1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/notifier.h> 41 #include <linux/memory.h> 42 #include <linux/printk.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/moduleparam.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/uaccess.h> 48 #include <asm/cacheflush.h> 49 #include <asm/tlb.h> 50 #include <asm/mmu_context.h> 51 52 #include "internal.h" 53 54 #ifndef arch_mmap_check 55 #define arch_mmap_check(addr, len, flags) (0) 56 #endif 57 58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 62 #endif 63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 67 #endif 68 69 static bool ignore_rlimit_data; 70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 71 72 static void unmap_region(struct mm_struct *mm, 73 struct vm_area_struct *vma, struct vm_area_struct *prev, 74 unsigned long start, unsigned long end); 75 76 /* description of effects of mapping type and prot in current implementation. 77 * this is due to the limited x86 page protection hardware. The expected 78 * behavior is in parens: 79 * 80 * map_type prot 81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 83 * w: (no) no w: (no) no w: (yes) yes w: (no) no 84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 85 * 86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (copy) copy w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 */ 91 pgprot_t protection_map[16] = { 92 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 93 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 94 }; 95 96 pgprot_t vm_get_page_prot(unsigned long vm_flags) 97 { 98 return __pgprot(pgprot_val(protection_map[vm_flags & 99 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 100 pgprot_val(arch_vm_get_page_prot(vm_flags))); 101 } 102 EXPORT_SYMBOL(vm_get_page_prot); 103 104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 105 { 106 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 107 } 108 109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 110 void vma_set_page_prot(struct vm_area_struct *vma) 111 { 112 unsigned long vm_flags = vma->vm_flags; 113 114 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 115 if (vma_wants_writenotify(vma)) { 116 vm_flags &= ~VM_SHARED; 117 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 118 vm_flags); 119 } 120 } 121 122 /* 123 * Requires inode->i_mapping->i_mmap_rwsem 124 */ 125 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 126 struct file *file, struct address_space *mapping) 127 { 128 if (vma->vm_flags & VM_DENYWRITE) 129 atomic_inc(&file_inode(file)->i_writecount); 130 if (vma->vm_flags & VM_SHARED) 131 mapping_unmap_writable(mapping); 132 133 flush_dcache_mmap_lock(mapping); 134 vma_interval_tree_remove(vma, &mapping->i_mmap); 135 flush_dcache_mmap_unlock(mapping); 136 } 137 138 /* 139 * Unlink a file-based vm structure from its interval tree, to hide 140 * vma from rmap and vmtruncate before freeing its page tables. 141 */ 142 void unlink_file_vma(struct vm_area_struct *vma) 143 { 144 struct file *file = vma->vm_file; 145 146 if (file) { 147 struct address_space *mapping = file->f_mapping; 148 i_mmap_lock_write(mapping); 149 __remove_shared_vm_struct(vma, file, mapping); 150 i_mmap_unlock_write(mapping); 151 } 152 } 153 154 /* 155 * Close a vm structure and free it, returning the next. 156 */ 157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 158 { 159 struct vm_area_struct *next = vma->vm_next; 160 161 might_sleep(); 162 if (vma->vm_ops && vma->vm_ops->close) 163 vma->vm_ops->close(vma); 164 if (vma->vm_file) 165 fput(vma->vm_file); 166 mpol_put(vma_policy(vma)); 167 kmem_cache_free(vm_area_cachep, vma); 168 return next; 169 } 170 171 static int do_brk(unsigned long addr, unsigned long len); 172 173 SYSCALL_DEFINE1(brk, unsigned long, brk) 174 { 175 unsigned long retval; 176 unsigned long newbrk, oldbrk; 177 struct mm_struct *mm = current->mm; 178 unsigned long min_brk; 179 bool populate; 180 181 if (down_write_killable(&mm->mmap_sem)) 182 return -EINTR; 183 184 #ifdef CONFIG_COMPAT_BRK 185 /* 186 * CONFIG_COMPAT_BRK can still be overridden by setting 187 * randomize_va_space to 2, which will still cause mm->start_brk 188 * to be arbitrarily shifted 189 */ 190 if (current->brk_randomized) 191 min_brk = mm->start_brk; 192 else 193 min_brk = mm->end_data; 194 #else 195 min_brk = mm->start_brk; 196 #endif 197 if (brk < min_brk) 198 goto out; 199 200 /* 201 * Check against rlimit here. If this check is done later after the test 202 * of oldbrk with newbrk then it can escape the test and let the data 203 * segment grow beyond its set limit the in case where the limit is 204 * not page aligned -Ram Gupta 205 */ 206 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 207 mm->end_data, mm->start_data)) 208 goto out; 209 210 newbrk = PAGE_ALIGN(brk); 211 oldbrk = PAGE_ALIGN(mm->brk); 212 if (oldbrk == newbrk) 213 goto set_brk; 214 215 /* Always allow shrinking brk. */ 216 if (brk <= mm->brk) { 217 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 218 goto set_brk; 219 goto out; 220 } 221 222 /* Check against existing mmap mappings. */ 223 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 224 goto out; 225 226 /* Ok, looks good - let it rip. */ 227 if (do_brk(oldbrk, newbrk-oldbrk) < 0) 228 goto out; 229 230 set_brk: 231 mm->brk = brk; 232 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 233 up_write(&mm->mmap_sem); 234 if (populate) 235 mm_populate(oldbrk, newbrk - oldbrk); 236 return brk; 237 238 out: 239 retval = mm->brk; 240 up_write(&mm->mmap_sem); 241 return retval; 242 } 243 244 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 245 { 246 unsigned long max, subtree_gap; 247 max = vma->vm_start; 248 if (vma->vm_prev) 249 max -= vma->vm_prev->vm_end; 250 if (vma->vm_rb.rb_left) { 251 subtree_gap = rb_entry(vma->vm_rb.rb_left, 252 struct vm_area_struct, vm_rb)->rb_subtree_gap; 253 if (subtree_gap > max) 254 max = subtree_gap; 255 } 256 if (vma->vm_rb.rb_right) { 257 subtree_gap = rb_entry(vma->vm_rb.rb_right, 258 struct vm_area_struct, vm_rb)->rb_subtree_gap; 259 if (subtree_gap > max) 260 max = subtree_gap; 261 } 262 return max; 263 } 264 265 #ifdef CONFIG_DEBUG_VM_RB 266 static int browse_rb(struct mm_struct *mm) 267 { 268 struct rb_root *root = &mm->mm_rb; 269 int i = 0, j, bug = 0; 270 struct rb_node *nd, *pn = NULL; 271 unsigned long prev = 0, pend = 0; 272 273 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 274 struct vm_area_struct *vma; 275 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 276 if (vma->vm_start < prev) { 277 pr_emerg("vm_start %lx < prev %lx\n", 278 vma->vm_start, prev); 279 bug = 1; 280 } 281 if (vma->vm_start < pend) { 282 pr_emerg("vm_start %lx < pend %lx\n", 283 vma->vm_start, pend); 284 bug = 1; 285 } 286 if (vma->vm_start > vma->vm_end) { 287 pr_emerg("vm_start %lx > vm_end %lx\n", 288 vma->vm_start, vma->vm_end); 289 bug = 1; 290 } 291 spin_lock(&mm->page_table_lock); 292 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 293 pr_emerg("free gap %lx, correct %lx\n", 294 vma->rb_subtree_gap, 295 vma_compute_subtree_gap(vma)); 296 bug = 1; 297 } 298 spin_unlock(&mm->page_table_lock); 299 i++; 300 pn = nd; 301 prev = vma->vm_start; 302 pend = vma->vm_end; 303 } 304 j = 0; 305 for (nd = pn; nd; nd = rb_prev(nd)) 306 j++; 307 if (i != j) { 308 pr_emerg("backwards %d, forwards %d\n", j, i); 309 bug = 1; 310 } 311 return bug ? -1 : i; 312 } 313 314 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 315 { 316 struct rb_node *nd; 317 318 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 319 struct vm_area_struct *vma; 320 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 321 VM_BUG_ON_VMA(vma != ignore && 322 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 323 vma); 324 } 325 } 326 327 static void validate_mm(struct mm_struct *mm) 328 { 329 int bug = 0; 330 int i = 0; 331 unsigned long highest_address = 0; 332 struct vm_area_struct *vma = mm->mmap; 333 334 while (vma) { 335 struct anon_vma *anon_vma = vma->anon_vma; 336 struct anon_vma_chain *avc; 337 338 if (anon_vma) { 339 anon_vma_lock_read(anon_vma); 340 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 341 anon_vma_interval_tree_verify(avc); 342 anon_vma_unlock_read(anon_vma); 343 } 344 345 highest_address = vma->vm_end; 346 vma = vma->vm_next; 347 i++; 348 } 349 if (i != mm->map_count) { 350 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 351 bug = 1; 352 } 353 if (highest_address != mm->highest_vm_end) { 354 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 355 mm->highest_vm_end, highest_address); 356 bug = 1; 357 } 358 i = browse_rb(mm); 359 if (i != mm->map_count) { 360 if (i != -1) 361 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 362 bug = 1; 363 } 364 VM_BUG_ON_MM(bug, mm); 365 } 366 #else 367 #define validate_mm_rb(root, ignore) do { } while (0) 368 #define validate_mm(mm) do { } while (0) 369 #endif 370 371 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 372 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 373 374 /* 375 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 376 * vma->vm_prev->vm_end values changed, without modifying the vma's position 377 * in the rbtree. 378 */ 379 static void vma_gap_update(struct vm_area_struct *vma) 380 { 381 /* 382 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 383 * function that does exacltly what we want. 384 */ 385 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 386 } 387 388 static inline void vma_rb_insert(struct vm_area_struct *vma, 389 struct rb_root *root) 390 { 391 /* All rb_subtree_gap values must be consistent prior to insertion */ 392 validate_mm_rb(root, NULL); 393 394 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 395 } 396 397 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 398 { 399 /* 400 * All rb_subtree_gap values must be consistent prior to erase, 401 * with the possible exception of the vma being erased. 402 */ 403 validate_mm_rb(root, vma); 404 405 /* 406 * Note rb_erase_augmented is a fairly large inline function, 407 * so make sure we instantiate it only once with our desired 408 * augmented rbtree callbacks. 409 */ 410 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 411 } 412 413 /* 414 * vma has some anon_vma assigned, and is already inserted on that 415 * anon_vma's interval trees. 416 * 417 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 418 * vma must be removed from the anon_vma's interval trees using 419 * anon_vma_interval_tree_pre_update_vma(). 420 * 421 * After the update, the vma will be reinserted using 422 * anon_vma_interval_tree_post_update_vma(). 423 * 424 * The entire update must be protected by exclusive mmap_sem and by 425 * the root anon_vma's mutex. 426 */ 427 static inline void 428 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 429 { 430 struct anon_vma_chain *avc; 431 432 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 433 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 434 } 435 436 static inline void 437 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 438 { 439 struct anon_vma_chain *avc; 440 441 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 442 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 443 } 444 445 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 446 unsigned long end, struct vm_area_struct **pprev, 447 struct rb_node ***rb_link, struct rb_node **rb_parent) 448 { 449 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 450 451 __rb_link = &mm->mm_rb.rb_node; 452 rb_prev = __rb_parent = NULL; 453 454 while (*__rb_link) { 455 struct vm_area_struct *vma_tmp; 456 457 __rb_parent = *__rb_link; 458 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 459 460 if (vma_tmp->vm_end > addr) { 461 /* Fail if an existing vma overlaps the area */ 462 if (vma_tmp->vm_start < end) 463 return -ENOMEM; 464 __rb_link = &__rb_parent->rb_left; 465 } else { 466 rb_prev = __rb_parent; 467 __rb_link = &__rb_parent->rb_right; 468 } 469 } 470 471 *pprev = NULL; 472 if (rb_prev) 473 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 474 *rb_link = __rb_link; 475 *rb_parent = __rb_parent; 476 return 0; 477 } 478 479 static unsigned long count_vma_pages_range(struct mm_struct *mm, 480 unsigned long addr, unsigned long end) 481 { 482 unsigned long nr_pages = 0; 483 struct vm_area_struct *vma; 484 485 /* Find first overlaping mapping */ 486 vma = find_vma_intersection(mm, addr, end); 487 if (!vma) 488 return 0; 489 490 nr_pages = (min(end, vma->vm_end) - 491 max(addr, vma->vm_start)) >> PAGE_SHIFT; 492 493 /* Iterate over the rest of the overlaps */ 494 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 495 unsigned long overlap_len; 496 497 if (vma->vm_start > end) 498 break; 499 500 overlap_len = min(end, vma->vm_end) - vma->vm_start; 501 nr_pages += overlap_len >> PAGE_SHIFT; 502 } 503 504 return nr_pages; 505 } 506 507 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 508 struct rb_node **rb_link, struct rb_node *rb_parent) 509 { 510 /* Update tracking information for the gap following the new vma. */ 511 if (vma->vm_next) 512 vma_gap_update(vma->vm_next); 513 else 514 mm->highest_vm_end = vma->vm_end; 515 516 /* 517 * vma->vm_prev wasn't known when we followed the rbtree to find the 518 * correct insertion point for that vma. As a result, we could not 519 * update the vma vm_rb parents rb_subtree_gap values on the way down. 520 * So, we first insert the vma with a zero rb_subtree_gap value 521 * (to be consistent with what we did on the way down), and then 522 * immediately update the gap to the correct value. Finally we 523 * rebalance the rbtree after all augmented values have been set. 524 */ 525 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 526 vma->rb_subtree_gap = 0; 527 vma_gap_update(vma); 528 vma_rb_insert(vma, &mm->mm_rb); 529 } 530 531 static void __vma_link_file(struct vm_area_struct *vma) 532 { 533 struct file *file; 534 535 file = vma->vm_file; 536 if (file) { 537 struct address_space *mapping = file->f_mapping; 538 539 if (vma->vm_flags & VM_DENYWRITE) 540 atomic_dec(&file_inode(file)->i_writecount); 541 if (vma->vm_flags & VM_SHARED) 542 atomic_inc(&mapping->i_mmap_writable); 543 544 flush_dcache_mmap_lock(mapping); 545 vma_interval_tree_insert(vma, &mapping->i_mmap); 546 flush_dcache_mmap_unlock(mapping); 547 } 548 } 549 550 static void 551 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 552 struct vm_area_struct *prev, struct rb_node **rb_link, 553 struct rb_node *rb_parent) 554 { 555 __vma_link_list(mm, vma, prev, rb_parent); 556 __vma_link_rb(mm, vma, rb_link, rb_parent); 557 } 558 559 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 560 struct vm_area_struct *prev, struct rb_node **rb_link, 561 struct rb_node *rb_parent) 562 { 563 struct address_space *mapping = NULL; 564 565 if (vma->vm_file) { 566 mapping = vma->vm_file->f_mapping; 567 i_mmap_lock_write(mapping); 568 } 569 570 __vma_link(mm, vma, prev, rb_link, rb_parent); 571 __vma_link_file(vma); 572 573 if (mapping) 574 i_mmap_unlock_write(mapping); 575 576 mm->map_count++; 577 validate_mm(mm); 578 } 579 580 /* 581 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 582 * mm's list and rbtree. It has already been inserted into the interval tree. 583 */ 584 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 585 { 586 struct vm_area_struct *prev; 587 struct rb_node **rb_link, *rb_parent; 588 589 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 590 &prev, &rb_link, &rb_parent)) 591 BUG(); 592 __vma_link(mm, vma, prev, rb_link, rb_parent); 593 mm->map_count++; 594 } 595 596 static inline void 597 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 598 struct vm_area_struct *prev) 599 { 600 struct vm_area_struct *next; 601 602 vma_rb_erase(vma, &mm->mm_rb); 603 prev->vm_next = next = vma->vm_next; 604 if (next) 605 next->vm_prev = prev; 606 607 /* Kill the cache */ 608 vmacache_invalidate(mm); 609 } 610 611 /* 612 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 613 * is already present in an i_mmap tree without adjusting the tree. 614 * The following helper function should be used when such adjustments 615 * are necessary. The "insert" vma (if any) is to be inserted 616 * before we drop the necessary locks. 617 */ 618 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 619 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 620 { 621 struct mm_struct *mm = vma->vm_mm; 622 struct vm_area_struct *next = vma->vm_next; 623 struct vm_area_struct *importer = NULL; 624 struct address_space *mapping = NULL; 625 struct rb_root *root = NULL; 626 struct anon_vma *anon_vma = NULL; 627 struct file *file = vma->vm_file; 628 bool start_changed = false, end_changed = false; 629 long adjust_next = 0; 630 int remove_next = 0; 631 632 if (next && !insert) { 633 struct vm_area_struct *exporter = NULL; 634 635 if (end >= next->vm_end) { 636 /* 637 * vma expands, overlapping all the next, and 638 * perhaps the one after too (mprotect case 6). 639 */ 640 again: remove_next = 1 + (end > next->vm_end); 641 end = next->vm_end; 642 exporter = next; 643 importer = vma; 644 } else if (end > next->vm_start) { 645 /* 646 * vma expands, overlapping part of the next: 647 * mprotect case 5 shifting the boundary up. 648 */ 649 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 650 exporter = next; 651 importer = vma; 652 } else if (end < vma->vm_end) { 653 /* 654 * vma shrinks, and !insert tells it's not 655 * split_vma inserting another: so it must be 656 * mprotect case 4 shifting the boundary down. 657 */ 658 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 659 exporter = vma; 660 importer = next; 661 } 662 663 /* 664 * Easily overlooked: when mprotect shifts the boundary, 665 * make sure the expanding vma has anon_vma set if the 666 * shrinking vma had, to cover any anon pages imported. 667 */ 668 if (exporter && exporter->anon_vma && !importer->anon_vma) { 669 int error; 670 671 importer->anon_vma = exporter->anon_vma; 672 error = anon_vma_clone(importer, exporter); 673 if (error) 674 return error; 675 } 676 } 677 678 if (file) { 679 mapping = file->f_mapping; 680 root = &mapping->i_mmap; 681 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 682 683 if (adjust_next) 684 uprobe_munmap(next, next->vm_start, next->vm_end); 685 686 i_mmap_lock_write(mapping); 687 if (insert) { 688 /* 689 * Put into interval tree now, so instantiated pages 690 * are visible to arm/parisc __flush_dcache_page 691 * throughout; but we cannot insert into address 692 * space until vma start or end is updated. 693 */ 694 __vma_link_file(insert); 695 } 696 } 697 698 vma_adjust_trans_huge(vma, start, end, adjust_next); 699 700 anon_vma = vma->anon_vma; 701 if (!anon_vma && adjust_next) 702 anon_vma = next->anon_vma; 703 if (anon_vma) { 704 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 705 anon_vma != next->anon_vma, next); 706 anon_vma_lock_write(anon_vma); 707 anon_vma_interval_tree_pre_update_vma(vma); 708 if (adjust_next) 709 anon_vma_interval_tree_pre_update_vma(next); 710 } 711 712 if (root) { 713 flush_dcache_mmap_lock(mapping); 714 vma_interval_tree_remove(vma, root); 715 if (adjust_next) 716 vma_interval_tree_remove(next, root); 717 } 718 719 if (start != vma->vm_start) { 720 vma->vm_start = start; 721 start_changed = true; 722 } 723 if (end != vma->vm_end) { 724 vma->vm_end = end; 725 end_changed = true; 726 } 727 vma->vm_pgoff = pgoff; 728 if (adjust_next) { 729 next->vm_start += adjust_next << PAGE_SHIFT; 730 next->vm_pgoff += adjust_next; 731 } 732 733 if (root) { 734 if (adjust_next) 735 vma_interval_tree_insert(next, root); 736 vma_interval_tree_insert(vma, root); 737 flush_dcache_mmap_unlock(mapping); 738 } 739 740 if (remove_next) { 741 /* 742 * vma_merge has merged next into vma, and needs 743 * us to remove next before dropping the locks. 744 */ 745 __vma_unlink(mm, next, vma); 746 if (file) 747 __remove_shared_vm_struct(next, file, mapping); 748 } else if (insert) { 749 /* 750 * split_vma has split insert from vma, and needs 751 * us to insert it before dropping the locks 752 * (it may either follow vma or precede it). 753 */ 754 __insert_vm_struct(mm, insert); 755 } else { 756 if (start_changed) 757 vma_gap_update(vma); 758 if (end_changed) { 759 if (!next) 760 mm->highest_vm_end = end; 761 else if (!adjust_next) 762 vma_gap_update(next); 763 } 764 } 765 766 if (anon_vma) { 767 anon_vma_interval_tree_post_update_vma(vma); 768 if (adjust_next) 769 anon_vma_interval_tree_post_update_vma(next); 770 anon_vma_unlock_write(anon_vma); 771 } 772 if (mapping) 773 i_mmap_unlock_write(mapping); 774 775 if (root) { 776 uprobe_mmap(vma); 777 778 if (adjust_next) 779 uprobe_mmap(next); 780 } 781 782 if (remove_next) { 783 if (file) { 784 uprobe_munmap(next, next->vm_start, next->vm_end); 785 fput(file); 786 } 787 if (next->anon_vma) 788 anon_vma_merge(vma, next); 789 mm->map_count--; 790 mpol_put(vma_policy(next)); 791 kmem_cache_free(vm_area_cachep, next); 792 /* 793 * In mprotect's case 6 (see comments on vma_merge), 794 * we must remove another next too. It would clutter 795 * up the code too much to do both in one go. 796 */ 797 next = vma->vm_next; 798 if (remove_next == 2) 799 goto again; 800 else if (next) 801 vma_gap_update(next); 802 else 803 mm->highest_vm_end = end; 804 } 805 if (insert && file) 806 uprobe_mmap(insert); 807 808 validate_mm(mm); 809 810 return 0; 811 } 812 813 /* 814 * If the vma has a ->close operation then the driver probably needs to release 815 * per-vma resources, so we don't attempt to merge those. 816 */ 817 static inline int is_mergeable_vma(struct vm_area_struct *vma, 818 struct file *file, unsigned long vm_flags, 819 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 820 { 821 /* 822 * VM_SOFTDIRTY should not prevent from VMA merging, if we 823 * match the flags but dirty bit -- the caller should mark 824 * merged VMA as dirty. If dirty bit won't be excluded from 825 * comparison, we increase pressue on the memory system forcing 826 * the kernel to generate new VMAs when old one could be 827 * extended instead. 828 */ 829 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 830 return 0; 831 if (vma->vm_file != file) 832 return 0; 833 if (vma->vm_ops && vma->vm_ops->close) 834 return 0; 835 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 836 return 0; 837 return 1; 838 } 839 840 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 841 struct anon_vma *anon_vma2, 842 struct vm_area_struct *vma) 843 { 844 /* 845 * The list_is_singular() test is to avoid merging VMA cloned from 846 * parents. This can improve scalability caused by anon_vma lock. 847 */ 848 if ((!anon_vma1 || !anon_vma2) && (!vma || 849 list_is_singular(&vma->anon_vma_chain))) 850 return 1; 851 return anon_vma1 == anon_vma2; 852 } 853 854 /* 855 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 856 * in front of (at a lower virtual address and file offset than) the vma. 857 * 858 * We cannot merge two vmas if they have differently assigned (non-NULL) 859 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 860 * 861 * We don't check here for the merged mmap wrapping around the end of pagecache 862 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 863 * wrap, nor mmaps which cover the final page at index -1UL. 864 */ 865 static int 866 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 867 struct anon_vma *anon_vma, struct file *file, 868 pgoff_t vm_pgoff, 869 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 870 { 871 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 872 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 873 if (vma->vm_pgoff == vm_pgoff) 874 return 1; 875 } 876 return 0; 877 } 878 879 /* 880 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 881 * beyond (at a higher virtual address and file offset than) the vma. 882 * 883 * We cannot merge two vmas if they have differently assigned (non-NULL) 884 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 885 */ 886 static int 887 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 888 struct anon_vma *anon_vma, struct file *file, 889 pgoff_t vm_pgoff, 890 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 891 { 892 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 893 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 894 pgoff_t vm_pglen; 895 vm_pglen = vma_pages(vma); 896 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 897 return 1; 898 } 899 return 0; 900 } 901 902 /* 903 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 904 * whether that can be merged with its predecessor or its successor. 905 * Or both (it neatly fills a hole). 906 * 907 * In most cases - when called for mmap, brk or mremap - [addr,end) is 908 * certain not to be mapped by the time vma_merge is called; but when 909 * called for mprotect, it is certain to be already mapped (either at 910 * an offset within prev, or at the start of next), and the flags of 911 * this area are about to be changed to vm_flags - and the no-change 912 * case has already been eliminated. 913 * 914 * The following mprotect cases have to be considered, where AAAA is 915 * the area passed down from mprotect_fixup, never extending beyond one 916 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 917 * 918 * AAAA AAAA AAAA AAAA 919 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 920 * cannot merge might become might become might become 921 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 922 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 923 * mremap move: PPPPNNNNNNNN 8 924 * AAAA 925 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 926 * might become case 1 below case 2 below case 3 below 927 * 928 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 929 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 930 */ 931 struct vm_area_struct *vma_merge(struct mm_struct *mm, 932 struct vm_area_struct *prev, unsigned long addr, 933 unsigned long end, unsigned long vm_flags, 934 struct anon_vma *anon_vma, struct file *file, 935 pgoff_t pgoff, struct mempolicy *policy, 936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 937 { 938 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 939 struct vm_area_struct *area, *next; 940 int err; 941 942 /* 943 * We later require that vma->vm_flags == vm_flags, 944 * so this tests vma->vm_flags & VM_SPECIAL, too. 945 */ 946 if (vm_flags & VM_SPECIAL) 947 return NULL; 948 949 if (prev) 950 next = prev->vm_next; 951 else 952 next = mm->mmap; 953 area = next; 954 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 955 next = next->vm_next; 956 957 /* 958 * Can it merge with the predecessor? 959 */ 960 if (prev && prev->vm_end == addr && 961 mpol_equal(vma_policy(prev), policy) && 962 can_vma_merge_after(prev, vm_flags, 963 anon_vma, file, pgoff, 964 vm_userfaultfd_ctx)) { 965 /* 966 * OK, it can. Can we now merge in the successor as well? 967 */ 968 if (next && end == next->vm_start && 969 mpol_equal(policy, vma_policy(next)) && 970 can_vma_merge_before(next, vm_flags, 971 anon_vma, file, 972 pgoff+pglen, 973 vm_userfaultfd_ctx) && 974 is_mergeable_anon_vma(prev->anon_vma, 975 next->anon_vma, NULL)) { 976 /* cases 1, 6 */ 977 err = vma_adjust(prev, prev->vm_start, 978 next->vm_end, prev->vm_pgoff, NULL); 979 } else /* cases 2, 5, 7 */ 980 err = vma_adjust(prev, prev->vm_start, 981 end, prev->vm_pgoff, NULL); 982 if (err) 983 return NULL; 984 khugepaged_enter_vma_merge(prev, vm_flags); 985 return prev; 986 } 987 988 /* 989 * Can this new request be merged in front of next? 990 */ 991 if (next && end == next->vm_start && 992 mpol_equal(policy, vma_policy(next)) && 993 can_vma_merge_before(next, vm_flags, 994 anon_vma, file, pgoff+pglen, 995 vm_userfaultfd_ctx)) { 996 if (prev && addr < prev->vm_end) /* case 4 */ 997 err = vma_adjust(prev, prev->vm_start, 998 addr, prev->vm_pgoff, NULL); 999 else /* cases 3, 8 */ 1000 err = vma_adjust(area, addr, next->vm_end, 1001 next->vm_pgoff - pglen, NULL); 1002 if (err) 1003 return NULL; 1004 khugepaged_enter_vma_merge(area, vm_flags); 1005 return area; 1006 } 1007 1008 return NULL; 1009 } 1010 1011 /* 1012 * Rough compatbility check to quickly see if it's even worth looking 1013 * at sharing an anon_vma. 1014 * 1015 * They need to have the same vm_file, and the flags can only differ 1016 * in things that mprotect may change. 1017 * 1018 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1019 * we can merge the two vma's. For example, we refuse to merge a vma if 1020 * there is a vm_ops->close() function, because that indicates that the 1021 * driver is doing some kind of reference counting. But that doesn't 1022 * really matter for the anon_vma sharing case. 1023 */ 1024 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1025 { 1026 return a->vm_end == b->vm_start && 1027 mpol_equal(vma_policy(a), vma_policy(b)) && 1028 a->vm_file == b->vm_file && 1029 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1030 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1031 } 1032 1033 /* 1034 * Do some basic sanity checking to see if we can re-use the anon_vma 1035 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1036 * the same as 'old', the other will be the new one that is trying 1037 * to share the anon_vma. 1038 * 1039 * NOTE! This runs with mm_sem held for reading, so it is possible that 1040 * the anon_vma of 'old' is concurrently in the process of being set up 1041 * by another page fault trying to merge _that_. But that's ok: if it 1042 * is being set up, that automatically means that it will be a singleton 1043 * acceptable for merging, so we can do all of this optimistically. But 1044 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1045 * 1046 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1047 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1048 * is to return an anon_vma that is "complex" due to having gone through 1049 * a fork). 1050 * 1051 * We also make sure that the two vma's are compatible (adjacent, 1052 * and with the same memory policies). That's all stable, even with just 1053 * a read lock on the mm_sem. 1054 */ 1055 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1056 { 1057 if (anon_vma_compatible(a, b)) { 1058 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1059 1060 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1061 return anon_vma; 1062 } 1063 return NULL; 1064 } 1065 1066 /* 1067 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1068 * neighbouring vmas for a suitable anon_vma, before it goes off 1069 * to allocate a new anon_vma. It checks because a repetitive 1070 * sequence of mprotects and faults may otherwise lead to distinct 1071 * anon_vmas being allocated, preventing vma merge in subsequent 1072 * mprotect. 1073 */ 1074 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1075 { 1076 struct anon_vma *anon_vma; 1077 struct vm_area_struct *near; 1078 1079 near = vma->vm_next; 1080 if (!near) 1081 goto try_prev; 1082 1083 anon_vma = reusable_anon_vma(near, vma, near); 1084 if (anon_vma) 1085 return anon_vma; 1086 try_prev: 1087 near = vma->vm_prev; 1088 if (!near) 1089 goto none; 1090 1091 anon_vma = reusable_anon_vma(near, near, vma); 1092 if (anon_vma) 1093 return anon_vma; 1094 none: 1095 /* 1096 * There's no absolute need to look only at touching neighbours: 1097 * we could search further afield for "compatible" anon_vmas. 1098 * But it would probably just be a waste of time searching, 1099 * or lead to too many vmas hanging off the same anon_vma. 1100 * We're trying to allow mprotect remerging later on, 1101 * not trying to minimize memory used for anon_vmas. 1102 */ 1103 return NULL; 1104 } 1105 1106 /* 1107 * If a hint addr is less than mmap_min_addr change hint to be as 1108 * low as possible but still greater than mmap_min_addr 1109 */ 1110 static inline unsigned long round_hint_to_min(unsigned long hint) 1111 { 1112 hint &= PAGE_MASK; 1113 if (((void *)hint != NULL) && 1114 (hint < mmap_min_addr)) 1115 return PAGE_ALIGN(mmap_min_addr); 1116 return hint; 1117 } 1118 1119 static inline int mlock_future_check(struct mm_struct *mm, 1120 unsigned long flags, 1121 unsigned long len) 1122 { 1123 unsigned long locked, lock_limit; 1124 1125 /* mlock MCL_FUTURE? */ 1126 if (flags & VM_LOCKED) { 1127 locked = len >> PAGE_SHIFT; 1128 locked += mm->locked_vm; 1129 lock_limit = rlimit(RLIMIT_MEMLOCK); 1130 lock_limit >>= PAGE_SHIFT; 1131 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1132 return -EAGAIN; 1133 } 1134 return 0; 1135 } 1136 1137 /* 1138 * The caller must hold down_write(¤t->mm->mmap_sem). 1139 */ 1140 unsigned long do_mmap(struct file *file, unsigned long addr, 1141 unsigned long len, unsigned long prot, 1142 unsigned long flags, vm_flags_t vm_flags, 1143 unsigned long pgoff, unsigned long *populate) 1144 { 1145 struct mm_struct *mm = current->mm; 1146 int pkey = 0; 1147 1148 *populate = 0; 1149 1150 if (!len) 1151 return -EINVAL; 1152 1153 /* 1154 * Does the application expect PROT_READ to imply PROT_EXEC? 1155 * 1156 * (the exception is when the underlying filesystem is noexec 1157 * mounted, in which case we dont add PROT_EXEC.) 1158 */ 1159 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1160 if (!(file && path_noexec(&file->f_path))) 1161 prot |= PROT_EXEC; 1162 1163 if (!(flags & MAP_FIXED)) 1164 addr = round_hint_to_min(addr); 1165 1166 /* Careful about overflows.. */ 1167 len = PAGE_ALIGN(len); 1168 if (!len) 1169 return -ENOMEM; 1170 1171 /* offset overflow? */ 1172 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1173 return -EOVERFLOW; 1174 1175 /* Too many mappings? */ 1176 if (mm->map_count > sysctl_max_map_count) 1177 return -ENOMEM; 1178 1179 /* Obtain the address to map to. we verify (or select) it and ensure 1180 * that it represents a valid section of the address space. 1181 */ 1182 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1183 if (offset_in_page(addr)) 1184 return addr; 1185 1186 if (prot == PROT_EXEC) { 1187 pkey = execute_only_pkey(mm); 1188 if (pkey < 0) 1189 pkey = 0; 1190 } 1191 1192 /* Do simple checking here so the lower-level routines won't have 1193 * to. we assume access permissions have been handled by the open 1194 * of the memory object, so we don't do any here. 1195 */ 1196 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1197 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1198 1199 if (flags & MAP_LOCKED) 1200 if (!can_do_mlock()) 1201 return -EPERM; 1202 1203 if (mlock_future_check(mm, vm_flags, len)) 1204 return -EAGAIN; 1205 1206 if (file) { 1207 struct inode *inode = file_inode(file); 1208 1209 switch (flags & MAP_TYPE) { 1210 case MAP_SHARED: 1211 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1212 return -EACCES; 1213 1214 /* 1215 * Make sure we don't allow writing to an append-only 1216 * file.. 1217 */ 1218 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1219 return -EACCES; 1220 1221 /* 1222 * Make sure there are no mandatory locks on the file. 1223 */ 1224 if (locks_verify_locked(file)) 1225 return -EAGAIN; 1226 1227 vm_flags |= VM_SHARED | VM_MAYSHARE; 1228 if (!(file->f_mode & FMODE_WRITE)) 1229 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1230 1231 /* fall through */ 1232 case MAP_PRIVATE: 1233 if (!(file->f_mode & FMODE_READ)) 1234 return -EACCES; 1235 if (path_noexec(&file->f_path)) { 1236 if (vm_flags & VM_EXEC) 1237 return -EPERM; 1238 vm_flags &= ~VM_MAYEXEC; 1239 } 1240 1241 if (!file->f_op->mmap) 1242 return -ENODEV; 1243 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1244 return -EINVAL; 1245 break; 1246 1247 default: 1248 return -EINVAL; 1249 } 1250 } else { 1251 switch (flags & MAP_TYPE) { 1252 case MAP_SHARED: 1253 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1254 return -EINVAL; 1255 /* 1256 * Ignore pgoff. 1257 */ 1258 pgoff = 0; 1259 vm_flags |= VM_SHARED | VM_MAYSHARE; 1260 break; 1261 case MAP_PRIVATE: 1262 /* 1263 * Set pgoff according to addr for anon_vma. 1264 */ 1265 pgoff = addr >> PAGE_SHIFT; 1266 break; 1267 default: 1268 return -EINVAL; 1269 } 1270 } 1271 1272 /* 1273 * Set 'VM_NORESERVE' if we should not account for the 1274 * memory use of this mapping. 1275 */ 1276 if (flags & MAP_NORESERVE) { 1277 /* We honor MAP_NORESERVE if allowed to overcommit */ 1278 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1279 vm_flags |= VM_NORESERVE; 1280 1281 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1282 if (file && is_file_hugepages(file)) 1283 vm_flags |= VM_NORESERVE; 1284 } 1285 1286 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1287 if (!IS_ERR_VALUE(addr) && 1288 ((vm_flags & VM_LOCKED) || 1289 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1290 *populate = len; 1291 return addr; 1292 } 1293 1294 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1295 unsigned long, prot, unsigned long, flags, 1296 unsigned long, fd, unsigned long, pgoff) 1297 { 1298 struct file *file = NULL; 1299 unsigned long retval; 1300 1301 if (!(flags & MAP_ANONYMOUS)) { 1302 audit_mmap_fd(fd, flags); 1303 file = fget(fd); 1304 if (!file) 1305 return -EBADF; 1306 if (is_file_hugepages(file)) 1307 len = ALIGN(len, huge_page_size(hstate_file(file))); 1308 retval = -EINVAL; 1309 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1310 goto out_fput; 1311 } else if (flags & MAP_HUGETLB) { 1312 struct user_struct *user = NULL; 1313 struct hstate *hs; 1314 1315 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1316 if (!hs) 1317 return -EINVAL; 1318 1319 len = ALIGN(len, huge_page_size(hs)); 1320 /* 1321 * VM_NORESERVE is used because the reservations will be 1322 * taken when vm_ops->mmap() is called 1323 * A dummy user value is used because we are not locking 1324 * memory so no accounting is necessary 1325 */ 1326 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1327 VM_NORESERVE, 1328 &user, HUGETLB_ANONHUGE_INODE, 1329 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1330 if (IS_ERR(file)) 1331 return PTR_ERR(file); 1332 } 1333 1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1335 1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1337 out_fput: 1338 if (file) 1339 fput(file); 1340 return retval; 1341 } 1342 1343 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1344 struct mmap_arg_struct { 1345 unsigned long addr; 1346 unsigned long len; 1347 unsigned long prot; 1348 unsigned long flags; 1349 unsigned long fd; 1350 unsigned long offset; 1351 }; 1352 1353 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1354 { 1355 struct mmap_arg_struct a; 1356 1357 if (copy_from_user(&a, arg, sizeof(a))) 1358 return -EFAULT; 1359 if (offset_in_page(a.offset)) 1360 return -EINVAL; 1361 1362 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1363 a.offset >> PAGE_SHIFT); 1364 } 1365 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1366 1367 /* 1368 * Some shared mappigns will want the pages marked read-only 1369 * to track write events. If so, we'll downgrade vm_page_prot 1370 * to the private version (using protection_map[] without the 1371 * VM_SHARED bit). 1372 */ 1373 int vma_wants_writenotify(struct vm_area_struct *vma) 1374 { 1375 vm_flags_t vm_flags = vma->vm_flags; 1376 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1377 1378 /* If it was private or non-writable, the write bit is already clear */ 1379 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1380 return 0; 1381 1382 /* The backer wishes to know when pages are first written to? */ 1383 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1384 return 1; 1385 1386 /* The open routine did something to the protections that pgprot_modify 1387 * won't preserve? */ 1388 if (pgprot_val(vma->vm_page_prot) != 1389 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1390 return 0; 1391 1392 /* Do we need to track softdirty? */ 1393 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1394 return 1; 1395 1396 /* Specialty mapping? */ 1397 if (vm_flags & VM_PFNMAP) 1398 return 0; 1399 1400 /* Can the mapping track the dirty pages? */ 1401 return vma->vm_file && vma->vm_file->f_mapping && 1402 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1403 } 1404 1405 /* 1406 * We account for memory if it's a private writeable mapping, 1407 * not hugepages and VM_NORESERVE wasn't set. 1408 */ 1409 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1410 { 1411 /* 1412 * hugetlb has its own accounting separate from the core VM 1413 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1414 */ 1415 if (file && is_file_hugepages(file)) 1416 return 0; 1417 1418 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1419 } 1420 1421 unsigned long mmap_region(struct file *file, unsigned long addr, 1422 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1423 { 1424 struct mm_struct *mm = current->mm; 1425 struct vm_area_struct *vma, *prev; 1426 int error; 1427 struct rb_node **rb_link, *rb_parent; 1428 unsigned long charged = 0; 1429 1430 /* Check against address space limit. */ 1431 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1432 unsigned long nr_pages; 1433 1434 /* 1435 * MAP_FIXED may remove pages of mappings that intersects with 1436 * requested mapping. Account for the pages it would unmap. 1437 */ 1438 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1439 1440 if (!may_expand_vm(mm, vm_flags, 1441 (len >> PAGE_SHIFT) - nr_pages)) 1442 return -ENOMEM; 1443 } 1444 1445 /* Clear old maps */ 1446 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1447 &rb_parent)) { 1448 if (do_munmap(mm, addr, len)) 1449 return -ENOMEM; 1450 } 1451 1452 /* 1453 * Private writable mapping: check memory availability 1454 */ 1455 if (accountable_mapping(file, vm_flags)) { 1456 charged = len >> PAGE_SHIFT; 1457 if (security_vm_enough_memory_mm(mm, charged)) 1458 return -ENOMEM; 1459 vm_flags |= VM_ACCOUNT; 1460 } 1461 1462 /* 1463 * Can we just expand an old mapping? 1464 */ 1465 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1466 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1467 if (vma) 1468 goto out; 1469 1470 /* 1471 * Determine the object being mapped and call the appropriate 1472 * specific mapper. the address has already been validated, but 1473 * not unmapped, but the maps are removed from the list. 1474 */ 1475 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1476 if (!vma) { 1477 error = -ENOMEM; 1478 goto unacct_error; 1479 } 1480 1481 vma->vm_mm = mm; 1482 vma->vm_start = addr; 1483 vma->vm_end = addr + len; 1484 vma->vm_flags = vm_flags; 1485 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1486 vma->vm_pgoff = pgoff; 1487 INIT_LIST_HEAD(&vma->anon_vma_chain); 1488 1489 if (file) { 1490 if (vm_flags & VM_DENYWRITE) { 1491 error = deny_write_access(file); 1492 if (error) 1493 goto free_vma; 1494 } 1495 if (vm_flags & VM_SHARED) { 1496 error = mapping_map_writable(file->f_mapping); 1497 if (error) 1498 goto allow_write_and_free_vma; 1499 } 1500 1501 /* ->mmap() can change vma->vm_file, but must guarantee that 1502 * vma_link() below can deny write-access if VM_DENYWRITE is set 1503 * and map writably if VM_SHARED is set. This usually means the 1504 * new file must not have been exposed to user-space, yet. 1505 */ 1506 vma->vm_file = get_file(file); 1507 error = file->f_op->mmap(file, vma); 1508 if (error) 1509 goto unmap_and_free_vma; 1510 1511 /* Can addr have changed?? 1512 * 1513 * Answer: Yes, several device drivers can do it in their 1514 * f_op->mmap method. -DaveM 1515 * Bug: If addr is changed, prev, rb_link, rb_parent should 1516 * be updated for vma_link() 1517 */ 1518 WARN_ON_ONCE(addr != vma->vm_start); 1519 1520 addr = vma->vm_start; 1521 vm_flags = vma->vm_flags; 1522 } else if (vm_flags & VM_SHARED) { 1523 error = shmem_zero_setup(vma); 1524 if (error) 1525 goto free_vma; 1526 } 1527 1528 vma_link(mm, vma, prev, rb_link, rb_parent); 1529 /* Once vma denies write, undo our temporary denial count */ 1530 if (file) { 1531 if (vm_flags & VM_SHARED) 1532 mapping_unmap_writable(file->f_mapping); 1533 if (vm_flags & VM_DENYWRITE) 1534 allow_write_access(file); 1535 } 1536 file = vma->vm_file; 1537 out: 1538 perf_event_mmap(vma); 1539 1540 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1541 if (vm_flags & VM_LOCKED) { 1542 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1543 vma == get_gate_vma(current->mm))) 1544 mm->locked_vm += (len >> PAGE_SHIFT); 1545 else 1546 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1547 } 1548 1549 if (file) 1550 uprobe_mmap(vma); 1551 1552 /* 1553 * New (or expanded) vma always get soft dirty status. 1554 * Otherwise user-space soft-dirty page tracker won't 1555 * be able to distinguish situation when vma area unmapped, 1556 * then new mapped in-place (which must be aimed as 1557 * a completely new data area). 1558 */ 1559 vma->vm_flags |= VM_SOFTDIRTY; 1560 1561 vma_set_page_prot(vma); 1562 1563 return addr; 1564 1565 unmap_and_free_vma: 1566 vma->vm_file = NULL; 1567 fput(file); 1568 1569 /* Undo any partial mapping done by a device driver. */ 1570 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1571 charged = 0; 1572 if (vm_flags & VM_SHARED) 1573 mapping_unmap_writable(file->f_mapping); 1574 allow_write_and_free_vma: 1575 if (vm_flags & VM_DENYWRITE) 1576 allow_write_access(file); 1577 free_vma: 1578 kmem_cache_free(vm_area_cachep, vma); 1579 unacct_error: 1580 if (charged) 1581 vm_unacct_memory(charged); 1582 return error; 1583 } 1584 1585 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1586 { 1587 /* 1588 * We implement the search by looking for an rbtree node that 1589 * immediately follows a suitable gap. That is, 1590 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1591 * - gap_end = vma->vm_start >= info->low_limit + length; 1592 * - gap_end - gap_start >= length 1593 */ 1594 1595 struct mm_struct *mm = current->mm; 1596 struct vm_area_struct *vma; 1597 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1598 1599 /* Adjust search length to account for worst case alignment overhead */ 1600 length = info->length + info->align_mask; 1601 if (length < info->length) 1602 return -ENOMEM; 1603 1604 /* Adjust search limits by the desired length */ 1605 if (info->high_limit < length) 1606 return -ENOMEM; 1607 high_limit = info->high_limit - length; 1608 1609 if (info->low_limit > high_limit) 1610 return -ENOMEM; 1611 low_limit = info->low_limit + length; 1612 1613 /* Check if rbtree root looks promising */ 1614 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1615 goto check_highest; 1616 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1617 if (vma->rb_subtree_gap < length) 1618 goto check_highest; 1619 1620 while (true) { 1621 /* Visit left subtree if it looks promising */ 1622 gap_end = vma->vm_start; 1623 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1624 struct vm_area_struct *left = 1625 rb_entry(vma->vm_rb.rb_left, 1626 struct vm_area_struct, vm_rb); 1627 if (left->rb_subtree_gap >= length) { 1628 vma = left; 1629 continue; 1630 } 1631 } 1632 1633 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1634 check_current: 1635 /* Check if current node has a suitable gap */ 1636 if (gap_start > high_limit) 1637 return -ENOMEM; 1638 if (gap_end >= low_limit && gap_end - gap_start >= length) 1639 goto found; 1640 1641 /* Visit right subtree if it looks promising */ 1642 if (vma->vm_rb.rb_right) { 1643 struct vm_area_struct *right = 1644 rb_entry(vma->vm_rb.rb_right, 1645 struct vm_area_struct, vm_rb); 1646 if (right->rb_subtree_gap >= length) { 1647 vma = right; 1648 continue; 1649 } 1650 } 1651 1652 /* Go back up the rbtree to find next candidate node */ 1653 while (true) { 1654 struct rb_node *prev = &vma->vm_rb; 1655 if (!rb_parent(prev)) 1656 goto check_highest; 1657 vma = rb_entry(rb_parent(prev), 1658 struct vm_area_struct, vm_rb); 1659 if (prev == vma->vm_rb.rb_left) { 1660 gap_start = vma->vm_prev->vm_end; 1661 gap_end = vma->vm_start; 1662 goto check_current; 1663 } 1664 } 1665 } 1666 1667 check_highest: 1668 /* Check highest gap, which does not precede any rbtree node */ 1669 gap_start = mm->highest_vm_end; 1670 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1671 if (gap_start > high_limit) 1672 return -ENOMEM; 1673 1674 found: 1675 /* We found a suitable gap. Clip it with the original low_limit. */ 1676 if (gap_start < info->low_limit) 1677 gap_start = info->low_limit; 1678 1679 /* Adjust gap address to the desired alignment */ 1680 gap_start += (info->align_offset - gap_start) & info->align_mask; 1681 1682 VM_BUG_ON(gap_start + info->length > info->high_limit); 1683 VM_BUG_ON(gap_start + info->length > gap_end); 1684 return gap_start; 1685 } 1686 1687 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1688 { 1689 struct mm_struct *mm = current->mm; 1690 struct vm_area_struct *vma; 1691 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1692 1693 /* Adjust search length to account for worst case alignment overhead */ 1694 length = info->length + info->align_mask; 1695 if (length < info->length) 1696 return -ENOMEM; 1697 1698 /* 1699 * Adjust search limits by the desired length. 1700 * See implementation comment at top of unmapped_area(). 1701 */ 1702 gap_end = info->high_limit; 1703 if (gap_end < length) 1704 return -ENOMEM; 1705 high_limit = gap_end - length; 1706 1707 if (info->low_limit > high_limit) 1708 return -ENOMEM; 1709 low_limit = info->low_limit + length; 1710 1711 /* Check highest gap, which does not precede any rbtree node */ 1712 gap_start = mm->highest_vm_end; 1713 if (gap_start <= high_limit) 1714 goto found_highest; 1715 1716 /* Check if rbtree root looks promising */ 1717 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1718 return -ENOMEM; 1719 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1720 if (vma->rb_subtree_gap < length) 1721 return -ENOMEM; 1722 1723 while (true) { 1724 /* Visit right subtree if it looks promising */ 1725 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1726 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1727 struct vm_area_struct *right = 1728 rb_entry(vma->vm_rb.rb_right, 1729 struct vm_area_struct, vm_rb); 1730 if (right->rb_subtree_gap >= length) { 1731 vma = right; 1732 continue; 1733 } 1734 } 1735 1736 check_current: 1737 /* Check if current node has a suitable gap */ 1738 gap_end = vma->vm_start; 1739 if (gap_end < low_limit) 1740 return -ENOMEM; 1741 if (gap_start <= high_limit && gap_end - gap_start >= length) 1742 goto found; 1743 1744 /* Visit left subtree if it looks promising */ 1745 if (vma->vm_rb.rb_left) { 1746 struct vm_area_struct *left = 1747 rb_entry(vma->vm_rb.rb_left, 1748 struct vm_area_struct, vm_rb); 1749 if (left->rb_subtree_gap >= length) { 1750 vma = left; 1751 continue; 1752 } 1753 } 1754 1755 /* Go back up the rbtree to find next candidate node */ 1756 while (true) { 1757 struct rb_node *prev = &vma->vm_rb; 1758 if (!rb_parent(prev)) 1759 return -ENOMEM; 1760 vma = rb_entry(rb_parent(prev), 1761 struct vm_area_struct, vm_rb); 1762 if (prev == vma->vm_rb.rb_right) { 1763 gap_start = vma->vm_prev ? 1764 vma->vm_prev->vm_end : 0; 1765 goto check_current; 1766 } 1767 } 1768 } 1769 1770 found: 1771 /* We found a suitable gap. Clip it with the original high_limit. */ 1772 if (gap_end > info->high_limit) 1773 gap_end = info->high_limit; 1774 1775 found_highest: 1776 /* Compute highest gap address at the desired alignment */ 1777 gap_end -= info->length; 1778 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1779 1780 VM_BUG_ON(gap_end < info->low_limit); 1781 VM_BUG_ON(gap_end < gap_start); 1782 return gap_end; 1783 } 1784 1785 /* Get an address range which is currently unmapped. 1786 * For shmat() with addr=0. 1787 * 1788 * Ugly calling convention alert: 1789 * Return value with the low bits set means error value, 1790 * ie 1791 * if (ret & ~PAGE_MASK) 1792 * error = ret; 1793 * 1794 * This function "knows" that -ENOMEM has the bits set. 1795 */ 1796 #ifndef HAVE_ARCH_UNMAPPED_AREA 1797 unsigned long 1798 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1799 unsigned long len, unsigned long pgoff, unsigned long flags) 1800 { 1801 struct mm_struct *mm = current->mm; 1802 struct vm_area_struct *vma; 1803 struct vm_unmapped_area_info info; 1804 1805 if (len > TASK_SIZE - mmap_min_addr) 1806 return -ENOMEM; 1807 1808 if (flags & MAP_FIXED) 1809 return addr; 1810 1811 if (addr) { 1812 addr = PAGE_ALIGN(addr); 1813 vma = find_vma(mm, addr); 1814 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1815 (!vma || addr + len <= vma->vm_start)) 1816 return addr; 1817 } 1818 1819 info.flags = 0; 1820 info.length = len; 1821 info.low_limit = mm->mmap_base; 1822 info.high_limit = TASK_SIZE; 1823 info.align_mask = 0; 1824 return vm_unmapped_area(&info); 1825 } 1826 #endif 1827 1828 /* 1829 * This mmap-allocator allocates new areas top-down from below the 1830 * stack's low limit (the base): 1831 */ 1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1833 unsigned long 1834 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1835 const unsigned long len, const unsigned long pgoff, 1836 const unsigned long flags) 1837 { 1838 struct vm_area_struct *vma; 1839 struct mm_struct *mm = current->mm; 1840 unsigned long addr = addr0; 1841 struct vm_unmapped_area_info info; 1842 1843 /* requested length too big for entire address space */ 1844 if (len > TASK_SIZE - mmap_min_addr) 1845 return -ENOMEM; 1846 1847 if (flags & MAP_FIXED) 1848 return addr; 1849 1850 /* requesting a specific address */ 1851 if (addr) { 1852 addr = PAGE_ALIGN(addr); 1853 vma = find_vma(mm, addr); 1854 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1855 (!vma || addr + len <= vma->vm_start)) 1856 return addr; 1857 } 1858 1859 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1860 info.length = len; 1861 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1862 info.high_limit = mm->mmap_base; 1863 info.align_mask = 0; 1864 addr = vm_unmapped_area(&info); 1865 1866 /* 1867 * A failed mmap() very likely causes application failure, 1868 * so fall back to the bottom-up function here. This scenario 1869 * can happen with large stack limits and large mmap() 1870 * allocations. 1871 */ 1872 if (offset_in_page(addr)) { 1873 VM_BUG_ON(addr != -ENOMEM); 1874 info.flags = 0; 1875 info.low_limit = TASK_UNMAPPED_BASE; 1876 info.high_limit = TASK_SIZE; 1877 addr = vm_unmapped_area(&info); 1878 } 1879 1880 return addr; 1881 } 1882 #endif 1883 1884 unsigned long 1885 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1886 unsigned long pgoff, unsigned long flags) 1887 { 1888 unsigned long (*get_area)(struct file *, unsigned long, 1889 unsigned long, unsigned long, unsigned long); 1890 1891 unsigned long error = arch_mmap_check(addr, len, flags); 1892 if (error) 1893 return error; 1894 1895 /* Careful about overflows.. */ 1896 if (len > TASK_SIZE) 1897 return -ENOMEM; 1898 1899 get_area = current->mm->get_unmapped_area; 1900 if (file && file->f_op->get_unmapped_area) 1901 get_area = file->f_op->get_unmapped_area; 1902 addr = get_area(file, addr, len, pgoff, flags); 1903 if (IS_ERR_VALUE(addr)) 1904 return addr; 1905 1906 if (addr > TASK_SIZE - len) 1907 return -ENOMEM; 1908 if (offset_in_page(addr)) 1909 return -EINVAL; 1910 1911 error = security_mmap_addr(addr); 1912 return error ? error : addr; 1913 } 1914 1915 EXPORT_SYMBOL(get_unmapped_area); 1916 1917 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1918 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1919 { 1920 struct rb_node *rb_node; 1921 struct vm_area_struct *vma; 1922 1923 /* Check the cache first. */ 1924 vma = vmacache_find(mm, addr); 1925 if (likely(vma)) 1926 return vma; 1927 1928 rb_node = mm->mm_rb.rb_node; 1929 1930 while (rb_node) { 1931 struct vm_area_struct *tmp; 1932 1933 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1934 1935 if (tmp->vm_end > addr) { 1936 vma = tmp; 1937 if (tmp->vm_start <= addr) 1938 break; 1939 rb_node = rb_node->rb_left; 1940 } else 1941 rb_node = rb_node->rb_right; 1942 } 1943 1944 if (vma) 1945 vmacache_update(addr, vma); 1946 return vma; 1947 } 1948 1949 EXPORT_SYMBOL(find_vma); 1950 1951 /* 1952 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1953 */ 1954 struct vm_area_struct * 1955 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1956 struct vm_area_struct **pprev) 1957 { 1958 struct vm_area_struct *vma; 1959 1960 vma = find_vma(mm, addr); 1961 if (vma) { 1962 *pprev = vma->vm_prev; 1963 } else { 1964 struct rb_node *rb_node = mm->mm_rb.rb_node; 1965 *pprev = NULL; 1966 while (rb_node) { 1967 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1968 rb_node = rb_node->rb_right; 1969 } 1970 } 1971 return vma; 1972 } 1973 1974 /* 1975 * Verify that the stack growth is acceptable and 1976 * update accounting. This is shared with both the 1977 * grow-up and grow-down cases. 1978 */ 1979 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1980 { 1981 struct mm_struct *mm = vma->vm_mm; 1982 struct rlimit *rlim = current->signal->rlim; 1983 unsigned long new_start, actual_size; 1984 1985 /* address space limit tests */ 1986 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1987 return -ENOMEM; 1988 1989 /* Stack limit test */ 1990 actual_size = size; 1991 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 1992 actual_size -= PAGE_SIZE; 1993 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1994 return -ENOMEM; 1995 1996 /* mlock limit tests */ 1997 if (vma->vm_flags & VM_LOCKED) { 1998 unsigned long locked; 1999 unsigned long limit; 2000 locked = mm->locked_vm + grow; 2001 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2002 limit >>= PAGE_SHIFT; 2003 if (locked > limit && !capable(CAP_IPC_LOCK)) 2004 return -ENOMEM; 2005 } 2006 2007 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2008 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2009 vma->vm_end - size; 2010 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2011 return -EFAULT; 2012 2013 /* 2014 * Overcommit.. This must be the final test, as it will 2015 * update security statistics. 2016 */ 2017 if (security_vm_enough_memory_mm(mm, grow)) 2018 return -ENOMEM; 2019 2020 return 0; 2021 } 2022 2023 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2024 /* 2025 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2026 * vma is the last one with address > vma->vm_end. Have to extend vma. 2027 */ 2028 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2029 { 2030 struct mm_struct *mm = vma->vm_mm; 2031 int error = 0; 2032 2033 if (!(vma->vm_flags & VM_GROWSUP)) 2034 return -EFAULT; 2035 2036 /* Guard against wrapping around to address 0. */ 2037 if (address < PAGE_ALIGN(address+4)) 2038 address = PAGE_ALIGN(address+4); 2039 else 2040 return -ENOMEM; 2041 2042 /* We must make sure the anon_vma is allocated. */ 2043 if (unlikely(anon_vma_prepare(vma))) 2044 return -ENOMEM; 2045 2046 /* 2047 * vma->vm_start/vm_end cannot change under us because the caller 2048 * is required to hold the mmap_sem in read mode. We need the 2049 * anon_vma lock to serialize against concurrent expand_stacks. 2050 */ 2051 anon_vma_lock_write(vma->anon_vma); 2052 2053 /* Somebody else might have raced and expanded it already */ 2054 if (address > vma->vm_end) { 2055 unsigned long size, grow; 2056 2057 size = address - vma->vm_start; 2058 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2059 2060 error = -ENOMEM; 2061 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2062 error = acct_stack_growth(vma, size, grow); 2063 if (!error) { 2064 /* 2065 * vma_gap_update() doesn't support concurrent 2066 * updates, but we only hold a shared mmap_sem 2067 * lock here, so we need to protect against 2068 * concurrent vma expansions. 2069 * anon_vma_lock_write() doesn't help here, as 2070 * we don't guarantee that all growable vmas 2071 * in a mm share the same root anon vma. 2072 * So, we reuse mm->page_table_lock to guard 2073 * against concurrent vma expansions. 2074 */ 2075 spin_lock(&mm->page_table_lock); 2076 if (vma->vm_flags & VM_LOCKED) 2077 mm->locked_vm += grow; 2078 vm_stat_account(mm, vma->vm_flags, grow); 2079 anon_vma_interval_tree_pre_update_vma(vma); 2080 vma->vm_end = address; 2081 anon_vma_interval_tree_post_update_vma(vma); 2082 if (vma->vm_next) 2083 vma_gap_update(vma->vm_next); 2084 else 2085 mm->highest_vm_end = address; 2086 spin_unlock(&mm->page_table_lock); 2087 2088 perf_event_mmap(vma); 2089 } 2090 } 2091 } 2092 anon_vma_unlock_write(vma->anon_vma); 2093 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2094 validate_mm(mm); 2095 return error; 2096 } 2097 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2098 2099 /* 2100 * vma is the first one with address < vma->vm_start. Have to extend vma. 2101 */ 2102 int expand_downwards(struct vm_area_struct *vma, 2103 unsigned long address) 2104 { 2105 struct mm_struct *mm = vma->vm_mm; 2106 int error; 2107 2108 address &= PAGE_MASK; 2109 error = security_mmap_addr(address); 2110 if (error) 2111 return error; 2112 2113 /* We must make sure the anon_vma is allocated. */ 2114 if (unlikely(anon_vma_prepare(vma))) 2115 return -ENOMEM; 2116 2117 /* 2118 * vma->vm_start/vm_end cannot change under us because the caller 2119 * is required to hold the mmap_sem in read mode. We need the 2120 * anon_vma lock to serialize against concurrent expand_stacks. 2121 */ 2122 anon_vma_lock_write(vma->anon_vma); 2123 2124 /* Somebody else might have raced and expanded it already */ 2125 if (address < vma->vm_start) { 2126 unsigned long size, grow; 2127 2128 size = vma->vm_end - address; 2129 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2130 2131 error = -ENOMEM; 2132 if (grow <= vma->vm_pgoff) { 2133 error = acct_stack_growth(vma, size, grow); 2134 if (!error) { 2135 /* 2136 * vma_gap_update() doesn't support concurrent 2137 * updates, but we only hold a shared mmap_sem 2138 * lock here, so we need to protect against 2139 * concurrent vma expansions. 2140 * anon_vma_lock_write() doesn't help here, as 2141 * we don't guarantee that all growable vmas 2142 * in a mm share the same root anon vma. 2143 * So, we reuse mm->page_table_lock to guard 2144 * against concurrent vma expansions. 2145 */ 2146 spin_lock(&mm->page_table_lock); 2147 if (vma->vm_flags & VM_LOCKED) 2148 mm->locked_vm += grow; 2149 vm_stat_account(mm, vma->vm_flags, grow); 2150 anon_vma_interval_tree_pre_update_vma(vma); 2151 vma->vm_start = address; 2152 vma->vm_pgoff -= grow; 2153 anon_vma_interval_tree_post_update_vma(vma); 2154 vma_gap_update(vma); 2155 spin_unlock(&mm->page_table_lock); 2156 2157 perf_event_mmap(vma); 2158 } 2159 } 2160 } 2161 anon_vma_unlock_write(vma->anon_vma); 2162 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2163 validate_mm(mm); 2164 return error; 2165 } 2166 2167 /* 2168 * Note how expand_stack() refuses to expand the stack all the way to 2169 * abut the next virtual mapping, *unless* that mapping itself is also 2170 * a stack mapping. We want to leave room for a guard page, after all 2171 * (the guard page itself is not added here, that is done by the 2172 * actual page faulting logic) 2173 * 2174 * This matches the behavior of the guard page logic (see mm/memory.c: 2175 * check_stack_guard_page()), which only allows the guard page to be 2176 * removed under these circumstances. 2177 */ 2178 #ifdef CONFIG_STACK_GROWSUP 2179 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2180 { 2181 struct vm_area_struct *next; 2182 2183 address &= PAGE_MASK; 2184 next = vma->vm_next; 2185 if (next && next->vm_start == address + PAGE_SIZE) { 2186 if (!(next->vm_flags & VM_GROWSUP)) 2187 return -ENOMEM; 2188 } 2189 return expand_upwards(vma, address); 2190 } 2191 2192 struct vm_area_struct * 2193 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2194 { 2195 struct vm_area_struct *vma, *prev; 2196 2197 addr &= PAGE_MASK; 2198 vma = find_vma_prev(mm, addr, &prev); 2199 if (vma && (vma->vm_start <= addr)) 2200 return vma; 2201 if (!prev || expand_stack(prev, addr)) 2202 return NULL; 2203 if (prev->vm_flags & VM_LOCKED) 2204 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2205 return prev; 2206 } 2207 #else 2208 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2209 { 2210 struct vm_area_struct *prev; 2211 2212 address &= PAGE_MASK; 2213 prev = vma->vm_prev; 2214 if (prev && prev->vm_end == address) { 2215 if (!(prev->vm_flags & VM_GROWSDOWN)) 2216 return -ENOMEM; 2217 } 2218 return expand_downwards(vma, address); 2219 } 2220 2221 struct vm_area_struct * 2222 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2223 { 2224 struct vm_area_struct *vma; 2225 unsigned long start; 2226 2227 addr &= PAGE_MASK; 2228 vma = find_vma(mm, addr); 2229 if (!vma) 2230 return NULL; 2231 if (vma->vm_start <= addr) 2232 return vma; 2233 if (!(vma->vm_flags & VM_GROWSDOWN)) 2234 return NULL; 2235 start = vma->vm_start; 2236 if (expand_stack(vma, addr)) 2237 return NULL; 2238 if (vma->vm_flags & VM_LOCKED) 2239 populate_vma_page_range(vma, addr, start, NULL); 2240 return vma; 2241 } 2242 #endif 2243 2244 EXPORT_SYMBOL_GPL(find_extend_vma); 2245 2246 /* 2247 * Ok - we have the memory areas we should free on the vma list, 2248 * so release them, and do the vma updates. 2249 * 2250 * Called with the mm semaphore held. 2251 */ 2252 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2253 { 2254 unsigned long nr_accounted = 0; 2255 2256 /* Update high watermark before we lower total_vm */ 2257 update_hiwater_vm(mm); 2258 do { 2259 long nrpages = vma_pages(vma); 2260 2261 if (vma->vm_flags & VM_ACCOUNT) 2262 nr_accounted += nrpages; 2263 vm_stat_account(mm, vma->vm_flags, -nrpages); 2264 vma = remove_vma(vma); 2265 } while (vma); 2266 vm_unacct_memory(nr_accounted); 2267 validate_mm(mm); 2268 } 2269 2270 /* 2271 * Get rid of page table information in the indicated region. 2272 * 2273 * Called with the mm semaphore held. 2274 */ 2275 static void unmap_region(struct mm_struct *mm, 2276 struct vm_area_struct *vma, struct vm_area_struct *prev, 2277 unsigned long start, unsigned long end) 2278 { 2279 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2280 struct mmu_gather tlb; 2281 2282 lru_add_drain(); 2283 tlb_gather_mmu(&tlb, mm, start, end); 2284 update_hiwater_rss(mm); 2285 unmap_vmas(&tlb, vma, start, end); 2286 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2287 next ? next->vm_start : USER_PGTABLES_CEILING); 2288 tlb_finish_mmu(&tlb, start, end); 2289 } 2290 2291 /* 2292 * Create a list of vma's touched by the unmap, removing them from the mm's 2293 * vma list as we go.. 2294 */ 2295 static void 2296 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2297 struct vm_area_struct *prev, unsigned long end) 2298 { 2299 struct vm_area_struct **insertion_point; 2300 struct vm_area_struct *tail_vma = NULL; 2301 2302 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2303 vma->vm_prev = NULL; 2304 do { 2305 vma_rb_erase(vma, &mm->mm_rb); 2306 mm->map_count--; 2307 tail_vma = vma; 2308 vma = vma->vm_next; 2309 } while (vma && vma->vm_start < end); 2310 *insertion_point = vma; 2311 if (vma) { 2312 vma->vm_prev = prev; 2313 vma_gap_update(vma); 2314 } else 2315 mm->highest_vm_end = prev ? prev->vm_end : 0; 2316 tail_vma->vm_next = NULL; 2317 2318 /* Kill the cache */ 2319 vmacache_invalidate(mm); 2320 } 2321 2322 /* 2323 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2324 * munmap path where it doesn't make sense to fail. 2325 */ 2326 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2327 unsigned long addr, int new_below) 2328 { 2329 struct vm_area_struct *new; 2330 int err; 2331 2332 if (is_vm_hugetlb_page(vma) && (addr & 2333 ~(huge_page_mask(hstate_vma(vma))))) 2334 return -EINVAL; 2335 2336 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2337 if (!new) 2338 return -ENOMEM; 2339 2340 /* most fields are the same, copy all, and then fixup */ 2341 *new = *vma; 2342 2343 INIT_LIST_HEAD(&new->anon_vma_chain); 2344 2345 if (new_below) 2346 new->vm_end = addr; 2347 else { 2348 new->vm_start = addr; 2349 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2350 } 2351 2352 err = vma_dup_policy(vma, new); 2353 if (err) 2354 goto out_free_vma; 2355 2356 err = anon_vma_clone(new, vma); 2357 if (err) 2358 goto out_free_mpol; 2359 2360 if (new->vm_file) 2361 get_file(new->vm_file); 2362 2363 if (new->vm_ops && new->vm_ops->open) 2364 new->vm_ops->open(new); 2365 2366 if (new_below) 2367 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2368 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2369 else 2370 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2371 2372 /* Success. */ 2373 if (!err) 2374 return 0; 2375 2376 /* Clean everything up if vma_adjust failed. */ 2377 if (new->vm_ops && new->vm_ops->close) 2378 new->vm_ops->close(new); 2379 if (new->vm_file) 2380 fput(new->vm_file); 2381 unlink_anon_vmas(new); 2382 out_free_mpol: 2383 mpol_put(vma_policy(new)); 2384 out_free_vma: 2385 kmem_cache_free(vm_area_cachep, new); 2386 return err; 2387 } 2388 2389 /* 2390 * Split a vma into two pieces at address 'addr', a new vma is allocated 2391 * either for the first part or the tail. 2392 */ 2393 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2394 unsigned long addr, int new_below) 2395 { 2396 if (mm->map_count >= sysctl_max_map_count) 2397 return -ENOMEM; 2398 2399 return __split_vma(mm, vma, addr, new_below); 2400 } 2401 2402 /* Munmap is split into 2 main parts -- this part which finds 2403 * what needs doing, and the areas themselves, which do the 2404 * work. This now handles partial unmappings. 2405 * Jeremy Fitzhardinge <jeremy@goop.org> 2406 */ 2407 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2408 { 2409 unsigned long end; 2410 struct vm_area_struct *vma, *prev, *last; 2411 2412 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2413 return -EINVAL; 2414 2415 len = PAGE_ALIGN(len); 2416 if (len == 0) 2417 return -EINVAL; 2418 2419 /* Find the first overlapping VMA */ 2420 vma = find_vma(mm, start); 2421 if (!vma) 2422 return 0; 2423 prev = vma->vm_prev; 2424 /* we have start < vma->vm_end */ 2425 2426 /* if it doesn't overlap, we have nothing.. */ 2427 end = start + len; 2428 if (vma->vm_start >= end) 2429 return 0; 2430 2431 /* 2432 * If we need to split any vma, do it now to save pain later. 2433 * 2434 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2435 * unmapped vm_area_struct will remain in use: so lower split_vma 2436 * places tmp vma above, and higher split_vma places tmp vma below. 2437 */ 2438 if (start > vma->vm_start) { 2439 int error; 2440 2441 /* 2442 * Make sure that map_count on return from munmap() will 2443 * not exceed its limit; but let map_count go just above 2444 * its limit temporarily, to help free resources as expected. 2445 */ 2446 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2447 return -ENOMEM; 2448 2449 error = __split_vma(mm, vma, start, 0); 2450 if (error) 2451 return error; 2452 prev = vma; 2453 } 2454 2455 /* Does it split the last one? */ 2456 last = find_vma(mm, end); 2457 if (last && end > last->vm_start) { 2458 int error = __split_vma(mm, last, end, 1); 2459 if (error) 2460 return error; 2461 } 2462 vma = prev ? prev->vm_next : mm->mmap; 2463 2464 /* 2465 * unlock any mlock()ed ranges before detaching vmas 2466 */ 2467 if (mm->locked_vm) { 2468 struct vm_area_struct *tmp = vma; 2469 while (tmp && tmp->vm_start < end) { 2470 if (tmp->vm_flags & VM_LOCKED) { 2471 mm->locked_vm -= vma_pages(tmp); 2472 munlock_vma_pages_all(tmp); 2473 } 2474 tmp = tmp->vm_next; 2475 } 2476 } 2477 2478 /* 2479 * Remove the vma's, and unmap the actual pages 2480 */ 2481 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2482 unmap_region(mm, vma, prev, start, end); 2483 2484 arch_unmap(mm, vma, start, end); 2485 2486 /* Fix up all other VM information */ 2487 remove_vma_list(mm, vma); 2488 2489 return 0; 2490 } 2491 2492 int vm_munmap(unsigned long start, size_t len) 2493 { 2494 int ret; 2495 struct mm_struct *mm = current->mm; 2496 2497 if (down_write_killable(&mm->mmap_sem)) 2498 return -EINTR; 2499 2500 ret = do_munmap(mm, start, len); 2501 up_write(&mm->mmap_sem); 2502 return ret; 2503 } 2504 EXPORT_SYMBOL(vm_munmap); 2505 2506 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2507 { 2508 int ret; 2509 struct mm_struct *mm = current->mm; 2510 2511 profile_munmap(addr); 2512 if (down_write_killable(&mm->mmap_sem)) 2513 return -EINTR; 2514 ret = do_munmap(mm, addr, len); 2515 up_write(&mm->mmap_sem); 2516 return ret; 2517 } 2518 2519 2520 /* 2521 * Emulation of deprecated remap_file_pages() syscall. 2522 */ 2523 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2524 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2525 { 2526 2527 struct mm_struct *mm = current->mm; 2528 struct vm_area_struct *vma; 2529 unsigned long populate = 0; 2530 unsigned long ret = -EINVAL; 2531 struct file *file; 2532 2533 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2534 current->comm, current->pid); 2535 2536 if (prot) 2537 return ret; 2538 start = start & PAGE_MASK; 2539 size = size & PAGE_MASK; 2540 2541 if (start + size <= start) 2542 return ret; 2543 2544 /* Does pgoff wrap? */ 2545 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2546 return ret; 2547 2548 if (down_write_killable(&mm->mmap_sem)) 2549 return -EINTR; 2550 2551 vma = find_vma(mm, start); 2552 2553 if (!vma || !(vma->vm_flags & VM_SHARED)) 2554 goto out; 2555 2556 if (start < vma->vm_start) 2557 goto out; 2558 2559 if (start + size > vma->vm_end) { 2560 struct vm_area_struct *next; 2561 2562 for (next = vma->vm_next; next; next = next->vm_next) { 2563 /* hole between vmas ? */ 2564 if (next->vm_start != next->vm_prev->vm_end) 2565 goto out; 2566 2567 if (next->vm_file != vma->vm_file) 2568 goto out; 2569 2570 if (next->vm_flags != vma->vm_flags) 2571 goto out; 2572 2573 if (start + size <= next->vm_end) 2574 break; 2575 } 2576 2577 if (!next) 2578 goto out; 2579 } 2580 2581 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2582 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2583 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2584 2585 flags &= MAP_NONBLOCK; 2586 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2587 if (vma->vm_flags & VM_LOCKED) { 2588 struct vm_area_struct *tmp; 2589 flags |= MAP_LOCKED; 2590 2591 /* drop PG_Mlocked flag for over-mapped range */ 2592 for (tmp = vma; tmp->vm_start >= start + size; 2593 tmp = tmp->vm_next) { 2594 munlock_vma_pages_range(tmp, 2595 max(tmp->vm_start, start), 2596 min(tmp->vm_end, start + size)); 2597 } 2598 } 2599 2600 file = get_file(vma->vm_file); 2601 ret = do_mmap_pgoff(vma->vm_file, start, size, 2602 prot, flags, pgoff, &populate); 2603 fput(file); 2604 out: 2605 up_write(&mm->mmap_sem); 2606 if (populate) 2607 mm_populate(ret, populate); 2608 if (!IS_ERR_VALUE(ret)) 2609 ret = 0; 2610 return ret; 2611 } 2612 2613 static inline void verify_mm_writelocked(struct mm_struct *mm) 2614 { 2615 #ifdef CONFIG_DEBUG_VM 2616 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2617 WARN_ON(1); 2618 up_read(&mm->mmap_sem); 2619 } 2620 #endif 2621 } 2622 2623 /* 2624 * this is really a simplified "do_mmap". it only handles 2625 * anonymous maps. eventually we may be able to do some 2626 * brk-specific accounting here. 2627 */ 2628 static int do_brk(unsigned long addr, unsigned long len) 2629 { 2630 struct mm_struct *mm = current->mm; 2631 struct vm_area_struct *vma, *prev; 2632 unsigned long flags; 2633 struct rb_node **rb_link, *rb_parent; 2634 pgoff_t pgoff = addr >> PAGE_SHIFT; 2635 int error; 2636 2637 len = PAGE_ALIGN(len); 2638 if (!len) 2639 return 0; 2640 2641 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2642 2643 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2644 if (offset_in_page(error)) 2645 return error; 2646 2647 error = mlock_future_check(mm, mm->def_flags, len); 2648 if (error) 2649 return error; 2650 2651 /* 2652 * mm->mmap_sem is required to protect against another thread 2653 * changing the mappings in case we sleep. 2654 */ 2655 verify_mm_writelocked(mm); 2656 2657 /* 2658 * Clear old maps. this also does some error checking for us 2659 */ 2660 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2661 &rb_parent)) { 2662 if (do_munmap(mm, addr, len)) 2663 return -ENOMEM; 2664 } 2665 2666 /* Check against address space limits *after* clearing old maps... */ 2667 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2668 return -ENOMEM; 2669 2670 if (mm->map_count > sysctl_max_map_count) 2671 return -ENOMEM; 2672 2673 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2674 return -ENOMEM; 2675 2676 /* Can we just expand an old private anonymous mapping? */ 2677 vma = vma_merge(mm, prev, addr, addr + len, flags, 2678 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2679 if (vma) 2680 goto out; 2681 2682 /* 2683 * create a vma struct for an anonymous mapping 2684 */ 2685 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2686 if (!vma) { 2687 vm_unacct_memory(len >> PAGE_SHIFT); 2688 return -ENOMEM; 2689 } 2690 2691 INIT_LIST_HEAD(&vma->anon_vma_chain); 2692 vma->vm_mm = mm; 2693 vma->vm_start = addr; 2694 vma->vm_end = addr + len; 2695 vma->vm_pgoff = pgoff; 2696 vma->vm_flags = flags; 2697 vma->vm_page_prot = vm_get_page_prot(flags); 2698 vma_link(mm, vma, prev, rb_link, rb_parent); 2699 out: 2700 perf_event_mmap(vma); 2701 mm->total_vm += len >> PAGE_SHIFT; 2702 mm->data_vm += len >> PAGE_SHIFT; 2703 if (flags & VM_LOCKED) 2704 mm->locked_vm += (len >> PAGE_SHIFT); 2705 vma->vm_flags |= VM_SOFTDIRTY; 2706 return 0; 2707 } 2708 2709 int vm_brk(unsigned long addr, unsigned long len) 2710 { 2711 struct mm_struct *mm = current->mm; 2712 int ret; 2713 bool populate; 2714 2715 if (down_write_killable(&mm->mmap_sem)) 2716 return -EINTR; 2717 2718 ret = do_brk(addr, len); 2719 populate = ((mm->def_flags & VM_LOCKED) != 0); 2720 up_write(&mm->mmap_sem); 2721 if (populate && !ret) 2722 mm_populate(addr, len); 2723 return ret; 2724 } 2725 EXPORT_SYMBOL(vm_brk); 2726 2727 /* Release all mmaps. */ 2728 void exit_mmap(struct mm_struct *mm) 2729 { 2730 struct mmu_gather tlb; 2731 struct vm_area_struct *vma; 2732 unsigned long nr_accounted = 0; 2733 2734 /* mm's last user has gone, and its about to be pulled down */ 2735 mmu_notifier_release(mm); 2736 2737 if (mm->locked_vm) { 2738 vma = mm->mmap; 2739 while (vma) { 2740 if (vma->vm_flags & VM_LOCKED) 2741 munlock_vma_pages_all(vma); 2742 vma = vma->vm_next; 2743 } 2744 } 2745 2746 arch_exit_mmap(mm); 2747 2748 vma = mm->mmap; 2749 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2750 return; 2751 2752 lru_add_drain(); 2753 flush_cache_mm(mm); 2754 tlb_gather_mmu(&tlb, mm, 0, -1); 2755 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2756 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2757 unmap_vmas(&tlb, vma, 0, -1); 2758 2759 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2760 tlb_finish_mmu(&tlb, 0, -1); 2761 2762 /* 2763 * Walk the list again, actually closing and freeing it, 2764 * with preemption enabled, without holding any MM locks. 2765 */ 2766 while (vma) { 2767 if (vma->vm_flags & VM_ACCOUNT) 2768 nr_accounted += vma_pages(vma); 2769 vma = remove_vma(vma); 2770 } 2771 vm_unacct_memory(nr_accounted); 2772 } 2773 2774 /* Insert vm structure into process list sorted by address 2775 * and into the inode's i_mmap tree. If vm_file is non-NULL 2776 * then i_mmap_rwsem is taken here. 2777 */ 2778 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2779 { 2780 struct vm_area_struct *prev; 2781 struct rb_node **rb_link, *rb_parent; 2782 2783 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2784 &prev, &rb_link, &rb_parent)) 2785 return -ENOMEM; 2786 if ((vma->vm_flags & VM_ACCOUNT) && 2787 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2788 return -ENOMEM; 2789 2790 /* 2791 * The vm_pgoff of a purely anonymous vma should be irrelevant 2792 * until its first write fault, when page's anon_vma and index 2793 * are set. But now set the vm_pgoff it will almost certainly 2794 * end up with (unless mremap moves it elsewhere before that 2795 * first wfault), so /proc/pid/maps tells a consistent story. 2796 * 2797 * By setting it to reflect the virtual start address of the 2798 * vma, merges and splits can happen in a seamless way, just 2799 * using the existing file pgoff checks and manipulations. 2800 * Similarly in do_mmap_pgoff and in do_brk. 2801 */ 2802 if (vma_is_anonymous(vma)) { 2803 BUG_ON(vma->anon_vma); 2804 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2805 } 2806 2807 vma_link(mm, vma, prev, rb_link, rb_parent); 2808 return 0; 2809 } 2810 2811 /* 2812 * Copy the vma structure to a new location in the same mm, 2813 * prior to moving page table entries, to effect an mremap move. 2814 */ 2815 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2816 unsigned long addr, unsigned long len, pgoff_t pgoff, 2817 bool *need_rmap_locks) 2818 { 2819 struct vm_area_struct *vma = *vmap; 2820 unsigned long vma_start = vma->vm_start; 2821 struct mm_struct *mm = vma->vm_mm; 2822 struct vm_area_struct *new_vma, *prev; 2823 struct rb_node **rb_link, *rb_parent; 2824 bool faulted_in_anon_vma = true; 2825 2826 /* 2827 * If anonymous vma has not yet been faulted, update new pgoff 2828 * to match new location, to increase its chance of merging. 2829 */ 2830 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2831 pgoff = addr >> PAGE_SHIFT; 2832 faulted_in_anon_vma = false; 2833 } 2834 2835 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2836 return NULL; /* should never get here */ 2837 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2838 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2839 vma->vm_userfaultfd_ctx); 2840 if (new_vma) { 2841 /* 2842 * Source vma may have been merged into new_vma 2843 */ 2844 if (unlikely(vma_start >= new_vma->vm_start && 2845 vma_start < new_vma->vm_end)) { 2846 /* 2847 * The only way we can get a vma_merge with 2848 * self during an mremap is if the vma hasn't 2849 * been faulted in yet and we were allowed to 2850 * reset the dst vma->vm_pgoff to the 2851 * destination address of the mremap to allow 2852 * the merge to happen. mremap must change the 2853 * vm_pgoff linearity between src and dst vmas 2854 * (in turn preventing a vma_merge) to be 2855 * safe. It is only safe to keep the vm_pgoff 2856 * linear if there are no pages mapped yet. 2857 */ 2858 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2859 *vmap = vma = new_vma; 2860 } 2861 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2862 } else { 2863 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2864 if (!new_vma) 2865 goto out; 2866 *new_vma = *vma; 2867 new_vma->vm_start = addr; 2868 new_vma->vm_end = addr + len; 2869 new_vma->vm_pgoff = pgoff; 2870 if (vma_dup_policy(vma, new_vma)) 2871 goto out_free_vma; 2872 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2873 if (anon_vma_clone(new_vma, vma)) 2874 goto out_free_mempol; 2875 if (new_vma->vm_file) 2876 get_file(new_vma->vm_file); 2877 if (new_vma->vm_ops && new_vma->vm_ops->open) 2878 new_vma->vm_ops->open(new_vma); 2879 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2880 *need_rmap_locks = false; 2881 } 2882 return new_vma; 2883 2884 out_free_mempol: 2885 mpol_put(vma_policy(new_vma)); 2886 out_free_vma: 2887 kmem_cache_free(vm_area_cachep, new_vma); 2888 out: 2889 return NULL; 2890 } 2891 2892 /* 2893 * Return true if the calling process may expand its vm space by the passed 2894 * number of pages 2895 */ 2896 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2897 { 2898 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2899 return false; 2900 2901 if (is_data_mapping(flags) && 2902 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2903 /* Workaround for Valgrind */ 2904 if (rlimit(RLIMIT_DATA) == 0 && 2905 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 2906 return true; 2907 if (!ignore_rlimit_data) { 2908 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 2909 current->comm, current->pid, 2910 (mm->data_vm + npages) << PAGE_SHIFT, 2911 rlimit(RLIMIT_DATA)); 2912 return false; 2913 } 2914 } 2915 2916 return true; 2917 } 2918 2919 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2920 { 2921 mm->total_vm += npages; 2922 2923 if (is_exec_mapping(flags)) 2924 mm->exec_vm += npages; 2925 else if (is_stack_mapping(flags)) 2926 mm->stack_vm += npages; 2927 else if (is_data_mapping(flags)) 2928 mm->data_vm += npages; 2929 } 2930 2931 static int special_mapping_fault(struct vm_area_struct *vma, 2932 struct vm_fault *vmf); 2933 2934 /* 2935 * Having a close hook prevents vma merging regardless of flags. 2936 */ 2937 static void special_mapping_close(struct vm_area_struct *vma) 2938 { 2939 } 2940 2941 static const char *special_mapping_name(struct vm_area_struct *vma) 2942 { 2943 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2944 } 2945 2946 static const struct vm_operations_struct special_mapping_vmops = { 2947 .close = special_mapping_close, 2948 .fault = special_mapping_fault, 2949 .name = special_mapping_name, 2950 }; 2951 2952 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2953 .close = special_mapping_close, 2954 .fault = special_mapping_fault, 2955 }; 2956 2957 static int special_mapping_fault(struct vm_area_struct *vma, 2958 struct vm_fault *vmf) 2959 { 2960 pgoff_t pgoff; 2961 struct page **pages; 2962 2963 if (vma->vm_ops == &legacy_special_mapping_vmops) { 2964 pages = vma->vm_private_data; 2965 } else { 2966 struct vm_special_mapping *sm = vma->vm_private_data; 2967 2968 if (sm->fault) 2969 return sm->fault(sm, vma, vmf); 2970 2971 pages = sm->pages; 2972 } 2973 2974 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 2975 pgoff--; 2976 2977 if (*pages) { 2978 struct page *page = *pages; 2979 get_page(page); 2980 vmf->page = page; 2981 return 0; 2982 } 2983 2984 return VM_FAULT_SIGBUS; 2985 } 2986 2987 static struct vm_area_struct *__install_special_mapping( 2988 struct mm_struct *mm, 2989 unsigned long addr, unsigned long len, 2990 unsigned long vm_flags, void *priv, 2991 const struct vm_operations_struct *ops) 2992 { 2993 int ret; 2994 struct vm_area_struct *vma; 2995 2996 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2997 if (unlikely(vma == NULL)) 2998 return ERR_PTR(-ENOMEM); 2999 3000 INIT_LIST_HEAD(&vma->anon_vma_chain); 3001 vma->vm_mm = mm; 3002 vma->vm_start = addr; 3003 vma->vm_end = addr + len; 3004 3005 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3006 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3007 3008 vma->vm_ops = ops; 3009 vma->vm_private_data = priv; 3010 3011 ret = insert_vm_struct(mm, vma); 3012 if (ret) 3013 goto out; 3014 3015 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3016 3017 perf_event_mmap(vma); 3018 3019 return vma; 3020 3021 out: 3022 kmem_cache_free(vm_area_cachep, vma); 3023 return ERR_PTR(ret); 3024 } 3025 3026 /* 3027 * Called with mm->mmap_sem held for writing. 3028 * Insert a new vma covering the given region, with the given flags. 3029 * Its pages are supplied by the given array of struct page *. 3030 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3031 * The region past the last page supplied will always produce SIGBUS. 3032 * The array pointer and the pages it points to are assumed to stay alive 3033 * for as long as this mapping might exist. 3034 */ 3035 struct vm_area_struct *_install_special_mapping( 3036 struct mm_struct *mm, 3037 unsigned long addr, unsigned long len, 3038 unsigned long vm_flags, const struct vm_special_mapping *spec) 3039 { 3040 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3041 &special_mapping_vmops); 3042 } 3043 3044 int install_special_mapping(struct mm_struct *mm, 3045 unsigned long addr, unsigned long len, 3046 unsigned long vm_flags, struct page **pages) 3047 { 3048 struct vm_area_struct *vma = __install_special_mapping( 3049 mm, addr, len, vm_flags, (void *)pages, 3050 &legacy_special_mapping_vmops); 3051 3052 return PTR_ERR_OR_ZERO(vma); 3053 } 3054 3055 static DEFINE_MUTEX(mm_all_locks_mutex); 3056 3057 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3058 { 3059 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3060 /* 3061 * The LSB of head.next can't change from under us 3062 * because we hold the mm_all_locks_mutex. 3063 */ 3064 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3065 /* 3066 * We can safely modify head.next after taking the 3067 * anon_vma->root->rwsem. If some other vma in this mm shares 3068 * the same anon_vma we won't take it again. 3069 * 3070 * No need of atomic instructions here, head.next 3071 * can't change from under us thanks to the 3072 * anon_vma->root->rwsem. 3073 */ 3074 if (__test_and_set_bit(0, (unsigned long *) 3075 &anon_vma->root->rb_root.rb_node)) 3076 BUG(); 3077 } 3078 } 3079 3080 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3081 { 3082 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3083 /* 3084 * AS_MM_ALL_LOCKS can't change from under us because 3085 * we hold the mm_all_locks_mutex. 3086 * 3087 * Operations on ->flags have to be atomic because 3088 * even if AS_MM_ALL_LOCKS is stable thanks to the 3089 * mm_all_locks_mutex, there may be other cpus 3090 * changing other bitflags in parallel to us. 3091 */ 3092 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3093 BUG(); 3094 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3095 } 3096 } 3097 3098 /* 3099 * This operation locks against the VM for all pte/vma/mm related 3100 * operations that could ever happen on a certain mm. This includes 3101 * vmtruncate, try_to_unmap, and all page faults. 3102 * 3103 * The caller must take the mmap_sem in write mode before calling 3104 * mm_take_all_locks(). The caller isn't allowed to release the 3105 * mmap_sem until mm_drop_all_locks() returns. 3106 * 3107 * mmap_sem in write mode is required in order to block all operations 3108 * that could modify pagetables and free pages without need of 3109 * altering the vma layout. It's also needed in write mode to avoid new 3110 * anon_vmas to be associated with existing vmas. 3111 * 3112 * A single task can't take more than one mm_take_all_locks() in a row 3113 * or it would deadlock. 3114 * 3115 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3116 * mapping->flags avoid to take the same lock twice, if more than one 3117 * vma in this mm is backed by the same anon_vma or address_space. 3118 * 3119 * We take locks in following order, accordingly to comment at beginning 3120 * of mm/rmap.c: 3121 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3122 * hugetlb mapping); 3123 * - all i_mmap_rwsem locks; 3124 * - all anon_vma->rwseml 3125 * 3126 * We can take all locks within these types randomly because the VM code 3127 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3128 * mm_all_locks_mutex. 3129 * 3130 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3131 * that may have to take thousand of locks. 3132 * 3133 * mm_take_all_locks() can fail if it's interrupted by signals. 3134 */ 3135 int mm_take_all_locks(struct mm_struct *mm) 3136 { 3137 struct vm_area_struct *vma; 3138 struct anon_vma_chain *avc; 3139 3140 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3141 3142 mutex_lock(&mm_all_locks_mutex); 3143 3144 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3145 if (signal_pending(current)) 3146 goto out_unlock; 3147 if (vma->vm_file && vma->vm_file->f_mapping && 3148 is_vm_hugetlb_page(vma)) 3149 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3150 } 3151 3152 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3153 if (signal_pending(current)) 3154 goto out_unlock; 3155 if (vma->vm_file && vma->vm_file->f_mapping && 3156 !is_vm_hugetlb_page(vma)) 3157 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3158 } 3159 3160 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3161 if (signal_pending(current)) 3162 goto out_unlock; 3163 if (vma->anon_vma) 3164 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3165 vm_lock_anon_vma(mm, avc->anon_vma); 3166 } 3167 3168 return 0; 3169 3170 out_unlock: 3171 mm_drop_all_locks(mm); 3172 return -EINTR; 3173 } 3174 3175 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3176 { 3177 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3178 /* 3179 * The LSB of head.next can't change to 0 from under 3180 * us because we hold the mm_all_locks_mutex. 3181 * 3182 * We must however clear the bitflag before unlocking 3183 * the vma so the users using the anon_vma->rb_root will 3184 * never see our bitflag. 3185 * 3186 * No need of atomic instructions here, head.next 3187 * can't change from under us until we release the 3188 * anon_vma->root->rwsem. 3189 */ 3190 if (!__test_and_clear_bit(0, (unsigned long *) 3191 &anon_vma->root->rb_root.rb_node)) 3192 BUG(); 3193 anon_vma_unlock_write(anon_vma); 3194 } 3195 } 3196 3197 static void vm_unlock_mapping(struct address_space *mapping) 3198 { 3199 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3200 /* 3201 * AS_MM_ALL_LOCKS can't change to 0 from under us 3202 * because we hold the mm_all_locks_mutex. 3203 */ 3204 i_mmap_unlock_write(mapping); 3205 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3206 &mapping->flags)) 3207 BUG(); 3208 } 3209 } 3210 3211 /* 3212 * The mmap_sem cannot be released by the caller until 3213 * mm_drop_all_locks() returns. 3214 */ 3215 void mm_drop_all_locks(struct mm_struct *mm) 3216 { 3217 struct vm_area_struct *vma; 3218 struct anon_vma_chain *avc; 3219 3220 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3221 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3222 3223 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3224 if (vma->anon_vma) 3225 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3226 vm_unlock_anon_vma(avc->anon_vma); 3227 if (vma->vm_file && vma->vm_file->f_mapping) 3228 vm_unlock_mapping(vma->vm_file->f_mapping); 3229 } 3230 3231 mutex_unlock(&mm_all_locks_mutex); 3232 } 3233 3234 /* 3235 * initialise the VMA slab 3236 */ 3237 void __init mmap_init(void) 3238 { 3239 int ret; 3240 3241 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3242 VM_BUG_ON(ret); 3243 } 3244 3245 /* 3246 * Initialise sysctl_user_reserve_kbytes. 3247 * 3248 * This is intended to prevent a user from starting a single memory hogging 3249 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3250 * mode. 3251 * 3252 * The default value is min(3% of free memory, 128MB) 3253 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3254 */ 3255 static int init_user_reserve(void) 3256 { 3257 unsigned long free_kbytes; 3258 3259 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3260 3261 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3262 return 0; 3263 } 3264 subsys_initcall(init_user_reserve); 3265 3266 /* 3267 * Initialise sysctl_admin_reserve_kbytes. 3268 * 3269 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3270 * to log in and kill a memory hogging process. 3271 * 3272 * Systems with more than 256MB will reserve 8MB, enough to recover 3273 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3274 * only reserve 3% of free pages by default. 3275 */ 3276 static int init_admin_reserve(void) 3277 { 3278 unsigned long free_kbytes; 3279 3280 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3281 3282 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3283 return 0; 3284 } 3285 subsys_initcall(init_admin_reserve); 3286 3287 /* 3288 * Reinititalise user and admin reserves if memory is added or removed. 3289 * 3290 * The default user reserve max is 128MB, and the default max for the 3291 * admin reserve is 8MB. These are usually, but not always, enough to 3292 * enable recovery from a memory hogging process using login/sshd, a shell, 3293 * and tools like top. It may make sense to increase or even disable the 3294 * reserve depending on the existence of swap or variations in the recovery 3295 * tools. So, the admin may have changed them. 3296 * 3297 * If memory is added and the reserves have been eliminated or increased above 3298 * the default max, then we'll trust the admin. 3299 * 3300 * If memory is removed and there isn't enough free memory, then we 3301 * need to reset the reserves. 3302 * 3303 * Otherwise keep the reserve set by the admin. 3304 */ 3305 static int reserve_mem_notifier(struct notifier_block *nb, 3306 unsigned long action, void *data) 3307 { 3308 unsigned long tmp, free_kbytes; 3309 3310 switch (action) { 3311 case MEM_ONLINE: 3312 /* Default max is 128MB. Leave alone if modified by operator. */ 3313 tmp = sysctl_user_reserve_kbytes; 3314 if (0 < tmp && tmp < (1UL << 17)) 3315 init_user_reserve(); 3316 3317 /* Default max is 8MB. Leave alone if modified by operator. */ 3318 tmp = sysctl_admin_reserve_kbytes; 3319 if (0 < tmp && tmp < (1UL << 13)) 3320 init_admin_reserve(); 3321 3322 break; 3323 case MEM_OFFLINE: 3324 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3325 3326 if (sysctl_user_reserve_kbytes > free_kbytes) { 3327 init_user_reserve(); 3328 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3329 sysctl_user_reserve_kbytes); 3330 } 3331 3332 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3333 init_admin_reserve(); 3334 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3335 sysctl_admin_reserve_kbytes); 3336 } 3337 break; 3338 default: 3339 break; 3340 } 3341 return NOTIFY_OK; 3342 } 3343 3344 static struct notifier_block reserve_mem_nb = { 3345 .notifier_call = reserve_mem_notifier, 3346 }; 3347 3348 static int __meminit init_reserve_notifier(void) 3349 { 3350 if (register_hotmemory_notifier(&reserve_mem_nb)) 3351 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3352 3353 return 0; 3354 } 3355 subsys_initcall(init_reserve_notifier); 3356