *file; 588 589 file = vma->vm_file; 590 if (file) { 591 struct address_space *mapping = file->f_mapping; 592 593 if (vma->vm_flags & VM_DENYWRITE) 594 atomic_dec(&file_inode(file)->i_writecount); 595 if (vma->vm_flags & VM_SHARED) 596 atomic_inc(&mapping->i_mmap_writable); 597 598 flush_dcache_mmap_lock(mapping); 599 vma_interval_tree_insert(vma, &mapping->i_mmap); 600 flush_dcache_mmap_unlock(mapping); 601 } 602 } 603 604 static void 605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 606 struct vm_area_struct *prev, struct rb_node **rb_link, 607 struct rb_node *rb_parent) 608 { 609 __vma_link_list(mm, vma, prev, rb_parent); 610 __vma_link_rb(mm, vma, rb_link, rb_parent); 611 } 612 613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 614 struct vm_area_struct *prev, struct rb_node **rb_link, 615 struct rb_node *rb_parent) 616 { 617 struct address_space *mapping = NULL; 618 619 if (vma->vm_file) { 620 mapping = vma->vm_file->f_mapping; 621 i_mmap_lock_write(mapping); 622 } 623 624 __vma_link(mm, vma, prev, rb_link, rb_parent); 625 __vma_link_file(vma); 626 627 if (mapping) 628 i_mmap_unlock_write(mapping); 629 630 mm->map_count++; 631 validate_mm(mm); 632 } 633 634 /* 635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 636 * mm's list and rbtree. It has already been inserted into the interval tree. 637 */ 638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 639 { 640 struct vm_area_struct *prev; 641 struct rb_node **rb_link, *rb_parent; 642 643 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 644 &prev, &rb_link, &rb_parent)) 645 BUG(); 646 __vma_link(mm, vma, prev, rb_link, rb_parent); 647 mm->map_count++; 648 } 649 650 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 651 struct vm_area_struct *vma, 652 struct vm_area_struct *prev, 653 bool has_prev, 654 struct vm_area_struct *ignore) 655 { 656 struct vm_area_struct *next; 657 658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 659 next = vma->vm_next; 660 if (has_prev) 661 prev->vm_next = next; 662 else { 663 prev = vma->vm_prev; 664 if (prev) 665 prev->vm_next = next; 666 else 667 mm->mmap = next; 668 } 669 if (next) 670 next->vm_prev = prev; 671 672 /* Kill the cache */ 673 vmacache_invalidate(mm); 674 } 675 676 static inline void __vma_unlink_prev(struct mm_struct *mm, 677 struct vm_area_struct *vma, 678 struct vm_area_struct *prev) 679 { 680 __vma_unlink_common(mm, vma, prev, true, vma); 681 } 682 683 /* 684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 685 * is already present in an i_mmap tree without adjusting the tree. 686 * The following helper function should be used when such adjustments 687 * are necessary. The "insert" vma (if any) is to be inserted 688 * before we drop the necessary locks. 689 */ 690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 692 struct vm_area_struct *expand) 693 { 694 struct mm_struct *mm = vma->vm_mm; 695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 696 struct address_space *mapping = NULL; 697 struct rb_root_cached *root = NULL; 698 struct anon_vma *anon_vma = NULL; 699 struct file *file = vma->vm_file; 700 bool start_changed = false, end_changed = false; 701 long adjust_next = 0; 702 int remove_next = 0; 703 704 if (next && !insert) { 705 struct vm_area_struct *exporter = NULL, *importer = NULL; 706 707 if (end >= next->vm_end) { 708 /* 709 * vma expands, overlapping all the next, and 710 * perhaps the one after too (mprotect case 6). 711 * The only other cases that gets here are 712 * case 1, case 7 and case 8. 713 */ 714 if (next == expand) { 715 /* 716 * The only case where we don't expand "vma" 717 * and we expand "next" instead is case 8. 718 */ 719 VM_WARN_ON(end != next->vm_end); 720 /* 721 * remove_next == 3 means we're 722 * removing "vma" and that to do so we 723 * swapped "vma" and "next". 724 */ 725 remove_next = 3; 726 VM_WARN_ON(file != next->vm_file); 727 swap(vma, next); 728 } else { 729 VM_WARN_ON(expand != vma); 730 /* 731 * case 1, 6, 7, remove_next == 2 is case 6, 732 * remove_next == 1 is case 1 or 7. 733 */ 734 remove_next = 1 + (end > next->vm_end); 735 VM_WARN_ON(remove_next == 2 && 736 end != next->vm_next->vm_end); 737 VM_WARN_ON(remove_next == 1 && 738 end != next->vm_end); 739 /* trim end to next, for case 6 first pass */ 740 end = next->vm_end; 741 } 742 743 exporter = next; 744 importer = vma; 745 746 /* 747 * If next doesn't have anon_vma, import from vma after 748 * next, if the vma overlaps with it. 749 */ 750 if (remove_next == 2 && !next->anon_vma) 751 exporter = next->vm_next; 752 753 } else if (end > next->vm_start) { 754 /* 755 * vma expands, overlapping part of the next: 756 * mprotect case 5 shifting the boundary up. 757 */ 758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 759 exporter = next; 760 importer = vma; 761 VM_WARN_ON(expand != importer); 762 } else if (end < vma->vm_end) { 763 /* 764 * vma shrinks, and !insert tells it's not 765 * split_vma inserting another: so it must be 766 * mprotect case 4 shifting the boundary down. 767 */ 768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 769 exporter = vma; 770 importer = next; 771 VM_WARN_ON(expand != importer); 772 } 773 774 /* 775 * Easily overlooked: when mprotect shifts the boundary, 776 * make sure the expanding vma has anon_vma set if the 777 * shrinking vma had, to cover any anon pages imported. 778 */ 779 if (exporter && exporter->anon_vma && !importer->anon_vma) { 780 int error; 781 782 importer->anon_vma = exporter->anon_vma; 783 error = anon_vma_clone(importer, exporter); 784 if (error) 785 return error; 786 } 787 } 788 again: 789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 790 791 if (file) { 792 mapping = file->f_mapping; 793 root = &mapping->i_mmap; 794 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 795 796 if (adjust_next) 797 uprobe_munmap(next, next->vm_start, next->vm_end); 798 799 i_mmap_lock_write(mapping); 800 if (insert) { 801 /* 802 * Put into interval tree now, so instantiated pages 803 * are visible to arm/parisc __flush_dcache_page 804 * throughout; but we cannot insert into address 805 * space until vma start or end is updated. 806 */ 807 __vma_link_file(insert); 808 } 809 } 810 811 anon_vma = vma->anon_vma; 812 if (!anon_vma && adjust_next) 813 anon_vma = next->anon_vma; 814 if (anon_vma) { 815 VM_WARN_ON(adjust_next && next->anon_vma && 816 anon_vma != next->anon_vma); 817 anon_vma_lock_write(anon_vma); 818 anon_vma_interval_tree_pre_update_vma(vma); 819 if (adjust_next) 820 anon_vma_interval_tree_pre_update_vma(next); 821 } 822 823 if (root) { 824 flush_dcache_mmap_lock(mapping); 825 vma_interval_tree_remove(vma, root); 826 if (adjust_next) 827 vma_interval_tree_remove(next, root); 828 } 829 830 if (start != vma->vm_start) { 831 vma->vm_start = start; 832 start_changed = true; 833 } 834 if (end != vma->vm_end) { 835 vma->vm_end = end; 836 end_changed = true; 837 } 838 vma->vm_pgoff = pgoff; 839 if (adjust_next) { 840 next->vm_start += adjust_next << PAGE_SHIFT; 841 next->vm_pgoff += adjust_next; 842 } 843 844 if (root) { 845 if (adjust_next) 846 vma_interval_tree_insert(next, root); 847 vma_interval_tree_insert(vma, root); 848 flush_dcache_mmap_unlock(mapping); 849 } 850 851 if (remove_next) { 852 /* 853 * vma_merge has merged next into vma, and needs 854 * us to remove next before dropping the locks. 855 */ 856 if (remove_next != 3) 857 __vma_unlink_prev(mm, next, vma); 858 else 859 /* 860 * vma is not before next if they've been 861 * swapped. 862 * 863 * pre-swap() next->vm_start was reduced so 864 * tell validate_mm_rb to ignore pre-swap() 865 * "next" (which is stored in post-swap() 866 * "vma"). 867 */ 868 __vma_unlink_common(mm, next, NULL, false, vma); 869 if (file) 870 __remove_shared_vm_struct(next, file, mapping); 871 } else if (insert) { 872 /* 873 * split_vma has split insert from vma, and needs 874 * us to insert it before dropping the locks 875 * (it may either follow vma or precede it). 876 */ 877 __insert_vm_struct(mm, insert); 878 } else { 879 if (start_changed) 880 vma_gap_update(vma); 881 if (end_changed) { 882 if (!next) 883 mm->highest_vm_end = vm_end_gap(vma); 884 else if (!adjust_next) 885 vma_gap_update(next); 886 } 887 } 888 889 if (anon_vma) { 890 anon_vma_interval_tree_post_update_vma(vma); 891 if (adjust_next) 892 anon_vma_interval_tree_post_update_vma(next); 893 anon_vma_unlock_write(anon_vma); 894 } 895 if (mapping) 896 i_mmap_unlock_write(mapping); 897 898 if (root) { 899 uprobe_mmap(vma); 900 901 if (adjust_next) 902 uprobe_mmap(next); 903 } 904 905 if (remove_next) { 906 if (file) { 907 uprobe_munmap(next, next->vm_start, next->vm_end); 908 fput(file); 909 } 910 if (next->anon_vma) 911 anon_vma_merge(vma, next); 912 mm->map_count--; 913 mpol_put(vma_policy(next)); 914 kmem_cache_free(vm_area_cachep, next); 915 /* 916 * In mprotect's case 6 (see comments on vma_merge), 917 * we must remove another next too. It would clutter 918 * up the code too much to do both in one go. 919 */ 920 if (remove_next != 3) { 921 /* 922 * If "next" was removed and vma->vm_end was 923 * expanded (up) over it, in turn 924 * "next->vm_prev->vm_end" changed and the 925 * "vma->vm_next" gap must be updated. 926 */ 927 next = vma->vm_next; 928 } else { 929 /* 930 * For the scope of the comment "next" and 931 * "vma" considered pre-swap(): if "vma" was 932 * removed, next->vm_start was expanded (down) 933 * over it and the "next" gap must be updated. 934 * Because of the swap() the post-swap() "vma" 935 * actually points to pre-swap() "next" 936 * (post-swap() "next" as opposed is now a 937 * dangling pointer). 938 */ 939 next = vma; 940 } 941 if (remove_next == 2) { 942 remove_next = 1; 943 end = next->vm_end; 944 goto again; 945 } 946 else if (next) 947 vma_gap_update(next); 948 else { 949 /* 950 * If remove_next == 2 we obviously can't 951 * reach this path. 952 * 953 * If remove_next == 3 we can't reach this 954 * path because pre-swap() next is always not 955 * NULL. pre-swap() "next" is not being 956 * removed and its next->vm_end is not altered 957 * (and furthermore "end" already matches 958 * next->vm_end in remove_next == 3). 959 * 960 * We reach this only in the remove_next == 1 961 * case if the "next" vma that was removed was 962 * the highest vma of the mm. However in such 963 * case next->vm_end == "end" and the extended 964 * "vma" has vma->vm_end == next->vm_end so 965 * mm->highest_vm_end doesn't need any update 966 * in remove_next == 1 case. 967 */ 968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 969 } 970 } 971 if (insert && file) 972 uprobe_mmap(insert); 973 974 validate_mm(mm); 975 976 return 0; 977 } 978 979 /* 980 * If the vma has a ->close operation then the driver probably needs to release 981 * per-vma resources, so we don't attempt to merge those. 982 */ 983 static inline int is_mergeable_vma(struct vm_area_struct *vma, 984 struct file *file, unsigned long vm_flags, 985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 986 { 987 /* 988 * VM_SOFTDIRTY should not prevent from VMA merging, if we 989 * match the flags but dirty bit -- the caller should mark 990 * merged VMA as dirty. If dirty bit won't be excluded from 991 * comparison, we increase pressue on the memory system forcing 992 * the kernel to generate new VMAs when old one could be 993 * extended instead. 994 */ 995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 996 return 0; 997 if (vma->vm_file != file) 998 return 0; 999 if (vma->vm_ops && vma->vm_ops->close) 1000 return 0; 1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1002 return 0; 1003 return 1; 1004 } 1005 1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1007 struct anon_vma *anon_vma2, 1008 struct vm_area_struct *vma) 1009 { 1010 /* 1011 * The list_is_singular() test is to avoid merging VMA cloned from 1012 * parents. This can improve scalability caused by anon_vma lock. 1013 */ 1014 if ((!anon_vma1 || !anon_vma2) && (!vma || 1015 list_is_singular(&vma->anon_vma_chain))) 1016 return 1; 1017 return anon_vma1 == anon_vma2; 1018 } 1019 1020 /* 1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1022 * in front of (at a lower virtual address and file offset than) the vma. 1023 * 1024 * We cannot merge two vmas if they have differently assigned (non-NULL) 1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1026 * 1027 * We don't check here for the merged mmap wrapping around the end of pagecache 1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1029 * wrap, nor mmaps which cover the final page at index -1UL. 1030 */ 1031 static int 1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1033 struct anon_vma *anon_vma, struct file *file, 1034 pgoff_t vm_pgoff, 1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1036 { 1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1039 if (vma->vm_pgoff == vm_pgoff) 1040 return 1; 1041 } 1042 return 0; 1043 } 1044 1045 /* 1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1047 * beyond (at a higher virtual address and file offset than) the vma. 1048 * 1049 * We cannot merge two vmas if they have differently assigned (non-NULL) 1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1051 */ 1052 static int 1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1054 struct anon_vma *anon_vma, struct file *file, 1055 pgoff_t vm_pgoff, 1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1057 { 1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1060 pgoff_t vm_pglen; 1061 vm_pglen = vma_pages(vma); 1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1063 return 1; 1064 } 1065 return 0; 1066 } 1067 1068 /* 1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1070 * whether that can be merged with its predecessor or its successor. 1071 * Or both (it neatly fills a hole). 1072 * 1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1074 * certain not to be mapped by the time vma_merge is called; but when 1075 * called for mprotect, it is certain to be already mapped (either at 1076 * an offset within prev, or at the start of next), and the flags of 1077 * this area are about to be changed to vm_flags - and the no-change 1078 * case has already been eliminated. 1079 * 1080 * The following mprotect cases have to be considered, where AAAA is 1081 * the area passed down from mprotect_fixup, never extending beyond one 1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1083 * 1084 * AAAA AAAA AAAA AAAA 1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1086 * cannot merge might become might become might become 1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1089 * mremap move: PPPPXXXXXXXX 8 1090 * AAAA 1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1092 * might become case 1 below case 2 below case 3 below 1093 * 1094 * It is important for case 8 that the the vma NNNN overlapping the 1095 * region AAAA is never going to extended over XXXX. Instead XXXX must 1096 * be extended in region AAAA and NNNN must be removed. This way in 1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1098 * rmap_locks, the properties of the merged vma will be already 1099 * correct for the whole merged range. Some of those properties like 1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1101 * be correct for the whole merged range immediately after the 1102 * rmap_locks are released. Otherwise if XXXX would be removed and 1103 * NNNN would be extended over the XXXX range, remove_migration_ptes 1104 * or other rmap walkers (if working on addresses beyond the "end" 1105 * parameter) may establish ptes with the wrong permissions of NNNN 1106 * instead of the right permissions of XXXX. 1107 */ 1108 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1109 struct vm_area_struct *prev, unsigned long addr, 1110 unsigned long end, unsigned long vm_flags, 1111 struct anon_vma *anon_vma, struct file *file, 1112 pgoff_t pgoff, struct mempolicy *policy, 1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1114 { 1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1116 struct vm_area_struct *area, *next; 1117 int err; 1118 1119 /* 1120 * We later require that vma->vm_flags == vm_flags, 1121 * so this tests vma->vm_flags & VM_SPECIAL, too. 1122 */ 1123 if (vm_flags & VM_SPECIAL) 1124 return NULL; 1125 1126 if (prev) 1127 next = prev->vm_next; 1128 else 1129 next = mm->mmap; 1130 area = next; 1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1132 next = next->vm_next; 1133 1134 /* verify some invariant that must be enforced by the caller */ 1135 VM_WARN_ON(prev && addr <= prev->vm_start); 1136 VM_WARN_ON(area && end > area->vm_end); 1137 VM_WARN_ON(addr >= end); 1138 1139 /* 1140 * Can it merge with the predecessor? 1141 */ 1142 if (prev && prev->vm_end == addr && 1143 mpol_equal(vma_policy(prev), policy) && 1144 can_vma_merge_after(prev, vm_flags, 1145 anon_vma, file, pgoff, 1146 vm_userfaultfd_ctx)) { 1147 /* 1148 * OK, it can. Can we now merge in the successor as well? 1149 */ 1150 if (next && end == next->vm_start && 1151 mpol_equal(policy, vma_policy(next)) && 1152 can_vma_merge_before(next, vm_flags, 1153 anon_vma, file, 1154 pgoff+pglen, 1155 vm_userfaultfd_ctx) && 1156 is_mergeable_anon_vma(prev->anon_vma, 1157 next->anon_vma, NULL)) { 1158 /* cases 1, 6 */ 1159 err = __vma_adjust(prev, prev->vm_start, 1160 next->vm_end, prev->vm_pgoff, NULL, 1161 prev); 1162 } else /* cases 2, 5, 7 */ 1163 err = __vma_adjust(prev, prev->vm_start, 1164 end, prev->vm_pgoff, NULL, prev); 1165 if (err) 1166 return NULL; 1167 khugepaged_enter_vma_merge(prev, vm_flags); 1168 return prev; 1169 } 1170 1171 /* 1172 * Can this new request be merged in front of next? 1173 */ 1174 if (next && end == next->vm_start && 1175 mpol_equal(policy, vma_policy(next)) && 1176 can_vma_merge_before(next, vm_flags, 1177 anon_vma, file, pgoff+pglen, 1178 vm_userfaultfd_ctx)) { 1179 if (prev && addr < prev->vm_end) /* case 4 */ 1180 err = __vma_adjust(prev, prev->vm_start, 1181 addr, prev->vm_pgoff, NULL, next); 1182 else { /* cases 3, 8 */ 1183 err = __vma_adjust(area, addr, next->vm_end, 1184 next->vm_pgoff - pglen, NULL, next); 1185 /* 1186 * In case 3 area is already equal to next and 1187 * this is a noop, but in case 8 "area" has 1188 * been removed and next was expanded over it. 1189 */ 1190 area = next; 1191 } 1192 if (err) 1193 return NULL; 1194 khugepaged_enter_vma_merge(area, vm_flags); 1195 return area; 1196 } 1197 1198 return NULL; 1199 } 1200 1201 /* 1202 * Rough compatbility check to quickly see if it's even worth looking 1203 * at sharing an anon_vma. 1204 * 1205 * They need to have the same vm_file, and the flags can only differ 1206 * in things that mprotect may change. 1207 * 1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1209 * we can merge the two vma's. For example, we refuse to merge a vma if 1210 * there is a vm_ops->close() function, because that indicates that the 1211 * driver is doing some kind of reference counting. But that doesn't 1212 * really matter for the anon_vma sharing case. 1213 */ 1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1215 { 1216 return a->vm_end == b->vm_start && 1217 mpol_equal(vma_policy(a), vma_policy(b)) && 1218 a->vm_file == b->vm_file && 1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1221 } 1222 1223 /* 1224 * Do some basic sanity checking to see if we can re-use the anon_vma 1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1226 * the same as 'old', the other will be the new one that is trying 1227 * to share the anon_vma. 1228 * 1229 * NOTE! This runs with mm_sem held for reading, so it is possible that 1230 * the anon_vma of 'old' is concurrently in the process of being set up 1231 * by another page fault trying to merge _that_. But that's ok: if it 1232 * is being set up, that automatically means that it will be a singleton 1233 * acceptable for merging, so we can do all of this optimistically. But 1234 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1235 * 1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1238 * is to return an anon_vma that is "complex" due to having gone through 1239 * a fork). 1240 * 1241 * We also make sure that the two vma's are compatible (adjacent, 1242 * and with the same memory policies). That's all stable, even with just 1243 * a read lock on the mm_sem. 1244 */ 1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1246 { 1247 if (anon_vma_compatible(a, b)) { 1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1249 1250 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1251 return anon_vma; 1252 } 1253 return NULL; 1254 } 1255 1256 /* 1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1258 * neighbouring vmas for a suitable anon_vma, before it goes off 1259 * to allocate a new anon_vma. It checks because a repetitive 1260 * sequence of mprotects and faults may otherwise lead to distinct 1261 * anon_vmas being allocated, preventing vma merge in subsequent 1262 * mprotect. 1263 */ 1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1265 { 1266 struct anon_vma *anon_vma; 1267 struct vm_area_struct *near; 1268 1269 near = vma->vm_next; 1270 if (!near) 1271 goto try_prev; 1272 1273 anon_vma = reusable_anon_vma(near, vma, near); 1274 if (anon_vma) 1275 return anon_vma; 1276 try_prev: 1277 near = vma->vm_prev; 1278 if (!near) 1279 goto none; 1280 1281 anon_vma = reusable_anon_vma(near, near, vma); 1282 if (anon_vma) 1283 return anon_vma; 1284 none: 1285 /* 1286 * There's no absolute need to look only at touching neighbours: 1287 * we could search further afield for "compatible" anon_vmas. 1288 * But it would probably just be a waste of time searching, 1289 * or lead to too many vmas hanging off the same anon_vma. 1290 * We're trying to allow mprotect remerging later on, 1291 * not trying to minimize memory used for anon_vmas. 1292 */ 1293 return NULL; 1294 } 1295 1296 /* 1297 * If a hint addr is less than mmap_min_addr change hint to be as 1298 * low as possible but still greater than mmap_min_addr 1299 */ 1300 static inline unsigned long round_hint_to_min(unsigned long hint) 1301 { 1302 hint &= PAGE_MASK; 1303 if (((void *)hint != NULL) && 1304 (hint < mmap_min_addr)) 1305 return PAGE_ALIGN(mmap_min_addr); 1306 return hint; 1307 } 1308 1309 static inline int mlock_future_check(struct mm_struct *mm, 1310 unsigned long flags, 1311 unsigned long len) 1312 { 1313 unsigned long locked, lock_limit; 1314 1315 /* mlock MCL_FUTURE? */ 1316 if (flags & VM_LOCKED) { 1317 locked = len >> PAGE_SHIFT; 1318 locked += mm->locked_vm; 1319 lock_limit = rlimit(RLIMIT_MEMLOCK); 1320 lock_limit >>= PAGE_SHIFT; 1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1322 return -EAGAIN; 1323 } 1324 return 0; 1325 } 1326 1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1328 { 1329 if (S_ISREG(inode->i_mode)) 1330 return MAX_LFS_FILESIZE; 1331 1332 if (S_ISBLK(inode->i_mode)) 1333 return MAX_LFS_FILESIZE; 1334 1335 /* Special "we do even unsigned file positions" case */ 1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1337 return 0; 1338 1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1340 return ULONG_MAX; 1341 } 1342 1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1344 unsigned long pgoff, unsigned long len) 1345 { 1346 u64 maxsize = file_mmap_size_max(file, inode); 1347 1348 if (maxsize && len > maxsize) 1349 return false; 1350 maxsize -= len; 1351 if (pgoff > maxsize >> PAGE_SHIFT) 1352 return false; 1353 return true; 1354 } 1355 1356 /* 1357 * The caller must hold down_write(¤t->mm->mmap_sem). 1358 */ 1359 unsigned long do_mmap(struct file *file, unsigned long addr, 1360 unsigned long len, unsigned long prot, 1361 unsigned long flags, vm_flags_t vm_flags, 1362 unsigned long pgoff, unsigned long *populate, 1363 struct list_head *uf) 1364 { 1365 struct mm_struct *mm = current->mm; 1366 int pkey = 0; 1367 1368 *populate = 0; 1369 1370 if (!len) 1371 return -EINVAL; 1372 1373 /* 1374 * Does the application expect PROT_READ to imply PROT_EXEC? 1375 * 1376 * (the exception is when the underlying filesystem is noexec 1377 * mounted, in which case we dont add PROT_EXEC.) 1378 */ 1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1380 if (!(file && path_noexec(&file->f_path))) 1381 prot |= PROT_EXEC; 1382 1383 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1384 if (flags & MAP_FIXED_NOREPLACE) 1385 flags |= MAP_FIXED; 1386 1387 if (!(flags & MAP_FIXED)) 1388 addr = round_hint_to_min(addr); 1389 1390 /* Careful about overflows.. */ 1391 len = PAGE_ALIGN(len); 1392 if (!len) 1393 return -ENOMEM; 1394 1395 /* offset overflow? */ 1396 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1397 return -EOVERFLOW; 1398 1399 /* Too many mappings? */ 1400 if (mm->map_count > sysctl_max_map_count) 1401 return -ENOMEM; 1402 1403 /* Obtain the address to map to. we verify (or select) it and ensure 1404 * that it represents a valid section of the address space. 1405 */ 1406 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1407 if (offset_in_page(addr)) 1408 return addr; 1409 1410 if (flags & MAP_FIXED_NOREPLACE) { 1411 struct vm_area_struct *vma = find_vma(mm, addr); 1412 1413 if (vma && vma->vm_start <= addr) 1414 return -EEXIST; 1415 } 1416 1417 if (prot == PROT_EXEC) { 1418 pkey = execute_only_pkey(mm); 1419 if (pkey < 0) 1420 pkey = 0; 1421 } 1422 1423 /* Do simple checking here so the lower-level routines won't have 1424 * to. we assume access permissions have been handled by the open 1425 * of the memory object, so we don't do any here. 1426 */ 1427 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1428 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1429 1430 if (flags & MAP_LOCKED) 1431 if (!can_do_mlock()) 1432 return -EPERM; 1433 1434 if (mlock_future_check(mm, vm_flags, len)) 1435 return -EAGAIN; 1436 1437 if (file) { 1438 struct inode *inode = file_inode(file); 1439 unsigned long flags_mask; 1440 1441 if (!file_mmap_ok(file, inode, pgoff, len)) 1442 return -EOVERFLOW; 1443 1444 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1445 1446 switch (flags & MAP_TYPE) { 1447 case MAP_SHARED: 1448 /* 1449 * Force use of MAP_SHARED_VALIDATE with non-legacy 1450 * flags. E.g. MAP_SYNC is dangerous to use with 1451 * MAP_SHARED as you don't know which consistency model 1452 * you will get. We silently ignore unsupported flags 1453 * with MAP_SHARED to preserve backward compatibility. 1454 */ 1455 flags &= LEGACY_MAP_MASK; 1456 /* fall through */ 1457 case MAP_SHARED_VALIDATE: 1458 if (flags & ~flags_mask) 1459 return -EOPNOTSUPP; 1460 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1461 return -EACCES; 1462 1463 /* 1464 * Make sure we don't allow writing to an append-only 1465 * file.. 1466 */ 1467 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1468 return -EACCES; 1469 1470 /* 1471 * Make sure there are no mandatory locks on the file. 1472 */ 1473 if (locks_verify_locked(file)) 1474 return -EAGAIN; 1475 1476 vm_flags |= VM_SHARED | VM_MAYSHARE; 1477 if (!(file->f_mode & FMODE_WRITE)) 1478 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1479 1480 /* fall through */ 1481 case MAP_PRIVATE: 1482 if (!(file->f_mode & FMODE_READ)) 1483 return -EACCES; 1484 if (path_noexec(&file->f_path)) { 1485 if (vm_flags & VM_EXEC) 1486 return -EPERM; 1487 vm_flags &= ~VM_MAYEXEC; 1488 } 1489 1490 if (!file->f_op->mmap) 1491 return -ENODEV; 1492 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1493 return -EINVAL; 1494 break; 1495 1496 default: 1497 return -EINVAL; 1498 } 1499 } else { 1500 switch (flags & MAP_TYPE) { 1501 case MAP_SHARED: 1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1503 return -EINVAL; 1504 /* 1505 * Ignore pgoff. 1506 */ 1507 pgoff = 0; 1508 vm_flags |= VM_SHARED | VM_MAYSHARE; 1509 break; 1510 case MAP_PRIVATE: 1511 /* 1512 * Set pgoff according to addr for anon_vma. 1513 */ 1514 pgoff = addr >> PAGE_SHIFT; 1515 break; 1516 default: 1517 return -EINVAL; 1518 } 1519 } 1520 1521 /* 1522 * Set 'VM_NORESERVE' if we should not account for the 1523 * memory use of this mapping. 1524 */ 1525 if (flags & MAP_NORESERVE) { 1526 /* We honor MAP_NORESERVE if allowed to overcommit */ 1527 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1528 vm_flags |= VM_NORESERVE; 1529 1530 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1531 if (file && is_file_hugepages(file)) 1532 vm_flags |= VM_NORESERVE; 1533 } 1534 1535 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1536 if (!IS_ERR_VALUE(addr) && 1537 ((vm_flags & VM_LOCKED) || 1538 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1539 *populate = len; 1540 return addr; 1541 } 1542 1543 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1544 unsigned long prot, unsigned long flags, 1545 unsigned long fd, unsigned long pgoff) 1546 { 1547 struct file *file = NULL; 1548 unsigned long retval; 1549 1550 if (!(flags & MAP_ANONYMOUS)) { 1551 audit_mmap_fd(fd, flags); 1552 file = fget(fd); 1553 if (!file) 1554 return -EBADF; 1555 if (is_file_hugepages(file)) 1556 len = ALIGN(len, huge_page_size(hstate_file(file))); 1557 retval = -EINVAL; 1558 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1559 goto out_fput; 1560 } else if (flags & MAP_HUGETLB) { 1561 struct user_struct *user = NULL; 1562 struct hstate *hs; 1563 1564 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1565 if (!hs) 1566 return -EINVAL; 1567 1568 len = ALIGN(len, huge_page_size(hs)); 1569 /* 1570 * VM_NORESERVE is used because the reservations will be 1571 * taken when vm_ops->mmap() is called 1572 * A dummy user value is used because we are not locking 1573 * memory so no accounting is necessary 1574 */ 1575 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1576 VM_NORESERVE, 1577 &user, HUGETLB_ANONHUGE_INODE, 1578 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1579 if (IS_ERR(file)) 1580 return PTR_ERR(file); 1581 } 1582 1583 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1584 1585 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1586 out_fput: 1587 if (file) 1588 fput(file); 1589 return retval; 1590 } 1591 1592 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1593 unsigned long, prot, unsigned long, flags, 1594 unsigned long, fd, unsigned long, pgoff) 1595 { 1596 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1597 } 1598 1599 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1600 struct mmap_arg_struct { 1601 unsigned long addr; 1602 unsigned long len; 1603 unsigned long prot; 1604 unsigned long flags; 1605 unsigned long fd; 1606 unsigned long offset; 1607 }; 1608 1609 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1610 { 1611 struct mmap_arg_struct a; 1612 1613 if (copy_from_user(&a, arg, sizeof(a))) 1614 return -EFAULT; 1615 if (offset_in_page(a.offset)) 1616 return -EINVAL; 1617 1618 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1619 a.offset >> PAGE_SHIFT); 1620 } 1621 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1622 1623 /* 1624 * Some shared mappigns will want the pages marked read-only 1625 * to track write events. If so, we'll downgrade vm_page_prot 1626 * to the private version (using protection_map[] without the 1627 * VM_SHARED bit). 1628 */ 1629 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1630 { 1631 vm_flags_t vm_flags = vma->vm_flags; 1632 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1633 1634 /* If it was private or non-writable, the write bit is already clear */ 1635 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1636 return 0; 1637 1638 /* The backer wishes to know when pages are first written to? */ 1639 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1640 return 1; 1641 1642 /* The open routine did something to the protections that pgprot_modify 1643 * won't preserve? */ 1644 if (pgprot_val(vm_page_prot) != 1645 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1646 return 0; 1647 1648 /* Do we need to track softdirty? */ 1649 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1650 return 1; 1651 1652 /* Specialty mapping? */ 1653 if (vm_flags & VM_PFNMAP) 1654 return 0; 1655 1656 /* Can the mapping track the dirty pages? */ 1657 return vma->vm_file && vma->vm_file->f_mapping && 1658 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1659 } 1660 1661 /* 1662 * We account for memory if it's a private writeable mapping, 1663 * not hugepages and VM_NORESERVE wasn't set. 1664 */ 1665 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1666 { 1667 /* 1668 * hugetlb has its own accounting separate from the core VM 1669 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1670 */ 1671 if (file && is_file_hugepages(file)) 1672 return 0; 1673 1674 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1675 } 1676 1677 unsigned long mmap_region(struct file *file, unsigned long addr, 1678 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1679 struct list_head *uf) 1680 { 1681 struct mm_struct *mm = current->mm; 1682 struct vm_area_struct *vma, *prev; 1683 int error; 1684 struct rb_node **rb_link, *rb_parent; 1685 unsigned long charged = 0; 1686 1687 /* Check against address space limit. */ 1688 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1689 unsigned long nr_pages; 1690 1691 /* 1692 * MAP_FIXED may remove pages of mappings that intersects with 1693 * requested mapping. Account for the pages it would unmap. 1694 */ 1695 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1696 1697 if (!may_expand_vm(mm, vm_flags, 1698 (len >> PAGE_SHIFT) - nr_pages)) 1699 return -ENOMEM; 1700 } 1701 1702 /* Clear old maps */ 1703 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1704 &rb_parent)) { 1705 if (do_munmap(mm, addr, len, uf)) 1706 return -ENOMEM; 1707 } 1708 1709 /* 1710 * Private writable mapping: check memory availability 1711 */ 1712 if (accountable_mapping(file, vm_flags)) { 1713 charged = len >> PAGE_SHIFT; 1714 if (security_vm_enough_memory_mm(mm, charged)) 1715 return -ENOMEM; 1716 vm_flags |= VM_ACCOUNT; 1717 } 1718 1719 /* 1720 * Can we just expand an old mapping? 1721 */ 1722 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1723 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1724 if (vma) 1725 goto out; 1726 1727 /* 1728 * Determine the object being mapped and call the appropriate 1729 * specific mapper. the address has already been validated, but 1730 * not unmapped, but the maps are removed from the list. 1731 */ 1732 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1733 if (!vma) { 1734 error = -ENOMEM; 1735 goto unacct_error; 1736 } 1737 1738 vma->vm_mm = mm; 1739 vma->vm_start = addr; 1740 vma->vm_end = addr + len; 1741 vma->vm_flags = vm_flags; 1742 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1743 vma->vm_pgoff = pgoff; 1744 INIT_LIST_HEAD(&vma->anon_vma_chain); 1745 1746 if (file) { 1747 if (vm_flags & VM_DENYWRITE) { 1748 error = deny_write_access(file); 1749 if (error) 1750 goto free_vma; 1751 } 1752 if (vm_flags & VM_SHARED) { 1753 error = mapping_map_writable(file->f_mapping); 1754 if (error) 1755 goto allow_write_and_free_vma; 1756 } 1757 1758 /* ->mmap() can change vma->vm_file, but must guarantee that 1759 * vma_link() below can deny write-access if VM_DENYWRITE is set 1760 * and map writably if VM_SHARED is set. This usually means the 1761 * new file must not have been exposed to user-space, yet. 1762 */ 1763 vma->vm_file = get_file(file); 1764 error = call_mmap(file, vma); 1765 if (error) 1766 goto unmap_and_free_vma; 1767 1768 /* Can addr have changed?? 1769 * 1770 * Answer: Yes, several device drivers can do it in their 1771 * f_op->mmap method. -DaveM 1772 * Bug: If addr is changed, prev, rb_link, rb_parent should 1773 * be updated for vma_link() 1774 */ 1775 WARN_ON_ONCE(addr != vma->vm_start); 1776 1777 addr = vma->vm_start; 1778 vm_flags = vma->vm_flags; 1779 } else if (vm_flags & VM_SHARED) { 1780 error = shmem_zero_setup(vma); 1781 if (error) 1782 goto free_vma; 1783 } 1784 1785 vma_link(mm, vma, prev, rb_link, rb_parent); 1786 /* Once vma denies write, undo our temporary denial count */ 1787 if (file) { 1788 if (vm_flags & VM_SHARED) 1789 mapping_unmap_writable(file->f_mapping); 1790 if (vm_flags & VM_DENYWRITE) 1791 allow_write_access(file); 1792 } 1793 file = vma->vm_file; 1794 out: 1795 perf_event_mmap(vma); 1796 1797 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1798 if (vm_flags & VM_LOCKED) { 1799 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1800 vma == get_gate_vma(current->mm))) 1801 mm->locked_vm += (len >> PAGE_SHIFT); 1802 else 1803 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1804 } 1805 1806 if (file) 1807 uprobe_mmap(vma); 1808 1809 /* 1810 * New (or expanded) vma always get soft dirty status. 1811 * Otherwise user-space soft-dirty page tracker won't 1812 * be able to distinguish situation when vma area unmapped, 1813 * then new mapped in-place (which must be aimed as 1814 * a completely new data area). 1815 */ 1816 vma->vm_flags |= VM_SOFTDIRTY; 1817 1818 vma_set_page_prot(vma); 1819 1820 return addr; 1821 1822 unmap_and_free_vma: 1823 vma->vm_file = NULL; 1824 fput(file); 1825 1826 /* Undo any partial mapping done by a device driver. */ 1827 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1828 charged = 0; 1829 if (vm_flags & VM_SHARED) 1830 mapping_unmap_writable(file->f_mapping); 1831 allow_write_and_free_vma: 1832 if (vm_flags & VM_DENYWRITE) 1833 allow_write_access(file); 1834 free_vma: 1835 kmem_cache_free(vm_area_cachep, vma); 1836 unacct_error: 1837 if (charged) 1838 vm_unacct_memory(charged); 1839 return error; 1840 } 1841 1842 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1843 { 1844 /* 1845 * We implement the search by looking for an rbtree node that 1846 * immediately follows a suitable gap. That is, 1847 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1848 * - gap_end = vma->vm_start >= info->low_limit + length; 1849 * - gap_end - gap_start >= length 1850 */ 1851 1852 struct mm_struct *mm = current->mm; 1853 struct vm_area_struct *vma; 1854 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1855 1856 /* Adjust search length to account for worst case alignment overhead */ 1857 length = info->length + info->align_mask; 1858 if (length < info->length) 1859 return -ENOMEM; 1860 1861 /* Adjust search limits by the desired length */ 1862 if (info->high_limit < length) 1863 return -ENOMEM; 1864 high_limit = info->high_limit - length; 1865 1866 if (info->low_limit > high_limit) 1867 return -ENOMEM; 1868 low_limit = info->low_limit + length; 1869 1870 /* Check if rbtree root looks promising */ 1871 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1872 goto check_highest; 1873 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1874 if (vma->rb_subtree_gap < length) 1875 goto check_highest; 1876 1877 while (true) { 1878 /* Visit left subtree if it looks promising */ 1879 gap_end = vm_start_gap(vma); 1880 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1881 struct vm_area_struct *left = 1882 rb_entry(vma->vm_rb.rb_left, 1883 struct vm_area_struct, vm_rb); 1884 if (left->rb_subtree_gap >= length) { 1885 vma = left; 1886 continue; 1887 } 1888 } 1889 1890 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1891 check_current: 1892 /* Check if current node has a suitable gap */ 1893 if (gap_start > high_limit) 1894 return -ENOMEM; 1895 if (gap_end >= low_limit && 1896 gap_end > gap_start && gap_end - gap_start >= length) 1897 goto found; 1898 1899 /* Visit right subtree if it looks promising */ 1900 if (vma->vm_rb.rb_right) { 1901 struct vm_area_struct *right = 1902 rb_entry(vma->vm_rb.rb_right, 1903 struct vm_area_struct, vm_rb); 1904 if (right->rb_subtree_gap >= length) { 1905 vma = right; 1906 continue; 1907 } 1908 } 1909 1910 /* Go back up the rbtree to find next candidate node */ 1911 while (true) { 1912 struct rb_node *prev = &vma->vm_rb; 1913 if (!rb_parent(prev)) 1914 goto check_highest; 1915 vma = rb_entry(rb_parent(prev), 1916 struct vm_area_struct, vm_rb); 1917 if (prev == vma->vm_rb.rb_left) { 1918 gap_start = vm_end_gap(vma->vm_prev); 1919 gap_end = vm_start_gap(vma); 1920 goto check_current; 1921 } 1922 } 1923 } 1924 1925 check_highest: 1926 /* Check highest gap, which does not precede any rbtree node */ 1927 gap_start = mm->highest_vm_end; 1928 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1929 if (gap_start > high_limit) 1930 return -ENOMEM; 1931 1932 found: 1933 /* We found a suitable gap. Clip it with the original low_limit. */ 1934 if (gap_start < info->low_limit) 1935 gap_start = info->low_limit; 1936 1937 /* Adjust gap address to the desired alignment */ 1938 gap_start += (info->align_offset - gap_start) & info->align_mask; 1939 1940 VM_BUG_ON(gap_start + info->length > info->high_limit); 1941 VM_BUG_ON(gap_start + info->length > gap_end); 1942 return gap_start; 1943 } 1944 1945 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1946 { 1947 struct mm_struct *mm = current->mm; 1948 struct vm_area_struct *vma; 1949 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1950 1951 /* Adjust search length to account for worst case alignment overhead */ 1952 length = info->length + info->align_mask; 1953 if (length < info->length) 1954 return -ENOMEM; 1955 1956 /* 1957 * Adjust search limits by the desired length. 1958 * See implementation comment at top of unmapped_area(). 1959 */ 1960 gap_end = info->high_limit; 1961 if (gap_end < length) 1962 return -ENOMEM; 1963 high_limit = gap_end - length; 1964 1965 if (info->low_limit > high_limit) 1966 return -ENOMEM; 1967 low_limit = info->low_limit + length; 1968 1969 /* Check highest gap, which does not precede any rbtree node */ 1970 gap_start = mm->highest_vm_end; 1971 if (gap_start <= high_limit) 1972 goto found_highest; 1973 1974 /* Check if rbtree root looks promising */ 1975 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1976 return -ENOMEM; 1977 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1978 if (vma->rb_subtree_gap < length) 1979 return -ENOMEM; 1980 1981 while (true) { 1982 /* Visit right subtree if it looks promising */ 1983 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1984 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1985 struct vm_area_struct *right = 1986 rb_entry(vma->vm_rb.rb_right, 1987 struct vm_area_struct, vm_rb); 1988 if (right->rb_subtree_gap >= length) { 1989 vma = right; 1990 continue; 1991 } 1992 } 1993 1994 check_current: 1995 /* Check if current node has a suitable gap */ 1996 gap_end = vm_start_gap(vma); 1997 if (gap_end < low_limit) 1998 return -ENOMEM; 1999 if (gap_start <= high_limit && 2000 gap_end > gap_start && gap_end - gap_start >= length) 2001 goto found; 2002 2003 /* Visit left subtree if it looks promising */ 2004 if (vma->vm_rb.rb_left) { 2005 struct vm_area_struct *left = 2006 rb_entry(vma->vm_rb.rb_left, 2007 struct vm_area_struct, vm_rb); 2008 if (left->rb_subtree_gap >= length) { 2009 vma = left; 2010 continue; 2011 } 2012 } 2013 2014 /* Go back up the rbtree to find next candidate node */ 2015 while (true) { 2016 struct rb_node *prev = &vma->vm_rb; 2017 if (!rb_parent(prev)) 2018 return -ENOMEM; 2019 vma = rb_entry(rb_parent(prev), 2020 struct vm_area_struct, vm_rb); 2021 if (prev == vma->vm_rb.rb_right) { 2022 gap_start = vma->vm_prev ? 2023 vm_end_gap(vma->vm_prev) : 0; 2024 goto check_current; 2025 } 2026 } 2027 } 2028 2029 found: 2030 /* We found a suitable gap. Clip it with the original high_limit. */ 2031 if (gap_end > info->high_limit) 2032 gap_end = info->high_limit; 2033 2034 found_highest: 2035 /* Compute highest gap address at the desired alignment */ 2036 gap_end -= info->length; 2037 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2038 2039 VM_BUG_ON(gap_end < info->low_limit); 2040 VM_BUG_ON(gap_end < gap_start); 2041 return gap_end; 2042 } 2043 2044 /* Get an address range which is currently unmapped. 2045 * For shmat() with addr=0. 2046 * 2047 * Ugly calling convention alert: 2048 * Return value with the low bits set means error value, 2049 * ie 2050 * if (ret & ~PAGE_MASK) 2051 * error = ret; 2052 * 2053 * This function "knows" that -ENOMEM has the bits set. 2054 */ 2055 #ifndef HAVE_ARCH_UNMAPPED_AREA 2056 unsigned long 2057 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2058 unsigned long len, unsigned long pgoff, unsigned long flags) 2059 { 2060 struct mm_struct *mm = current->mm; 2061 struct vm_area_struct *vma, *prev; 2062 struct vm_unmapped_area_info info; 2063 2064 if (len > TASK_SIZE - mmap_min_addr) 2065 return -ENOMEM; 2066 2067 if (flags & MAP_FIXED) 2068 return addr; 2069 2070 if (addr) { 2071 addr = PAGE_ALIGN(addr); 2072 vma = find_vma_prev(mm, addr, &prev); 2073 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2074 (!vma || addr + len <= vm_start_gap(vma)) && 2075 (!prev || addr >= vm_end_gap(prev))) 2076 return addr; 2077 } 2078 2079 info.flags = 0; 2080 info.length = len; 2081 info.low_limit = mm->mmap_base; 2082 info.high_limit = TASK_SIZE; 2083 info.align_mask = 0; 2084 return vm_unmapped_area(&info); 2085 } 2086 #endif 2087 2088 /* 2089 * This mmap-allocator allocates new areas top-down from below the 2090 * stack's low limit (the base): 2091 */ 2092 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2093 unsigned long 2094 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 2095 const unsigned long len, const unsigned long pgoff, 2096 const unsigned long flags) 2097 { 2098 struct vm_area_struct *vma, *prev; 2099 struct mm_struct *mm = current->mm; 2100 unsigned long addr = addr0; 2101 struct vm_unmapped_area_info info; 2102 2103 /* requested length too big for entire address space */ 2104 if (len > TASK_SIZE - mmap_min_addr) 2105 return -ENOMEM; 2106 2107 if (flags & MAP_FIXED) 2108 return addr; 2109 2110 /* requesting a specific address */ 2111 if (addr) { 2112 addr = PAGE_ALIGN(addr); 2113 vma = find_vma_prev(mm, addr, &prev); 2114 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2115 (!vma || addr + len <= vm_start_gap(vma)) && 2116 (!prev || addr >= vm_end_gap(prev))) 2117 return addr; 2118 } 2119 2120 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2121 info.length = len; 2122 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2123 info.high_limit = mm->mmap_base; 2124 info.align_mask = 0; 2125 addr = vm_unmapped_area(&info); 2126 2127 /* 2128 * A failed mmap() very likely causes application failure, 2129 * so fall back to the bottom-up function here. This scenario 2130 * can happen with large stack limits and large mmap() 2131 * allocations. 2132 */ 2133 if (offset_in_page(addr)) { 2134 VM_BUG_ON(addr != -ENOMEM); 2135 info.flags = 0; 2136 info.low_limit = TASK_UNMAPPED_BASE; 2137 info.high_limit = TASK_SIZE; 2138 addr = vm_unmapped_area(&info); 2139 } 2140 2141 return addr; 2142 } 2143 #endif 2144 2145 unsigned long 2146 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2147 unsigned long pgoff, unsigned long flags) 2148 { 2149 unsigned long (*get_area)(struct file *, unsigned long, 2150 unsigned long, unsigned long, unsigned long); 2151 2152 unsigned long error = arch_mmap_check(addr, len, flags); 2153 if (error) 2154 return error; 2155 2156 /* Careful about overflows.. */ 2157 if (len > TASK_SIZE) 2158 return -ENOMEM; 2159 2160 get_area = current->mm->get_unmapped_area; 2161 if (file) { 2162 if (file->f_op->get_unmapped_area) 2163 get_area = file->f_op->get_unmapped_area; 2164 } else if (flags & MAP_SHARED) { 2165 /* 2166 * mmap_region() will call shmem_zero_setup() to create a file, 2167 * so use shmem's get_unmapped_area in case it can be huge. 2168 * do_mmap_pgoff() will clear pgoff, so match alignment. 2169 */ 2170 pgoff = 0; 2171 get_area = shmem_get_unmapped_area; 2172 } 2173 2174 addr = get_area(file, addr, len, pgoff, flags); 2175 if (IS_ERR_VALUE(addr)) 2176 return addr; 2177 2178 if (addr > TASK_SIZE - len) 2179 return -ENOMEM; 2180 if (offset_in_page(addr)) 2181 return -EINVAL; 2182 2183 error = security_mmap_addr(addr); 2184 return error ? error : addr; 2185 } 2186 2187 EXPORT_SYMBOL(get_unmapped_area); 2188 2189 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2190 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2191 { 2192 struct rb_node *rb_node; 2193 struct vm_area_struct *vma; 2194 2195 /* Check the cache first. */ 2196 vma = vmacache_find(mm, addr); 2197 if (likely(vma)) 2198 return vma; 2199 2200 rb_node = mm->mm_rb.rb_node; 2201 2202 while (rb_node) { 2203 struct vm_area_struct *tmp; 2204 2205 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2206 2207 if (tmp->vm_end > addr) { 2208 vma = tmp; 2209 if (tmp->vm_start <= addr) 2210 break; 2211 rb_node = rb_node->rb_left; 2212 } else 2213 rb_node = rb_node->rb_right; 2214 } 2215 2216 if (vma) 2217 vmacache_update(addr, vma); 2218 return vma; 2219 } 2220 2221 EXPORT_SYMBOL(find_vma); 2222 2223 /* 2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2225 */ 2226 struct vm_area_struct * 2227 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2228 struct vm_area_struct **pprev) 2229 { 2230 struct vm_area_struct *vma; 2231 2232 vma = find_vma(mm, addr); 2233 if (vma) { 2234 *pprev = vma->vm_prev; 2235 } else { 2236 struct rb_node *rb_node = mm->mm_rb.rb_node; 2237 *pprev = NULL; 2238 while (rb_node) { 2239 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2240 rb_node = rb_node->rb_right; 2241 } 2242 } 2243 return vma; 2244 } 2245 2246 /* 2247 * Verify that the stack growth is acceptable and 2248 * update accounting. This is shared with both the 2249 * grow-up and grow-down cases. 2250 */ 2251 static int acct_stack_growth(struct vm_area_struct *vma, 2252 unsigned long size, unsigned long grow) 2253 { 2254 struct mm_struct *mm = vma->vm_mm; 2255 unsigned long new_start; 2256 2257 /* address space limit tests */ 2258 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2259 return -ENOMEM; 2260 2261 /* Stack limit test */ 2262 if (size > rlimit(RLIMIT_STACK)) 2263 return -ENOMEM; 2264 2265 /* mlock limit tests */ 2266 if (vma->vm_flags & VM_LOCKED) { 2267 unsigned long locked; 2268 unsigned long limit; 2269 locked = mm->locked_vm + grow; 2270 limit = rlimit(RLIMIT_MEMLOCK); 2271 limit >>= PAGE_SHIFT; 2272 if (locked > limit && !capable(CAP_IPC_LOCK)) 2273 return -ENOMEM; 2274 } 2275 2276 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2277 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2278 vma->vm_end - size; 2279 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2280 return -EFAULT; 2281 2282 /* 2283 * Overcommit.. This must be the final test, as it will 2284 * update security statistics. 2285 */ 2286 if (security_vm_enough_memory_mm(mm, grow)) 2287 return -ENOMEM; 2288 2289 return 0; 2290 } 2291 2292 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2293 /* 2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2295 * vma is the last one with address > vma->vm_end. Have to extend vma. 2296 */ 2297 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2298 { 2299 struct mm_struct *mm = vma->vm_mm; 2300 struct vm_area_struct *next; 2301 unsigned long gap_addr; 2302 int error = 0; 2303 2304 if (!(vma->vm_flags & VM_GROWSUP)) 2305 return -EFAULT; 2306 2307 /* Guard against exceeding limits of the address space. */ 2308 address &= PAGE_MASK; 2309 if (address >= (TASK_SIZE & PAGE_MASK)) 2310 return -ENOMEM; 2311 address += PAGE_SIZE; 2312 2313 /* Enforce stack_guard_gap */ 2314 gap_addr = address + stack_guard_gap; 2315 2316 /* Guard against overflow */ 2317 if (gap_addr < address || gap_addr > TASK_SIZE) 2318 gap_addr = TASK_SIZE; 2319 2320 next = vma->vm_next; 2321 if (next && next->vm_start < gap_addr && 2322 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2323 if (!(next->vm_flags & VM_GROWSUP)) 2324 return -ENOMEM; 2325 /* Check that both stack segments have the same anon_vma? */ 2326 } 2327 2328 /* We must make sure the anon_vma is allocated. */ 2329 if (unlikely(anon_vma_prepare(vma))) 2330 return -ENOMEM; 2331 2332 /* 2333 * vma->vm_start/vm_end cannot change under us because the caller 2334 * is required to hold the mmap_sem in read mode. We need the 2335 * anon_vma lock to serialize against concurrent expand_stacks. 2336 */ 2337 anon_vma_lock_write(vma->anon_vma); 2338 2339 /* Somebody else might have raced and expanded it already */ 2340 if (address > vma->vm_end) { 2341 unsigned long size, grow; 2342 2343 size = address - vma->vm_start; 2344 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2345 2346 error = -ENOMEM; 2347 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2348 error = acct_stack_growth(vma, size, grow); 2349 if (!error) { 2350 /* 2351 * vma_gap_update() doesn't support concurrent 2352 * updates, but we only hold a shared mmap_sem 2353 * lock here, so we need to protect against 2354 * concurrent vma expansions. 2355 * anon_vma_lock_write() doesn't help here, as 2356 * we don't guarantee that all growable vmas 2357 * in a mm share the same root anon vma. 2358 * So, we reuse mm->page_table_lock to guard 2359 * against concurrent vma expansions. 2360 */ 2361 spin_lock(&mm->page_table_lock); 2362 if (vma->vm_flags & VM_LOCKED) 2363 mm->locked_vm += grow; 2364 vm_stat_account(mm, vma->vm_flags, grow); 2365 anon_vma_interval_tree_pre_update_vma(vma); 2366 vma->vm_end = address; 2367 anon_vma_interval_tree_post_update_vma(vma); 2368 if (vma->vm_next) 2369 vma_gap_update(vma->vm_next); 2370 else 2371 mm->highest_vm_end = vm_end_gap(vma); 2372 spin_unlock(&mm->page_table_lock); 2373 2374 perf_event_mmap(vma); 2375 } 2376 } 2377 } 2378 anon_vma_unlock_write(vma->anon_vma); 2379 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2380 validate_mm(mm); 2381 return error; 2382 } 2383 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2384 2385 /* 2386 * vma is the first one with address < vma->vm_start. Have to extend vma. 2387 */ 2388 int expand_downwards(struct vm_area_struct *vma, 2389 unsigned long address) 2390 { 2391 struct mm_struct *mm = vma->vm_mm; 2392 struct vm_area_struct *prev; 2393 int error; 2394 2395 address &= PAGE_MASK; 2396 error = security_mmap_addr(address); 2397 if (error) 2398 return error; 2399 2400 /* Enforce stack_guard_gap */ 2401 prev = vma->vm_prev; 2402 /* Check that both stack segments have the same anon_vma? */ 2403 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2404 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2405 if (address - prev->vm_end < stack_guard_gap) 2406 return -ENOMEM; 2407 } 2408 2409 /* We must make sure the anon_vma is allocated. */ 2410 if (unlikely(anon_vma_prepare(vma))) 2411 return -ENOMEM; 2412 2413 /* 2414 * vma->vm_start/vm_end cannot change under us because the caller 2415 * is required to hold the mmap_sem in read mode. We need the 2416 * anon_vma lock to serialize against concurrent expand_stacks. 2417 */ 2418 anon_vma_lock_write(vma->anon_vma); 2419 2420 /* Somebody else might have raced and expanded it already */ 2421 if (address < vma->vm_start) { 2422 unsigned long size, grow; 2423 2424 size = vma->vm_end - address; 2425 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2426 2427 error = -ENOMEM; 2428 if (grow <= vma->vm_pgoff) { 2429 error = acct_stack_growth(vma, size, grow); 2430 if (!error) { 2431 /* 2432 * vma_gap_update() doesn't support concurrent 2433 * updates, but we only hold a shared mmap_sem 2434 * lock here, so we need to protect against 2435 * concurrent vma expansions. 2436 * anon_vma_lock_write() doesn't help here, as 2437 * we don't guarantee that all growable vmas 2438 * in a mm share the same root anon vma. 2439 * So, we reuse mm->page_table_lock to guard 2440 * against concurrent vma expansions. 2441 */ 2442 spin_lock(&mm->page_table_lock); 2443 if (vma->vm_flags & VM_LOCKED) 2444 mm->locked_vm += grow; 2445 vm_stat_account(mm, vma->vm_flags, grow); 2446 anon_vma_interval_tree_pre_update_vma(vma); 2447 vma->vm_start = address; 2448 vma->vm_pgoff -= grow; 2449 anon_vma_interval_tree_post_update_vma(vma); 2450 vma_gap_update(vma); 2451 spin_unlock(&mm->page_table_lock); 2452 2453 perf_event_mmap(vma); 2454 } 2455 } 2456 } 2457 anon_vma_unlock_write(vma->anon_vma); 2458 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2459 validate_mm(mm); 2460 return error; 2461 } 2462 2463 /* enforced gap between the expanding stack and other mappings. */ 2464 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2465 2466 static int __init cmdline_parse_stack_guard_gap(char *p) 2467 { 2468 unsigned long val; 2469 char *endptr; 2470 2471 val = simple_strtoul(p, &endptr, 10); 2472 if (!*endptr) 2473 stack_guard_gap = val << PAGE_SHIFT; 2474 2475 return 0; 2476 } 2477 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2478 2479 #ifdef CONFIG_STACK_GROWSUP 2480 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2481 { 2482 return expand_upwards(vma, address); 2483 } 2484 2485 struct vm_area_struct * 2486 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2487 { 2488 struct vm_area_struct *vma, *prev; 2489 2490 addr &= PAGE_MASK; 2491 vma = find_vma_prev(mm, addr, &prev); 2492 if (vma && (vma->vm_start <= addr)) 2493 return vma; 2494 if (!prev || expand_stack(prev, addr)) 2495 return NULL; 2496 if (prev->vm_flags & VM_LOCKED) 2497 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2498 return prev; 2499 } 2500 #else 2501 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2502 { 2503 return expand_downwards(vma, address); 2504 } 2505 2506 struct vm_area_struct * 2507 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2508 { 2509 struct vm_area_struct *vma; 2510 unsigned long start; 2511 2512 addr &= PAGE_MASK; 2513 vma = find_vma(mm, addr); 2514 if (!vma) 2515 return NULL; 2516 if (vma->vm_start <= addr) 2517 return vma; 2518 if (!(vma->vm_flags & VM_GROWSDOWN)) 2519 return NULL; 2520 start = vma->vm_start; 2521 if (expand_stack(vma, addr)) 2522 return NULL; 2523 if (vma->vm_flags & VM_LOCKED) 2524 populate_vma_page_range(vma, addr, start, NULL); 2525 return vma; 2526 } 2527 #endif 2528 2529 EXPORT_SYMBOL_GPL(find_extend_vma); 2530 2531 /* 2532 * Ok - we have the memory areas we should free on the vma list, 2533 * so release them, and do the vma updates. 2534 * 2535 * Called with the mm semaphore held. 2536 */ 2537 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2538 { 2539 unsigned long nr_accounted = 0; 2540 2541 /* Update high watermark before we lower total_vm */ 2542 update_hiwater_vm(mm); 2543 do { 2544 long nrpages = vma_pages(vma); 2545 2546 if (vma->vm_flags & VM_ACCOUNT) 2547 nr_accounted += nrpages; 2548 vm_stat_account(mm, vma->vm_flags, -nrpages); 2549 vma = remove_vma(vma); 2550 } while (vma); 2551 vm_unacct_memory(nr_accounted); 2552 validate_mm(mm); 2553 } 2554 2555 /* 2556 * Get rid of page table information in the indicated region. 2557 * 2558 * Called with the mm semaphore held. 2559 */ 2560 static void unmap_region(struct mm_struct *mm, 2561 struct vm_area_struct *vma, struct vm_area_struct *prev, 2562 unsigned long start, unsigned long end) 2563 { 2564 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2565 struct mmu_gather tlb; 2566 2567 lru_add_drain(); 2568 tlb_gather_mmu(&tlb, mm, start, end); 2569 update_hiwater_rss(mm); 2570 unmap_vmas(&tlb, vma, start, end); 2571 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2572 next ? next->vm_start : USER_PGTABLES_CEILING); 2573 tlb_finish_mmu(&tlb, start, end); 2574 } 2575 2576 /* 2577 * Create a list of vma's touched by the unmap, removing them from the mm's 2578 * vma list as we go.. 2579 */ 2580 static void 2581 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2582 struct vm_area_struct *prev, unsigned long end) 2583 { 2584 struct vm_area_struct **insertion_point; 2585 struct vm_area_struct *tail_vma = NULL; 2586 2587 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2588 vma->vm_prev = NULL; 2589 do { 2590 vma_rb_erase(vma, &mm->mm_rb); 2591 mm->map_count--; 2592 tail_vma = vma; 2593 vma = vma->vm_next; 2594 } while (vma && vma->vm_start < end); 2595 *insertion_point = vma; 2596 if (vma) { 2597 vma->vm_prev = prev; 2598 vma_gap_update(vma); 2599 } else 2600 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2601 tail_vma->vm_next = NULL; 2602 2603 /* Kill the cache */ 2604 vmacache_invalidate(mm); 2605 } 2606 2607 /* 2608 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2609 * has already been checked or doesn't make sense to fail. 2610 */ 2611 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2612 unsigned long addr, int new_below) 2613 { 2614 struct vm_area_struct *new; 2615 int err; 2616 2617 if (vma->vm_ops && vma->vm_ops->split) { 2618 err = vma->vm_ops->split(vma, addr); 2619 if (err) 2620 return err; 2621 } 2622 2623 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2624 if (!new) 2625 return -ENOMEM; 2626 2627 /* most fields are the same, copy all, and then fixup */ 2628 *new = *vma; 2629 2630 INIT_LIST_HEAD(&new->anon_vma_chain); 2631 2632 if (new_below) 2633 new->vm_end = addr; 2634 else { 2635 new->vm_start = addr; 2636 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2637 } 2638 2639 err = vma_dup_policy(vma, new); 2640 if (err) 2641 goto out_free_vma; 2642 2643 err = anon_vma_clone(new, vma); 2644 if (err) 2645 goto out_free_mpol; 2646 2647 if (new->vm_file) 2648 get_file(new->vm_file); 2649 2650 if (new->vm_ops && new->vm_ops->open) 2651 new->vm_ops->open(new); 2652 2653 if (new_below) 2654 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2655 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2656 else 2657 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2658 2659 /* Success. */ 2660 if (!err) 2661 return 0; 2662 2663 /* Clean everything up if vma_adjust failed. */ 2664 if (new->vm_ops && new->vm_ops->close) 2665 new->vm_ops->close(new); 2666 if (new->vm_file) 2667 fput(new->vm_file); 2668 unlink_anon_vmas(new); 2669 out_free_mpol: 2670 mpol_put(vma_policy(new)); 2671 out_free_vma: 2672 kmem_cache_free(vm_area_cachep, new); 2673 return err; 2674 } 2675 2676 /* 2677 * Split a vma into two pieces at address 'addr', a new vma is allocated 2678 * either for the first part or the tail. 2679 */ 2680 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2681 unsigned long addr, int new_below) 2682 { 2683 if (mm->map_count >= sysctl_max_map_count) 2684 return -ENOMEM; 2685 2686 return __split_vma(mm, vma, addr, new_below); 2687 } 2688 2689 /* Munmap is split into 2 main parts -- this part which finds 2690 * what needs doing, and the areas themselves, which do the 2691 * work. This now handles partial unmappings. 2692 * Jeremy Fitzhardinge <jeremy@goop.org> 2693 */ 2694 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2695 struct list_head *uf) 2696 { 2697 unsigned long end; 2698 struct vm_area_struct *vma, *prev, *last; 2699 2700 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2701 return -EINVAL; 2702 2703 len = PAGE_ALIGN(len); 2704 if (len == 0) 2705 return -EINVAL; 2706 2707 /* Find the first overlapping VMA */ 2708 vma = find_vma(mm, start); 2709 if (!vma) 2710 return 0; 2711 prev = vma->vm_prev; 2712 /* we have start < vma->vm_end */ 2713 2714 /* if it doesn't overlap, we have nothing.. */ 2715 end = start + len; 2716 if (vma->vm_start >= end) 2717 return 0; 2718 2719 /* 2720 * If we need to split any vma, do it now to save pain later. 2721 * 2722 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2723 * unmapped vm_area_struct will remain in use: so lower split_vma 2724 * places tmp vma above, and higher split_vma places tmp vma below. 2725 */ 2726 if (start > vma->vm_start) { 2727 int error; 2728 2729 /* 2730 * Make sure that map_count on return from munmap() will 2731 * not exceed its limit; but let map_count go just above 2732 * its limit temporarily, to help free resources as expected. 2733 */ 2734 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2735 return -ENOMEM; 2736 2737 error = __split_vma(mm, vma, start, 0); 2738 if (error) 2739 return error; 2740 prev = vma; 2741 } 2742 2743 /* Does it split the last one? */ 2744 last = find_vma(mm, end); 2745 if (last && end > last->vm_start) { 2746 int error = __split_vma(mm, last, end, 1); 2747 if (error) 2748 return error; 2749 } 2750 vma = prev ? prev->vm_next : mm->mmap; 2751 2752 if (unlikely(uf)) { 2753 /* 2754 * If userfaultfd_unmap_prep returns an error the vmas 2755 * will remain splitted, but userland will get a 2756 * highly unexpected error anyway. This is no 2757 * different than the case where the first of the two 2758 * __split_vma fails, but we don't undo the first 2759 * split, despite we could. This is unlikely enough 2760 * failure that it's not worth optimizing it for. 2761 */ 2762 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2763 if (error) 2764 return error; 2765 } 2766 2767 /* 2768 * unlock any mlock()ed ranges before detaching vmas 2769 */ 2770 if (mm->locked_vm) { 2771 struct vm_area_struct *tmp = vma; 2772 while (tmp && tmp->vm_start < end) { 2773 if (tmp->vm_flags & VM_LOCKED) { 2774 mm->locked_vm -= vma_pages(tmp); 2775 munlock_vma_pages_all(tmp); 2776 } 2777 tmp = tmp->vm_next; 2778 } 2779 } 2780 2781 /* 2782 * Remove the vma's, and unmap the actual pages 2783 */ 2784 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2785 unmap_region(mm, vma, prev, start, end); 2786 2787 arch_unmap(mm, vma, start, end); 2788 2789 /* Fix up all other VM information */ 2790 remove_vma_list(mm, vma); 2791 2792 return 0; 2793 } 2794 2795 int vm_munmap(unsigned long start, size_t len) 2796 { 2797 int ret; 2798 struct mm_struct *mm = current->mm; 2799 LIST_HEAD(uf); 2800 2801 if (down_write_killable(&mm->mmap_sem)) 2802 return -EINTR; 2803 2804 ret = do_munmap(mm, start, len, &uf); 2805 up_write(&mm->mmap_sem); 2806 userfaultfd_unmap_complete(mm, &uf); 2807 return ret; 2808 } 2809 EXPORT_SYMBOL(vm_munmap); 2810 2811 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2812 { 2813 profile_munmap(addr); 2814 return vm_munmap(addr, len); 2815 } 2816 2817 2818 /* 2819 * Emulation of deprecated remap_file_pages() syscall. 2820 */ 2821 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2822 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2823 { 2824 2825 struct mm_struct *mm = current->mm; 2826 struct vm_area_struct *vma; 2827 unsigned long populate = 0; 2828 unsigned long ret = -EINVAL; 2829 struct file *file; 2830 2831 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2832 current->comm, current->pid); 2833 2834 if (prot) 2835 return ret; 2836 start = start & PAGE_MASK; 2837 size = size & PAGE_MASK; 2838 2839 if (start + size <= start) 2840 return ret; 2841 2842 /* Does pgoff wrap? */ 2843 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2844 return ret; 2845 2846 if (down_write_killable(&mm->mmap_sem)) 2847 return -EINTR; 2848 2849 vma = find_vma(mm, start); 2850 2851 if (!vma || !(vma->vm_flags & VM_SHARED)) 2852 goto out; 2853 2854 if (start < vma->vm_start) 2855 goto out; 2856 2857 if (start + size > vma->vm_end) { 2858 struct vm_area_struct *next; 2859 2860 for (next = vma->vm_next; next; next = next->vm_next) { 2861 /* hole between vmas ? */ 2862 if (next->vm_start != next->vm_prev->vm_end) 2863 goto out; 2864 2865 if (next->vm_file != vma->vm_file) 2866 goto out; 2867 2868 if (next->vm_flags != vma->vm_flags) 2869 goto out; 2870 2871 if (start + size <= next->vm_end) 2872 break; 2873 } 2874 2875 if (!next) 2876 goto out; 2877 } 2878 2879 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2880 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2881 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2882 2883 flags &= MAP_NONBLOCK; 2884 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2885 if (vma->vm_flags & VM_LOCKED) { 2886 struct vm_area_struct *tmp; 2887 flags |= MAP_LOCKED; 2888 2889 /* drop PG_Mlocked flag for over-mapped range */ 2890 for (tmp = vma; tmp->vm_start >= start + size; 2891 tmp = tmp->vm_next) { 2892 /* 2893 * Split pmd and munlock page on the border 2894 * of the range. 2895 */ 2896 vma_adjust_trans_huge(tmp, start, start + size, 0); 2897 2898 munlock_vma_pages_range(tmp, 2899 max(tmp->vm_start, start), 2900 min(tmp->vm_end, start + size)); 2901 } 2902 } 2903 2904 file = get_file(vma->vm_file); 2905 ret = do_mmap_pgoff(vma->vm_file, start, size, 2906 prot, flags, pgoff, &populate, NULL); 2907 fput(file); 2908 out: 2909 up_write(&mm->mmap_sem); 2910 if (populate) 2911 mm_populate(ret, populate); 2912 if (!IS_ERR_VALUE(ret)) 2913 ret = 0; 2914 return ret; 2915 } 2916 2917 static inline void verify_mm_writelocked(struct mm_struct *mm) 2918 { 2919 #ifdef CONFIG_DEBUG_VM 2920 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2921 WARN_ON(1); 2922 up_read(&mm->mmap_sem); 2923 } 2924 #endif 2925 } 2926 2927 /* 2928 * this is really a simplified "do_mmap". it only handles 2929 * anonymous maps. eventually we may be able to do some 2930 * brk-specific accounting here. 2931 */ 2932 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2933 { 2934 struct mm_struct *mm = current->mm; 2935 struct vm_area_struct *vma, *prev; 2936 struct rb_node **rb_link, *rb_parent; 2937 pgoff_t pgoff = addr >> PAGE_SHIFT; 2938 int error; 2939 2940 /* Until we need other flags, refuse anything except VM_EXEC. */ 2941 if ((flags & (~VM_EXEC)) != 0) 2942 return -EINVAL; 2943 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2944 2945 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2946 if (offset_in_page(error)) 2947 return error; 2948 2949 error = mlock_future_check(mm, mm->def_flags, len); 2950 if (error) 2951 return error; 2952 2953 /* 2954 * mm->mmap_sem is required to protect against another thread 2955 * changing the mappings in case we sleep. 2956 */ 2957 verify_mm_writelocked(mm); 2958 2959 /* 2960 * Clear old maps. this also does some error checking for us 2961 */ 2962 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2963 &rb_parent)) { 2964 if (do_munmap(mm, addr, len, uf)) 2965 return -ENOMEM; 2966 } 2967 2968 /* Check against address space limits *after* clearing old maps... */ 2969 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2970 return -ENOMEM; 2971 2972 if (mm->map_count > sysctl_max_map_count) 2973 return -ENOMEM; 2974 2975 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2976 return -ENOMEM; 2977 2978 /* Can we just expand an old private anonymous mapping? */ 2979 vma = vma_merge(mm, prev, addr, addr + len, flags, 2980 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2981 if (vma) 2982 goto out; 2983 2984 /* 2985 * create a vma struct for an anonymous mapping 2986 */ 2987 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2988 if (!vma) { 2989 vm_unacct_memory(len >> PAGE_SHIFT); 2990 return -ENOMEM; 2991 } 2992 2993 INIT_LIST_HEAD(&vma->anon_vma_chain); 2994 vma->vm_mm = mm; 2995 vma->vm_start = addr; 2996 vma->vm_end = addr + len; 2997 vma->vm_pgoff = pgoff; 2998 vma->vm_flags = flags; 2999 vma->vm_page_prot = vm_get_page_prot(flags); 3000 vma_link(mm, vma, prev, rb_link, rb_parent); 3001 out: 3002 perf_event_mmap(vma); 3003 mm->total_vm += len >> PAGE_SHIFT; 3004 mm->data_vm += len >> PAGE_SHIFT; 3005 if (flags & VM_LOCKED) 3006 mm->locked_vm += (len >> PAGE_SHIFT); 3007 vma->vm_flags |= VM_SOFTDIRTY; 3008 return 0; 3009 } 3010 3011 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3012 { 3013 struct mm_struct *mm = current->mm; 3014 unsigned long len; 3015 int ret; 3016 bool populate; 3017 LIST_HEAD(uf); 3018 3019 len = PAGE_ALIGN(request); 3020 if (len < request) 3021 return -ENOMEM; 3022 if (!len) 3023 return 0; 3024 3025 if (down_write_killable(&mm->mmap_sem)) 3026 return -EINTR; 3027 3028 ret = do_brk_flags(addr, len, flags, &uf); 3029 populate = ((mm->def_flags & VM_LOCKED) != 0); 3030 up_write(&mm->mmap_sem); 3031 userfaultfd_unmap_complete(mm, &uf); 3032 if (populate && !ret) 3033 mm_populate(addr, len); 3034 return ret; 3035 } 3036 EXPORT_SYMBOL(vm_brk_flags); 3037 3038 int vm_brk(unsigned long addr, unsigned long len) 3039 { 3040 return vm_brk_flags(addr, len, 0); 3041 } 3042 EXPORT_SYMBOL(vm_brk); 3043 3044 /* Release all mmaps. */ 3045 void exit_mmap(struct mm_struct *mm) 3046 { 3047 struct mmu_gather tlb; 3048 struct vm_area_struct *vma; 3049 unsigned long nr_accounted = 0; 3050 3051 /* mm's last user has gone, and its about to be pulled down */ 3052 mmu_notifier_release(mm); 3053 3054 if (unlikely(mm_is_oom_victim(mm))) { 3055 /* 3056 * Manually reap the mm to free as much memory as possible. 3057 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3058 * this mm from further consideration. Taking mm->mmap_sem for 3059 * write after setting MMF_OOM_SKIP will guarantee that the oom 3060 * reaper will not run on this mm again after mmap_sem is 3061 * dropped. 3062 * 3063 * Nothing can be holding mm->mmap_sem here and the above call 3064 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3065 * __oom_reap_task_mm() will not block. 3066 * 3067 * This needs to be done before calling munlock_vma_pages_all(), 3068 * which clears VM_LOCKED, otherwise the oom reaper cannot 3069 * reliably test it. 3070 */ 3071 mutex_lock(&oom_lock); 3072 __oom_reap_task_mm(mm); 3073 mutex_unlock(&oom_lock); 3074 3075 set_bit(MMF_OOM_SKIP, &mm->flags); 3076 down_write(&mm->mmap_sem); 3077 up_write(&mm->mmap_sem); 3078 } 3079 3080 if (mm->locked_vm) { 3081 vma = mm->mmap; 3082 while (vma) { 3083 if (vma->vm_flags & VM_LOCKED) 3084 munlock_vma_pages_all(vma); 3085 vma = vma->vm_next; 3086 } 3087 } 3088 3089 arch_exit_mmap(mm); 3090 3091 vma = mm->mmap; 3092 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3093 return; 3094 3095 lru_add_drain(); 3096 flush_cache_mm(mm); 3097 tlb_gather_mmu(&tlb, mm, 0, -1); 3098 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3099 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3100 unmap_vmas(&tlb, vma, 0, -1); 3101 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3102 tlb_finish_mmu(&tlb, 0, -1); 3103 3104 /* 3105 * Walk the list again, actually closing and freeing it, 3106 * with preemption enabled, without holding any MM locks. 3107 */ 3108 while (vma) { 3109 if (vma->vm_flags & VM_ACCOUNT) 3110 nr_accounted += vma_pages(vma); 3111 vma = remove_vma(vma); 3112 } 3113 vm_unacct_memory(nr_accounted); 3114 } 3115 3116 /* Insert vm structure into process list sorted by address 3117 * and into the inode's i_mmap tree. If vm_file is non-NULL 3118 * then i_mmap_rwsem is taken here. 3119 */ 3120 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3121 { 3122 struct vm_area_struct *prev; 3123 struct rb_node **rb_link, *rb_parent; 3124 3125 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3126 &prev, &rb_link, &rb_parent)) 3127 return -ENOMEM; 3128 if ((vma->vm_flags & VM_ACCOUNT) && 3129 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3130 return -ENOMEM; 3131 3132 /* 3133 * The vm_pgoff of a purely anonymous vma should be irrelevant 3134 * until its first write fault, when page's anon_vma and index 3135 * are set. But now set the vm_pgoff it will almost certainly 3136 * end up with (unless mremap moves it elsewhere before that 3137 * first wfault), so /proc/pid/maps tells a consistent story. 3138 * 3139 * By setting it to reflect the virtual start address of the 3140 * vma, merges and splits can happen in a seamless way, just 3141 * using the existing file pgoff checks and manipulations. 3142 * Similarly in do_mmap_pgoff and in do_brk. 3143 */ 3144 if (vma_is_anonymous(vma)) { 3145 BUG_ON(vma->anon_vma); 3146 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3147 } 3148 3149 vma_link(mm, vma, prev, rb_link, rb_parent); 3150 return 0; 3151 } 3152 3153 /* 3154 * Copy the vma structure to a new location in the same mm, 3155 * prior to moving page table entries, to effect an mremap move. 3156 */ 3157 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3158 unsigned long addr, unsigned long len, pgoff_t pgoff, 3159 bool *need_rmap_locks) 3160 { 3161 struct vm_area_struct *vma = *vmap; 3162 unsigned long vma_start = vma->vm_start; 3163 struct mm_struct *mm = vma->vm_mm; 3164 struct vm_area_struct *new_vma, *prev; 3165 struct rb_node **rb_link, *rb_parent; 3166 bool faulted_in_anon_vma = true; 3167 3168 /* 3169 * If anonymous vma has not yet been faulted, update new pgoff 3170 * to match new location, to increase its chance of merging. 3171 */ 3172 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3173 pgoff = addr >> PAGE_SHIFT; 3174 faulted_in_anon_vma = false; 3175 } 3176 3177 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3178 return NULL; /* should never get here */ 3179 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3180 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3181 vma->vm_userfaultfd_ctx); 3182 if (new_vma) { 3183 /* 3184 * Source vma may have been merged into new_vma 3185 */ 3186 if (unlikely(vma_start >= new_vma->vm_start && 3187 vma_start < new_vma->vm_end)) { 3188 /* 3189 * The only way we can get a vma_merge with 3190 * self during an mremap is if the vma hasn't 3191 * been faulted in yet and we were allowed to 3192 * reset the dst vma->vm_pgoff to the 3193 * destination address of the mremap to allow 3194 * the merge to happen. mremap must change the 3195 * vm_pgoff linearity between src and dst vmas 3196 * (in turn preventing a vma_merge) to be 3197 * safe. It is only safe to keep the vm_pgoff 3198 * linear if there are no pages mapped yet. 3199 */ 3200 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3201 *vmap = vma = new_vma; 3202 } 3203 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3204 } else { 3205 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3206 if (!new_vma) 3207 goto out; 3208 *new_vma = *vma; 3209 new_vma->vm_start = addr; 3210 new_vma->vm_end = addr + len; 3211 new_vma->vm_pgoff = pgoff; 3212 if (vma_dup_policy(vma, new_vma)) 3213 goto out_free_vma; 3214 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3215 if (anon_vma_clone(new_vma, vma)) 3216 goto out_free_mempol; 3217 if (new_vma->vm_file) 3218 get_file(new_vma->vm_file); 3219 if (new_vma->vm_ops && new_vma->vm_ops->open) 3220 new_vma->vm_ops->open(new_vma); 3221 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3222 *need_rmap_locks = false; 3223 } 3224 return new_vma; 3225 3226 out_free_mempol: 3227 mpol_put(vma_policy(new_vma)); 3228 out_free_vma: 3229 kmem_cache_free(vm_area_cachep, new_vma); 3230 out: 3231 return NULL; 3232 } 3233 3234 /* 3235 * Return true if the calling process may expand its vm space by the passed 3236 * number of pages 3237 */ 3238 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3239 { 3240 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3241 return false; 3242 3243 if (is_data_mapping(flags) && 3244 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3245 /* Workaround for Valgrind */ 3246 if (rlimit(RLIMIT_DATA) == 0 && 3247 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3248 return true; 3249 3250 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3251 current->comm, current->pid, 3252 (mm->data_vm + npages) << PAGE_SHIFT, 3253 rlimit(RLIMIT_DATA), 3254 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3255 3256 if (!ignore_rlimit_data) 3257 return false; 3258 } 3259 3260 return true; 3261 } 3262 3263 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3264 { 3265 mm->total_vm += npages; 3266 3267 if (is_exec_mapping(flags)) 3268 mm->exec_vm += npages; 3269 else if (is_stack_mapping(flags)) 3270 mm->stack_vm += npages; 3271 else if (is_data_mapping(flags)) 3272 mm->data_vm += npages; 3273 } 3274 3275 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3276 3277 /* 3278 * Having a close hook prevents vma merging regardless of flags. 3279 */ 3280 static void special_mapping_close(struct vm_area_struct *vma) 3281 { 3282 } 3283 3284 static const char *special_mapping_name(struct vm_area_struct *vma) 3285 { 3286 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3287 } 3288 3289 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3290 { 3291 struct vm_special_mapping *sm = new_vma->vm_private_data; 3292 3293 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3294 return -EFAULT; 3295 3296 if (sm->mremap) 3297 return sm->mremap(sm, new_vma); 3298 3299 return 0; 3300 } 3301 3302 static const struct vm_operations_struct special_mapping_vmops = { 3303 .close = special_mapping_close, 3304 .fault = special_mapping_fault, 3305 .mremap = special_mapping_mremap, 3306 .name = special_mapping_name, 3307 }; 3308 3309 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3310 .close = special_mapping_close, 3311 .fault = special_mapping_fault, 3312 }; 3313 3314 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3315 { 3316 struct vm_area_struct *vma = vmf->vma; 3317 pgoff_t pgoff; 3318 struct page **pages; 3319 3320 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3321 pages = vma->vm_private_data; 3322 } else { 3323 struct vm_special_mapping *sm = vma->vm_private_data; 3324 3325 if (sm->fault) 3326 return sm->fault(sm, vmf->vma, vmf); 3327 3328 pages = sm->pages; 3329 } 3330 3331 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3332 pgoff--; 3333 3334 if (*pages) { 3335 struct page *page = *pages; 3336 get_page(page); 3337 vmf->page = page; 3338 return 0; 3339 } 3340 3341 return VM_FAULT_SIGBUS; 3342 } 3343 3344 static struct vm_area_struct *__install_special_mapping( 3345 struct mm_struct *mm, 3346 unsigned long addr, unsigned long len, 3347 unsigned long vm_flags, void *priv, 3348 const struct vm_operations_struct *ops) 3349 { 3350 int ret; 3351 struct vm_area_struct *vma; 3352 3353 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3354 if (unlikely(vma == NULL)) 3355 return ERR_PTR(-ENOMEM); 3356 3357 INIT_LIST_HEAD(&vma->anon_vma_chain); 3358 vma->vm_mm = mm; 3359 vma->vm_start = addr; 3360 vma->vm_end = addr + len; 3361 3362 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3363 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3364 3365 vma->vm_ops = ops; 3366 vma->vm_private_data = priv; 3367 3368 ret = insert_vm_struct(mm, vma); 3369 if (ret) 3370 goto out; 3371 3372 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3373 3374 perf_event_mmap(vma); 3375 3376 return vma; 3377 3378 out: 3379 kmem_cache_free(vm_area_cachep, vma); 3380 return ERR_PTR(ret); 3381 } 3382 3383 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3384 const struct vm_special_mapping *sm) 3385 { 3386 return vma->vm_private_data == sm && 3387 (vma->vm_ops == &special_mapping_vmops || 3388 vma->vm_ops == &legacy_special_mapping_vmops); 3389 } 3390 3391 /* 3392 * Called with mm->mmap_sem held for writing. 3393 * Insert a new vma covering the given region, with the given flags. 3394 * Its pages are supplied by the given array of struct page *. 3395 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3396 * The region past the last page supplied will always produce SIGBUS. 3397 * The array pointer and the pages it points to are assumed to stay alive 3398 * for as long as this mapping might exist. 3399 */ 3400 struct vm_area_struct *_install_special_mapping( 3401 struct mm_struct *mm, 3402 unsigned long addr, unsigned long len, 3403 unsigned long vm_flags, const struct vm_special_mapping *spec) 3404 { 3405 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3406 &special_mapping_vmops); 3407 } 3408 3409 int install_special_mapping(struct mm_struct *mm, 3410 unsigned long addr, unsigned long len, 3411 unsigned long vm_flags, struct page **pages) 3412 { 3413 struct vm_area_struct *vma = __install_special_mapping( 3414 mm, addr, len, vm_flags, (void *)pages, 3415 &legacy_special_mapping_vmops); 3416 3417 return PTR_ERR_OR_ZERO(vma); 3418 } 3419 3420 static DEFINE_MUTEX(mm_all_locks_mutex); 3421 3422 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3423 { 3424 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3425 /* 3426 * The LSB of head.next can't change from under us 3427 * because we hold the mm_all_locks_mutex. 3428 */ 3429 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3430 /* 3431 * We can safely modify head.next after taking the 3432 * anon_vma->root->rwsem. If some other vma in this mm shares 3433 * the same anon_vma we won't take it again. 3434 * 3435 * No need of atomic instructions here, head.next 3436 * can't change from under us thanks to the 3437 * anon_vma->root->rwsem. 3438 */ 3439 if (__test_and_set_bit(0, (unsigned long *) 3440 &anon_vma->root->rb_root.rb_root.rb_node)) 3441 BUG(); 3442 } 3443 } 3444 3445 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3446 { 3447 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3448 /* 3449 * AS_MM_ALL_LOCKS can't change from under us because 3450 * we hold the mm_all_locks_mutex. 3451 * 3452 * Operations on ->flags have to be atomic because 3453 * even if AS_MM_ALL_LOCKS is stable thanks to the 3454 * mm_all_locks_mutex, there may be other cpus 3455 * changing other bitflags in parallel to us. 3456 */ 3457 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3458 BUG(); 3459 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3460 } 3461 } 3462 3463 /* 3464 * This operation locks against the VM for all pte/vma/mm related 3465 * operations that could ever happen on a certain mm. This includes 3466 * vmtruncate, try_to_unmap, and all page faults. 3467 * 3468 * The caller must take the mmap_sem in write mode before calling 3469 * mm_take_all_locks(). The caller isn't allowed to release the 3470 * mmap_sem until mm_drop_all_locks() returns. 3471 * 3472 * mmap_sem in write mode is required in order to block all operations 3473 * that could modify pagetables and free pages without need of 3474 * altering the vma layout. It's also needed in write mode to avoid new 3475 * anon_vmas to be associated with existing vmas. 3476 * 3477 * A single task can't take more than one mm_take_all_locks() in a row 3478 * or it would deadlock. 3479 * 3480 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3481 * mapping->flags avoid to take the same lock twice, if more than one 3482 * vma in this mm is backed by the same anon_vma or address_space. 3483 * 3484 * We take locks in following order, accordingly to comment at beginning 3485 * of mm/rmap.c: 3486 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3487 * hugetlb mapping); 3488 * - all i_mmap_rwsem locks; 3489 * - all anon_vma->rwseml 3490 * 3491 * We can take all locks within these types randomly because the VM code 3492 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3493 * mm_all_locks_mutex. 3494 * 3495 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3496 * that may have to take thousand of locks. 3497 * 3498 * mm_take_all_locks() can fail if it's interrupted by signals. 3499 */ 3500 int mm_take_all_locks(struct mm_struct *mm) 3501 { 3502 struct vm_area_struct *vma; 3503 struct anon_vma_chain *avc; 3504 3505 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3506 3507 mutex_lock(&mm_all_locks_mutex); 3508 3509 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3510 if (signal_pending(current)) 3511 goto out_unlock; 3512 if (vma->vm_file && vma->vm_file->f_mapping && 3513 is_vm_hugetlb_page(vma)) 3514 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3515 } 3516 3517 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3518 if (signal_pending(current)) 3519 goto out_unlock; 3520 if (vma->vm_file && vma->vm_file->f_mapping && 3521 !is_vm_hugetlb_page(vma)) 3522 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3523 } 3524 3525 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3526 if (signal_pending(current)) 3527 goto out_unlock; 3528 if (vma->anon_vma) 3529 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3530 vm_lock_anon_vma(mm, avc->anon_vma); 3531 } 3532 3533 return 0; 3534 3535 out_unlock: 3536 mm_drop_all_locks(mm); 3537 return -EINTR; 3538 } 3539 3540 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3541 { 3542 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3543 /* 3544 * The LSB of head.next can't change to 0 from under 3545 * us because we hold the mm_all_locks_mutex. 3546 * 3547 * We must however clear the bitflag before unlocking 3548 * the vma so the users using the anon_vma->rb_root will 3549 * never see our bitflag. 3550 * 3551 * No need of atomic instructions here, head.next 3552 * can't change from under us until we release the 3553 * anon_vma->root->rwsem. 3554 */ 3555 if (!__test_and_clear_bit(0, (unsigned long *) 3556 &anon_vma->root->rb_root.rb_root.rb_node)) 3557 BUG(); 3558 anon_vma_unlock_write(anon_vma); 3559 } 3560 } 3561 3562 static void vm_unlock_mapping(struct address_space *mapping) 3563 { 3564 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3565 /* 3566 * AS_MM_ALL_LOCKS can't change to 0 from under us 3567 * because we hold the mm_all_locks_mutex. 3568 */ 3569 i_mmap_unlock_write(mapping); 3570 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3571 &mapping->flags)) 3572 BUG(); 3573 } 3574 } 3575 3576 /* 3577 * The mmap_sem cannot be released by the caller until 3578 * mm_drop_all_locks() returns. 3579 */ 3580 void mm_drop_all_locks(struct mm_struct *mm) 3581 { 3582 struct vm_area_struct *vma; 3583 struct anon_vma_chain *avc; 3584 3585 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3586 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3587 3588 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3589 if (vma->anon_vma) 3590 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3591 vm_unlock_anon_vma(avc->anon_vma); 3592 if (vma->vm_file && vma->vm_file->f_mapping) 3593 vm_unlock_mapping(vma->vm_file->f_mapping); 3594 } 3595 3596 mutex_unlock(&mm_all_locks_mutex); 3597 } 3598 3599 /* 3600 * initialise the percpu counter for VM 3601 */ 3602 void __init mmap_init(void) 3603 { 3604 int ret; 3605 3606 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3607 VM_BUG_ON(ret); 3608 } 3609 3610 /* 3611 * Initialise sysctl_user_reserve_kbytes. 3612 * 3613 * This is intended to prevent a user from starting a single memory hogging 3614 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3615 * mode. 3616 * 3617 * The default value is min(3% of free memory, 128MB) 3618 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3619 */ 3620 static int init_user_reserve(void) 3621 { 3622 unsigned long free_kbytes; 3623 3624 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3625 3626 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3627 return 0; 3628 } 3629 subsys_initcall(init_user_reserve); 3630 3631 /* 3632 * Initialise sysctl_admin_reserve_kbytes. 3633 * 3634 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3635 * to log in and kill a memory hogging process. 3636 * 3637 * Systems with more than 256MB will reserve 8MB, enough to recover 3638 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3639 * only reserve 3% of free pages by default. 3640 */ 3641 static int init_admin_reserve(void) 3642 { 3643 unsigned long free_kbytes; 3644 3645 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3646 3647 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3648 return 0; 3649 } 3650 subsys_initcall(init_admin_reserve); 3651 3652 /* 3653 * Reinititalise user and admin reserves if memory is added or removed. 3654 * 3655 * The default user reserve max is 128MB, and the default max for the 3656 * admin reserve is 8MB. These are usually, but not always, enough to 3657 * enable recovery from a memory hogging process using login/sshd, a shell, 3658 * and tools like top. It may make sense to increase or even disable the 3659 * reserve depending on the existence of swap or variations in the recovery 3660 * tools. So, the admin may have changed them. 3661 * 3662 * If memory is added and the reserves have been eliminated or increased above 3663 * the default max, then we'll trust the admin. 3664 * 3665 * If memory is removed and there isn't enough free memory, then we 3666 * need to reset the reserves. 3667 * 3668 * Otherwise keep the reserve set by the admin. 3669 */ 3670 static int reserve_mem_notifier(struct notifier_block *nb, 3671 unsigned long action, void *data) 3672 { 3673 unsigned long tmp, free_kbytes; 3674 3675 switch (action) { 3676 case MEM_ONLINE: 3677 /* Default max is 128MB. Leave alone if modified by operator. */ 3678 tmp = sysctl_user_reserve_kbytes; 3679 if (0 < tmp && tmp < (1UL << 17)) 3680 init_user_reserve(); 3681 3682 /* Default max is 8MB. Leave alone if modified by operator. */ 3683 tmp = sysctl_admin_reserve_kbytes; 3684 if (0 < tmp && tmp < (1UL << 13)) 3685 init_admin_reserve(); 3686 3687 break; 3688 case MEM_OFFLINE: 3689 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3690 3691 if (sysctl_user_reserve_kbytes > free_kbytes) { 3692 init_user_reserve(); 3693 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3694 sysctl_user_reserve_kbytes); 3695 } 3696 3697 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3698 init_admin_reserve(); 3699 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3700 sysctl_admin_reserve_kbytes); 3701 } 3702 break; 3703 default: 3704 break; 3705 } 3706 return NOTIFY_OK; 3707 } 3708 3709 static struct notifier_block reserve_mem_nb = { 3710 .notifier_call = reserve_mem_notifier, 3711 }; 3712 3713 static int __meminit init_reserve_notifier(void) 3714 { 3715 if (register_hotmemory_notifier(&reserve_mem_nb)) 3716 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3717 3718 return 0; 3719 } 3720 subsys_initcall(init_reserve_notifier); 3721