xref: /openbmc/linux/mm/mmap.c (revision 3805e6a1)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51 
52 #include "internal.h"
53 
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)	(0)
56 #endif
57 
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
67 #endif
68 
69 static bool ignore_rlimit_data;
70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
71 
72 static void unmap_region(struct mm_struct *mm,
73 		struct vm_area_struct *vma, struct vm_area_struct *prev,
74 		unsigned long start, unsigned long end);
75 
76 /* description of effects of mapping type and prot in current implementation.
77  * this is due to the limited x86 page protection hardware.  The expected
78  * behavior is in parens:
79  *
80  * map_type	prot
81  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
82  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
83  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
84  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
85  *
86  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  */
91 pgprot_t protection_map[16] = {
92 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95 
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98 	return __pgprot(pgprot_val(protection_map[vm_flags &
99 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103 
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108 
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112 	unsigned long vm_flags = vma->vm_flags;
113 
114 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
115 	if (vma_wants_writenotify(vma)) {
116 		vm_flags &= ~VM_SHARED;
117 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
118 						     vm_flags);
119 	}
120 }
121 
122 /*
123  * Requires inode->i_mapping->i_mmap_rwsem
124  */
125 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
126 		struct file *file, struct address_space *mapping)
127 {
128 	if (vma->vm_flags & VM_DENYWRITE)
129 		atomic_inc(&file_inode(file)->i_writecount);
130 	if (vma->vm_flags & VM_SHARED)
131 		mapping_unmap_writable(mapping);
132 
133 	flush_dcache_mmap_lock(mapping);
134 	vma_interval_tree_remove(vma, &mapping->i_mmap);
135 	flush_dcache_mmap_unlock(mapping);
136 }
137 
138 /*
139  * Unlink a file-based vm structure from its interval tree, to hide
140  * vma from rmap and vmtruncate before freeing its page tables.
141  */
142 void unlink_file_vma(struct vm_area_struct *vma)
143 {
144 	struct file *file = vma->vm_file;
145 
146 	if (file) {
147 		struct address_space *mapping = file->f_mapping;
148 		i_mmap_lock_write(mapping);
149 		__remove_shared_vm_struct(vma, file, mapping);
150 		i_mmap_unlock_write(mapping);
151 	}
152 }
153 
154 /*
155  * Close a vm structure and free it, returning the next.
156  */
157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
158 {
159 	struct vm_area_struct *next = vma->vm_next;
160 
161 	might_sleep();
162 	if (vma->vm_ops && vma->vm_ops->close)
163 		vma->vm_ops->close(vma);
164 	if (vma->vm_file)
165 		fput(vma->vm_file);
166 	mpol_put(vma_policy(vma));
167 	kmem_cache_free(vm_area_cachep, vma);
168 	return next;
169 }
170 
171 static int do_brk(unsigned long addr, unsigned long len);
172 
173 SYSCALL_DEFINE1(brk, unsigned long, brk)
174 {
175 	unsigned long retval;
176 	unsigned long newbrk, oldbrk;
177 	struct mm_struct *mm = current->mm;
178 	unsigned long min_brk;
179 	bool populate;
180 
181 	if (down_write_killable(&mm->mmap_sem))
182 		return -EINTR;
183 
184 #ifdef CONFIG_COMPAT_BRK
185 	/*
186 	 * CONFIG_COMPAT_BRK can still be overridden by setting
187 	 * randomize_va_space to 2, which will still cause mm->start_brk
188 	 * to be arbitrarily shifted
189 	 */
190 	if (current->brk_randomized)
191 		min_brk = mm->start_brk;
192 	else
193 		min_brk = mm->end_data;
194 #else
195 	min_brk = mm->start_brk;
196 #endif
197 	if (brk < min_brk)
198 		goto out;
199 
200 	/*
201 	 * Check against rlimit here. If this check is done later after the test
202 	 * of oldbrk with newbrk then it can escape the test and let the data
203 	 * segment grow beyond its set limit the in case where the limit is
204 	 * not page aligned -Ram Gupta
205 	 */
206 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
207 			      mm->end_data, mm->start_data))
208 		goto out;
209 
210 	newbrk = PAGE_ALIGN(brk);
211 	oldbrk = PAGE_ALIGN(mm->brk);
212 	if (oldbrk == newbrk)
213 		goto set_brk;
214 
215 	/* Always allow shrinking brk. */
216 	if (brk <= mm->brk) {
217 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
218 			goto set_brk;
219 		goto out;
220 	}
221 
222 	/* Check against existing mmap mappings. */
223 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
224 		goto out;
225 
226 	/* Ok, looks good - let it rip. */
227 	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
228 		goto out;
229 
230 set_brk:
231 	mm->brk = brk;
232 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
233 	up_write(&mm->mmap_sem);
234 	if (populate)
235 		mm_populate(oldbrk, newbrk - oldbrk);
236 	return brk;
237 
238 out:
239 	retval = mm->brk;
240 	up_write(&mm->mmap_sem);
241 	return retval;
242 }
243 
244 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
245 {
246 	unsigned long max, subtree_gap;
247 	max = vma->vm_start;
248 	if (vma->vm_prev)
249 		max -= vma->vm_prev->vm_end;
250 	if (vma->vm_rb.rb_left) {
251 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
252 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
253 		if (subtree_gap > max)
254 			max = subtree_gap;
255 	}
256 	if (vma->vm_rb.rb_right) {
257 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
258 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
259 		if (subtree_gap > max)
260 			max = subtree_gap;
261 	}
262 	return max;
263 }
264 
265 #ifdef CONFIG_DEBUG_VM_RB
266 static int browse_rb(struct mm_struct *mm)
267 {
268 	struct rb_root *root = &mm->mm_rb;
269 	int i = 0, j, bug = 0;
270 	struct rb_node *nd, *pn = NULL;
271 	unsigned long prev = 0, pend = 0;
272 
273 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
274 		struct vm_area_struct *vma;
275 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
276 		if (vma->vm_start < prev) {
277 			pr_emerg("vm_start %lx < prev %lx\n",
278 				  vma->vm_start, prev);
279 			bug = 1;
280 		}
281 		if (vma->vm_start < pend) {
282 			pr_emerg("vm_start %lx < pend %lx\n",
283 				  vma->vm_start, pend);
284 			bug = 1;
285 		}
286 		if (vma->vm_start > vma->vm_end) {
287 			pr_emerg("vm_start %lx > vm_end %lx\n",
288 				  vma->vm_start, vma->vm_end);
289 			bug = 1;
290 		}
291 		spin_lock(&mm->page_table_lock);
292 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
293 			pr_emerg("free gap %lx, correct %lx\n",
294 			       vma->rb_subtree_gap,
295 			       vma_compute_subtree_gap(vma));
296 			bug = 1;
297 		}
298 		spin_unlock(&mm->page_table_lock);
299 		i++;
300 		pn = nd;
301 		prev = vma->vm_start;
302 		pend = vma->vm_end;
303 	}
304 	j = 0;
305 	for (nd = pn; nd; nd = rb_prev(nd))
306 		j++;
307 	if (i != j) {
308 		pr_emerg("backwards %d, forwards %d\n", j, i);
309 		bug = 1;
310 	}
311 	return bug ? -1 : i;
312 }
313 
314 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
315 {
316 	struct rb_node *nd;
317 
318 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
319 		struct vm_area_struct *vma;
320 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
321 		VM_BUG_ON_VMA(vma != ignore &&
322 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
323 			vma);
324 	}
325 }
326 
327 static void validate_mm(struct mm_struct *mm)
328 {
329 	int bug = 0;
330 	int i = 0;
331 	unsigned long highest_address = 0;
332 	struct vm_area_struct *vma = mm->mmap;
333 
334 	while (vma) {
335 		struct anon_vma *anon_vma = vma->anon_vma;
336 		struct anon_vma_chain *avc;
337 
338 		if (anon_vma) {
339 			anon_vma_lock_read(anon_vma);
340 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
341 				anon_vma_interval_tree_verify(avc);
342 			anon_vma_unlock_read(anon_vma);
343 		}
344 
345 		highest_address = vma->vm_end;
346 		vma = vma->vm_next;
347 		i++;
348 	}
349 	if (i != mm->map_count) {
350 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
351 		bug = 1;
352 	}
353 	if (highest_address != mm->highest_vm_end) {
354 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
355 			  mm->highest_vm_end, highest_address);
356 		bug = 1;
357 	}
358 	i = browse_rb(mm);
359 	if (i != mm->map_count) {
360 		if (i != -1)
361 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
362 		bug = 1;
363 	}
364 	VM_BUG_ON_MM(bug, mm);
365 }
366 #else
367 #define validate_mm_rb(root, ignore) do { } while (0)
368 #define validate_mm(mm) do { } while (0)
369 #endif
370 
371 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
372 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
373 
374 /*
375  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
376  * vma->vm_prev->vm_end values changed, without modifying the vma's position
377  * in the rbtree.
378  */
379 static void vma_gap_update(struct vm_area_struct *vma)
380 {
381 	/*
382 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
383 	 * function that does exacltly what we want.
384 	 */
385 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
386 }
387 
388 static inline void vma_rb_insert(struct vm_area_struct *vma,
389 				 struct rb_root *root)
390 {
391 	/* All rb_subtree_gap values must be consistent prior to insertion */
392 	validate_mm_rb(root, NULL);
393 
394 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
395 }
396 
397 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
398 {
399 	/*
400 	 * All rb_subtree_gap values must be consistent prior to erase,
401 	 * with the possible exception of the vma being erased.
402 	 */
403 	validate_mm_rb(root, vma);
404 
405 	/*
406 	 * Note rb_erase_augmented is a fairly large inline function,
407 	 * so make sure we instantiate it only once with our desired
408 	 * augmented rbtree callbacks.
409 	 */
410 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
411 }
412 
413 /*
414  * vma has some anon_vma assigned, and is already inserted on that
415  * anon_vma's interval trees.
416  *
417  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
418  * vma must be removed from the anon_vma's interval trees using
419  * anon_vma_interval_tree_pre_update_vma().
420  *
421  * After the update, the vma will be reinserted using
422  * anon_vma_interval_tree_post_update_vma().
423  *
424  * The entire update must be protected by exclusive mmap_sem and by
425  * the root anon_vma's mutex.
426  */
427 static inline void
428 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
429 {
430 	struct anon_vma_chain *avc;
431 
432 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
433 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
434 }
435 
436 static inline void
437 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
438 {
439 	struct anon_vma_chain *avc;
440 
441 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
442 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
443 }
444 
445 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
446 		unsigned long end, struct vm_area_struct **pprev,
447 		struct rb_node ***rb_link, struct rb_node **rb_parent)
448 {
449 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
450 
451 	__rb_link = &mm->mm_rb.rb_node;
452 	rb_prev = __rb_parent = NULL;
453 
454 	while (*__rb_link) {
455 		struct vm_area_struct *vma_tmp;
456 
457 		__rb_parent = *__rb_link;
458 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
459 
460 		if (vma_tmp->vm_end > addr) {
461 			/* Fail if an existing vma overlaps the area */
462 			if (vma_tmp->vm_start < end)
463 				return -ENOMEM;
464 			__rb_link = &__rb_parent->rb_left;
465 		} else {
466 			rb_prev = __rb_parent;
467 			__rb_link = &__rb_parent->rb_right;
468 		}
469 	}
470 
471 	*pprev = NULL;
472 	if (rb_prev)
473 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
474 	*rb_link = __rb_link;
475 	*rb_parent = __rb_parent;
476 	return 0;
477 }
478 
479 static unsigned long count_vma_pages_range(struct mm_struct *mm,
480 		unsigned long addr, unsigned long end)
481 {
482 	unsigned long nr_pages = 0;
483 	struct vm_area_struct *vma;
484 
485 	/* Find first overlaping mapping */
486 	vma = find_vma_intersection(mm, addr, end);
487 	if (!vma)
488 		return 0;
489 
490 	nr_pages = (min(end, vma->vm_end) -
491 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
492 
493 	/* Iterate over the rest of the overlaps */
494 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
495 		unsigned long overlap_len;
496 
497 		if (vma->vm_start > end)
498 			break;
499 
500 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
501 		nr_pages += overlap_len >> PAGE_SHIFT;
502 	}
503 
504 	return nr_pages;
505 }
506 
507 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
508 		struct rb_node **rb_link, struct rb_node *rb_parent)
509 {
510 	/* Update tracking information for the gap following the new vma. */
511 	if (vma->vm_next)
512 		vma_gap_update(vma->vm_next);
513 	else
514 		mm->highest_vm_end = vma->vm_end;
515 
516 	/*
517 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
518 	 * correct insertion point for that vma. As a result, we could not
519 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
520 	 * So, we first insert the vma with a zero rb_subtree_gap value
521 	 * (to be consistent with what we did on the way down), and then
522 	 * immediately update the gap to the correct value. Finally we
523 	 * rebalance the rbtree after all augmented values have been set.
524 	 */
525 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
526 	vma->rb_subtree_gap = 0;
527 	vma_gap_update(vma);
528 	vma_rb_insert(vma, &mm->mm_rb);
529 }
530 
531 static void __vma_link_file(struct vm_area_struct *vma)
532 {
533 	struct file *file;
534 
535 	file = vma->vm_file;
536 	if (file) {
537 		struct address_space *mapping = file->f_mapping;
538 
539 		if (vma->vm_flags & VM_DENYWRITE)
540 			atomic_dec(&file_inode(file)->i_writecount);
541 		if (vma->vm_flags & VM_SHARED)
542 			atomic_inc(&mapping->i_mmap_writable);
543 
544 		flush_dcache_mmap_lock(mapping);
545 		vma_interval_tree_insert(vma, &mapping->i_mmap);
546 		flush_dcache_mmap_unlock(mapping);
547 	}
548 }
549 
550 static void
551 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
552 	struct vm_area_struct *prev, struct rb_node **rb_link,
553 	struct rb_node *rb_parent)
554 {
555 	__vma_link_list(mm, vma, prev, rb_parent);
556 	__vma_link_rb(mm, vma, rb_link, rb_parent);
557 }
558 
559 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560 			struct vm_area_struct *prev, struct rb_node **rb_link,
561 			struct rb_node *rb_parent)
562 {
563 	struct address_space *mapping = NULL;
564 
565 	if (vma->vm_file) {
566 		mapping = vma->vm_file->f_mapping;
567 		i_mmap_lock_write(mapping);
568 	}
569 
570 	__vma_link(mm, vma, prev, rb_link, rb_parent);
571 	__vma_link_file(vma);
572 
573 	if (mapping)
574 		i_mmap_unlock_write(mapping);
575 
576 	mm->map_count++;
577 	validate_mm(mm);
578 }
579 
580 /*
581  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
582  * mm's list and rbtree.  It has already been inserted into the interval tree.
583  */
584 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
585 {
586 	struct vm_area_struct *prev;
587 	struct rb_node **rb_link, *rb_parent;
588 
589 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
590 			   &prev, &rb_link, &rb_parent))
591 		BUG();
592 	__vma_link(mm, vma, prev, rb_link, rb_parent);
593 	mm->map_count++;
594 }
595 
596 static inline void
597 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
598 		struct vm_area_struct *prev)
599 {
600 	struct vm_area_struct *next;
601 
602 	vma_rb_erase(vma, &mm->mm_rb);
603 	prev->vm_next = next = vma->vm_next;
604 	if (next)
605 		next->vm_prev = prev;
606 
607 	/* Kill the cache */
608 	vmacache_invalidate(mm);
609 }
610 
611 /*
612  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
613  * is already present in an i_mmap tree without adjusting the tree.
614  * The following helper function should be used when such adjustments
615  * are necessary.  The "insert" vma (if any) is to be inserted
616  * before we drop the necessary locks.
617  */
618 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
619 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
620 {
621 	struct mm_struct *mm = vma->vm_mm;
622 	struct vm_area_struct *next = vma->vm_next;
623 	struct vm_area_struct *importer = NULL;
624 	struct address_space *mapping = NULL;
625 	struct rb_root *root = NULL;
626 	struct anon_vma *anon_vma = NULL;
627 	struct file *file = vma->vm_file;
628 	bool start_changed = false, end_changed = false;
629 	long adjust_next = 0;
630 	int remove_next = 0;
631 
632 	if (next && !insert) {
633 		struct vm_area_struct *exporter = NULL;
634 
635 		if (end >= next->vm_end) {
636 			/*
637 			 * vma expands, overlapping all the next, and
638 			 * perhaps the one after too (mprotect case 6).
639 			 */
640 again:			remove_next = 1 + (end > next->vm_end);
641 			end = next->vm_end;
642 			exporter = next;
643 			importer = vma;
644 		} else if (end > next->vm_start) {
645 			/*
646 			 * vma expands, overlapping part of the next:
647 			 * mprotect case 5 shifting the boundary up.
648 			 */
649 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
650 			exporter = next;
651 			importer = vma;
652 		} else if (end < vma->vm_end) {
653 			/*
654 			 * vma shrinks, and !insert tells it's not
655 			 * split_vma inserting another: so it must be
656 			 * mprotect case 4 shifting the boundary down.
657 			 */
658 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
659 			exporter = vma;
660 			importer = next;
661 		}
662 
663 		/*
664 		 * Easily overlooked: when mprotect shifts the boundary,
665 		 * make sure the expanding vma has anon_vma set if the
666 		 * shrinking vma had, to cover any anon pages imported.
667 		 */
668 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
669 			int error;
670 
671 			importer->anon_vma = exporter->anon_vma;
672 			error = anon_vma_clone(importer, exporter);
673 			if (error)
674 				return error;
675 		}
676 	}
677 
678 	if (file) {
679 		mapping = file->f_mapping;
680 		root = &mapping->i_mmap;
681 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
682 
683 		if (adjust_next)
684 			uprobe_munmap(next, next->vm_start, next->vm_end);
685 
686 		i_mmap_lock_write(mapping);
687 		if (insert) {
688 			/*
689 			 * Put into interval tree now, so instantiated pages
690 			 * are visible to arm/parisc __flush_dcache_page
691 			 * throughout; but we cannot insert into address
692 			 * space until vma start or end is updated.
693 			 */
694 			__vma_link_file(insert);
695 		}
696 	}
697 
698 	vma_adjust_trans_huge(vma, start, end, adjust_next);
699 
700 	anon_vma = vma->anon_vma;
701 	if (!anon_vma && adjust_next)
702 		anon_vma = next->anon_vma;
703 	if (anon_vma) {
704 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
705 			  anon_vma != next->anon_vma, next);
706 		anon_vma_lock_write(anon_vma);
707 		anon_vma_interval_tree_pre_update_vma(vma);
708 		if (adjust_next)
709 			anon_vma_interval_tree_pre_update_vma(next);
710 	}
711 
712 	if (root) {
713 		flush_dcache_mmap_lock(mapping);
714 		vma_interval_tree_remove(vma, root);
715 		if (adjust_next)
716 			vma_interval_tree_remove(next, root);
717 	}
718 
719 	if (start != vma->vm_start) {
720 		vma->vm_start = start;
721 		start_changed = true;
722 	}
723 	if (end != vma->vm_end) {
724 		vma->vm_end = end;
725 		end_changed = true;
726 	}
727 	vma->vm_pgoff = pgoff;
728 	if (adjust_next) {
729 		next->vm_start += adjust_next << PAGE_SHIFT;
730 		next->vm_pgoff += adjust_next;
731 	}
732 
733 	if (root) {
734 		if (adjust_next)
735 			vma_interval_tree_insert(next, root);
736 		vma_interval_tree_insert(vma, root);
737 		flush_dcache_mmap_unlock(mapping);
738 	}
739 
740 	if (remove_next) {
741 		/*
742 		 * vma_merge has merged next into vma, and needs
743 		 * us to remove next before dropping the locks.
744 		 */
745 		__vma_unlink(mm, next, vma);
746 		if (file)
747 			__remove_shared_vm_struct(next, file, mapping);
748 	} else if (insert) {
749 		/*
750 		 * split_vma has split insert from vma, and needs
751 		 * us to insert it before dropping the locks
752 		 * (it may either follow vma or precede it).
753 		 */
754 		__insert_vm_struct(mm, insert);
755 	} else {
756 		if (start_changed)
757 			vma_gap_update(vma);
758 		if (end_changed) {
759 			if (!next)
760 				mm->highest_vm_end = end;
761 			else if (!adjust_next)
762 				vma_gap_update(next);
763 		}
764 	}
765 
766 	if (anon_vma) {
767 		anon_vma_interval_tree_post_update_vma(vma);
768 		if (adjust_next)
769 			anon_vma_interval_tree_post_update_vma(next);
770 		anon_vma_unlock_write(anon_vma);
771 	}
772 	if (mapping)
773 		i_mmap_unlock_write(mapping);
774 
775 	if (root) {
776 		uprobe_mmap(vma);
777 
778 		if (adjust_next)
779 			uprobe_mmap(next);
780 	}
781 
782 	if (remove_next) {
783 		if (file) {
784 			uprobe_munmap(next, next->vm_start, next->vm_end);
785 			fput(file);
786 		}
787 		if (next->anon_vma)
788 			anon_vma_merge(vma, next);
789 		mm->map_count--;
790 		mpol_put(vma_policy(next));
791 		kmem_cache_free(vm_area_cachep, next);
792 		/*
793 		 * In mprotect's case 6 (see comments on vma_merge),
794 		 * we must remove another next too. It would clutter
795 		 * up the code too much to do both in one go.
796 		 */
797 		next = vma->vm_next;
798 		if (remove_next == 2)
799 			goto again;
800 		else if (next)
801 			vma_gap_update(next);
802 		else
803 			mm->highest_vm_end = end;
804 	}
805 	if (insert && file)
806 		uprobe_mmap(insert);
807 
808 	validate_mm(mm);
809 
810 	return 0;
811 }
812 
813 /*
814  * If the vma has a ->close operation then the driver probably needs to release
815  * per-vma resources, so we don't attempt to merge those.
816  */
817 static inline int is_mergeable_vma(struct vm_area_struct *vma,
818 				struct file *file, unsigned long vm_flags,
819 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
820 {
821 	/*
822 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
823 	 * match the flags but dirty bit -- the caller should mark
824 	 * merged VMA as dirty. If dirty bit won't be excluded from
825 	 * comparison, we increase pressue on the memory system forcing
826 	 * the kernel to generate new VMAs when old one could be
827 	 * extended instead.
828 	 */
829 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
830 		return 0;
831 	if (vma->vm_file != file)
832 		return 0;
833 	if (vma->vm_ops && vma->vm_ops->close)
834 		return 0;
835 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
836 		return 0;
837 	return 1;
838 }
839 
840 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
841 					struct anon_vma *anon_vma2,
842 					struct vm_area_struct *vma)
843 {
844 	/*
845 	 * The list_is_singular() test is to avoid merging VMA cloned from
846 	 * parents. This can improve scalability caused by anon_vma lock.
847 	 */
848 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
849 		list_is_singular(&vma->anon_vma_chain)))
850 		return 1;
851 	return anon_vma1 == anon_vma2;
852 }
853 
854 /*
855  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
856  * in front of (at a lower virtual address and file offset than) the vma.
857  *
858  * We cannot merge two vmas if they have differently assigned (non-NULL)
859  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
860  *
861  * We don't check here for the merged mmap wrapping around the end of pagecache
862  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
863  * wrap, nor mmaps which cover the final page at index -1UL.
864  */
865 static int
866 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
867 		     struct anon_vma *anon_vma, struct file *file,
868 		     pgoff_t vm_pgoff,
869 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
870 {
871 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
872 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
873 		if (vma->vm_pgoff == vm_pgoff)
874 			return 1;
875 	}
876 	return 0;
877 }
878 
879 /*
880  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
881  * beyond (at a higher virtual address and file offset than) the vma.
882  *
883  * We cannot merge two vmas if they have differently assigned (non-NULL)
884  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
885  */
886 static int
887 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
888 		    struct anon_vma *anon_vma, struct file *file,
889 		    pgoff_t vm_pgoff,
890 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
891 {
892 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
893 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
894 		pgoff_t vm_pglen;
895 		vm_pglen = vma_pages(vma);
896 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
897 			return 1;
898 	}
899 	return 0;
900 }
901 
902 /*
903  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
904  * whether that can be merged with its predecessor or its successor.
905  * Or both (it neatly fills a hole).
906  *
907  * In most cases - when called for mmap, brk or mremap - [addr,end) is
908  * certain not to be mapped by the time vma_merge is called; but when
909  * called for mprotect, it is certain to be already mapped (either at
910  * an offset within prev, or at the start of next), and the flags of
911  * this area are about to be changed to vm_flags - and the no-change
912  * case has already been eliminated.
913  *
914  * The following mprotect cases have to be considered, where AAAA is
915  * the area passed down from mprotect_fixup, never extending beyond one
916  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
917  *
918  *     AAAA             AAAA                AAAA          AAAA
919  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
920  *    cannot merge    might become    might become    might become
921  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
922  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
923  *    mremap move:                                    PPPPNNNNNNNN 8
924  *        AAAA
925  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
926  *    might become    case 1 below    case 2 below    case 3 below
927  *
928  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
929  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
930  */
931 struct vm_area_struct *vma_merge(struct mm_struct *mm,
932 			struct vm_area_struct *prev, unsigned long addr,
933 			unsigned long end, unsigned long vm_flags,
934 			struct anon_vma *anon_vma, struct file *file,
935 			pgoff_t pgoff, struct mempolicy *policy,
936 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
939 	struct vm_area_struct *area, *next;
940 	int err;
941 
942 	/*
943 	 * We later require that vma->vm_flags == vm_flags,
944 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
945 	 */
946 	if (vm_flags & VM_SPECIAL)
947 		return NULL;
948 
949 	if (prev)
950 		next = prev->vm_next;
951 	else
952 		next = mm->mmap;
953 	area = next;
954 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
955 		next = next->vm_next;
956 
957 	/*
958 	 * Can it merge with the predecessor?
959 	 */
960 	if (prev && prev->vm_end == addr &&
961 			mpol_equal(vma_policy(prev), policy) &&
962 			can_vma_merge_after(prev, vm_flags,
963 					    anon_vma, file, pgoff,
964 					    vm_userfaultfd_ctx)) {
965 		/*
966 		 * OK, it can.  Can we now merge in the successor as well?
967 		 */
968 		if (next && end == next->vm_start &&
969 				mpol_equal(policy, vma_policy(next)) &&
970 				can_vma_merge_before(next, vm_flags,
971 						     anon_vma, file,
972 						     pgoff+pglen,
973 						     vm_userfaultfd_ctx) &&
974 				is_mergeable_anon_vma(prev->anon_vma,
975 						      next->anon_vma, NULL)) {
976 							/* cases 1, 6 */
977 			err = vma_adjust(prev, prev->vm_start,
978 				next->vm_end, prev->vm_pgoff, NULL);
979 		} else					/* cases 2, 5, 7 */
980 			err = vma_adjust(prev, prev->vm_start,
981 				end, prev->vm_pgoff, NULL);
982 		if (err)
983 			return NULL;
984 		khugepaged_enter_vma_merge(prev, vm_flags);
985 		return prev;
986 	}
987 
988 	/*
989 	 * Can this new request be merged in front of next?
990 	 */
991 	if (next && end == next->vm_start &&
992 			mpol_equal(policy, vma_policy(next)) &&
993 			can_vma_merge_before(next, vm_flags,
994 					     anon_vma, file, pgoff+pglen,
995 					     vm_userfaultfd_ctx)) {
996 		if (prev && addr < prev->vm_end)	/* case 4 */
997 			err = vma_adjust(prev, prev->vm_start,
998 				addr, prev->vm_pgoff, NULL);
999 		else					/* cases 3, 8 */
1000 			err = vma_adjust(area, addr, next->vm_end,
1001 				next->vm_pgoff - pglen, NULL);
1002 		if (err)
1003 			return NULL;
1004 		khugepaged_enter_vma_merge(area, vm_flags);
1005 		return area;
1006 	}
1007 
1008 	return NULL;
1009 }
1010 
1011 /*
1012  * Rough compatbility check to quickly see if it's even worth looking
1013  * at sharing an anon_vma.
1014  *
1015  * They need to have the same vm_file, and the flags can only differ
1016  * in things that mprotect may change.
1017  *
1018  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1019  * we can merge the two vma's. For example, we refuse to merge a vma if
1020  * there is a vm_ops->close() function, because that indicates that the
1021  * driver is doing some kind of reference counting. But that doesn't
1022  * really matter for the anon_vma sharing case.
1023  */
1024 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1025 {
1026 	return a->vm_end == b->vm_start &&
1027 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1028 		a->vm_file == b->vm_file &&
1029 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1030 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1031 }
1032 
1033 /*
1034  * Do some basic sanity checking to see if we can re-use the anon_vma
1035  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1036  * the same as 'old', the other will be the new one that is trying
1037  * to share the anon_vma.
1038  *
1039  * NOTE! This runs with mm_sem held for reading, so it is possible that
1040  * the anon_vma of 'old' is concurrently in the process of being set up
1041  * by another page fault trying to merge _that_. But that's ok: if it
1042  * is being set up, that automatically means that it will be a singleton
1043  * acceptable for merging, so we can do all of this optimistically. But
1044  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1045  *
1046  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1047  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1048  * is to return an anon_vma that is "complex" due to having gone through
1049  * a fork).
1050  *
1051  * We also make sure that the two vma's are compatible (adjacent,
1052  * and with the same memory policies). That's all stable, even with just
1053  * a read lock on the mm_sem.
1054  */
1055 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1056 {
1057 	if (anon_vma_compatible(a, b)) {
1058 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1059 
1060 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1061 			return anon_vma;
1062 	}
1063 	return NULL;
1064 }
1065 
1066 /*
1067  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1068  * neighbouring vmas for a suitable anon_vma, before it goes off
1069  * to allocate a new anon_vma.  It checks because a repetitive
1070  * sequence of mprotects and faults may otherwise lead to distinct
1071  * anon_vmas being allocated, preventing vma merge in subsequent
1072  * mprotect.
1073  */
1074 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1075 {
1076 	struct anon_vma *anon_vma;
1077 	struct vm_area_struct *near;
1078 
1079 	near = vma->vm_next;
1080 	if (!near)
1081 		goto try_prev;
1082 
1083 	anon_vma = reusable_anon_vma(near, vma, near);
1084 	if (anon_vma)
1085 		return anon_vma;
1086 try_prev:
1087 	near = vma->vm_prev;
1088 	if (!near)
1089 		goto none;
1090 
1091 	anon_vma = reusable_anon_vma(near, near, vma);
1092 	if (anon_vma)
1093 		return anon_vma;
1094 none:
1095 	/*
1096 	 * There's no absolute need to look only at touching neighbours:
1097 	 * we could search further afield for "compatible" anon_vmas.
1098 	 * But it would probably just be a waste of time searching,
1099 	 * or lead to too many vmas hanging off the same anon_vma.
1100 	 * We're trying to allow mprotect remerging later on,
1101 	 * not trying to minimize memory used for anon_vmas.
1102 	 */
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * If a hint addr is less than mmap_min_addr change hint to be as
1108  * low as possible but still greater than mmap_min_addr
1109  */
1110 static inline unsigned long round_hint_to_min(unsigned long hint)
1111 {
1112 	hint &= PAGE_MASK;
1113 	if (((void *)hint != NULL) &&
1114 	    (hint < mmap_min_addr))
1115 		return PAGE_ALIGN(mmap_min_addr);
1116 	return hint;
1117 }
1118 
1119 static inline int mlock_future_check(struct mm_struct *mm,
1120 				     unsigned long flags,
1121 				     unsigned long len)
1122 {
1123 	unsigned long locked, lock_limit;
1124 
1125 	/*  mlock MCL_FUTURE? */
1126 	if (flags & VM_LOCKED) {
1127 		locked = len >> PAGE_SHIFT;
1128 		locked += mm->locked_vm;
1129 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1130 		lock_limit >>= PAGE_SHIFT;
1131 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1132 			return -EAGAIN;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /*
1138  * The caller must hold down_write(&current->mm->mmap_sem).
1139  */
1140 unsigned long do_mmap(struct file *file, unsigned long addr,
1141 			unsigned long len, unsigned long prot,
1142 			unsigned long flags, vm_flags_t vm_flags,
1143 			unsigned long pgoff, unsigned long *populate)
1144 {
1145 	struct mm_struct *mm = current->mm;
1146 	int pkey = 0;
1147 
1148 	*populate = 0;
1149 
1150 	if (!len)
1151 		return -EINVAL;
1152 
1153 	/*
1154 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1155 	 *
1156 	 * (the exception is when the underlying filesystem is noexec
1157 	 *  mounted, in which case we dont add PROT_EXEC.)
1158 	 */
1159 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1160 		if (!(file && path_noexec(&file->f_path)))
1161 			prot |= PROT_EXEC;
1162 
1163 	if (!(flags & MAP_FIXED))
1164 		addr = round_hint_to_min(addr);
1165 
1166 	/* Careful about overflows.. */
1167 	len = PAGE_ALIGN(len);
1168 	if (!len)
1169 		return -ENOMEM;
1170 
1171 	/* offset overflow? */
1172 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1173 		return -EOVERFLOW;
1174 
1175 	/* Too many mappings? */
1176 	if (mm->map_count > sysctl_max_map_count)
1177 		return -ENOMEM;
1178 
1179 	/* Obtain the address to map to. we verify (or select) it and ensure
1180 	 * that it represents a valid section of the address space.
1181 	 */
1182 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1183 	if (offset_in_page(addr))
1184 		return addr;
1185 
1186 	if (prot == PROT_EXEC) {
1187 		pkey = execute_only_pkey(mm);
1188 		if (pkey < 0)
1189 			pkey = 0;
1190 	}
1191 
1192 	/* Do simple checking here so the lower-level routines won't have
1193 	 * to. we assume access permissions have been handled by the open
1194 	 * of the memory object, so we don't do any here.
1195 	 */
1196 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1197 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1198 
1199 	if (flags & MAP_LOCKED)
1200 		if (!can_do_mlock())
1201 			return -EPERM;
1202 
1203 	if (mlock_future_check(mm, vm_flags, len))
1204 		return -EAGAIN;
1205 
1206 	if (file) {
1207 		struct inode *inode = file_inode(file);
1208 
1209 		switch (flags & MAP_TYPE) {
1210 		case MAP_SHARED:
1211 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1212 				return -EACCES;
1213 
1214 			/*
1215 			 * Make sure we don't allow writing to an append-only
1216 			 * file..
1217 			 */
1218 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1219 				return -EACCES;
1220 
1221 			/*
1222 			 * Make sure there are no mandatory locks on the file.
1223 			 */
1224 			if (locks_verify_locked(file))
1225 				return -EAGAIN;
1226 
1227 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1228 			if (!(file->f_mode & FMODE_WRITE))
1229 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1230 
1231 			/* fall through */
1232 		case MAP_PRIVATE:
1233 			if (!(file->f_mode & FMODE_READ))
1234 				return -EACCES;
1235 			if (path_noexec(&file->f_path)) {
1236 				if (vm_flags & VM_EXEC)
1237 					return -EPERM;
1238 				vm_flags &= ~VM_MAYEXEC;
1239 			}
1240 
1241 			if (!file->f_op->mmap)
1242 				return -ENODEV;
1243 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1244 				return -EINVAL;
1245 			break;
1246 
1247 		default:
1248 			return -EINVAL;
1249 		}
1250 	} else {
1251 		switch (flags & MAP_TYPE) {
1252 		case MAP_SHARED:
1253 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1254 				return -EINVAL;
1255 			/*
1256 			 * Ignore pgoff.
1257 			 */
1258 			pgoff = 0;
1259 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1260 			break;
1261 		case MAP_PRIVATE:
1262 			/*
1263 			 * Set pgoff according to addr for anon_vma.
1264 			 */
1265 			pgoff = addr >> PAGE_SHIFT;
1266 			break;
1267 		default:
1268 			return -EINVAL;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Set 'VM_NORESERVE' if we should not account for the
1274 	 * memory use of this mapping.
1275 	 */
1276 	if (flags & MAP_NORESERVE) {
1277 		/* We honor MAP_NORESERVE if allowed to overcommit */
1278 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1279 			vm_flags |= VM_NORESERVE;
1280 
1281 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1282 		if (file && is_file_hugepages(file))
1283 			vm_flags |= VM_NORESERVE;
1284 	}
1285 
1286 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1287 	if (!IS_ERR_VALUE(addr) &&
1288 	    ((vm_flags & VM_LOCKED) ||
1289 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1290 		*populate = len;
1291 	return addr;
1292 }
1293 
1294 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1295 		unsigned long, prot, unsigned long, flags,
1296 		unsigned long, fd, unsigned long, pgoff)
1297 {
1298 	struct file *file = NULL;
1299 	unsigned long retval;
1300 
1301 	if (!(flags & MAP_ANONYMOUS)) {
1302 		audit_mmap_fd(fd, flags);
1303 		file = fget(fd);
1304 		if (!file)
1305 			return -EBADF;
1306 		if (is_file_hugepages(file))
1307 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1308 		retval = -EINVAL;
1309 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1310 			goto out_fput;
1311 	} else if (flags & MAP_HUGETLB) {
1312 		struct user_struct *user = NULL;
1313 		struct hstate *hs;
1314 
1315 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1316 		if (!hs)
1317 			return -EINVAL;
1318 
1319 		len = ALIGN(len, huge_page_size(hs));
1320 		/*
1321 		 * VM_NORESERVE is used because the reservations will be
1322 		 * taken when vm_ops->mmap() is called
1323 		 * A dummy user value is used because we are not locking
1324 		 * memory so no accounting is necessary
1325 		 */
1326 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1327 				VM_NORESERVE,
1328 				&user, HUGETLB_ANONHUGE_INODE,
1329 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1330 		if (IS_ERR(file))
1331 			return PTR_ERR(file);
1332 	}
1333 
1334 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335 
1336 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337 out_fput:
1338 	if (file)
1339 		fput(file);
1340 	return retval;
1341 }
1342 
1343 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1344 struct mmap_arg_struct {
1345 	unsigned long addr;
1346 	unsigned long len;
1347 	unsigned long prot;
1348 	unsigned long flags;
1349 	unsigned long fd;
1350 	unsigned long offset;
1351 };
1352 
1353 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1354 {
1355 	struct mmap_arg_struct a;
1356 
1357 	if (copy_from_user(&a, arg, sizeof(a)))
1358 		return -EFAULT;
1359 	if (offset_in_page(a.offset))
1360 		return -EINVAL;
1361 
1362 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1363 			      a.offset >> PAGE_SHIFT);
1364 }
1365 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1366 
1367 /*
1368  * Some shared mappigns will want the pages marked read-only
1369  * to track write events. If so, we'll downgrade vm_page_prot
1370  * to the private version (using protection_map[] without the
1371  * VM_SHARED bit).
1372  */
1373 int vma_wants_writenotify(struct vm_area_struct *vma)
1374 {
1375 	vm_flags_t vm_flags = vma->vm_flags;
1376 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1377 
1378 	/* If it was private or non-writable, the write bit is already clear */
1379 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1380 		return 0;
1381 
1382 	/* The backer wishes to know when pages are first written to? */
1383 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1384 		return 1;
1385 
1386 	/* The open routine did something to the protections that pgprot_modify
1387 	 * won't preserve? */
1388 	if (pgprot_val(vma->vm_page_prot) !=
1389 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1390 		return 0;
1391 
1392 	/* Do we need to track softdirty? */
1393 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1394 		return 1;
1395 
1396 	/* Specialty mapping? */
1397 	if (vm_flags & VM_PFNMAP)
1398 		return 0;
1399 
1400 	/* Can the mapping track the dirty pages? */
1401 	return vma->vm_file && vma->vm_file->f_mapping &&
1402 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1403 }
1404 
1405 /*
1406  * We account for memory if it's a private writeable mapping,
1407  * not hugepages and VM_NORESERVE wasn't set.
1408  */
1409 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1410 {
1411 	/*
1412 	 * hugetlb has its own accounting separate from the core VM
1413 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1414 	 */
1415 	if (file && is_file_hugepages(file))
1416 		return 0;
1417 
1418 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1419 }
1420 
1421 unsigned long mmap_region(struct file *file, unsigned long addr,
1422 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1423 {
1424 	struct mm_struct *mm = current->mm;
1425 	struct vm_area_struct *vma, *prev;
1426 	int error;
1427 	struct rb_node **rb_link, *rb_parent;
1428 	unsigned long charged = 0;
1429 
1430 	/* Check against address space limit. */
1431 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1432 		unsigned long nr_pages;
1433 
1434 		/*
1435 		 * MAP_FIXED may remove pages of mappings that intersects with
1436 		 * requested mapping. Account for the pages it would unmap.
1437 		 */
1438 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1439 
1440 		if (!may_expand_vm(mm, vm_flags,
1441 					(len >> PAGE_SHIFT) - nr_pages))
1442 			return -ENOMEM;
1443 	}
1444 
1445 	/* Clear old maps */
1446 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1447 			      &rb_parent)) {
1448 		if (do_munmap(mm, addr, len))
1449 			return -ENOMEM;
1450 	}
1451 
1452 	/*
1453 	 * Private writable mapping: check memory availability
1454 	 */
1455 	if (accountable_mapping(file, vm_flags)) {
1456 		charged = len >> PAGE_SHIFT;
1457 		if (security_vm_enough_memory_mm(mm, charged))
1458 			return -ENOMEM;
1459 		vm_flags |= VM_ACCOUNT;
1460 	}
1461 
1462 	/*
1463 	 * Can we just expand an old mapping?
1464 	 */
1465 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1466 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1467 	if (vma)
1468 		goto out;
1469 
1470 	/*
1471 	 * Determine the object being mapped and call the appropriate
1472 	 * specific mapper. the address has already been validated, but
1473 	 * not unmapped, but the maps are removed from the list.
1474 	 */
1475 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1476 	if (!vma) {
1477 		error = -ENOMEM;
1478 		goto unacct_error;
1479 	}
1480 
1481 	vma->vm_mm = mm;
1482 	vma->vm_start = addr;
1483 	vma->vm_end = addr + len;
1484 	vma->vm_flags = vm_flags;
1485 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1486 	vma->vm_pgoff = pgoff;
1487 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1488 
1489 	if (file) {
1490 		if (vm_flags & VM_DENYWRITE) {
1491 			error = deny_write_access(file);
1492 			if (error)
1493 				goto free_vma;
1494 		}
1495 		if (vm_flags & VM_SHARED) {
1496 			error = mapping_map_writable(file->f_mapping);
1497 			if (error)
1498 				goto allow_write_and_free_vma;
1499 		}
1500 
1501 		/* ->mmap() can change vma->vm_file, but must guarantee that
1502 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1503 		 * and map writably if VM_SHARED is set. This usually means the
1504 		 * new file must not have been exposed to user-space, yet.
1505 		 */
1506 		vma->vm_file = get_file(file);
1507 		error = file->f_op->mmap(file, vma);
1508 		if (error)
1509 			goto unmap_and_free_vma;
1510 
1511 		/* Can addr have changed??
1512 		 *
1513 		 * Answer: Yes, several device drivers can do it in their
1514 		 *         f_op->mmap method. -DaveM
1515 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1516 		 *      be updated for vma_link()
1517 		 */
1518 		WARN_ON_ONCE(addr != vma->vm_start);
1519 
1520 		addr = vma->vm_start;
1521 		vm_flags = vma->vm_flags;
1522 	} else if (vm_flags & VM_SHARED) {
1523 		error = shmem_zero_setup(vma);
1524 		if (error)
1525 			goto free_vma;
1526 	}
1527 
1528 	vma_link(mm, vma, prev, rb_link, rb_parent);
1529 	/* Once vma denies write, undo our temporary denial count */
1530 	if (file) {
1531 		if (vm_flags & VM_SHARED)
1532 			mapping_unmap_writable(file->f_mapping);
1533 		if (vm_flags & VM_DENYWRITE)
1534 			allow_write_access(file);
1535 	}
1536 	file = vma->vm_file;
1537 out:
1538 	perf_event_mmap(vma);
1539 
1540 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1541 	if (vm_flags & VM_LOCKED) {
1542 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1543 					vma == get_gate_vma(current->mm)))
1544 			mm->locked_vm += (len >> PAGE_SHIFT);
1545 		else
1546 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1547 	}
1548 
1549 	if (file)
1550 		uprobe_mmap(vma);
1551 
1552 	/*
1553 	 * New (or expanded) vma always get soft dirty status.
1554 	 * Otherwise user-space soft-dirty page tracker won't
1555 	 * be able to distinguish situation when vma area unmapped,
1556 	 * then new mapped in-place (which must be aimed as
1557 	 * a completely new data area).
1558 	 */
1559 	vma->vm_flags |= VM_SOFTDIRTY;
1560 
1561 	vma_set_page_prot(vma);
1562 
1563 	return addr;
1564 
1565 unmap_and_free_vma:
1566 	vma->vm_file = NULL;
1567 	fput(file);
1568 
1569 	/* Undo any partial mapping done by a device driver. */
1570 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1571 	charged = 0;
1572 	if (vm_flags & VM_SHARED)
1573 		mapping_unmap_writable(file->f_mapping);
1574 allow_write_and_free_vma:
1575 	if (vm_flags & VM_DENYWRITE)
1576 		allow_write_access(file);
1577 free_vma:
1578 	kmem_cache_free(vm_area_cachep, vma);
1579 unacct_error:
1580 	if (charged)
1581 		vm_unacct_memory(charged);
1582 	return error;
1583 }
1584 
1585 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1586 {
1587 	/*
1588 	 * We implement the search by looking for an rbtree node that
1589 	 * immediately follows a suitable gap. That is,
1590 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1591 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1592 	 * - gap_end - gap_start >= length
1593 	 */
1594 
1595 	struct mm_struct *mm = current->mm;
1596 	struct vm_area_struct *vma;
1597 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1598 
1599 	/* Adjust search length to account for worst case alignment overhead */
1600 	length = info->length + info->align_mask;
1601 	if (length < info->length)
1602 		return -ENOMEM;
1603 
1604 	/* Adjust search limits by the desired length */
1605 	if (info->high_limit < length)
1606 		return -ENOMEM;
1607 	high_limit = info->high_limit - length;
1608 
1609 	if (info->low_limit > high_limit)
1610 		return -ENOMEM;
1611 	low_limit = info->low_limit + length;
1612 
1613 	/* Check if rbtree root looks promising */
1614 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1615 		goto check_highest;
1616 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1617 	if (vma->rb_subtree_gap < length)
1618 		goto check_highest;
1619 
1620 	while (true) {
1621 		/* Visit left subtree if it looks promising */
1622 		gap_end = vma->vm_start;
1623 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1624 			struct vm_area_struct *left =
1625 				rb_entry(vma->vm_rb.rb_left,
1626 					 struct vm_area_struct, vm_rb);
1627 			if (left->rb_subtree_gap >= length) {
1628 				vma = left;
1629 				continue;
1630 			}
1631 		}
1632 
1633 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1634 check_current:
1635 		/* Check if current node has a suitable gap */
1636 		if (gap_start > high_limit)
1637 			return -ENOMEM;
1638 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1639 			goto found;
1640 
1641 		/* Visit right subtree if it looks promising */
1642 		if (vma->vm_rb.rb_right) {
1643 			struct vm_area_struct *right =
1644 				rb_entry(vma->vm_rb.rb_right,
1645 					 struct vm_area_struct, vm_rb);
1646 			if (right->rb_subtree_gap >= length) {
1647 				vma = right;
1648 				continue;
1649 			}
1650 		}
1651 
1652 		/* Go back up the rbtree to find next candidate node */
1653 		while (true) {
1654 			struct rb_node *prev = &vma->vm_rb;
1655 			if (!rb_parent(prev))
1656 				goto check_highest;
1657 			vma = rb_entry(rb_parent(prev),
1658 				       struct vm_area_struct, vm_rb);
1659 			if (prev == vma->vm_rb.rb_left) {
1660 				gap_start = vma->vm_prev->vm_end;
1661 				gap_end = vma->vm_start;
1662 				goto check_current;
1663 			}
1664 		}
1665 	}
1666 
1667 check_highest:
1668 	/* Check highest gap, which does not precede any rbtree node */
1669 	gap_start = mm->highest_vm_end;
1670 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1671 	if (gap_start > high_limit)
1672 		return -ENOMEM;
1673 
1674 found:
1675 	/* We found a suitable gap. Clip it with the original low_limit. */
1676 	if (gap_start < info->low_limit)
1677 		gap_start = info->low_limit;
1678 
1679 	/* Adjust gap address to the desired alignment */
1680 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1681 
1682 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1683 	VM_BUG_ON(gap_start + info->length > gap_end);
1684 	return gap_start;
1685 }
1686 
1687 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1688 {
1689 	struct mm_struct *mm = current->mm;
1690 	struct vm_area_struct *vma;
1691 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1692 
1693 	/* Adjust search length to account for worst case alignment overhead */
1694 	length = info->length + info->align_mask;
1695 	if (length < info->length)
1696 		return -ENOMEM;
1697 
1698 	/*
1699 	 * Adjust search limits by the desired length.
1700 	 * See implementation comment at top of unmapped_area().
1701 	 */
1702 	gap_end = info->high_limit;
1703 	if (gap_end < length)
1704 		return -ENOMEM;
1705 	high_limit = gap_end - length;
1706 
1707 	if (info->low_limit > high_limit)
1708 		return -ENOMEM;
1709 	low_limit = info->low_limit + length;
1710 
1711 	/* Check highest gap, which does not precede any rbtree node */
1712 	gap_start = mm->highest_vm_end;
1713 	if (gap_start <= high_limit)
1714 		goto found_highest;
1715 
1716 	/* Check if rbtree root looks promising */
1717 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1718 		return -ENOMEM;
1719 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1720 	if (vma->rb_subtree_gap < length)
1721 		return -ENOMEM;
1722 
1723 	while (true) {
1724 		/* Visit right subtree if it looks promising */
1725 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1726 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1727 			struct vm_area_struct *right =
1728 				rb_entry(vma->vm_rb.rb_right,
1729 					 struct vm_area_struct, vm_rb);
1730 			if (right->rb_subtree_gap >= length) {
1731 				vma = right;
1732 				continue;
1733 			}
1734 		}
1735 
1736 check_current:
1737 		/* Check if current node has a suitable gap */
1738 		gap_end = vma->vm_start;
1739 		if (gap_end < low_limit)
1740 			return -ENOMEM;
1741 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1742 			goto found;
1743 
1744 		/* Visit left subtree if it looks promising */
1745 		if (vma->vm_rb.rb_left) {
1746 			struct vm_area_struct *left =
1747 				rb_entry(vma->vm_rb.rb_left,
1748 					 struct vm_area_struct, vm_rb);
1749 			if (left->rb_subtree_gap >= length) {
1750 				vma = left;
1751 				continue;
1752 			}
1753 		}
1754 
1755 		/* Go back up the rbtree to find next candidate node */
1756 		while (true) {
1757 			struct rb_node *prev = &vma->vm_rb;
1758 			if (!rb_parent(prev))
1759 				return -ENOMEM;
1760 			vma = rb_entry(rb_parent(prev),
1761 				       struct vm_area_struct, vm_rb);
1762 			if (prev == vma->vm_rb.rb_right) {
1763 				gap_start = vma->vm_prev ?
1764 					vma->vm_prev->vm_end : 0;
1765 				goto check_current;
1766 			}
1767 		}
1768 	}
1769 
1770 found:
1771 	/* We found a suitable gap. Clip it with the original high_limit. */
1772 	if (gap_end > info->high_limit)
1773 		gap_end = info->high_limit;
1774 
1775 found_highest:
1776 	/* Compute highest gap address at the desired alignment */
1777 	gap_end -= info->length;
1778 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1779 
1780 	VM_BUG_ON(gap_end < info->low_limit);
1781 	VM_BUG_ON(gap_end < gap_start);
1782 	return gap_end;
1783 }
1784 
1785 /* Get an address range which is currently unmapped.
1786  * For shmat() with addr=0.
1787  *
1788  * Ugly calling convention alert:
1789  * Return value with the low bits set means error value,
1790  * ie
1791  *	if (ret & ~PAGE_MASK)
1792  *		error = ret;
1793  *
1794  * This function "knows" that -ENOMEM has the bits set.
1795  */
1796 #ifndef HAVE_ARCH_UNMAPPED_AREA
1797 unsigned long
1798 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1799 		unsigned long len, unsigned long pgoff, unsigned long flags)
1800 {
1801 	struct mm_struct *mm = current->mm;
1802 	struct vm_area_struct *vma;
1803 	struct vm_unmapped_area_info info;
1804 
1805 	if (len > TASK_SIZE - mmap_min_addr)
1806 		return -ENOMEM;
1807 
1808 	if (flags & MAP_FIXED)
1809 		return addr;
1810 
1811 	if (addr) {
1812 		addr = PAGE_ALIGN(addr);
1813 		vma = find_vma(mm, addr);
1814 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1815 		    (!vma || addr + len <= vma->vm_start))
1816 			return addr;
1817 	}
1818 
1819 	info.flags = 0;
1820 	info.length = len;
1821 	info.low_limit = mm->mmap_base;
1822 	info.high_limit = TASK_SIZE;
1823 	info.align_mask = 0;
1824 	return vm_unmapped_area(&info);
1825 }
1826 #endif
1827 
1828 /*
1829  * This mmap-allocator allocates new areas top-down from below the
1830  * stack's low limit (the base):
1831  */
1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1833 unsigned long
1834 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1835 			  const unsigned long len, const unsigned long pgoff,
1836 			  const unsigned long flags)
1837 {
1838 	struct vm_area_struct *vma;
1839 	struct mm_struct *mm = current->mm;
1840 	unsigned long addr = addr0;
1841 	struct vm_unmapped_area_info info;
1842 
1843 	/* requested length too big for entire address space */
1844 	if (len > TASK_SIZE - mmap_min_addr)
1845 		return -ENOMEM;
1846 
1847 	if (flags & MAP_FIXED)
1848 		return addr;
1849 
1850 	/* requesting a specific address */
1851 	if (addr) {
1852 		addr = PAGE_ALIGN(addr);
1853 		vma = find_vma(mm, addr);
1854 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1855 				(!vma || addr + len <= vma->vm_start))
1856 			return addr;
1857 	}
1858 
1859 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1860 	info.length = len;
1861 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1862 	info.high_limit = mm->mmap_base;
1863 	info.align_mask = 0;
1864 	addr = vm_unmapped_area(&info);
1865 
1866 	/*
1867 	 * A failed mmap() very likely causes application failure,
1868 	 * so fall back to the bottom-up function here. This scenario
1869 	 * can happen with large stack limits and large mmap()
1870 	 * allocations.
1871 	 */
1872 	if (offset_in_page(addr)) {
1873 		VM_BUG_ON(addr != -ENOMEM);
1874 		info.flags = 0;
1875 		info.low_limit = TASK_UNMAPPED_BASE;
1876 		info.high_limit = TASK_SIZE;
1877 		addr = vm_unmapped_area(&info);
1878 	}
1879 
1880 	return addr;
1881 }
1882 #endif
1883 
1884 unsigned long
1885 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1886 		unsigned long pgoff, unsigned long flags)
1887 {
1888 	unsigned long (*get_area)(struct file *, unsigned long,
1889 				  unsigned long, unsigned long, unsigned long);
1890 
1891 	unsigned long error = arch_mmap_check(addr, len, flags);
1892 	if (error)
1893 		return error;
1894 
1895 	/* Careful about overflows.. */
1896 	if (len > TASK_SIZE)
1897 		return -ENOMEM;
1898 
1899 	get_area = current->mm->get_unmapped_area;
1900 	if (file && file->f_op->get_unmapped_area)
1901 		get_area = file->f_op->get_unmapped_area;
1902 	addr = get_area(file, addr, len, pgoff, flags);
1903 	if (IS_ERR_VALUE(addr))
1904 		return addr;
1905 
1906 	if (addr > TASK_SIZE - len)
1907 		return -ENOMEM;
1908 	if (offset_in_page(addr))
1909 		return -EINVAL;
1910 
1911 	error = security_mmap_addr(addr);
1912 	return error ? error : addr;
1913 }
1914 
1915 EXPORT_SYMBOL(get_unmapped_area);
1916 
1917 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1918 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1919 {
1920 	struct rb_node *rb_node;
1921 	struct vm_area_struct *vma;
1922 
1923 	/* Check the cache first. */
1924 	vma = vmacache_find(mm, addr);
1925 	if (likely(vma))
1926 		return vma;
1927 
1928 	rb_node = mm->mm_rb.rb_node;
1929 
1930 	while (rb_node) {
1931 		struct vm_area_struct *tmp;
1932 
1933 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1934 
1935 		if (tmp->vm_end > addr) {
1936 			vma = tmp;
1937 			if (tmp->vm_start <= addr)
1938 				break;
1939 			rb_node = rb_node->rb_left;
1940 		} else
1941 			rb_node = rb_node->rb_right;
1942 	}
1943 
1944 	if (vma)
1945 		vmacache_update(addr, vma);
1946 	return vma;
1947 }
1948 
1949 EXPORT_SYMBOL(find_vma);
1950 
1951 /*
1952  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1953  */
1954 struct vm_area_struct *
1955 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1956 			struct vm_area_struct **pprev)
1957 {
1958 	struct vm_area_struct *vma;
1959 
1960 	vma = find_vma(mm, addr);
1961 	if (vma) {
1962 		*pprev = vma->vm_prev;
1963 	} else {
1964 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1965 		*pprev = NULL;
1966 		while (rb_node) {
1967 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1968 			rb_node = rb_node->rb_right;
1969 		}
1970 	}
1971 	return vma;
1972 }
1973 
1974 /*
1975  * Verify that the stack growth is acceptable and
1976  * update accounting. This is shared with both the
1977  * grow-up and grow-down cases.
1978  */
1979 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1980 {
1981 	struct mm_struct *mm = vma->vm_mm;
1982 	struct rlimit *rlim = current->signal->rlim;
1983 	unsigned long new_start, actual_size;
1984 
1985 	/* address space limit tests */
1986 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1987 		return -ENOMEM;
1988 
1989 	/* Stack limit test */
1990 	actual_size = size;
1991 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1992 		actual_size -= PAGE_SIZE;
1993 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1994 		return -ENOMEM;
1995 
1996 	/* mlock limit tests */
1997 	if (vma->vm_flags & VM_LOCKED) {
1998 		unsigned long locked;
1999 		unsigned long limit;
2000 		locked = mm->locked_vm + grow;
2001 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2002 		limit >>= PAGE_SHIFT;
2003 		if (locked > limit && !capable(CAP_IPC_LOCK))
2004 			return -ENOMEM;
2005 	}
2006 
2007 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2008 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2009 			vma->vm_end - size;
2010 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2011 		return -EFAULT;
2012 
2013 	/*
2014 	 * Overcommit..  This must be the final test, as it will
2015 	 * update security statistics.
2016 	 */
2017 	if (security_vm_enough_memory_mm(mm, grow))
2018 		return -ENOMEM;
2019 
2020 	return 0;
2021 }
2022 
2023 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2024 /*
2025  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2026  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2027  */
2028 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2029 {
2030 	struct mm_struct *mm = vma->vm_mm;
2031 	int error = 0;
2032 
2033 	if (!(vma->vm_flags & VM_GROWSUP))
2034 		return -EFAULT;
2035 
2036 	/* Guard against wrapping around to address 0. */
2037 	if (address < PAGE_ALIGN(address+4))
2038 		address = PAGE_ALIGN(address+4);
2039 	else
2040 		return -ENOMEM;
2041 
2042 	/* We must make sure the anon_vma is allocated. */
2043 	if (unlikely(anon_vma_prepare(vma)))
2044 		return -ENOMEM;
2045 
2046 	/*
2047 	 * vma->vm_start/vm_end cannot change under us because the caller
2048 	 * is required to hold the mmap_sem in read mode.  We need the
2049 	 * anon_vma lock to serialize against concurrent expand_stacks.
2050 	 */
2051 	anon_vma_lock_write(vma->anon_vma);
2052 
2053 	/* Somebody else might have raced and expanded it already */
2054 	if (address > vma->vm_end) {
2055 		unsigned long size, grow;
2056 
2057 		size = address - vma->vm_start;
2058 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2059 
2060 		error = -ENOMEM;
2061 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2062 			error = acct_stack_growth(vma, size, grow);
2063 			if (!error) {
2064 				/*
2065 				 * vma_gap_update() doesn't support concurrent
2066 				 * updates, but we only hold a shared mmap_sem
2067 				 * lock here, so we need to protect against
2068 				 * concurrent vma expansions.
2069 				 * anon_vma_lock_write() doesn't help here, as
2070 				 * we don't guarantee that all growable vmas
2071 				 * in a mm share the same root anon vma.
2072 				 * So, we reuse mm->page_table_lock to guard
2073 				 * against concurrent vma expansions.
2074 				 */
2075 				spin_lock(&mm->page_table_lock);
2076 				if (vma->vm_flags & VM_LOCKED)
2077 					mm->locked_vm += grow;
2078 				vm_stat_account(mm, vma->vm_flags, grow);
2079 				anon_vma_interval_tree_pre_update_vma(vma);
2080 				vma->vm_end = address;
2081 				anon_vma_interval_tree_post_update_vma(vma);
2082 				if (vma->vm_next)
2083 					vma_gap_update(vma->vm_next);
2084 				else
2085 					mm->highest_vm_end = address;
2086 				spin_unlock(&mm->page_table_lock);
2087 
2088 				perf_event_mmap(vma);
2089 			}
2090 		}
2091 	}
2092 	anon_vma_unlock_write(vma->anon_vma);
2093 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2094 	validate_mm(mm);
2095 	return error;
2096 }
2097 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2098 
2099 /*
2100  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2101  */
2102 int expand_downwards(struct vm_area_struct *vma,
2103 				   unsigned long address)
2104 {
2105 	struct mm_struct *mm = vma->vm_mm;
2106 	int error;
2107 
2108 	address &= PAGE_MASK;
2109 	error = security_mmap_addr(address);
2110 	if (error)
2111 		return error;
2112 
2113 	/* We must make sure the anon_vma is allocated. */
2114 	if (unlikely(anon_vma_prepare(vma)))
2115 		return -ENOMEM;
2116 
2117 	/*
2118 	 * vma->vm_start/vm_end cannot change under us because the caller
2119 	 * is required to hold the mmap_sem in read mode.  We need the
2120 	 * anon_vma lock to serialize against concurrent expand_stacks.
2121 	 */
2122 	anon_vma_lock_write(vma->anon_vma);
2123 
2124 	/* Somebody else might have raced and expanded it already */
2125 	if (address < vma->vm_start) {
2126 		unsigned long size, grow;
2127 
2128 		size = vma->vm_end - address;
2129 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2130 
2131 		error = -ENOMEM;
2132 		if (grow <= vma->vm_pgoff) {
2133 			error = acct_stack_growth(vma, size, grow);
2134 			if (!error) {
2135 				/*
2136 				 * vma_gap_update() doesn't support concurrent
2137 				 * updates, but we only hold a shared mmap_sem
2138 				 * lock here, so we need to protect against
2139 				 * concurrent vma expansions.
2140 				 * anon_vma_lock_write() doesn't help here, as
2141 				 * we don't guarantee that all growable vmas
2142 				 * in a mm share the same root anon vma.
2143 				 * So, we reuse mm->page_table_lock to guard
2144 				 * against concurrent vma expansions.
2145 				 */
2146 				spin_lock(&mm->page_table_lock);
2147 				if (vma->vm_flags & VM_LOCKED)
2148 					mm->locked_vm += grow;
2149 				vm_stat_account(mm, vma->vm_flags, grow);
2150 				anon_vma_interval_tree_pre_update_vma(vma);
2151 				vma->vm_start = address;
2152 				vma->vm_pgoff -= grow;
2153 				anon_vma_interval_tree_post_update_vma(vma);
2154 				vma_gap_update(vma);
2155 				spin_unlock(&mm->page_table_lock);
2156 
2157 				perf_event_mmap(vma);
2158 			}
2159 		}
2160 	}
2161 	anon_vma_unlock_write(vma->anon_vma);
2162 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2163 	validate_mm(mm);
2164 	return error;
2165 }
2166 
2167 /*
2168  * Note how expand_stack() refuses to expand the stack all the way to
2169  * abut the next virtual mapping, *unless* that mapping itself is also
2170  * a stack mapping. We want to leave room for a guard page, after all
2171  * (the guard page itself is not added here, that is done by the
2172  * actual page faulting logic)
2173  *
2174  * This matches the behavior of the guard page logic (see mm/memory.c:
2175  * check_stack_guard_page()), which only allows the guard page to be
2176  * removed under these circumstances.
2177  */
2178 #ifdef CONFIG_STACK_GROWSUP
2179 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2180 {
2181 	struct vm_area_struct *next;
2182 
2183 	address &= PAGE_MASK;
2184 	next = vma->vm_next;
2185 	if (next && next->vm_start == address + PAGE_SIZE) {
2186 		if (!(next->vm_flags & VM_GROWSUP))
2187 			return -ENOMEM;
2188 	}
2189 	return expand_upwards(vma, address);
2190 }
2191 
2192 struct vm_area_struct *
2193 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2194 {
2195 	struct vm_area_struct *vma, *prev;
2196 
2197 	addr &= PAGE_MASK;
2198 	vma = find_vma_prev(mm, addr, &prev);
2199 	if (vma && (vma->vm_start <= addr))
2200 		return vma;
2201 	if (!prev || expand_stack(prev, addr))
2202 		return NULL;
2203 	if (prev->vm_flags & VM_LOCKED)
2204 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2205 	return prev;
2206 }
2207 #else
2208 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2209 {
2210 	struct vm_area_struct *prev;
2211 
2212 	address &= PAGE_MASK;
2213 	prev = vma->vm_prev;
2214 	if (prev && prev->vm_end == address) {
2215 		if (!(prev->vm_flags & VM_GROWSDOWN))
2216 			return -ENOMEM;
2217 	}
2218 	return expand_downwards(vma, address);
2219 }
2220 
2221 struct vm_area_struct *
2222 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2223 {
2224 	struct vm_area_struct *vma;
2225 	unsigned long start;
2226 
2227 	addr &= PAGE_MASK;
2228 	vma = find_vma(mm, addr);
2229 	if (!vma)
2230 		return NULL;
2231 	if (vma->vm_start <= addr)
2232 		return vma;
2233 	if (!(vma->vm_flags & VM_GROWSDOWN))
2234 		return NULL;
2235 	start = vma->vm_start;
2236 	if (expand_stack(vma, addr))
2237 		return NULL;
2238 	if (vma->vm_flags & VM_LOCKED)
2239 		populate_vma_page_range(vma, addr, start, NULL);
2240 	return vma;
2241 }
2242 #endif
2243 
2244 EXPORT_SYMBOL_GPL(find_extend_vma);
2245 
2246 /*
2247  * Ok - we have the memory areas we should free on the vma list,
2248  * so release them, and do the vma updates.
2249  *
2250  * Called with the mm semaphore held.
2251  */
2252 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2253 {
2254 	unsigned long nr_accounted = 0;
2255 
2256 	/* Update high watermark before we lower total_vm */
2257 	update_hiwater_vm(mm);
2258 	do {
2259 		long nrpages = vma_pages(vma);
2260 
2261 		if (vma->vm_flags & VM_ACCOUNT)
2262 			nr_accounted += nrpages;
2263 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2264 		vma = remove_vma(vma);
2265 	} while (vma);
2266 	vm_unacct_memory(nr_accounted);
2267 	validate_mm(mm);
2268 }
2269 
2270 /*
2271  * Get rid of page table information in the indicated region.
2272  *
2273  * Called with the mm semaphore held.
2274  */
2275 static void unmap_region(struct mm_struct *mm,
2276 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2277 		unsigned long start, unsigned long end)
2278 {
2279 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2280 	struct mmu_gather tlb;
2281 
2282 	lru_add_drain();
2283 	tlb_gather_mmu(&tlb, mm, start, end);
2284 	update_hiwater_rss(mm);
2285 	unmap_vmas(&tlb, vma, start, end);
2286 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2287 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2288 	tlb_finish_mmu(&tlb, start, end);
2289 }
2290 
2291 /*
2292  * Create a list of vma's touched by the unmap, removing them from the mm's
2293  * vma list as we go..
2294  */
2295 static void
2296 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2297 	struct vm_area_struct *prev, unsigned long end)
2298 {
2299 	struct vm_area_struct **insertion_point;
2300 	struct vm_area_struct *tail_vma = NULL;
2301 
2302 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2303 	vma->vm_prev = NULL;
2304 	do {
2305 		vma_rb_erase(vma, &mm->mm_rb);
2306 		mm->map_count--;
2307 		tail_vma = vma;
2308 		vma = vma->vm_next;
2309 	} while (vma && vma->vm_start < end);
2310 	*insertion_point = vma;
2311 	if (vma) {
2312 		vma->vm_prev = prev;
2313 		vma_gap_update(vma);
2314 	} else
2315 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2316 	tail_vma->vm_next = NULL;
2317 
2318 	/* Kill the cache */
2319 	vmacache_invalidate(mm);
2320 }
2321 
2322 /*
2323  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2324  * munmap path where it doesn't make sense to fail.
2325  */
2326 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2327 	      unsigned long addr, int new_below)
2328 {
2329 	struct vm_area_struct *new;
2330 	int err;
2331 
2332 	if (is_vm_hugetlb_page(vma) && (addr &
2333 					~(huge_page_mask(hstate_vma(vma)))))
2334 		return -EINVAL;
2335 
2336 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2337 	if (!new)
2338 		return -ENOMEM;
2339 
2340 	/* most fields are the same, copy all, and then fixup */
2341 	*new = *vma;
2342 
2343 	INIT_LIST_HEAD(&new->anon_vma_chain);
2344 
2345 	if (new_below)
2346 		new->vm_end = addr;
2347 	else {
2348 		new->vm_start = addr;
2349 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2350 	}
2351 
2352 	err = vma_dup_policy(vma, new);
2353 	if (err)
2354 		goto out_free_vma;
2355 
2356 	err = anon_vma_clone(new, vma);
2357 	if (err)
2358 		goto out_free_mpol;
2359 
2360 	if (new->vm_file)
2361 		get_file(new->vm_file);
2362 
2363 	if (new->vm_ops && new->vm_ops->open)
2364 		new->vm_ops->open(new);
2365 
2366 	if (new_below)
2367 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2368 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2369 	else
2370 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2371 
2372 	/* Success. */
2373 	if (!err)
2374 		return 0;
2375 
2376 	/* Clean everything up if vma_adjust failed. */
2377 	if (new->vm_ops && new->vm_ops->close)
2378 		new->vm_ops->close(new);
2379 	if (new->vm_file)
2380 		fput(new->vm_file);
2381 	unlink_anon_vmas(new);
2382  out_free_mpol:
2383 	mpol_put(vma_policy(new));
2384  out_free_vma:
2385 	kmem_cache_free(vm_area_cachep, new);
2386 	return err;
2387 }
2388 
2389 /*
2390  * Split a vma into two pieces at address 'addr', a new vma is allocated
2391  * either for the first part or the tail.
2392  */
2393 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2394 	      unsigned long addr, int new_below)
2395 {
2396 	if (mm->map_count >= sysctl_max_map_count)
2397 		return -ENOMEM;
2398 
2399 	return __split_vma(mm, vma, addr, new_below);
2400 }
2401 
2402 /* Munmap is split into 2 main parts -- this part which finds
2403  * what needs doing, and the areas themselves, which do the
2404  * work.  This now handles partial unmappings.
2405  * Jeremy Fitzhardinge <jeremy@goop.org>
2406  */
2407 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2408 {
2409 	unsigned long end;
2410 	struct vm_area_struct *vma, *prev, *last;
2411 
2412 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2413 		return -EINVAL;
2414 
2415 	len = PAGE_ALIGN(len);
2416 	if (len == 0)
2417 		return -EINVAL;
2418 
2419 	/* Find the first overlapping VMA */
2420 	vma = find_vma(mm, start);
2421 	if (!vma)
2422 		return 0;
2423 	prev = vma->vm_prev;
2424 	/* we have  start < vma->vm_end  */
2425 
2426 	/* if it doesn't overlap, we have nothing.. */
2427 	end = start + len;
2428 	if (vma->vm_start >= end)
2429 		return 0;
2430 
2431 	/*
2432 	 * If we need to split any vma, do it now to save pain later.
2433 	 *
2434 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2435 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2436 	 * places tmp vma above, and higher split_vma places tmp vma below.
2437 	 */
2438 	if (start > vma->vm_start) {
2439 		int error;
2440 
2441 		/*
2442 		 * Make sure that map_count on return from munmap() will
2443 		 * not exceed its limit; but let map_count go just above
2444 		 * its limit temporarily, to help free resources as expected.
2445 		 */
2446 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2447 			return -ENOMEM;
2448 
2449 		error = __split_vma(mm, vma, start, 0);
2450 		if (error)
2451 			return error;
2452 		prev = vma;
2453 	}
2454 
2455 	/* Does it split the last one? */
2456 	last = find_vma(mm, end);
2457 	if (last && end > last->vm_start) {
2458 		int error = __split_vma(mm, last, end, 1);
2459 		if (error)
2460 			return error;
2461 	}
2462 	vma = prev ? prev->vm_next : mm->mmap;
2463 
2464 	/*
2465 	 * unlock any mlock()ed ranges before detaching vmas
2466 	 */
2467 	if (mm->locked_vm) {
2468 		struct vm_area_struct *tmp = vma;
2469 		while (tmp && tmp->vm_start < end) {
2470 			if (tmp->vm_flags & VM_LOCKED) {
2471 				mm->locked_vm -= vma_pages(tmp);
2472 				munlock_vma_pages_all(tmp);
2473 			}
2474 			tmp = tmp->vm_next;
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * Remove the vma's, and unmap the actual pages
2480 	 */
2481 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2482 	unmap_region(mm, vma, prev, start, end);
2483 
2484 	arch_unmap(mm, vma, start, end);
2485 
2486 	/* Fix up all other VM information */
2487 	remove_vma_list(mm, vma);
2488 
2489 	return 0;
2490 }
2491 
2492 int vm_munmap(unsigned long start, size_t len)
2493 {
2494 	int ret;
2495 	struct mm_struct *mm = current->mm;
2496 
2497 	if (down_write_killable(&mm->mmap_sem))
2498 		return -EINTR;
2499 
2500 	ret = do_munmap(mm, start, len);
2501 	up_write(&mm->mmap_sem);
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(vm_munmap);
2505 
2506 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2507 {
2508 	int ret;
2509 	struct mm_struct *mm = current->mm;
2510 
2511 	profile_munmap(addr);
2512 	if (down_write_killable(&mm->mmap_sem))
2513 		return -EINTR;
2514 	ret = do_munmap(mm, addr, len);
2515 	up_write(&mm->mmap_sem);
2516 	return ret;
2517 }
2518 
2519 
2520 /*
2521  * Emulation of deprecated remap_file_pages() syscall.
2522  */
2523 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2524 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2525 {
2526 
2527 	struct mm_struct *mm = current->mm;
2528 	struct vm_area_struct *vma;
2529 	unsigned long populate = 0;
2530 	unsigned long ret = -EINVAL;
2531 	struct file *file;
2532 
2533 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2534 		     current->comm, current->pid);
2535 
2536 	if (prot)
2537 		return ret;
2538 	start = start & PAGE_MASK;
2539 	size = size & PAGE_MASK;
2540 
2541 	if (start + size <= start)
2542 		return ret;
2543 
2544 	/* Does pgoff wrap? */
2545 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2546 		return ret;
2547 
2548 	if (down_write_killable(&mm->mmap_sem))
2549 		return -EINTR;
2550 
2551 	vma = find_vma(mm, start);
2552 
2553 	if (!vma || !(vma->vm_flags & VM_SHARED))
2554 		goto out;
2555 
2556 	if (start < vma->vm_start)
2557 		goto out;
2558 
2559 	if (start + size > vma->vm_end) {
2560 		struct vm_area_struct *next;
2561 
2562 		for (next = vma->vm_next; next; next = next->vm_next) {
2563 			/* hole between vmas ? */
2564 			if (next->vm_start != next->vm_prev->vm_end)
2565 				goto out;
2566 
2567 			if (next->vm_file != vma->vm_file)
2568 				goto out;
2569 
2570 			if (next->vm_flags != vma->vm_flags)
2571 				goto out;
2572 
2573 			if (start + size <= next->vm_end)
2574 				break;
2575 		}
2576 
2577 		if (!next)
2578 			goto out;
2579 	}
2580 
2581 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2582 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2583 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2584 
2585 	flags &= MAP_NONBLOCK;
2586 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2587 	if (vma->vm_flags & VM_LOCKED) {
2588 		struct vm_area_struct *tmp;
2589 		flags |= MAP_LOCKED;
2590 
2591 		/* drop PG_Mlocked flag for over-mapped range */
2592 		for (tmp = vma; tmp->vm_start >= start + size;
2593 				tmp = tmp->vm_next) {
2594 			munlock_vma_pages_range(tmp,
2595 					max(tmp->vm_start, start),
2596 					min(tmp->vm_end, start + size));
2597 		}
2598 	}
2599 
2600 	file = get_file(vma->vm_file);
2601 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2602 			prot, flags, pgoff, &populate);
2603 	fput(file);
2604 out:
2605 	up_write(&mm->mmap_sem);
2606 	if (populate)
2607 		mm_populate(ret, populate);
2608 	if (!IS_ERR_VALUE(ret))
2609 		ret = 0;
2610 	return ret;
2611 }
2612 
2613 static inline void verify_mm_writelocked(struct mm_struct *mm)
2614 {
2615 #ifdef CONFIG_DEBUG_VM
2616 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2617 		WARN_ON(1);
2618 		up_read(&mm->mmap_sem);
2619 	}
2620 #endif
2621 }
2622 
2623 /*
2624  *  this is really a simplified "do_mmap".  it only handles
2625  *  anonymous maps.  eventually we may be able to do some
2626  *  brk-specific accounting here.
2627  */
2628 static int do_brk(unsigned long addr, unsigned long len)
2629 {
2630 	struct mm_struct *mm = current->mm;
2631 	struct vm_area_struct *vma, *prev;
2632 	unsigned long flags;
2633 	struct rb_node **rb_link, *rb_parent;
2634 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2635 	int error;
2636 
2637 	len = PAGE_ALIGN(len);
2638 	if (!len)
2639 		return 0;
2640 
2641 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2642 
2643 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2644 	if (offset_in_page(error))
2645 		return error;
2646 
2647 	error = mlock_future_check(mm, mm->def_flags, len);
2648 	if (error)
2649 		return error;
2650 
2651 	/*
2652 	 * mm->mmap_sem is required to protect against another thread
2653 	 * changing the mappings in case we sleep.
2654 	 */
2655 	verify_mm_writelocked(mm);
2656 
2657 	/*
2658 	 * Clear old maps.  this also does some error checking for us
2659 	 */
2660 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2661 			      &rb_parent)) {
2662 		if (do_munmap(mm, addr, len))
2663 			return -ENOMEM;
2664 	}
2665 
2666 	/* Check against address space limits *after* clearing old maps... */
2667 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2668 		return -ENOMEM;
2669 
2670 	if (mm->map_count > sysctl_max_map_count)
2671 		return -ENOMEM;
2672 
2673 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2674 		return -ENOMEM;
2675 
2676 	/* Can we just expand an old private anonymous mapping? */
2677 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2678 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2679 	if (vma)
2680 		goto out;
2681 
2682 	/*
2683 	 * create a vma struct for an anonymous mapping
2684 	 */
2685 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2686 	if (!vma) {
2687 		vm_unacct_memory(len >> PAGE_SHIFT);
2688 		return -ENOMEM;
2689 	}
2690 
2691 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2692 	vma->vm_mm = mm;
2693 	vma->vm_start = addr;
2694 	vma->vm_end = addr + len;
2695 	vma->vm_pgoff = pgoff;
2696 	vma->vm_flags = flags;
2697 	vma->vm_page_prot = vm_get_page_prot(flags);
2698 	vma_link(mm, vma, prev, rb_link, rb_parent);
2699 out:
2700 	perf_event_mmap(vma);
2701 	mm->total_vm += len >> PAGE_SHIFT;
2702 	mm->data_vm += len >> PAGE_SHIFT;
2703 	if (flags & VM_LOCKED)
2704 		mm->locked_vm += (len >> PAGE_SHIFT);
2705 	vma->vm_flags |= VM_SOFTDIRTY;
2706 	return 0;
2707 }
2708 
2709 int vm_brk(unsigned long addr, unsigned long len)
2710 {
2711 	struct mm_struct *mm = current->mm;
2712 	int ret;
2713 	bool populate;
2714 
2715 	if (down_write_killable(&mm->mmap_sem))
2716 		return -EINTR;
2717 
2718 	ret = do_brk(addr, len);
2719 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2720 	up_write(&mm->mmap_sem);
2721 	if (populate && !ret)
2722 		mm_populate(addr, len);
2723 	return ret;
2724 }
2725 EXPORT_SYMBOL(vm_brk);
2726 
2727 /* Release all mmaps. */
2728 void exit_mmap(struct mm_struct *mm)
2729 {
2730 	struct mmu_gather tlb;
2731 	struct vm_area_struct *vma;
2732 	unsigned long nr_accounted = 0;
2733 
2734 	/* mm's last user has gone, and its about to be pulled down */
2735 	mmu_notifier_release(mm);
2736 
2737 	if (mm->locked_vm) {
2738 		vma = mm->mmap;
2739 		while (vma) {
2740 			if (vma->vm_flags & VM_LOCKED)
2741 				munlock_vma_pages_all(vma);
2742 			vma = vma->vm_next;
2743 		}
2744 	}
2745 
2746 	arch_exit_mmap(mm);
2747 
2748 	vma = mm->mmap;
2749 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2750 		return;
2751 
2752 	lru_add_drain();
2753 	flush_cache_mm(mm);
2754 	tlb_gather_mmu(&tlb, mm, 0, -1);
2755 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2756 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2757 	unmap_vmas(&tlb, vma, 0, -1);
2758 
2759 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2760 	tlb_finish_mmu(&tlb, 0, -1);
2761 
2762 	/*
2763 	 * Walk the list again, actually closing and freeing it,
2764 	 * with preemption enabled, without holding any MM locks.
2765 	 */
2766 	while (vma) {
2767 		if (vma->vm_flags & VM_ACCOUNT)
2768 			nr_accounted += vma_pages(vma);
2769 		vma = remove_vma(vma);
2770 	}
2771 	vm_unacct_memory(nr_accounted);
2772 }
2773 
2774 /* Insert vm structure into process list sorted by address
2775  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2776  * then i_mmap_rwsem is taken here.
2777  */
2778 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2779 {
2780 	struct vm_area_struct *prev;
2781 	struct rb_node **rb_link, *rb_parent;
2782 
2783 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2784 			   &prev, &rb_link, &rb_parent))
2785 		return -ENOMEM;
2786 	if ((vma->vm_flags & VM_ACCOUNT) &&
2787 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2788 		return -ENOMEM;
2789 
2790 	/*
2791 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2792 	 * until its first write fault, when page's anon_vma and index
2793 	 * are set.  But now set the vm_pgoff it will almost certainly
2794 	 * end up with (unless mremap moves it elsewhere before that
2795 	 * first wfault), so /proc/pid/maps tells a consistent story.
2796 	 *
2797 	 * By setting it to reflect the virtual start address of the
2798 	 * vma, merges and splits can happen in a seamless way, just
2799 	 * using the existing file pgoff checks and manipulations.
2800 	 * Similarly in do_mmap_pgoff and in do_brk.
2801 	 */
2802 	if (vma_is_anonymous(vma)) {
2803 		BUG_ON(vma->anon_vma);
2804 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2805 	}
2806 
2807 	vma_link(mm, vma, prev, rb_link, rb_parent);
2808 	return 0;
2809 }
2810 
2811 /*
2812  * Copy the vma structure to a new location in the same mm,
2813  * prior to moving page table entries, to effect an mremap move.
2814  */
2815 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2816 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2817 	bool *need_rmap_locks)
2818 {
2819 	struct vm_area_struct *vma = *vmap;
2820 	unsigned long vma_start = vma->vm_start;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	struct vm_area_struct *new_vma, *prev;
2823 	struct rb_node **rb_link, *rb_parent;
2824 	bool faulted_in_anon_vma = true;
2825 
2826 	/*
2827 	 * If anonymous vma has not yet been faulted, update new pgoff
2828 	 * to match new location, to increase its chance of merging.
2829 	 */
2830 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2831 		pgoff = addr >> PAGE_SHIFT;
2832 		faulted_in_anon_vma = false;
2833 	}
2834 
2835 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2836 		return NULL;	/* should never get here */
2837 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2838 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2839 			    vma->vm_userfaultfd_ctx);
2840 	if (new_vma) {
2841 		/*
2842 		 * Source vma may have been merged into new_vma
2843 		 */
2844 		if (unlikely(vma_start >= new_vma->vm_start &&
2845 			     vma_start < new_vma->vm_end)) {
2846 			/*
2847 			 * The only way we can get a vma_merge with
2848 			 * self during an mremap is if the vma hasn't
2849 			 * been faulted in yet and we were allowed to
2850 			 * reset the dst vma->vm_pgoff to the
2851 			 * destination address of the mremap to allow
2852 			 * the merge to happen. mremap must change the
2853 			 * vm_pgoff linearity between src and dst vmas
2854 			 * (in turn preventing a vma_merge) to be
2855 			 * safe. It is only safe to keep the vm_pgoff
2856 			 * linear if there are no pages mapped yet.
2857 			 */
2858 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2859 			*vmap = vma = new_vma;
2860 		}
2861 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2862 	} else {
2863 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2864 		if (!new_vma)
2865 			goto out;
2866 		*new_vma = *vma;
2867 		new_vma->vm_start = addr;
2868 		new_vma->vm_end = addr + len;
2869 		new_vma->vm_pgoff = pgoff;
2870 		if (vma_dup_policy(vma, new_vma))
2871 			goto out_free_vma;
2872 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2873 		if (anon_vma_clone(new_vma, vma))
2874 			goto out_free_mempol;
2875 		if (new_vma->vm_file)
2876 			get_file(new_vma->vm_file);
2877 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2878 			new_vma->vm_ops->open(new_vma);
2879 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2880 		*need_rmap_locks = false;
2881 	}
2882 	return new_vma;
2883 
2884 out_free_mempol:
2885 	mpol_put(vma_policy(new_vma));
2886 out_free_vma:
2887 	kmem_cache_free(vm_area_cachep, new_vma);
2888 out:
2889 	return NULL;
2890 }
2891 
2892 /*
2893  * Return true if the calling process may expand its vm space by the passed
2894  * number of pages
2895  */
2896 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2897 {
2898 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2899 		return false;
2900 
2901 	if (is_data_mapping(flags) &&
2902 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2903 		/* Workaround for Valgrind */
2904 		if (rlimit(RLIMIT_DATA) == 0 &&
2905 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2906 			return true;
2907 		if (!ignore_rlimit_data) {
2908 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2909 				     current->comm, current->pid,
2910 				     (mm->data_vm + npages) << PAGE_SHIFT,
2911 				     rlimit(RLIMIT_DATA));
2912 			return false;
2913 		}
2914 	}
2915 
2916 	return true;
2917 }
2918 
2919 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2920 {
2921 	mm->total_vm += npages;
2922 
2923 	if (is_exec_mapping(flags))
2924 		mm->exec_vm += npages;
2925 	else if (is_stack_mapping(flags))
2926 		mm->stack_vm += npages;
2927 	else if (is_data_mapping(flags))
2928 		mm->data_vm += npages;
2929 }
2930 
2931 static int special_mapping_fault(struct vm_area_struct *vma,
2932 				 struct vm_fault *vmf);
2933 
2934 /*
2935  * Having a close hook prevents vma merging regardless of flags.
2936  */
2937 static void special_mapping_close(struct vm_area_struct *vma)
2938 {
2939 }
2940 
2941 static const char *special_mapping_name(struct vm_area_struct *vma)
2942 {
2943 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2944 }
2945 
2946 static const struct vm_operations_struct special_mapping_vmops = {
2947 	.close = special_mapping_close,
2948 	.fault = special_mapping_fault,
2949 	.name = special_mapping_name,
2950 };
2951 
2952 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2953 	.close = special_mapping_close,
2954 	.fault = special_mapping_fault,
2955 };
2956 
2957 static int special_mapping_fault(struct vm_area_struct *vma,
2958 				struct vm_fault *vmf)
2959 {
2960 	pgoff_t pgoff;
2961 	struct page **pages;
2962 
2963 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2964 		pages = vma->vm_private_data;
2965 	} else {
2966 		struct vm_special_mapping *sm = vma->vm_private_data;
2967 
2968 		if (sm->fault)
2969 			return sm->fault(sm, vma, vmf);
2970 
2971 		pages = sm->pages;
2972 	}
2973 
2974 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2975 		pgoff--;
2976 
2977 	if (*pages) {
2978 		struct page *page = *pages;
2979 		get_page(page);
2980 		vmf->page = page;
2981 		return 0;
2982 	}
2983 
2984 	return VM_FAULT_SIGBUS;
2985 }
2986 
2987 static struct vm_area_struct *__install_special_mapping(
2988 	struct mm_struct *mm,
2989 	unsigned long addr, unsigned long len,
2990 	unsigned long vm_flags, void *priv,
2991 	const struct vm_operations_struct *ops)
2992 {
2993 	int ret;
2994 	struct vm_area_struct *vma;
2995 
2996 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2997 	if (unlikely(vma == NULL))
2998 		return ERR_PTR(-ENOMEM);
2999 
3000 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3001 	vma->vm_mm = mm;
3002 	vma->vm_start = addr;
3003 	vma->vm_end = addr + len;
3004 
3005 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3006 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3007 
3008 	vma->vm_ops = ops;
3009 	vma->vm_private_data = priv;
3010 
3011 	ret = insert_vm_struct(mm, vma);
3012 	if (ret)
3013 		goto out;
3014 
3015 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3016 
3017 	perf_event_mmap(vma);
3018 
3019 	return vma;
3020 
3021 out:
3022 	kmem_cache_free(vm_area_cachep, vma);
3023 	return ERR_PTR(ret);
3024 }
3025 
3026 /*
3027  * Called with mm->mmap_sem held for writing.
3028  * Insert a new vma covering the given region, with the given flags.
3029  * Its pages are supplied by the given array of struct page *.
3030  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3031  * The region past the last page supplied will always produce SIGBUS.
3032  * The array pointer and the pages it points to are assumed to stay alive
3033  * for as long as this mapping might exist.
3034  */
3035 struct vm_area_struct *_install_special_mapping(
3036 	struct mm_struct *mm,
3037 	unsigned long addr, unsigned long len,
3038 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3039 {
3040 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3041 					&special_mapping_vmops);
3042 }
3043 
3044 int install_special_mapping(struct mm_struct *mm,
3045 			    unsigned long addr, unsigned long len,
3046 			    unsigned long vm_flags, struct page **pages)
3047 {
3048 	struct vm_area_struct *vma = __install_special_mapping(
3049 		mm, addr, len, vm_flags, (void *)pages,
3050 		&legacy_special_mapping_vmops);
3051 
3052 	return PTR_ERR_OR_ZERO(vma);
3053 }
3054 
3055 static DEFINE_MUTEX(mm_all_locks_mutex);
3056 
3057 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3058 {
3059 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3060 		/*
3061 		 * The LSB of head.next can't change from under us
3062 		 * because we hold the mm_all_locks_mutex.
3063 		 */
3064 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3065 		/*
3066 		 * We can safely modify head.next after taking the
3067 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3068 		 * the same anon_vma we won't take it again.
3069 		 *
3070 		 * No need of atomic instructions here, head.next
3071 		 * can't change from under us thanks to the
3072 		 * anon_vma->root->rwsem.
3073 		 */
3074 		if (__test_and_set_bit(0, (unsigned long *)
3075 				       &anon_vma->root->rb_root.rb_node))
3076 			BUG();
3077 	}
3078 }
3079 
3080 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3081 {
3082 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3083 		/*
3084 		 * AS_MM_ALL_LOCKS can't change from under us because
3085 		 * we hold the mm_all_locks_mutex.
3086 		 *
3087 		 * Operations on ->flags have to be atomic because
3088 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3089 		 * mm_all_locks_mutex, there may be other cpus
3090 		 * changing other bitflags in parallel to us.
3091 		 */
3092 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3093 			BUG();
3094 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3095 	}
3096 }
3097 
3098 /*
3099  * This operation locks against the VM for all pte/vma/mm related
3100  * operations that could ever happen on a certain mm. This includes
3101  * vmtruncate, try_to_unmap, and all page faults.
3102  *
3103  * The caller must take the mmap_sem in write mode before calling
3104  * mm_take_all_locks(). The caller isn't allowed to release the
3105  * mmap_sem until mm_drop_all_locks() returns.
3106  *
3107  * mmap_sem in write mode is required in order to block all operations
3108  * that could modify pagetables and free pages without need of
3109  * altering the vma layout. It's also needed in write mode to avoid new
3110  * anon_vmas to be associated with existing vmas.
3111  *
3112  * A single task can't take more than one mm_take_all_locks() in a row
3113  * or it would deadlock.
3114  *
3115  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3116  * mapping->flags avoid to take the same lock twice, if more than one
3117  * vma in this mm is backed by the same anon_vma or address_space.
3118  *
3119  * We take locks in following order, accordingly to comment at beginning
3120  * of mm/rmap.c:
3121  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3122  *     hugetlb mapping);
3123  *   - all i_mmap_rwsem locks;
3124  *   - all anon_vma->rwseml
3125  *
3126  * We can take all locks within these types randomly because the VM code
3127  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3128  * mm_all_locks_mutex.
3129  *
3130  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3131  * that may have to take thousand of locks.
3132  *
3133  * mm_take_all_locks() can fail if it's interrupted by signals.
3134  */
3135 int mm_take_all_locks(struct mm_struct *mm)
3136 {
3137 	struct vm_area_struct *vma;
3138 	struct anon_vma_chain *avc;
3139 
3140 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3141 
3142 	mutex_lock(&mm_all_locks_mutex);
3143 
3144 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3145 		if (signal_pending(current))
3146 			goto out_unlock;
3147 		if (vma->vm_file && vma->vm_file->f_mapping &&
3148 				is_vm_hugetlb_page(vma))
3149 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3150 	}
3151 
3152 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3153 		if (signal_pending(current))
3154 			goto out_unlock;
3155 		if (vma->vm_file && vma->vm_file->f_mapping &&
3156 				!is_vm_hugetlb_page(vma))
3157 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3158 	}
3159 
3160 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3161 		if (signal_pending(current))
3162 			goto out_unlock;
3163 		if (vma->anon_vma)
3164 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3165 				vm_lock_anon_vma(mm, avc->anon_vma);
3166 	}
3167 
3168 	return 0;
3169 
3170 out_unlock:
3171 	mm_drop_all_locks(mm);
3172 	return -EINTR;
3173 }
3174 
3175 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3176 {
3177 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3178 		/*
3179 		 * The LSB of head.next can't change to 0 from under
3180 		 * us because we hold the mm_all_locks_mutex.
3181 		 *
3182 		 * We must however clear the bitflag before unlocking
3183 		 * the vma so the users using the anon_vma->rb_root will
3184 		 * never see our bitflag.
3185 		 *
3186 		 * No need of atomic instructions here, head.next
3187 		 * can't change from under us until we release the
3188 		 * anon_vma->root->rwsem.
3189 		 */
3190 		if (!__test_and_clear_bit(0, (unsigned long *)
3191 					  &anon_vma->root->rb_root.rb_node))
3192 			BUG();
3193 		anon_vma_unlock_write(anon_vma);
3194 	}
3195 }
3196 
3197 static void vm_unlock_mapping(struct address_space *mapping)
3198 {
3199 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3200 		/*
3201 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3202 		 * because we hold the mm_all_locks_mutex.
3203 		 */
3204 		i_mmap_unlock_write(mapping);
3205 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3206 					&mapping->flags))
3207 			BUG();
3208 	}
3209 }
3210 
3211 /*
3212  * The mmap_sem cannot be released by the caller until
3213  * mm_drop_all_locks() returns.
3214  */
3215 void mm_drop_all_locks(struct mm_struct *mm)
3216 {
3217 	struct vm_area_struct *vma;
3218 	struct anon_vma_chain *avc;
3219 
3220 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3221 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3222 
3223 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3224 		if (vma->anon_vma)
3225 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3226 				vm_unlock_anon_vma(avc->anon_vma);
3227 		if (vma->vm_file && vma->vm_file->f_mapping)
3228 			vm_unlock_mapping(vma->vm_file->f_mapping);
3229 	}
3230 
3231 	mutex_unlock(&mm_all_locks_mutex);
3232 }
3233 
3234 /*
3235  * initialise the VMA slab
3236  */
3237 void __init mmap_init(void)
3238 {
3239 	int ret;
3240 
3241 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3242 	VM_BUG_ON(ret);
3243 }
3244 
3245 /*
3246  * Initialise sysctl_user_reserve_kbytes.
3247  *
3248  * This is intended to prevent a user from starting a single memory hogging
3249  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3250  * mode.
3251  *
3252  * The default value is min(3% of free memory, 128MB)
3253  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3254  */
3255 static int init_user_reserve(void)
3256 {
3257 	unsigned long free_kbytes;
3258 
3259 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260 
3261 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3262 	return 0;
3263 }
3264 subsys_initcall(init_user_reserve);
3265 
3266 /*
3267  * Initialise sysctl_admin_reserve_kbytes.
3268  *
3269  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3270  * to log in and kill a memory hogging process.
3271  *
3272  * Systems with more than 256MB will reserve 8MB, enough to recover
3273  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3274  * only reserve 3% of free pages by default.
3275  */
3276 static int init_admin_reserve(void)
3277 {
3278 	unsigned long free_kbytes;
3279 
3280 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3281 
3282 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3283 	return 0;
3284 }
3285 subsys_initcall(init_admin_reserve);
3286 
3287 /*
3288  * Reinititalise user and admin reserves if memory is added or removed.
3289  *
3290  * The default user reserve max is 128MB, and the default max for the
3291  * admin reserve is 8MB. These are usually, but not always, enough to
3292  * enable recovery from a memory hogging process using login/sshd, a shell,
3293  * and tools like top. It may make sense to increase or even disable the
3294  * reserve depending on the existence of swap or variations in the recovery
3295  * tools. So, the admin may have changed them.
3296  *
3297  * If memory is added and the reserves have been eliminated or increased above
3298  * the default max, then we'll trust the admin.
3299  *
3300  * If memory is removed and there isn't enough free memory, then we
3301  * need to reset the reserves.
3302  *
3303  * Otherwise keep the reserve set by the admin.
3304  */
3305 static int reserve_mem_notifier(struct notifier_block *nb,
3306 			     unsigned long action, void *data)
3307 {
3308 	unsigned long tmp, free_kbytes;
3309 
3310 	switch (action) {
3311 	case MEM_ONLINE:
3312 		/* Default max is 128MB. Leave alone if modified by operator. */
3313 		tmp = sysctl_user_reserve_kbytes;
3314 		if (0 < tmp && tmp < (1UL << 17))
3315 			init_user_reserve();
3316 
3317 		/* Default max is 8MB.  Leave alone if modified by operator. */
3318 		tmp = sysctl_admin_reserve_kbytes;
3319 		if (0 < tmp && tmp < (1UL << 13))
3320 			init_admin_reserve();
3321 
3322 		break;
3323 	case MEM_OFFLINE:
3324 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3325 
3326 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3327 			init_user_reserve();
3328 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3329 				sysctl_user_reserve_kbytes);
3330 		}
3331 
3332 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3333 			init_admin_reserve();
3334 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3335 				sysctl_admin_reserve_kbytes);
3336 		}
3337 		break;
3338 	default:
3339 		break;
3340 	}
3341 	return NOTIFY_OK;
3342 }
3343 
3344 static struct notifier_block reserve_mem_nb = {
3345 	.notifier_call = reserve_mem_notifier,
3346 };
3347 
3348 static int __meminit init_reserve_notifier(void)
3349 {
3350 	if (register_hotmemory_notifier(&reserve_mem_nb))
3351 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3352 
3353 	return 0;
3354 }
3355 subsys_initcall(init_reserve_notifier);
3356