xref: /openbmc/linux/mm/mmap.c (revision 37be287c)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 
45 #include "internal.h"
46 
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)	(0)
49 #endif
50 
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)		(addr)
53 #endif
54 
55 static void unmap_region(struct mm_struct *mm,
56 		struct vm_area_struct *vma, struct vm_area_struct *prev,
57 		unsigned long start, unsigned long end);
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 unsigned long sysctl_overcommit_kbytes __read_mostly;
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
93 /*
94  * Make sure vm_committed_as in one cacheline and not cacheline shared with
95  * other variables. It can be updated by several CPUs frequently.
96  */
97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
98 
99 /*
100  * The global memory commitment made in the system can be a metric
101  * that can be used to drive ballooning decisions when Linux is hosted
102  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103  * balancing memory across competing virtual machines that are hosted.
104  * Several metrics drive this policy engine including the guest reported
105  * memory commitment.
106  */
107 unsigned long vm_memory_committed(void)
108 {
109 	return percpu_counter_read_positive(&vm_committed_as);
110 }
111 EXPORT_SYMBOL_GPL(vm_memory_committed);
112 
113 /*
114  * Check that a process has enough memory to allocate a new virtual
115  * mapping. 0 means there is enough memory for the allocation to
116  * succeed and -ENOMEM implies there is not.
117  *
118  * We currently support three overcommit policies, which are set via the
119  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
120  *
121  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122  * Additional code 2002 Jul 20 by Robert Love.
123  *
124  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125  *
126  * Note this is a helper function intended to be used by LSMs which
127  * wish to use this logic.
128  */
129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
130 {
131 	unsigned long free, allowed, reserve;
132 
133 	vm_acct_memory(pages);
134 
135 	/*
136 	 * Sometimes we want to use more memory than we have
137 	 */
138 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
139 		return 0;
140 
141 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
142 		free = global_page_state(NR_FREE_PAGES);
143 		free += global_page_state(NR_FILE_PAGES);
144 
145 		/*
146 		 * shmem pages shouldn't be counted as free in this
147 		 * case, they can't be purged, only swapped out, and
148 		 * that won't affect the overall amount of available
149 		 * memory in the system.
150 		 */
151 		free -= global_page_state(NR_SHMEM);
152 
153 		free += get_nr_swap_pages();
154 
155 		/*
156 		 * Any slabs which are created with the
157 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158 		 * which are reclaimable, under pressure.  The dentry
159 		 * cache and most inode caches should fall into this
160 		 */
161 		free += global_page_state(NR_SLAB_RECLAIMABLE);
162 
163 		/*
164 		 * Leave reserved pages. The pages are not for anonymous pages.
165 		 */
166 		if (free <= totalreserve_pages)
167 			goto error;
168 		else
169 			free -= totalreserve_pages;
170 
171 		/*
172 		 * Reserve some for root
173 		 */
174 		if (!cap_sys_admin)
175 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
176 
177 		if (free > pages)
178 			return 0;
179 
180 		goto error;
181 	}
182 
183 	allowed = vm_commit_limit();
184 	/*
185 	 * Reserve some for root
186 	 */
187 	if (!cap_sys_admin)
188 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 
190 	/*
191 	 * Don't let a single process grow so big a user can't recover
192 	 */
193 	if (mm) {
194 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195 		allowed -= min(mm->total_vm / 32, reserve);
196 	}
197 
198 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
199 		return 0;
200 error:
201 	vm_unacct_memory(pages);
202 
203 	return -ENOMEM;
204 }
205 
206 /*
207  * Requires inode->i_mapping->i_mmap_mutex
208  */
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210 		struct file *file, struct address_space *mapping)
211 {
212 	if (vma->vm_flags & VM_DENYWRITE)
213 		atomic_inc(&file_inode(file)->i_writecount);
214 	if (vma->vm_flags & VM_SHARED)
215 		mapping->i_mmap_writable--;
216 
217 	flush_dcache_mmap_lock(mapping);
218 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
219 		list_del_init(&vma->shared.nonlinear);
220 	else
221 		vma_interval_tree_remove(vma, &mapping->i_mmap);
222 	flush_dcache_mmap_unlock(mapping);
223 }
224 
225 /*
226  * Unlink a file-based vm structure from its interval tree, to hide
227  * vma from rmap and vmtruncate before freeing its page tables.
228  */
229 void unlink_file_vma(struct vm_area_struct *vma)
230 {
231 	struct file *file = vma->vm_file;
232 
233 	if (file) {
234 		struct address_space *mapping = file->f_mapping;
235 		mutex_lock(&mapping->i_mmap_mutex);
236 		__remove_shared_vm_struct(vma, file, mapping);
237 		mutex_unlock(&mapping->i_mmap_mutex);
238 	}
239 }
240 
241 /*
242  * Close a vm structure and free it, returning the next.
243  */
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 {
246 	struct vm_area_struct *next = vma->vm_next;
247 
248 	might_sleep();
249 	if (vma->vm_ops && vma->vm_ops->close)
250 		vma->vm_ops->close(vma);
251 	if (vma->vm_file)
252 		fput(vma->vm_file);
253 	mpol_put(vma_policy(vma));
254 	kmem_cache_free(vm_area_cachep, vma);
255 	return next;
256 }
257 
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
259 
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 {
262 	unsigned long rlim, retval;
263 	unsigned long newbrk, oldbrk;
264 	struct mm_struct *mm = current->mm;
265 	unsigned long min_brk;
266 	bool populate;
267 
268 	down_write(&mm->mmap_sem);
269 
270 #ifdef CONFIG_COMPAT_BRK
271 	/*
272 	 * CONFIG_COMPAT_BRK can still be overridden by setting
273 	 * randomize_va_space to 2, which will still cause mm->start_brk
274 	 * to be arbitrarily shifted
275 	 */
276 	if (current->brk_randomized)
277 		min_brk = mm->start_brk;
278 	else
279 		min_brk = mm->end_data;
280 #else
281 	min_brk = mm->start_brk;
282 #endif
283 	if (brk < min_brk)
284 		goto out;
285 
286 	/*
287 	 * Check against rlimit here. If this check is done later after the test
288 	 * of oldbrk with newbrk then it can escape the test and let the data
289 	 * segment grow beyond its set limit the in case where the limit is
290 	 * not page aligned -Ram Gupta
291 	 */
292 	rlim = rlimit(RLIMIT_DATA);
293 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294 			(mm->end_data - mm->start_data) > rlim)
295 		goto out;
296 
297 	newbrk = PAGE_ALIGN(brk);
298 	oldbrk = PAGE_ALIGN(mm->brk);
299 	if (oldbrk == newbrk)
300 		goto set_brk;
301 
302 	/* Always allow shrinking brk. */
303 	if (brk <= mm->brk) {
304 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305 			goto set_brk;
306 		goto out;
307 	}
308 
309 	/* Check against existing mmap mappings. */
310 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311 		goto out;
312 
313 	/* Ok, looks good - let it rip. */
314 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315 		goto out;
316 
317 set_brk:
318 	mm->brk = brk;
319 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320 	up_write(&mm->mmap_sem);
321 	if (populate)
322 		mm_populate(oldbrk, newbrk - oldbrk);
323 	return brk;
324 
325 out:
326 	retval = mm->brk;
327 	up_write(&mm->mmap_sem);
328 	return retval;
329 }
330 
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333 	unsigned long max, subtree_gap;
334 	max = vma->vm_start;
335 	if (vma->vm_prev)
336 		max -= vma->vm_prev->vm_end;
337 	if (vma->vm_rb.rb_left) {
338 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
339 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
340 		if (subtree_gap > max)
341 			max = subtree_gap;
342 	}
343 	if (vma->vm_rb.rb_right) {
344 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
345 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
346 		if (subtree_gap > max)
347 			max = subtree_gap;
348 	}
349 	return max;
350 }
351 
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
354 {
355 	int i = 0, j, bug = 0;
356 	struct rb_node *nd, *pn = NULL;
357 	unsigned long prev = 0, pend = 0;
358 
359 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360 		struct vm_area_struct *vma;
361 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362 		if (vma->vm_start < prev) {
363 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364 			bug = 1;
365 		}
366 		if (vma->vm_start < pend) {
367 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
368 			bug = 1;
369 		}
370 		if (vma->vm_start > vma->vm_end) {
371 			printk("vm_end %lx < vm_start %lx\n",
372 				vma->vm_end, vma->vm_start);
373 			bug = 1;
374 		}
375 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 			printk("free gap %lx, correct %lx\n",
377 			       vma->rb_subtree_gap,
378 			       vma_compute_subtree_gap(vma));
379 			bug = 1;
380 		}
381 		i++;
382 		pn = nd;
383 		prev = vma->vm_start;
384 		pend = vma->vm_end;
385 	}
386 	j = 0;
387 	for (nd = pn; nd; nd = rb_prev(nd))
388 		j++;
389 	if (i != j) {
390 		printk("backwards %d, forwards %d\n", j, i);
391 		bug = 1;
392 	}
393 	return bug ? -1 : i;
394 }
395 
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398 	struct rb_node *nd;
399 
400 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 		struct vm_area_struct *vma;
402 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 		BUG_ON(vma != ignore &&
404 		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
405 	}
406 }
407 
408 void validate_mm(struct mm_struct *mm)
409 {
410 	int bug = 0;
411 	int i = 0;
412 	unsigned long highest_address = 0;
413 	struct vm_area_struct *vma = mm->mmap;
414 	while (vma) {
415 		struct anon_vma_chain *avc;
416 		vma_lock_anon_vma(vma);
417 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418 			anon_vma_interval_tree_verify(avc);
419 		vma_unlock_anon_vma(vma);
420 		highest_address = vma->vm_end;
421 		vma = vma->vm_next;
422 		i++;
423 	}
424 	if (i != mm->map_count) {
425 		printk("map_count %d vm_next %d\n", mm->map_count, i);
426 		bug = 1;
427 	}
428 	if (highest_address != mm->highest_vm_end) {
429 		printk("mm->highest_vm_end %lx, found %lx\n",
430 		       mm->highest_vm_end, highest_address);
431 		bug = 1;
432 	}
433 	i = browse_rb(&mm->mm_rb);
434 	if (i != mm->map_count) {
435 		printk("map_count %d rb %d\n", mm->map_count, i);
436 		bug = 1;
437 	}
438 	BUG_ON(bug);
439 }
440 #else
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
443 #endif
444 
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447 
448 /*
449  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450  * vma->vm_prev->vm_end values changed, without modifying the vma's position
451  * in the rbtree.
452  */
453 static void vma_gap_update(struct vm_area_struct *vma)
454 {
455 	/*
456 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457 	 * function that does exacltly what we want.
458 	 */
459 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 }
461 
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463 				 struct rb_root *root)
464 {
465 	/* All rb_subtree_gap values must be consistent prior to insertion */
466 	validate_mm_rb(root, NULL);
467 
468 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470 
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 {
473 	/*
474 	 * All rb_subtree_gap values must be consistent prior to erase,
475 	 * with the possible exception of the vma being erased.
476 	 */
477 	validate_mm_rb(root, vma);
478 
479 	/*
480 	 * Note rb_erase_augmented is a fairly large inline function,
481 	 * so make sure we instantiate it only once with our desired
482 	 * augmented rbtree callbacks.
483 	 */
484 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485 }
486 
487 /*
488  * vma has some anon_vma assigned, and is already inserted on that
489  * anon_vma's interval trees.
490  *
491  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492  * vma must be removed from the anon_vma's interval trees using
493  * anon_vma_interval_tree_pre_update_vma().
494  *
495  * After the update, the vma will be reinserted using
496  * anon_vma_interval_tree_post_update_vma().
497  *
498  * The entire update must be protected by exclusive mmap_sem and by
499  * the root anon_vma's mutex.
500  */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504 	struct anon_vma_chain *avc;
505 
506 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509 
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513 	struct anon_vma_chain *avc;
514 
515 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518 
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 		unsigned long end, struct vm_area_struct **pprev,
521 		struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524 
525 	__rb_link = &mm->mm_rb.rb_node;
526 	rb_prev = __rb_parent = NULL;
527 
528 	while (*__rb_link) {
529 		struct vm_area_struct *vma_tmp;
530 
531 		__rb_parent = *__rb_link;
532 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533 
534 		if (vma_tmp->vm_end > addr) {
535 			/* Fail if an existing vma overlaps the area */
536 			if (vma_tmp->vm_start < end)
537 				return -ENOMEM;
538 			__rb_link = &__rb_parent->rb_left;
539 		} else {
540 			rb_prev = __rb_parent;
541 			__rb_link = &__rb_parent->rb_right;
542 		}
543 	}
544 
545 	*pprev = NULL;
546 	if (rb_prev)
547 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 	*rb_link = __rb_link;
549 	*rb_parent = __rb_parent;
550 	return 0;
551 }
552 
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554 		unsigned long addr, unsigned long end)
555 {
556 	unsigned long nr_pages = 0;
557 	struct vm_area_struct *vma;
558 
559 	/* Find first overlaping mapping */
560 	vma = find_vma_intersection(mm, addr, end);
561 	if (!vma)
562 		return 0;
563 
564 	nr_pages = (min(end, vma->vm_end) -
565 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
566 
567 	/* Iterate over the rest of the overlaps */
568 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569 		unsigned long overlap_len;
570 
571 		if (vma->vm_start > end)
572 			break;
573 
574 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
575 		nr_pages += overlap_len >> PAGE_SHIFT;
576 	}
577 
578 	return nr_pages;
579 }
580 
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582 		struct rb_node **rb_link, struct rb_node *rb_parent)
583 {
584 	/* Update tracking information for the gap following the new vma. */
585 	if (vma->vm_next)
586 		vma_gap_update(vma->vm_next);
587 	else
588 		mm->highest_vm_end = vma->vm_end;
589 
590 	/*
591 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
592 	 * correct insertion point for that vma. As a result, we could not
593 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
594 	 * So, we first insert the vma with a zero rb_subtree_gap value
595 	 * (to be consistent with what we did on the way down), and then
596 	 * immediately update the gap to the correct value. Finally we
597 	 * rebalance the rbtree after all augmented values have been set.
598 	 */
599 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600 	vma->rb_subtree_gap = 0;
601 	vma_gap_update(vma);
602 	vma_rb_insert(vma, &mm->mm_rb);
603 }
604 
605 static void __vma_link_file(struct vm_area_struct *vma)
606 {
607 	struct file *file;
608 
609 	file = vma->vm_file;
610 	if (file) {
611 		struct address_space *mapping = file->f_mapping;
612 
613 		if (vma->vm_flags & VM_DENYWRITE)
614 			atomic_dec(&file_inode(file)->i_writecount);
615 		if (vma->vm_flags & VM_SHARED)
616 			mapping->i_mmap_writable++;
617 
618 		flush_dcache_mmap_lock(mapping);
619 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
620 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621 		else
622 			vma_interval_tree_insert(vma, &mapping->i_mmap);
623 		flush_dcache_mmap_unlock(mapping);
624 	}
625 }
626 
627 static void
628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629 	struct vm_area_struct *prev, struct rb_node **rb_link,
630 	struct rb_node *rb_parent)
631 {
632 	__vma_link_list(mm, vma, prev, rb_parent);
633 	__vma_link_rb(mm, vma, rb_link, rb_parent);
634 }
635 
636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637 			struct vm_area_struct *prev, struct rb_node **rb_link,
638 			struct rb_node *rb_parent)
639 {
640 	struct address_space *mapping = NULL;
641 
642 	if (vma->vm_file)
643 		mapping = vma->vm_file->f_mapping;
644 
645 	if (mapping)
646 		mutex_lock(&mapping->i_mmap_mutex);
647 
648 	__vma_link(mm, vma, prev, rb_link, rb_parent);
649 	__vma_link_file(vma);
650 
651 	if (mapping)
652 		mutex_unlock(&mapping->i_mmap_mutex);
653 
654 	mm->map_count++;
655 	validate_mm(mm);
656 }
657 
658 /*
659  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660  * mm's list and rbtree.  It has already been inserted into the interval tree.
661  */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664 	struct vm_area_struct *prev;
665 	struct rb_node **rb_link, *rb_parent;
666 
667 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 			   &prev, &rb_link, &rb_parent))
669 		BUG();
670 	__vma_link(mm, vma, prev, rb_link, rb_parent);
671 	mm->map_count++;
672 }
673 
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676 		struct vm_area_struct *prev)
677 {
678 	struct vm_area_struct *next;
679 
680 	vma_rb_erase(vma, &mm->mm_rb);
681 	prev->vm_next = next = vma->vm_next;
682 	if (next)
683 		next->vm_prev = prev;
684 	if (mm->mmap_cache == vma)
685 		mm->mmap_cache = prev;
686 }
687 
688 /*
689  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690  * is already present in an i_mmap tree without adjusting the tree.
691  * The following helper function should be used when such adjustments
692  * are necessary.  The "insert" vma (if any) is to be inserted
693  * before we drop the necessary locks.
694  */
695 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
696 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697 {
698 	struct mm_struct *mm = vma->vm_mm;
699 	struct vm_area_struct *next = vma->vm_next;
700 	struct vm_area_struct *importer = NULL;
701 	struct address_space *mapping = NULL;
702 	struct rb_root *root = NULL;
703 	struct anon_vma *anon_vma = NULL;
704 	struct file *file = vma->vm_file;
705 	bool start_changed = false, end_changed = false;
706 	long adjust_next = 0;
707 	int remove_next = 0;
708 
709 	if (next && !insert) {
710 		struct vm_area_struct *exporter = NULL;
711 
712 		if (end >= next->vm_end) {
713 			/*
714 			 * vma expands, overlapping all the next, and
715 			 * perhaps the one after too (mprotect case 6).
716 			 */
717 again:			remove_next = 1 + (end > next->vm_end);
718 			end = next->vm_end;
719 			exporter = next;
720 			importer = vma;
721 		} else if (end > next->vm_start) {
722 			/*
723 			 * vma expands, overlapping part of the next:
724 			 * mprotect case 5 shifting the boundary up.
725 			 */
726 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
727 			exporter = next;
728 			importer = vma;
729 		} else if (end < vma->vm_end) {
730 			/*
731 			 * vma shrinks, and !insert tells it's not
732 			 * split_vma inserting another: so it must be
733 			 * mprotect case 4 shifting the boundary down.
734 			 */
735 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
736 			exporter = vma;
737 			importer = next;
738 		}
739 
740 		/*
741 		 * Easily overlooked: when mprotect shifts the boundary,
742 		 * make sure the expanding vma has anon_vma set if the
743 		 * shrinking vma had, to cover any anon pages imported.
744 		 */
745 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
746 			if (anon_vma_clone(importer, exporter))
747 				return -ENOMEM;
748 			importer->anon_vma = exporter->anon_vma;
749 		}
750 	}
751 
752 	if (file) {
753 		mapping = file->f_mapping;
754 		if (!(vma->vm_flags & VM_NONLINEAR)) {
755 			root = &mapping->i_mmap;
756 			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
757 
758 			if (adjust_next)
759 				uprobe_munmap(next, next->vm_start,
760 							next->vm_end);
761 		}
762 
763 		mutex_lock(&mapping->i_mmap_mutex);
764 		if (insert) {
765 			/*
766 			 * Put into interval tree now, so instantiated pages
767 			 * are visible to arm/parisc __flush_dcache_page
768 			 * throughout; but we cannot insert into address
769 			 * space until vma start or end is updated.
770 			 */
771 			__vma_link_file(insert);
772 		}
773 	}
774 
775 	vma_adjust_trans_huge(vma, start, end, adjust_next);
776 
777 	anon_vma = vma->anon_vma;
778 	if (!anon_vma && adjust_next)
779 		anon_vma = next->anon_vma;
780 	if (anon_vma) {
781 		VM_BUG_ON(adjust_next && next->anon_vma &&
782 			  anon_vma != next->anon_vma);
783 		anon_vma_lock_write(anon_vma);
784 		anon_vma_interval_tree_pre_update_vma(vma);
785 		if (adjust_next)
786 			anon_vma_interval_tree_pre_update_vma(next);
787 	}
788 
789 	if (root) {
790 		flush_dcache_mmap_lock(mapping);
791 		vma_interval_tree_remove(vma, root);
792 		if (adjust_next)
793 			vma_interval_tree_remove(next, root);
794 	}
795 
796 	if (start != vma->vm_start) {
797 		vma->vm_start = start;
798 		start_changed = true;
799 	}
800 	if (end != vma->vm_end) {
801 		vma->vm_end = end;
802 		end_changed = true;
803 	}
804 	vma->vm_pgoff = pgoff;
805 	if (adjust_next) {
806 		next->vm_start += adjust_next << PAGE_SHIFT;
807 		next->vm_pgoff += adjust_next;
808 	}
809 
810 	if (root) {
811 		if (adjust_next)
812 			vma_interval_tree_insert(next, root);
813 		vma_interval_tree_insert(vma, root);
814 		flush_dcache_mmap_unlock(mapping);
815 	}
816 
817 	if (remove_next) {
818 		/*
819 		 * vma_merge has merged next into vma, and needs
820 		 * us to remove next before dropping the locks.
821 		 */
822 		__vma_unlink(mm, next, vma);
823 		if (file)
824 			__remove_shared_vm_struct(next, file, mapping);
825 	} else if (insert) {
826 		/*
827 		 * split_vma has split insert from vma, and needs
828 		 * us to insert it before dropping the locks
829 		 * (it may either follow vma or precede it).
830 		 */
831 		__insert_vm_struct(mm, insert);
832 	} else {
833 		if (start_changed)
834 			vma_gap_update(vma);
835 		if (end_changed) {
836 			if (!next)
837 				mm->highest_vm_end = end;
838 			else if (!adjust_next)
839 				vma_gap_update(next);
840 		}
841 	}
842 
843 	if (anon_vma) {
844 		anon_vma_interval_tree_post_update_vma(vma);
845 		if (adjust_next)
846 			anon_vma_interval_tree_post_update_vma(next);
847 		anon_vma_unlock_write(anon_vma);
848 	}
849 	if (mapping)
850 		mutex_unlock(&mapping->i_mmap_mutex);
851 
852 	if (root) {
853 		uprobe_mmap(vma);
854 
855 		if (adjust_next)
856 			uprobe_mmap(next);
857 	}
858 
859 	if (remove_next) {
860 		if (file) {
861 			uprobe_munmap(next, next->vm_start, next->vm_end);
862 			fput(file);
863 		}
864 		if (next->anon_vma)
865 			anon_vma_merge(vma, next);
866 		mm->map_count--;
867 		mpol_put(vma_policy(next));
868 		kmem_cache_free(vm_area_cachep, next);
869 		/*
870 		 * In mprotect's case 6 (see comments on vma_merge),
871 		 * we must remove another next too. It would clutter
872 		 * up the code too much to do both in one go.
873 		 */
874 		next = vma->vm_next;
875 		if (remove_next == 2)
876 			goto again;
877 		else if (next)
878 			vma_gap_update(next);
879 		else
880 			mm->highest_vm_end = end;
881 	}
882 	if (insert && file)
883 		uprobe_mmap(insert);
884 
885 	validate_mm(mm);
886 
887 	return 0;
888 }
889 
890 /*
891  * If the vma has a ->close operation then the driver probably needs to release
892  * per-vma resources, so we don't attempt to merge those.
893  */
894 static inline int is_mergeable_vma(struct vm_area_struct *vma,
895 			struct file *file, unsigned long vm_flags)
896 {
897 	/*
898 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
899 	 * match the flags but dirty bit -- the caller should mark
900 	 * merged VMA as dirty. If dirty bit won't be excluded from
901 	 * comparison, we increase pressue on the memory system forcing
902 	 * the kernel to generate new VMAs when old one could be
903 	 * extended instead.
904 	 */
905 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
906 		return 0;
907 	if (vma->vm_file != file)
908 		return 0;
909 	if (vma->vm_ops && vma->vm_ops->close)
910 		return 0;
911 	return 1;
912 }
913 
914 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
915 					struct anon_vma *anon_vma2,
916 					struct vm_area_struct *vma)
917 {
918 	/*
919 	 * The list_is_singular() test is to avoid merging VMA cloned from
920 	 * parents. This can improve scalability caused by anon_vma lock.
921 	 */
922 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
923 		list_is_singular(&vma->anon_vma_chain)))
924 		return 1;
925 	return anon_vma1 == anon_vma2;
926 }
927 
928 /*
929  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
930  * in front of (at a lower virtual address and file offset than) the vma.
931  *
932  * We cannot merge two vmas if they have differently assigned (non-NULL)
933  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
934  *
935  * We don't check here for the merged mmap wrapping around the end of pagecache
936  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
937  * wrap, nor mmaps which cover the final page at index -1UL.
938  */
939 static int
940 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
941 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
942 {
943 	if (is_mergeable_vma(vma, file, vm_flags) &&
944 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
945 		if (vma->vm_pgoff == vm_pgoff)
946 			return 1;
947 	}
948 	return 0;
949 }
950 
951 /*
952  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
953  * beyond (at a higher virtual address and file offset than) the vma.
954  *
955  * We cannot merge two vmas if they have differently assigned (non-NULL)
956  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
957  */
958 static int
959 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
960 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
961 {
962 	if (is_mergeable_vma(vma, file, vm_flags) &&
963 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
964 		pgoff_t vm_pglen;
965 		vm_pglen = vma_pages(vma);
966 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
967 			return 1;
968 	}
969 	return 0;
970 }
971 
972 /*
973  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
974  * whether that can be merged with its predecessor or its successor.
975  * Or both (it neatly fills a hole).
976  *
977  * In most cases - when called for mmap, brk or mremap - [addr,end) is
978  * certain not to be mapped by the time vma_merge is called; but when
979  * called for mprotect, it is certain to be already mapped (either at
980  * an offset within prev, or at the start of next), and the flags of
981  * this area are about to be changed to vm_flags - and the no-change
982  * case has already been eliminated.
983  *
984  * The following mprotect cases have to be considered, where AAAA is
985  * the area passed down from mprotect_fixup, never extending beyond one
986  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
987  *
988  *     AAAA             AAAA                AAAA          AAAA
989  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
990  *    cannot merge    might become    might become    might become
991  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
992  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
993  *    mremap move:                                    PPPPNNNNNNNN 8
994  *        AAAA
995  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
996  *    might become    case 1 below    case 2 below    case 3 below
997  *
998  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
999  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1000  */
1001 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1002 			struct vm_area_struct *prev, unsigned long addr,
1003 			unsigned long end, unsigned long vm_flags,
1004 		     	struct anon_vma *anon_vma, struct file *file,
1005 			pgoff_t pgoff, struct mempolicy *policy)
1006 {
1007 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008 	struct vm_area_struct *area, *next;
1009 	int err;
1010 
1011 	/*
1012 	 * We later require that vma->vm_flags == vm_flags,
1013 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1014 	 */
1015 	if (vm_flags & VM_SPECIAL)
1016 		return NULL;
1017 
1018 	if (prev)
1019 		next = prev->vm_next;
1020 	else
1021 		next = mm->mmap;
1022 	area = next;
1023 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1024 		next = next->vm_next;
1025 
1026 	/*
1027 	 * Can it merge with the predecessor?
1028 	 */
1029 	if (prev && prev->vm_end == addr &&
1030   			mpol_equal(vma_policy(prev), policy) &&
1031 			can_vma_merge_after(prev, vm_flags,
1032 						anon_vma, file, pgoff)) {
1033 		/*
1034 		 * OK, it can.  Can we now merge in the successor as well?
1035 		 */
1036 		if (next && end == next->vm_start &&
1037 				mpol_equal(policy, vma_policy(next)) &&
1038 				can_vma_merge_before(next, vm_flags,
1039 					anon_vma, file, pgoff+pglen) &&
1040 				is_mergeable_anon_vma(prev->anon_vma,
1041 						      next->anon_vma, NULL)) {
1042 							/* cases 1, 6 */
1043 			err = vma_adjust(prev, prev->vm_start,
1044 				next->vm_end, prev->vm_pgoff, NULL);
1045 		} else					/* cases 2, 5, 7 */
1046 			err = vma_adjust(prev, prev->vm_start,
1047 				end, prev->vm_pgoff, NULL);
1048 		if (err)
1049 			return NULL;
1050 		khugepaged_enter_vma_merge(prev);
1051 		return prev;
1052 	}
1053 
1054 	/*
1055 	 * Can this new request be merged in front of next?
1056 	 */
1057 	if (next && end == next->vm_start &&
1058  			mpol_equal(policy, vma_policy(next)) &&
1059 			can_vma_merge_before(next, vm_flags,
1060 					anon_vma, file, pgoff+pglen)) {
1061 		if (prev && addr < prev->vm_end)	/* case 4 */
1062 			err = vma_adjust(prev, prev->vm_start,
1063 				addr, prev->vm_pgoff, NULL);
1064 		else					/* cases 3, 8 */
1065 			err = vma_adjust(area, addr, next->vm_end,
1066 				next->vm_pgoff - pglen, NULL);
1067 		if (err)
1068 			return NULL;
1069 		khugepaged_enter_vma_merge(area);
1070 		return area;
1071 	}
1072 
1073 	return NULL;
1074 }
1075 
1076 /*
1077  * Rough compatbility check to quickly see if it's even worth looking
1078  * at sharing an anon_vma.
1079  *
1080  * They need to have the same vm_file, and the flags can only differ
1081  * in things that mprotect may change.
1082  *
1083  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1084  * we can merge the two vma's. For example, we refuse to merge a vma if
1085  * there is a vm_ops->close() function, because that indicates that the
1086  * driver is doing some kind of reference counting. But that doesn't
1087  * really matter for the anon_vma sharing case.
1088  */
1089 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1090 {
1091 	return a->vm_end == b->vm_start &&
1092 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1093 		a->vm_file == b->vm_file &&
1094 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1095 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1096 }
1097 
1098 /*
1099  * Do some basic sanity checking to see if we can re-use the anon_vma
1100  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1101  * the same as 'old', the other will be the new one that is trying
1102  * to share the anon_vma.
1103  *
1104  * NOTE! This runs with mm_sem held for reading, so it is possible that
1105  * the anon_vma of 'old' is concurrently in the process of being set up
1106  * by another page fault trying to merge _that_. But that's ok: if it
1107  * is being set up, that automatically means that it will be a singleton
1108  * acceptable for merging, so we can do all of this optimistically. But
1109  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1110  *
1111  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1112  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1113  * is to return an anon_vma that is "complex" due to having gone through
1114  * a fork).
1115  *
1116  * We also make sure that the two vma's are compatible (adjacent,
1117  * and with the same memory policies). That's all stable, even with just
1118  * a read lock on the mm_sem.
1119  */
1120 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1121 {
1122 	if (anon_vma_compatible(a, b)) {
1123 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1124 
1125 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1126 			return anon_vma;
1127 	}
1128 	return NULL;
1129 }
1130 
1131 /*
1132  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1133  * neighbouring vmas for a suitable anon_vma, before it goes off
1134  * to allocate a new anon_vma.  It checks because a repetitive
1135  * sequence of mprotects and faults may otherwise lead to distinct
1136  * anon_vmas being allocated, preventing vma merge in subsequent
1137  * mprotect.
1138  */
1139 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1140 {
1141 	struct anon_vma *anon_vma;
1142 	struct vm_area_struct *near;
1143 
1144 	near = vma->vm_next;
1145 	if (!near)
1146 		goto try_prev;
1147 
1148 	anon_vma = reusable_anon_vma(near, vma, near);
1149 	if (anon_vma)
1150 		return anon_vma;
1151 try_prev:
1152 	near = vma->vm_prev;
1153 	if (!near)
1154 		goto none;
1155 
1156 	anon_vma = reusable_anon_vma(near, near, vma);
1157 	if (anon_vma)
1158 		return anon_vma;
1159 none:
1160 	/*
1161 	 * There's no absolute need to look only at touching neighbours:
1162 	 * we could search further afield for "compatible" anon_vmas.
1163 	 * But it would probably just be a waste of time searching,
1164 	 * or lead to too many vmas hanging off the same anon_vma.
1165 	 * We're trying to allow mprotect remerging later on,
1166 	 * not trying to minimize memory used for anon_vmas.
1167 	 */
1168 	return NULL;
1169 }
1170 
1171 #ifdef CONFIG_PROC_FS
1172 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1173 						struct file *file, long pages)
1174 {
1175 	const unsigned long stack_flags
1176 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1177 
1178 	mm->total_vm += pages;
1179 
1180 	if (file) {
1181 		mm->shared_vm += pages;
1182 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1183 			mm->exec_vm += pages;
1184 	} else if (flags & stack_flags)
1185 		mm->stack_vm += pages;
1186 }
1187 #endif /* CONFIG_PROC_FS */
1188 
1189 /*
1190  * If a hint addr is less than mmap_min_addr change hint to be as
1191  * low as possible but still greater than mmap_min_addr
1192  */
1193 static inline unsigned long round_hint_to_min(unsigned long hint)
1194 {
1195 	hint &= PAGE_MASK;
1196 	if (((void *)hint != NULL) &&
1197 	    (hint < mmap_min_addr))
1198 		return PAGE_ALIGN(mmap_min_addr);
1199 	return hint;
1200 }
1201 
1202 static inline int mlock_future_check(struct mm_struct *mm,
1203 				     unsigned long flags,
1204 				     unsigned long len)
1205 {
1206 	unsigned long locked, lock_limit;
1207 
1208 	/*  mlock MCL_FUTURE? */
1209 	if (flags & VM_LOCKED) {
1210 		locked = len >> PAGE_SHIFT;
1211 		locked += mm->locked_vm;
1212 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1213 		lock_limit >>= PAGE_SHIFT;
1214 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1215 			return -EAGAIN;
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * The caller must hold down_write(&current->mm->mmap_sem).
1222  */
1223 
1224 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1225 			unsigned long len, unsigned long prot,
1226 			unsigned long flags, unsigned long pgoff,
1227 			unsigned long *populate)
1228 {
1229 	struct mm_struct * mm = current->mm;
1230 	vm_flags_t vm_flags;
1231 
1232 	*populate = 0;
1233 
1234 	/*
1235 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1236 	 *
1237 	 * (the exception is when the underlying filesystem is noexec
1238 	 *  mounted, in which case we dont add PROT_EXEC.)
1239 	 */
1240 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1241 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1242 			prot |= PROT_EXEC;
1243 
1244 	if (!len)
1245 		return -EINVAL;
1246 
1247 	if (!(flags & MAP_FIXED))
1248 		addr = round_hint_to_min(addr);
1249 
1250 	/* Careful about overflows.. */
1251 	len = PAGE_ALIGN(len);
1252 	if (!len)
1253 		return -ENOMEM;
1254 
1255 	/* offset overflow? */
1256 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1257                return -EOVERFLOW;
1258 
1259 	/* Too many mappings? */
1260 	if (mm->map_count > sysctl_max_map_count)
1261 		return -ENOMEM;
1262 
1263 	/* Obtain the address to map to. we verify (or select) it and ensure
1264 	 * that it represents a valid section of the address space.
1265 	 */
1266 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1267 	if (addr & ~PAGE_MASK)
1268 		return addr;
1269 
1270 	/* Do simple checking here so the lower-level routines won't have
1271 	 * to. we assume access permissions have been handled by the open
1272 	 * of the memory object, so we don't do any here.
1273 	 */
1274 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1275 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1276 
1277 	if (flags & MAP_LOCKED)
1278 		if (!can_do_mlock())
1279 			return -EPERM;
1280 
1281 	if (mlock_future_check(mm, vm_flags, len))
1282 		return -EAGAIN;
1283 
1284 	if (file) {
1285 		struct inode *inode = file_inode(file);
1286 
1287 		switch (flags & MAP_TYPE) {
1288 		case MAP_SHARED:
1289 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1290 				return -EACCES;
1291 
1292 			/*
1293 			 * Make sure we don't allow writing to an append-only
1294 			 * file..
1295 			 */
1296 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1297 				return -EACCES;
1298 
1299 			/*
1300 			 * Make sure there are no mandatory locks on the file.
1301 			 */
1302 			if (locks_verify_locked(inode))
1303 				return -EAGAIN;
1304 
1305 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1306 			if (!(file->f_mode & FMODE_WRITE))
1307 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1308 
1309 			/* fall through */
1310 		case MAP_PRIVATE:
1311 			if (!(file->f_mode & FMODE_READ))
1312 				return -EACCES;
1313 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1314 				if (vm_flags & VM_EXEC)
1315 					return -EPERM;
1316 				vm_flags &= ~VM_MAYEXEC;
1317 			}
1318 
1319 			if (!file->f_op->mmap)
1320 				return -ENODEV;
1321 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 				return -EINVAL;
1323 			break;
1324 
1325 		default:
1326 			return -EINVAL;
1327 		}
1328 	} else {
1329 		switch (flags & MAP_TYPE) {
1330 		case MAP_SHARED:
1331 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332 				return -EINVAL;
1333 			/*
1334 			 * Ignore pgoff.
1335 			 */
1336 			pgoff = 0;
1337 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1338 			break;
1339 		case MAP_PRIVATE:
1340 			/*
1341 			 * Set pgoff according to addr for anon_vma.
1342 			 */
1343 			pgoff = addr >> PAGE_SHIFT;
1344 			break;
1345 		default:
1346 			return -EINVAL;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Set 'VM_NORESERVE' if we should not account for the
1352 	 * memory use of this mapping.
1353 	 */
1354 	if (flags & MAP_NORESERVE) {
1355 		/* We honor MAP_NORESERVE if allowed to overcommit */
1356 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357 			vm_flags |= VM_NORESERVE;
1358 
1359 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360 		if (file && is_file_hugepages(file))
1361 			vm_flags |= VM_NORESERVE;
1362 	}
1363 
1364 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1365 	if (!IS_ERR_VALUE(addr) &&
1366 	    ((vm_flags & VM_LOCKED) ||
1367 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368 		*populate = len;
1369 	return addr;
1370 }
1371 
1372 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1373 		unsigned long, prot, unsigned long, flags,
1374 		unsigned long, fd, unsigned long, pgoff)
1375 {
1376 	struct file *file = NULL;
1377 	unsigned long retval = -EBADF;
1378 
1379 	if (!(flags & MAP_ANONYMOUS)) {
1380 		audit_mmap_fd(fd, flags);
1381 		file = fget(fd);
1382 		if (!file)
1383 			goto out;
1384 		if (is_file_hugepages(file))
1385 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1386 		retval = -EINVAL;
1387 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1388 			goto out_fput;
1389 	} else if (flags & MAP_HUGETLB) {
1390 		struct user_struct *user = NULL;
1391 		struct hstate *hs;
1392 
1393 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1394 		if (!hs)
1395 			return -EINVAL;
1396 
1397 		len = ALIGN(len, huge_page_size(hs));
1398 		/*
1399 		 * VM_NORESERVE is used because the reservations will be
1400 		 * taken when vm_ops->mmap() is called
1401 		 * A dummy user value is used because we are not locking
1402 		 * memory so no accounting is necessary
1403 		 */
1404 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1405 				VM_NORESERVE,
1406 				&user, HUGETLB_ANONHUGE_INODE,
1407 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1408 		if (IS_ERR(file))
1409 			return PTR_ERR(file);
1410 	}
1411 
1412 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1413 
1414 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1415 out_fput:
1416 	if (file)
1417 		fput(file);
1418 out:
1419 	return retval;
1420 }
1421 
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1424 	unsigned long addr;
1425 	unsigned long len;
1426 	unsigned long prot;
1427 	unsigned long flags;
1428 	unsigned long fd;
1429 	unsigned long offset;
1430 };
1431 
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1433 {
1434 	struct mmap_arg_struct a;
1435 
1436 	if (copy_from_user(&a, arg, sizeof(a)))
1437 		return -EFAULT;
1438 	if (a.offset & ~PAGE_MASK)
1439 		return -EINVAL;
1440 
1441 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442 			      a.offset >> PAGE_SHIFT);
1443 }
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1445 
1446 /*
1447  * Some shared mappigns will want the pages marked read-only
1448  * to track write events. If so, we'll downgrade vm_page_prot
1449  * to the private version (using protection_map[] without the
1450  * VM_SHARED bit).
1451  */
1452 int vma_wants_writenotify(struct vm_area_struct *vma)
1453 {
1454 	vm_flags_t vm_flags = vma->vm_flags;
1455 
1456 	/* If it was private or non-writable, the write bit is already clear */
1457 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1458 		return 0;
1459 
1460 	/* The backer wishes to know when pages are first written to? */
1461 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1462 		return 1;
1463 
1464 	/* The open routine did something to the protections already? */
1465 	if (pgprot_val(vma->vm_page_prot) !=
1466 	    pgprot_val(vm_get_page_prot(vm_flags)))
1467 		return 0;
1468 
1469 	/* Specialty mapping? */
1470 	if (vm_flags & VM_PFNMAP)
1471 		return 0;
1472 
1473 	/* Can the mapping track the dirty pages? */
1474 	return vma->vm_file && vma->vm_file->f_mapping &&
1475 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1476 }
1477 
1478 /*
1479  * We account for memory if it's a private writeable mapping,
1480  * not hugepages and VM_NORESERVE wasn't set.
1481  */
1482 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1483 {
1484 	/*
1485 	 * hugetlb has its own accounting separate from the core VM
1486 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1487 	 */
1488 	if (file && is_file_hugepages(file))
1489 		return 0;
1490 
1491 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1492 }
1493 
1494 unsigned long mmap_region(struct file *file, unsigned long addr,
1495 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1496 {
1497 	struct mm_struct *mm = current->mm;
1498 	struct vm_area_struct *vma, *prev;
1499 	int error;
1500 	struct rb_node **rb_link, *rb_parent;
1501 	unsigned long charged = 0;
1502 
1503 	/* Check against address space limit. */
1504 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1505 		unsigned long nr_pages;
1506 
1507 		/*
1508 		 * MAP_FIXED may remove pages of mappings that intersects with
1509 		 * requested mapping. Account for the pages it would unmap.
1510 		 */
1511 		if (!(vm_flags & MAP_FIXED))
1512 			return -ENOMEM;
1513 
1514 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1515 
1516 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1517 			return -ENOMEM;
1518 	}
1519 
1520 	/* Clear old maps */
1521 	error = -ENOMEM;
1522 munmap_back:
1523 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1524 		if (do_munmap(mm, addr, len))
1525 			return -ENOMEM;
1526 		goto munmap_back;
1527 	}
1528 
1529 	/*
1530 	 * Private writable mapping: check memory availability
1531 	 */
1532 	if (accountable_mapping(file, vm_flags)) {
1533 		charged = len >> PAGE_SHIFT;
1534 		if (security_vm_enough_memory_mm(mm, charged))
1535 			return -ENOMEM;
1536 		vm_flags |= VM_ACCOUNT;
1537 	}
1538 
1539 	/*
1540 	 * Can we just expand an old mapping?
1541 	 */
1542 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1543 	if (vma)
1544 		goto out;
1545 
1546 	/*
1547 	 * Determine the object being mapped and call the appropriate
1548 	 * specific mapper. the address has already been validated, but
1549 	 * not unmapped, but the maps are removed from the list.
1550 	 */
1551 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1552 	if (!vma) {
1553 		error = -ENOMEM;
1554 		goto unacct_error;
1555 	}
1556 
1557 	vma->vm_mm = mm;
1558 	vma->vm_start = addr;
1559 	vma->vm_end = addr + len;
1560 	vma->vm_flags = vm_flags;
1561 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1562 	vma->vm_pgoff = pgoff;
1563 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1564 
1565 	if (file) {
1566 		if (vm_flags & VM_DENYWRITE) {
1567 			error = deny_write_access(file);
1568 			if (error)
1569 				goto free_vma;
1570 		}
1571 		vma->vm_file = get_file(file);
1572 		error = file->f_op->mmap(file, vma);
1573 		if (error)
1574 			goto unmap_and_free_vma;
1575 
1576 		/* Can addr have changed??
1577 		 *
1578 		 * Answer: Yes, several device drivers can do it in their
1579 		 *         f_op->mmap method. -DaveM
1580 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1581 		 *      be updated for vma_link()
1582 		 */
1583 		WARN_ON_ONCE(addr != vma->vm_start);
1584 
1585 		addr = vma->vm_start;
1586 		vm_flags = vma->vm_flags;
1587 	} else if (vm_flags & VM_SHARED) {
1588 		error = shmem_zero_setup(vma);
1589 		if (error)
1590 			goto free_vma;
1591 	}
1592 
1593 	if (vma_wants_writenotify(vma)) {
1594 		pgprot_t pprot = vma->vm_page_prot;
1595 
1596 		/* Can vma->vm_page_prot have changed??
1597 		 *
1598 		 * Answer: Yes, drivers may have changed it in their
1599 		 *         f_op->mmap method.
1600 		 *
1601 		 * Ensures that vmas marked as uncached stay that way.
1602 		 */
1603 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1604 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1605 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1606 	}
1607 
1608 	vma_link(mm, vma, prev, rb_link, rb_parent);
1609 	/* Once vma denies write, undo our temporary denial count */
1610 	if (vm_flags & VM_DENYWRITE)
1611 		allow_write_access(file);
1612 	file = vma->vm_file;
1613 out:
1614 	perf_event_mmap(vma);
1615 
1616 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1617 	if (vm_flags & VM_LOCKED) {
1618 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1619 					vma == get_gate_vma(current->mm)))
1620 			mm->locked_vm += (len >> PAGE_SHIFT);
1621 		else
1622 			vma->vm_flags &= ~VM_LOCKED;
1623 	}
1624 
1625 	if (file)
1626 		uprobe_mmap(vma);
1627 
1628 	/*
1629 	 * New (or expanded) vma always get soft dirty status.
1630 	 * Otherwise user-space soft-dirty page tracker won't
1631 	 * be able to distinguish situation when vma area unmapped,
1632 	 * then new mapped in-place (which must be aimed as
1633 	 * a completely new data area).
1634 	 */
1635 	vma->vm_flags |= VM_SOFTDIRTY;
1636 
1637 	return addr;
1638 
1639 unmap_and_free_vma:
1640 	if (vm_flags & VM_DENYWRITE)
1641 		allow_write_access(file);
1642 	vma->vm_file = NULL;
1643 	fput(file);
1644 
1645 	/* Undo any partial mapping done by a device driver. */
1646 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1647 	charged = 0;
1648 free_vma:
1649 	kmem_cache_free(vm_area_cachep, vma);
1650 unacct_error:
1651 	if (charged)
1652 		vm_unacct_memory(charged);
1653 	return error;
1654 }
1655 
1656 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1657 {
1658 	/*
1659 	 * We implement the search by looking for an rbtree node that
1660 	 * immediately follows a suitable gap. That is,
1661 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1662 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1663 	 * - gap_end - gap_start >= length
1664 	 */
1665 
1666 	struct mm_struct *mm = current->mm;
1667 	struct vm_area_struct *vma;
1668 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1669 
1670 	/* Adjust search length to account for worst case alignment overhead */
1671 	length = info->length + info->align_mask;
1672 	if (length < info->length)
1673 		return -ENOMEM;
1674 
1675 	/* Adjust search limits by the desired length */
1676 	if (info->high_limit < length)
1677 		return -ENOMEM;
1678 	high_limit = info->high_limit - length;
1679 
1680 	if (info->low_limit > high_limit)
1681 		return -ENOMEM;
1682 	low_limit = info->low_limit + length;
1683 
1684 	/* Check if rbtree root looks promising */
1685 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1686 		goto check_highest;
1687 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1688 	if (vma->rb_subtree_gap < length)
1689 		goto check_highest;
1690 
1691 	while (true) {
1692 		/* Visit left subtree if it looks promising */
1693 		gap_end = vma->vm_start;
1694 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1695 			struct vm_area_struct *left =
1696 				rb_entry(vma->vm_rb.rb_left,
1697 					 struct vm_area_struct, vm_rb);
1698 			if (left->rb_subtree_gap >= length) {
1699 				vma = left;
1700 				continue;
1701 			}
1702 		}
1703 
1704 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1705 check_current:
1706 		/* Check if current node has a suitable gap */
1707 		if (gap_start > high_limit)
1708 			return -ENOMEM;
1709 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1710 			goto found;
1711 
1712 		/* Visit right subtree if it looks promising */
1713 		if (vma->vm_rb.rb_right) {
1714 			struct vm_area_struct *right =
1715 				rb_entry(vma->vm_rb.rb_right,
1716 					 struct vm_area_struct, vm_rb);
1717 			if (right->rb_subtree_gap >= length) {
1718 				vma = right;
1719 				continue;
1720 			}
1721 		}
1722 
1723 		/* Go back up the rbtree to find next candidate node */
1724 		while (true) {
1725 			struct rb_node *prev = &vma->vm_rb;
1726 			if (!rb_parent(prev))
1727 				goto check_highest;
1728 			vma = rb_entry(rb_parent(prev),
1729 				       struct vm_area_struct, vm_rb);
1730 			if (prev == vma->vm_rb.rb_left) {
1731 				gap_start = vma->vm_prev->vm_end;
1732 				gap_end = vma->vm_start;
1733 				goto check_current;
1734 			}
1735 		}
1736 	}
1737 
1738 check_highest:
1739 	/* Check highest gap, which does not precede any rbtree node */
1740 	gap_start = mm->highest_vm_end;
1741 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1742 	if (gap_start > high_limit)
1743 		return -ENOMEM;
1744 
1745 found:
1746 	/* We found a suitable gap. Clip it with the original low_limit. */
1747 	if (gap_start < info->low_limit)
1748 		gap_start = info->low_limit;
1749 
1750 	/* Adjust gap address to the desired alignment */
1751 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1752 
1753 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1754 	VM_BUG_ON(gap_start + info->length > gap_end);
1755 	return gap_start;
1756 }
1757 
1758 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1759 {
1760 	struct mm_struct *mm = current->mm;
1761 	struct vm_area_struct *vma;
1762 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1763 
1764 	/* Adjust search length to account for worst case alignment overhead */
1765 	length = info->length + info->align_mask;
1766 	if (length < info->length)
1767 		return -ENOMEM;
1768 
1769 	/*
1770 	 * Adjust search limits by the desired length.
1771 	 * See implementation comment at top of unmapped_area().
1772 	 */
1773 	gap_end = info->high_limit;
1774 	if (gap_end < length)
1775 		return -ENOMEM;
1776 	high_limit = gap_end - length;
1777 
1778 	if (info->low_limit > high_limit)
1779 		return -ENOMEM;
1780 	low_limit = info->low_limit + length;
1781 
1782 	/* Check highest gap, which does not precede any rbtree node */
1783 	gap_start = mm->highest_vm_end;
1784 	if (gap_start <= high_limit)
1785 		goto found_highest;
1786 
1787 	/* Check if rbtree root looks promising */
1788 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1789 		return -ENOMEM;
1790 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1791 	if (vma->rb_subtree_gap < length)
1792 		return -ENOMEM;
1793 
1794 	while (true) {
1795 		/* Visit right subtree if it looks promising */
1796 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1797 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1798 			struct vm_area_struct *right =
1799 				rb_entry(vma->vm_rb.rb_right,
1800 					 struct vm_area_struct, vm_rb);
1801 			if (right->rb_subtree_gap >= length) {
1802 				vma = right;
1803 				continue;
1804 			}
1805 		}
1806 
1807 check_current:
1808 		/* Check if current node has a suitable gap */
1809 		gap_end = vma->vm_start;
1810 		if (gap_end < low_limit)
1811 			return -ENOMEM;
1812 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1813 			goto found;
1814 
1815 		/* Visit left subtree if it looks promising */
1816 		if (vma->vm_rb.rb_left) {
1817 			struct vm_area_struct *left =
1818 				rb_entry(vma->vm_rb.rb_left,
1819 					 struct vm_area_struct, vm_rb);
1820 			if (left->rb_subtree_gap >= length) {
1821 				vma = left;
1822 				continue;
1823 			}
1824 		}
1825 
1826 		/* Go back up the rbtree to find next candidate node */
1827 		while (true) {
1828 			struct rb_node *prev = &vma->vm_rb;
1829 			if (!rb_parent(prev))
1830 				return -ENOMEM;
1831 			vma = rb_entry(rb_parent(prev),
1832 				       struct vm_area_struct, vm_rb);
1833 			if (prev == vma->vm_rb.rb_right) {
1834 				gap_start = vma->vm_prev ?
1835 					vma->vm_prev->vm_end : 0;
1836 				goto check_current;
1837 			}
1838 		}
1839 	}
1840 
1841 found:
1842 	/* We found a suitable gap. Clip it with the original high_limit. */
1843 	if (gap_end > info->high_limit)
1844 		gap_end = info->high_limit;
1845 
1846 found_highest:
1847 	/* Compute highest gap address at the desired alignment */
1848 	gap_end -= info->length;
1849 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1850 
1851 	VM_BUG_ON(gap_end < info->low_limit);
1852 	VM_BUG_ON(gap_end < gap_start);
1853 	return gap_end;
1854 }
1855 
1856 /* Get an address range which is currently unmapped.
1857  * For shmat() with addr=0.
1858  *
1859  * Ugly calling convention alert:
1860  * Return value with the low bits set means error value,
1861  * ie
1862  *	if (ret & ~PAGE_MASK)
1863  *		error = ret;
1864  *
1865  * This function "knows" that -ENOMEM has the bits set.
1866  */
1867 #ifndef HAVE_ARCH_UNMAPPED_AREA
1868 unsigned long
1869 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1870 		unsigned long len, unsigned long pgoff, unsigned long flags)
1871 {
1872 	struct mm_struct *mm = current->mm;
1873 	struct vm_area_struct *vma;
1874 	struct vm_unmapped_area_info info;
1875 
1876 	if (len > TASK_SIZE - mmap_min_addr)
1877 		return -ENOMEM;
1878 
1879 	if (flags & MAP_FIXED)
1880 		return addr;
1881 
1882 	if (addr) {
1883 		addr = PAGE_ALIGN(addr);
1884 		vma = find_vma(mm, addr);
1885 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1886 		    (!vma || addr + len <= vma->vm_start))
1887 			return addr;
1888 	}
1889 
1890 	info.flags = 0;
1891 	info.length = len;
1892 	info.low_limit = mm->mmap_base;
1893 	info.high_limit = TASK_SIZE;
1894 	info.align_mask = 0;
1895 	return vm_unmapped_area(&info);
1896 }
1897 #endif
1898 
1899 /*
1900  * This mmap-allocator allocates new areas top-down from below the
1901  * stack's low limit (the base):
1902  */
1903 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1904 unsigned long
1905 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1906 			  const unsigned long len, const unsigned long pgoff,
1907 			  const unsigned long flags)
1908 {
1909 	struct vm_area_struct *vma;
1910 	struct mm_struct *mm = current->mm;
1911 	unsigned long addr = addr0;
1912 	struct vm_unmapped_area_info info;
1913 
1914 	/* requested length too big for entire address space */
1915 	if (len > TASK_SIZE - mmap_min_addr)
1916 		return -ENOMEM;
1917 
1918 	if (flags & MAP_FIXED)
1919 		return addr;
1920 
1921 	/* requesting a specific address */
1922 	if (addr) {
1923 		addr = PAGE_ALIGN(addr);
1924 		vma = find_vma(mm, addr);
1925 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1926 				(!vma || addr + len <= vma->vm_start))
1927 			return addr;
1928 	}
1929 
1930 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1931 	info.length = len;
1932 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1933 	info.high_limit = mm->mmap_base;
1934 	info.align_mask = 0;
1935 	addr = vm_unmapped_area(&info);
1936 
1937 	/*
1938 	 * A failed mmap() very likely causes application failure,
1939 	 * so fall back to the bottom-up function here. This scenario
1940 	 * can happen with large stack limits and large mmap()
1941 	 * allocations.
1942 	 */
1943 	if (addr & ~PAGE_MASK) {
1944 		VM_BUG_ON(addr != -ENOMEM);
1945 		info.flags = 0;
1946 		info.low_limit = TASK_UNMAPPED_BASE;
1947 		info.high_limit = TASK_SIZE;
1948 		addr = vm_unmapped_area(&info);
1949 	}
1950 
1951 	return addr;
1952 }
1953 #endif
1954 
1955 unsigned long
1956 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1957 		unsigned long pgoff, unsigned long flags)
1958 {
1959 	unsigned long (*get_area)(struct file *, unsigned long,
1960 				  unsigned long, unsigned long, unsigned long);
1961 
1962 	unsigned long error = arch_mmap_check(addr, len, flags);
1963 	if (error)
1964 		return error;
1965 
1966 	/* Careful about overflows.. */
1967 	if (len > TASK_SIZE)
1968 		return -ENOMEM;
1969 
1970 	get_area = current->mm->get_unmapped_area;
1971 	if (file && file->f_op->get_unmapped_area)
1972 		get_area = file->f_op->get_unmapped_area;
1973 	addr = get_area(file, addr, len, pgoff, flags);
1974 	if (IS_ERR_VALUE(addr))
1975 		return addr;
1976 
1977 	if (addr > TASK_SIZE - len)
1978 		return -ENOMEM;
1979 	if (addr & ~PAGE_MASK)
1980 		return -EINVAL;
1981 
1982 	addr = arch_rebalance_pgtables(addr, len);
1983 	error = security_mmap_addr(addr);
1984 	return error ? error : addr;
1985 }
1986 
1987 EXPORT_SYMBOL(get_unmapped_area);
1988 
1989 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1990 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1991 {
1992 	struct vm_area_struct *vma = NULL;
1993 
1994 	/* Check the cache first. */
1995 	/* (Cache hit rate is typically around 35%.) */
1996 	vma = ACCESS_ONCE(mm->mmap_cache);
1997 	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1998 		struct rb_node *rb_node;
1999 
2000 		rb_node = mm->mm_rb.rb_node;
2001 		vma = NULL;
2002 
2003 		while (rb_node) {
2004 			struct vm_area_struct *vma_tmp;
2005 
2006 			vma_tmp = rb_entry(rb_node,
2007 					   struct vm_area_struct, vm_rb);
2008 
2009 			if (vma_tmp->vm_end > addr) {
2010 				vma = vma_tmp;
2011 				if (vma_tmp->vm_start <= addr)
2012 					break;
2013 				rb_node = rb_node->rb_left;
2014 			} else
2015 				rb_node = rb_node->rb_right;
2016 		}
2017 		if (vma)
2018 			mm->mmap_cache = vma;
2019 	}
2020 	return vma;
2021 }
2022 
2023 EXPORT_SYMBOL(find_vma);
2024 
2025 /*
2026  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2027  */
2028 struct vm_area_struct *
2029 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2030 			struct vm_area_struct **pprev)
2031 {
2032 	struct vm_area_struct *vma;
2033 
2034 	vma = find_vma(mm, addr);
2035 	if (vma) {
2036 		*pprev = vma->vm_prev;
2037 	} else {
2038 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2039 		*pprev = NULL;
2040 		while (rb_node) {
2041 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2042 			rb_node = rb_node->rb_right;
2043 		}
2044 	}
2045 	return vma;
2046 }
2047 
2048 /*
2049  * Verify that the stack growth is acceptable and
2050  * update accounting. This is shared with both the
2051  * grow-up and grow-down cases.
2052  */
2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2054 {
2055 	struct mm_struct *mm = vma->vm_mm;
2056 	struct rlimit *rlim = current->signal->rlim;
2057 	unsigned long new_start;
2058 
2059 	/* address space limit tests */
2060 	if (!may_expand_vm(mm, grow))
2061 		return -ENOMEM;
2062 
2063 	/* Stack limit test */
2064 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2065 		return -ENOMEM;
2066 
2067 	/* mlock limit tests */
2068 	if (vma->vm_flags & VM_LOCKED) {
2069 		unsigned long locked;
2070 		unsigned long limit;
2071 		locked = mm->locked_vm + grow;
2072 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2073 		limit >>= PAGE_SHIFT;
2074 		if (locked > limit && !capable(CAP_IPC_LOCK))
2075 			return -ENOMEM;
2076 	}
2077 
2078 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2079 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2080 			vma->vm_end - size;
2081 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2082 		return -EFAULT;
2083 
2084 	/*
2085 	 * Overcommit..  This must be the final test, as it will
2086 	 * update security statistics.
2087 	 */
2088 	if (security_vm_enough_memory_mm(mm, grow))
2089 		return -ENOMEM;
2090 
2091 	/* Ok, everything looks good - let it rip */
2092 	if (vma->vm_flags & VM_LOCKED)
2093 		mm->locked_vm += grow;
2094 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2095 	return 0;
2096 }
2097 
2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2099 /*
2100  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2101  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2102  */
2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2104 {
2105 	int error;
2106 
2107 	if (!(vma->vm_flags & VM_GROWSUP))
2108 		return -EFAULT;
2109 
2110 	/*
2111 	 * We must make sure the anon_vma is allocated
2112 	 * so that the anon_vma locking is not a noop.
2113 	 */
2114 	if (unlikely(anon_vma_prepare(vma)))
2115 		return -ENOMEM;
2116 	vma_lock_anon_vma(vma);
2117 
2118 	/*
2119 	 * vma->vm_start/vm_end cannot change under us because the caller
2120 	 * is required to hold the mmap_sem in read mode.  We need the
2121 	 * anon_vma lock to serialize against concurrent expand_stacks.
2122 	 * Also guard against wrapping around to address 0.
2123 	 */
2124 	if (address < PAGE_ALIGN(address+4))
2125 		address = PAGE_ALIGN(address+4);
2126 	else {
2127 		vma_unlock_anon_vma(vma);
2128 		return -ENOMEM;
2129 	}
2130 	error = 0;
2131 
2132 	/* Somebody else might have raced and expanded it already */
2133 	if (address > vma->vm_end) {
2134 		unsigned long size, grow;
2135 
2136 		size = address - vma->vm_start;
2137 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2138 
2139 		error = -ENOMEM;
2140 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2141 			error = acct_stack_growth(vma, size, grow);
2142 			if (!error) {
2143 				/*
2144 				 * vma_gap_update() doesn't support concurrent
2145 				 * updates, but we only hold a shared mmap_sem
2146 				 * lock here, so we need to protect against
2147 				 * concurrent vma expansions.
2148 				 * vma_lock_anon_vma() doesn't help here, as
2149 				 * we don't guarantee that all growable vmas
2150 				 * in a mm share the same root anon vma.
2151 				 * So, we reuse mm->page_table_lock to guard
2152 				 * against concurrent vma expansions.
2153 				 */
2154 				spin_lock(&vma->vm_mm->page_table_lock);
2155 				anon_vma_interval_tree_pre_update_vma(vma);
2156 				vma->vm_end = address;
2157 				anon_vma_interval_tree_post_update_vma(vma);
2158 				if (vma->vm_next)
2159 					vma_gap_update(vma->vm_next);
2160 				else
2161 					vma->vm_mm->highest_vm_end = address;
2162 				spin_unlock(&vma->vm_mm->page_table_lock);
2163 
2164 				perf_event_mmap(vma);
2165 			}
2166 		}
2167 	}
2168 	vma_unlock_anon_vma(vma);
2169 	khugepaged_enter_vma_merge(vma);
2170 	validate_mm(vma->vm_mm);
2171 	return error;
2172 }
2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2174 
2175 /*
2176  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2177  */
2178 int expand_downwards(struct vm_area_struct *vma,
2179 				   unsigned long address)
2180 {
2181 	int error;
2182 
2183 	/*
2184 	 * We must make sure the anon_vma is allocated
2185 	 * so that the anon_vma locking is not a noop.
2186 	 */
2187 	if (unlikely(anon_vma_prepare(vma)))
2188 		return -ENOMEM;
2189 
2190 	address &= PAGE_MASK;
2191 	error = security_mmap_addr(address);
2192 	if (error)
2193 		return error;
2194 
2195 	vma_lock_anon_vma(vma);
2196 
2197 	/*
2198 	 * vma->vm_start/vm_end cannot change under us because the caller
2199 	 * is required to hold the mmap_sem in read mode.  We need the
2200 	 * anon_vma lock to serialize against concurrent expand_stacks.
2201 	 */
2202 
2203 	/* Somebody else might have raced and expanded it already */
2204 	if (address < vma->vm_start) {
2205 		unsigned long size, grow;
2206 
2207 		size = vma->vm_end - address;
2208 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2209 
2210 		error = -ENOMEM;
2211 		if (grow <= vma->vm_pgoff) {
2212 			error = acct_stack_growth(vma, size, grow);
2213 			if (!error) {
2214 				/*
2215 				 * vma_gap_update() doesn't support concurrent
2216 				 * updates, but we only hold a shared mmap_sem
2217 				 * lock here, so we need to protect against
2218 				 * concurrent vma expansions.
2219 				 * vma_lock_anon_vma() doesn't help here, as
2220 				 * we don't guarantee that all growable vmas
2221 				 * in a mm share the same root anon vma.
2222 				 * So, we reuse mm->page_table_lock to guard
2223 				 * against concurrent vma expansions.
2224 				 */
2225 				spin_lock(&vma->vm_mm->page_table_lock);
2226 				anon_vma_interval_tree_pre_update_vma(vma);
2227 				vma->vm_start = address;
2228 				vma->vm_pgoff -= grow;
2229 				anon_vma_interval_tree_post_update_vma(vma);
2230 				vma_gap_update(vma);
2231 				spin_unlock(&vma->vm_mm->page_table_lock);
2232 
2233 				perf_event_mmap(vma);
2234 			}
2235 		}
2236 	}
2237 	vma_unlock_anon_vma(vma);
2238 	khugepaged_enter_vma_merge(vma);
2239 	validate_mm(vma->vm_mm);
2240 	return error;
2241 }
2242 
2243 /*
2244  * Note how expand_stack() refuses to expand the stack all the way to
2245  * abut the next virtual mapping, *unless* that mapping itself is also
2246  * a stack mapping. We want to leave room for a guard page, after all
2247  * (the guard page itself is not added here, that is done by the
2248  * actual page faulting logic)
2249  *
2250  * This matches the behavior of the guard page logic (see mm/memory.c:
2251  * check_stack_guard_page()), which only allows the guard page to be
2252  * removed under these circumstances.
2253  */
2254 #ifdef CONFIG_STACK_GROWSUP
2255 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2256 {
2257 	struct vm_area_struct *next;
2258 
2259 	address &= PAGE_MASK;
2260 	next = vma->vm_next;
2261 	if (next && next->vm_start == address + PAGE_SIZE) {
2262 		if (!(next->vm_flags & VM_GROWSUP))
2263 			return -ENOMEM;
2264 	}
2265 	return expand_upwards(vma, address);
2266 }
2267 
2268 struct vm_area_struct *
2269 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2270 {
2271 	struct vm_area_struct *vma, *prev;
2272 
2273 	addr &= PAGE_MASK;
2274 	vma = find_vma_prev(mm, addr, &prev);
2275 	if (vma && (vma->vm_start <= addr))
2276 		return vma;
2277 	if (!prev || expand_stack(prev, addr))
2278 		return NULL;
2279 	if (prev->vm_flags & VM_LOCKED)
2280 		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2281 	return prev;
2282 }
2283 #else
2284 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2285 {
2286 	struct vm_area_struct *prev;
2287 
2288 	address &= PAGE_MASK;
2289 	prev = vma->vm_prev;
2290 	if (prev && prev->vm_end == address) {
2291 		if (!(prev->vm_flags & VM_GROWSDOWN))
2292 			return -ENOMEM;
2293 	}
2294 	return expand_downwards(vma, address);
2295 }
2296 
2297 struct vm_area_struct *
2298 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2299 {
2300 	struct vm_area_struct * vma;
2301 	unsigned long start;
2302 
2303 	addr &= PAGE_MASK;
2304 	vma = find_vma(mm,addr);
2305 	if (!vma)
2306 		return NULL;
2307 	if (vma->vm_start <= addr)
2308 		return vma;
2309 	if (!(vma->vm_flags & VM_GROWSDOWN))
2310 		return NULL;
2311 	start = vma->vm_start;
2312 	if (expand_stack(vma, addr))
2313 		return NULL;
2314 	if (vma->vm_flags & VM_LOCKED)
2315 		__mlock_vma_pages_range(vma, addr, start, NULL);
2316 	return vma;
2317 }
2318 #endif
2319 
2320 /*
2321  * Ok - we have the memory areas we should free on the vma list,
2322  * so release them, and do the vma updates.
2323  *
2324  * Called with the mm semaphore held.
2325  */
2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2327 {
2328 	unsigned long nr_accounted = 0;
2329 
2330 	/* Update high watermark before we lower total_vm */
2331 	update_hiwater_vm(mm);
2332 	do {
2333 		long nrpages = vma_pages(vma);
2334 
2335 		if (vma->vm_flags & VM_ACCOUNT)
2336 			nr_accounted += nrpages;
2337 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2338 		vma = remove_vma(vma);
2339 	} while (vma);
2340 	vm_unacct_memory(nr_accounted);
2341 	validate_mm(mm);
2342 }
2343 
2344 /*
2345  * Get rid of page table information in the indicated region.
2346  *
2347  * Called with the mm semaphore held.
2348  */
2349 static void unmap_region(struct mm_struct *mm,
2350 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2351 		unsigned long start, unsigned long end)
2352 {
2353 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2354 	struct mmu_gather tlb;
2355 
2356 	lru_add_drain();
2357 	tlb_gather_mmu(&tlb, mm, start, end);
2358 	update_hiwater_rss(mm);
2359 	unmap_vmas(&tlb, vma, start, end);
2360 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2361 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2362 	tlb_finish_mmu(&tlb, start, end);
2363 }
2364 
2365 /*
2366  * Create a list of vma's touched by the unmap, removing them from the mm's
2367  * vma list as we go..
2368  */
2369 static void
2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2371 	struct vm_area_struct *prev, unsigned long end)
2372 {
2373 	struct vm_area_struct **insertion_point;
2374 	struct vm_area_struct *tail_vma = NULL;
2375 
2376 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2377 	vma->vm_prev = NULL;
2378 	do {
2379 		vma_rb_erase(vma, &mm->mm_rb);
2380 		mm->map_count--;
2381 		tail_vma = vma;
2382 		vma = vma->vm_next;
2383 	} while (vma && vma->vm_start < end);
2384 	*insertion_point = vma;
2385 	if (vma) {
2386 		vma->vm_prev = prev;
2387 		vma_gap_update(vma);
2388 	} else
2389 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2390 	tail_vma->vm_next = NULL;
2391 	mm->mmap_cache = NULL;		/* Kill the cache. */
2392 }
2393 
2394 /*
2395  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2396  * munmap path where it doesn't make sense to fail.
2397  */
2398 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2399 	      unsigned long addr, int new_below)
2400 {
2401 	struct vm_area_struct *new;
2402 	int err = -ENOMEM;
2403 
2404 	if (is_vm_hugetlb_page(vma) && (addr &
2405 					~(huge_page_mask(hstate_vma(vma)))))
2406 		return -EINVAL;
2407 
2408 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2409 	if (!new)
2410 		goto out_err;
2411 
2412 	/* most fields are the same, copy all, and then fixup */
2413 	*new = *vma;
2414 
2415 	INIT_LIST_HEAD(&new->anon_vma_chain);
2416 
2417 	if (new_below)
2418 		new->vm_end = addr;
2419 	else {
2420 		new->vm_start = addr;
2421 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2422 	}
2423 
2424 	err = vma_dup_policy(vma, new);
2425 	if (err)
2426 		goto out_free_vma;
2427 
2428 	if (anon_vma_clone(new, vma))
2429 		goto out_free_mpol;
2430 
2431 	if (new->vm_file)
2432 		get_file(new->vm_file);
2433 
2434 	if (new->vm_ops && new->vm_ops->open)
2435 		new->vm_ops->open(new);
2436 
2437 	if (new_below)
2438 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2439 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2440 	else
2441 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2442 
2443 	/* Success. */
2444 	if (!err)
2445 		return 0;
2446 
2447 	/* Clean everything up if vma_adjust failed. */
2448 	if (new->vm_ops && new->vm_ops->close)
2449 		new->vm_ops->close(new);
2450 	if (new->vm_file)
2451 		fput(new->vm_file);
2452 	unlink_anon_vmas(new);
2453  out_free_mpol:
2454 	mpol_put(vma_policy(new));
2455  out_free_vma:
2456 	kmem_cache_free(vm_area_cachep, new);
2457  out_err:
2458 	return err;
2459 }
2460 
2461 /*
2462  * Split a vma into two pieces at address 'addr', a new vma is allocated
2463  * either for the first part or the tail.
2464  */
2465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2466 	      unsigned long addr, int new_below)
2467 {
2468 	if (mm->map_count >= sysctl_max_map_count)
2469 		return -ENOMEM;
2470 
2471 	return __split_vma(mm, vma, addr, new_below);
2472 }
2473 
2474 /* Munmap is split into 2 main parts -- this part which finds
2475  * what needs doing, and the areas themselves, which do the
2476  * work.  This now handles partial unmappings.
2477  * Jeremy Fitzhardinge <jeremy@goop.org>
2478  */
2479 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2480 {
2481 	unsigned long end;
2482 	struct vm_area_struct *vma, *prev, *last;
2483 
2484 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2485 		return -EINVAL;
2486 
2487 	if ((len = PAGE_ALIGN(len)) == 0)
2488 		return -EINVAL;
2489 
2490 	/* Find the first overlapping VMA */
2491 	vma = find_vma(mm, start);
2492 	if (!vma)
2493 		return 0;
2494 	prev = vma->vm_prev;
2495 	/* we have  start < vma->vm_end  */
2496 
2497 	/* if it doesn't overlap, we have nothing.. */
2498 	end = start + len;
2499 	if (vma->vm_start >= end)
2500 		return 0;
2501 
2502 	/*
2503 	 * If we need to split any vma, do it now to save pain later.
2504 	 *
2505 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2506 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2507 	 * places tmp vma above, and higher split_vma places tmp vma below.
2508 	 */
2509 	if (start > vma->vm_start) {
2510 		int error;
2511 
2512 		/*
2513 		 * Make sure that map_count on return from munmap() will
2514 		 * not exceed its limit; but let map_count go just above
2515 		 * its limit temporarily, to help free resources as expected.
2516 		 */
2517 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2518 			return -ENOMEM;
2519 
2520 		error = __split_vma(mm, vma, start, 0);
2521 		if (error)
2522 			return error;
2523 		prev = vma;
2524 	}
2525 
2526 	/* Does it split the last one? */
2527 	last = find_vma(mm, end);
2528 	if (last && end > last->vm_start) {
2529 		int error = __split_vma(mm, last, end, 1);
2530 		if (error)
2531 			return error;
2532 	}
2533 	vma = prev? prev->vm_next: mm->mmap;
2534 
2535 	/*
2536 	 * unlock any mlock()ed ranges before detaching vmas
2537 	 */
2538 	if (mm->locked_vm) {
2539 		struct vm_area_struct *tmp = vma;
2540 		while (tmp && tmp->vm_start < end) {
2541 			if (tmp->vm_flags & VM_LOCKED) {
2542 				mm->locked_vm -= vma_pages(tmp);
2543 				munlock_vma_pages_all(tmp);
2544 			}
2545 			tmp = tmp->vm_next;
2546 		}
2547 	}
2548 
2549 	/*
2550 	 * Remove the vma's, and unmap the actual pages
2551 	 */
2552 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2553 	unmap_region(mm, vma, prev, start, end);
2554 
2555 	/* Fix up all other VM information */
2556 	remove_vma_list(mm, vma);
2557 
2558 	return 0;
2559 }
2560 
2561 int vm_munmap(unsigned long start, size_t len)
2562 {
2563 	int ret;
2564 	struct mm_struct *mm = current->mm;
2565 
2566 	down_write(&mm->mmap_sem);
2567 	ret = do_munmap(mm, start, len);
2568 	up_write(&mm->mmap_sem);
2569 	return ret;
2570 }
2571 EXPORT_SYMBOL(vm_munmap);
2572 
2573 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2574 {
2575 	profile_munmap(addr);
2576 	return vm_munmap(addr, len);
2577 }
2578 
2579 static inline void verify_mm_writelocked(struct mm_struct *mm)
2580 {
2581 #ifdef CONFIG_DEBUG_VM
2582 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2583 		WARN_ON(1);
2584 		up_read(&mm->mmap_sem);
2585 	}
2586 #endif
2587 }
2588 
2589 /*
2590  *  this is really a simplified "do_mmap".  it only handles
2591  *  anonymous maps.  eventually we may be able to do some
2592  *  brk-specific accounting here.
2593  */
2594 static unsigned long do_brk(unsigned long addr, unsigned long len)
2595 {
2596 	struct mm_struct * mm = current->mm;
2597 	struct vm_area_struct * vma, * prev;
2598 	unsigned long flags;
2599 	struct rb_node ** rb_link, * rb_parent;
2600 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2601 	int error;
2602 
2603 	len = PAGE_ALIGN(len);
2604 	if (!len)
2605 		return addr;
2606 
2607 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2608 
2609 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2610 	if (error & ~PAGE_MASK)
2611 		return error;
2612 
2613 	error = mlock_future_check(mm, mm->def_flags, len);
2614 	if (error)
2615 		return error;
2616 
2617 	/*
2618 	 * mm->mmap_sem is required to protect against another thread
2619 	 * changing the mappings in case we sleep.
2620 	 */
2621 	verify_mm_writelocked(mm);
2622 
2623 	/*
2624 	 * Clear old maps.  this also does some error checking for us
2625 	 */
2626  munmap_back:
2627 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2628 		if (do_munmap(mm, addr, len))
2629 			return -ENOMEM;
2630 		goto munmap_back;
2631 	}
2632 
2633 	/* Check against address space limits *after* clearing old maps... */
2634 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2635 		return -ENOMEM;
2636 
2637 	if (mm->map_count > sysctl_max_map_count)
2638 		return -ENOMEM;
2639 
2640 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2641 		return -ENOMEM;
2642 
2643 	/* Can we just expand an old private anonymous mapping? */
2644 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2645 					NULL, NULL, pgoff, NULL);
2646 	if (vma)
2647 		goto out;
2648 
2649 	/*
2650 	 * create a vma struct for an anonymous mapping
2651 	 */
2652 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2653 	if (!vma) {
2654 		vm_unacct_memory(len >> PAGE_SHIFT);
2655 		return -ENOMEM;
2656 	}
2657 
2658 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2659 	vma->vm_mm = mm;
2660 	vma->vm_start = addr;
2661 	vma->vm_end = addr + len;
2662 	vma->vm_pgoff = pgoff;
2663 	vma->vm_flags = flags;
2664 	vma->vm_page_prot = vm_get_page_prot(flags);
2665 	vma_link(mm, vma, prev, rb_link, rb_parent);
2666 out:
2667 	perf_event_mmap(vma);
2668 	mm->total_vm += len >> PAGE_SHIFT;
2669 	if (flags & VM_LOCKED)
2670 		mm->locked_vm += (len >> PAGE_SHIFT);
2671 	vma->vm_flags |= VM_SOFTDIRTY;
2672 	return addr;
2673 }
2674 
2675 unsigned long vm_brk(unsigned long addr, unsigned long len)
2676 {
2677 	struct mm_struct *mm = current->mm;
2678 	unsigned long ret;
2679 	bool populate;
2680 
2681 	down_write(&mm->mmap_sem);
2682 	ret = do_brk(addr, len);
2683 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2684 	up_write(&mm->mmap_sem);
2685 	if (populate)
2686 		mm_populate(addr, len);
2687 	return ret;
2688 }
2689 EXPORT_SYMBOL(vm_brk);
2690 
2691 /* Release all mmaps. */
2692 void exit_mmap(struct mm_struct *mm)
2693 {
2694 	struct mmu_gather tlb;
2695 	struct vm_area_struct *vma;
2696 	unsigned long nr_accounted = 0;
2697 
2698 	/* mm's last user has gone, and its about to be pulled down */
2699 	mmu_notifier_release(mm);
2700 
2701 	if (mm->locked_vm) {
2702 		vma = mm->mmap;
2703 		while (vma) {
2704 			if (vma->vm_flags & VM_LOCKED)
2705 				munlock_vma_pages_all(vma);
2706 			vma = vma->vm_next;
2707 		}
2708 	}
2709 
2710 	arch_exit_mmap(mm);
2711 
2712 	vma = mm->mmap;
2713 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2714 		return;
2715 
2716 	lru_add_drain();
2717 	flush_cache_mm(mm);
2718 	tlb_gather_mmu(&tlb, mm, 0, -1);
2719 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2720 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2721 	unmap_vmas(&tlb, vma, 0, -1);
2722 
2723 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2724 	tlb_finish_mmu(&tlb, 0, -1);
2725 
2726 	/*
2727 	 * Walk the list again, actually closing and freeing it,
2728 	 * with preemption enabled, without holding any MM locks.
2729 	 */
2730 	while (vma) {
2731 		if (vma->vm_flags & VM_ACCOUNT)
2732 			nr_accounted += vma_pages(vma);
2733 		vma = remove_vma(vma);
2734 	}
2735 	vm_unacct_memory(nr_accounted);
2736 
2737 	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2738 			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2739 }
2740 
2741 /* Insert vm structure into process list sorted by address
2742  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2743  * then i_mmap_mutex is taken here.
2744  */
2745 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2746 {
2747 	struct vm_area_struct *prev;
2748 	struct rb_node **rb_link, *rb_parent;
2749 
2750 	/*
2751 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2752 	 * until its first write fault, when page's anon_vma and index
2753 	 * are set.  But now set the vm_pgoff it will almost certainly
2754 	 * end up with (unless mremap moves it elsewhere before that
2755 	 * first wfault), so /proc/pid/maps tells a consistent story.
2756 	 *
2757 	 * By setting it to reflect the virtual start address of the
2758 	 * vma, merges and splits can happen in a seamless way, just
2759 	 * using the existing file pgoff checks and manipulations.
2760 	 * Similarly in do_mmap_pgoff and in do_brk.
2761 	 */
2762 	if (!vma->vm_file) {
2763 		BUG_ON(vma->anon_vma);
2764 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2765 	}
2766 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2767 			   &prev, &rb_link, &rb_parent))
2768 		return -ENOMEM;
2769 	if ((vma->vm_flags & VM_ACCOUNT) &&
2770 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2771 		return -ENOMEM;
2772 
2773 	vma_link(mm, vma, prev, rb_link, rb_parent);
2774 	return 0;
2775 }
2776 
2777 /*
2778  * Copy the vma structure to a new location in the same mm,
2779  * prior to moving page table entries, to effect an mremap move.
2780  */
2781 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2782 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2783 	bool *need_rmap_locks)
2784 {
2785 	struct vm_area_struct *vma = *vmap;
2786 	unsigned long vma_start = vma->vm_start;
2787 	struct mm_struct *mm = vma->vm_mm;
2788 	struct vm_area_struct *new_vma, *prev;
2789 	struct rb_node **rb_link, *rb_parent;
2790 	bool faulted_in_anon_vma = true;
2791 
2792 	/*
2793 	 * If anonymous vma has not yet been faulted, update new pgoff
2794 	 * to match new location, to increase its chance of merging.
2795 	 */
2796 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2797 		pgoff = addr >> PAGE_SHIFT;
2798 		faulted_in_anon_vma = false;
2799 	}
2800 
2801 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2802 		return NULL;	/* should never get here */
2803 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2804 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2805 	if (new_vma) {
2806 		/*
2807 		 * Source vma may have been merged into new_vma
2808 		 */
2809 		if (unlikely(vma_start >= new_vma->vm_start &&
2810 			     vma_start < new_vma->vm_end)) {
2811 			/*
2812 			 * The only way we can get a vma_merge with
2813 			 * self during an mremap is if the vma hasn't
2814 			 * been faulted in yet and we were allowed to
2815 			 * reset the dst vma->vm_pgoff to the
2816 			 * destination address of the mremap to allow
2817 			 * the merge to happen. mremap must change the
2818 			 * vm_pgoff linearity between src and dst vmas
2819 			 * (in turn preventing a vma_merge) to be
2820 			 * safe. It is only safe to keep the vm_pgoff
2821 			 * linear if there are no pages mapped yet.
2822 			 */
2823 			VM_BUG_ON(faulted_in_anon_vma);
2824 			*vmap = vma = new_vma;
2825 		}
2826 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2827 	} else {
2828 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2829 		if (new_vma) {
2830 			*new_vma = *vma;
2831 			new_vma->vm_start = addr;
2832 			new_vma->vm_end = addr + len;
2833 			new_vma->vm_pgoff = pgoff;
2834 			if (vma_dup_policy(vma, new_vma))
2835 				goto out_free_vma;
2836 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2837 			if (anon_vma_clone(new_vma, vma))
2838 				goto out_free_mempol;
2839 			if (new_vma->vm_file)
2840 				get_file(new_vma->vm_file);
2841 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2842 				new_vma->vm_ops->open(new_vma);
2843 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2844 			*need_rmap_locks = false;
2845 		}
2846 	}
2847 	return new_vma;
2848 
2849  out_free_mempol:
2850 	mpol_put(vma_policy(new_vma));
2851  out_free_vma:
2852 	kmem_cache_free(vm_area_cachep, new_vma);
2853 	return NULL;
2854 }
2855 
2856 /*
2857  * Return true if the calling process may expand its vm space by the passed
2858  * number of pages
2859  */
2860 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2861 {
2862 	unsigned long cur = mm->total_vm;	/* pages */
2863 	unsigned long lim;
2864 
2865 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2866 
2867 	if (cur + npages > lim)
2868 		return 0;
2869 	return 1;
2870 }
2871 
2872 
2873 static int special_mapping_fault(struct vm_area_struct *vma,
2874 				struct vm_fault *vmf)
2875 {
2876 	pgoff_t pgoff;
2877 	struct page **pages;
2878 
2879 	/*
2880 	 * special mappings have no vm_file, and in that case, the mm
2881 	 * uses vm_pgoff internally. So we have to subtract it from here.
2882 	 * We are allowed to do this because we are the mm; do not copy
2883 	 * this code into drivers!
2884 	 */
2885 	pgoff = vmf->pgoff - vma->vm_pgoff;
2886 
2887 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2888 		pgoff--;
2889 
2890 	if (*pages) {
2891 		struct page *page = *pages;
2892 		get_page(page);
2893 		vmf->page = page;
2894 		return 0;
2895 	}
2896 
2897 	return VM_FAULT_SIGBUS;
2898 }
2899 
2900 /*
2901  * Having a close hook prevents vma merging regardless of flags.
2902  */
2903 static void special_mapping_close(struct vm_area_struct *vma)
2904 {
2905 }
2906 
2907 static const struct vm_operations_struct special_mapping_vmops = {
2908 	.close = special_mapping_close,
2909 	.fault = special_mapping_fault,
2910 };
2911 
2912 /*
2913  * Called with mm->mmap_sem held for writing.
2914  * Insert a new vma covering the given region, with the given flags.
2915  * Its pages are supplied by the given array of struct page *.
2916  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2917  * The region past the last page supplied will always produce SIGBUS.
2918  * The array pointer and the pages it points to are assumed to stay alive
2919  * for as long as this mapping might exist.
2920  */
2921 int install_special_mapping(struct mm_struct *mm,
2922 			    unsigned long addr, unsigned long len,
2923 			    unsigned long vm_flags, struct page **pages)
2924 {
2925 	int ret;
2926 	struct vm_area_struct *vma;
2927 
2928 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2929 	if (unlikely(vma == NULL))
2930 		return -ENOMEM;
2931 
2932 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2933 	vma->vm_mm = mm;
2934 	vma->vm_start = addr;
2935 	vma->vm_end = addr + len;
2936 
2937 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2938 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2939 
2940 	vma->vm_ops = &special_mapping_vmops;
2941 	vma->vm_private_data = pages;
2942 
2943 	ret = insert_vm_struct(mm, vma);
2944 	if (ret)
2945 		goto out;
2946 
2947 	mm->total_vm += len >> PAGE_SHIFT;
2948 
2949 	perf_event_mmap(vma);
2950 
2951 	return 0;
2952 
2953 out:
2954 	kmem_cache_free(vm_area_cachep, vma);
2955 	return ret;
2956 }
2957 
2958 static DEFINE_MUTEX(mm_all_locks_mutex);
2959 
2960 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2961 {
2962 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2963 		/*
2964 		 * The LSB of head.next can't change from under us
2965 		 * because we hold the mm_all_locks_mutex.
2966 		 */
2967 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2968 		/*
2969 		 * We can safely modify head.next after taking the
2970 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2971 		 * the same anon_vma we won't take it again.
2972 		 *
2973 		 * No need of atomic instructions here, head.next
2974 		 * can't change from under us thanks to the
2975 		 * anon_vma->root->rwsem.
2976 		 */
2977 		if (__test_and_set_bit(0, (unsigned long *)
2978 				       &anon_vma->root->rb_root.rb_node))
2979 			BUG();
2980 	}
2981 }
2982 
2983 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2984 {
2985 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2986 		/*
2987 		 * AS_MM_ALL_LOCKS can't change from under us because
2988 		 * we hold the mm_all_locks_mutex.
2989 		 *
2990 		 * Operations on ->flags have to be atomic because
2991 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2992 		 * mm_all_locks_mutex, there may be other cpus
2993 		 * changing other bitflags in parallel to us.
2994 		 */
2995 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2996 			BUG();
2997 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2998 	}
2999 }
3000 
3001 /*
3002  * This operation locks against the VM for all pte/vma/mm related
3003  * operations that could ever happen on a certain mm. This includes
3004  * vmtruncate, try_to_unmap, and all page faults.
3005  *
3006  * The caller must take the mmap_sem in write mode before calling
3007  * mm_take_all_locks(). The caller isn't allowed to release the
3008  * mmap_sem until mm_drop_all_locks() returns.
3009  *
3010  * mmap_sem in write mode is required in order to block all operations
3011  * that could modify pagetables and free pages without need of
3012  * altering the vma layout (for example populate_range() with
3013  * nonlinear vmas). It's also needed in write mode to avoid new
3014  * anon_vmas to be associated with existing vmas.
3015  *
3016  * A single task can't take more than one mm_take_all_locks() in a row
3017  * or it would deadlock.
3018  *
3019  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3020  * mapping->flags avoid to take the same lock twice, if more than one
3021  * vma in this mm is backed by the same anon_vma or address_space.
3022  *
3023  * We can take all the locks in random order because the VM code
3024  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3025  * takes more than one of them in a row. Secondly we're protected
3026  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3027  *
3028  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3029  * that may have to take thousand of locks.
3030  *
3031  * mm_take_all_locks() can fail if it's interrupted by signals.
3032  */
3033 int mm_take_all_locks(struct mm_struct *mm)
3034 {
3035 	struct vm_area_struct *vma;
3036 	struct anon_vma_chain *avc;
3037 
3038 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3039 
3040 	mutex_lock(&mm_all_locks_mutex);
3041 
3042 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3043 		if (signal_pending(current))
3044 			goto out_unlock;
3045 		if (vma->vm_file && vma->vm_file->f_mapping)
3046 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3047 	}
3048 
3049 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3050 		if (signal_pending(current))
3051 			goto out_unlock;
3052 		if (vma->anon_vma)
3053 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3054 				vm_lock_anon_vma(mm, avc->anon_vma);
3055 	}
3056 
3057 	return 0;
3058 
3059 out_unlock:
3060 	mm_drop_all_locks(mm);
3061 	return -EINTR;
3062 }
3063 
3064 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3065 {
3066 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3067 		/*
3068 		 * The LSB of head.next can't change to 0 from under
3069 		 * us because we hold the mm_all_locks_mutex.
3070 		 *
3071 		 * We must however clear the bitflag before unlocking
3072 		 * the vma so the users using the anon_vma->rb_root will
3073 		 * never see our bitflag.
3074 		 *
3075 		 * No need of atomic instructions here, head.next
3076 		 * can't change from under us until we release the
3077 		 * anon_vma->root->rwsem.
3078 		 */
3079 		if (!__test_and_clear_bit(0, (unsigned long *)
3080 					  &anon_vma->root->rb_root.rb_node))
3081 			BUG();
3082 		anon_vma_unlock_write(anon_vma);
3083 	}
3084 }
3085 
3086 static void vm_unlock_mapping(struct address_space *mapping)
3087 {
3088 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3089 		/*
3090 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3091 		 * because we hold the mm_all_locks_mutex.
3092 		 */
3093 		mutex_unlock(&mapping->i_mmap_mutex);
3094 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3095 					&mapping->flags))
3096 			BUG();
3097 	}
3098 }
3099 
3100 /*
3101  * The mmap_sem cannot be released by the caller until
3102  * mm_drop_all_locks() returns.
3103  */
3104 void mm_drop_all_locks(struct mm_struct *mm)
3105 {
3106 	struct vm_area_struct *vma;
3107 	struct anon_vma_chain *avc;
3108 
3109 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3110 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3111 
3112 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3113 		if (vma->anon_vma)
3114 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3115 				vm_unlock_anon_vma(avc->anon_vma);
3116 		if (vma->vm_file && vma->vm_file->f_mapping)
3117 			vm_unlock_mapping(vma->vm_file->f_mapping);
3118 	}
3119 
3120 	mutex_unlock(&mm_all_locks_mutex);
3121 }
3122 
3123 /*
3124  * initialise the VMA slab
3125  */
3126 void __init mmap_init(void)
3127 {
3128 	int ret;
3129 
3130 	ret = percpu_counter_init(&vm_committed_as, 0);
3131 	VM_BUG_ON(ret);
3132 }
3133 
3134 /*
3135  * Initialise sysctl_user_reserve_kbytes.
3136  *
3137  * This is intended to prevent a user from starting a single memory hogging
3138  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3139  * mode.
3140  *
3141  * The default value is min(3% of free memory, 128MB)
3142  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3143  */
3144 static int init_user_reserve(void)
3145 {
3146 	unsigned long free_kbytes;
3147 
3148 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3149 
3150 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3151 	return 0;
3152 }
3153 subsys_initcall(init_user_reserve);
3154 
3155 /*
3156  * Initialise sysctl_admin_reserve_kbytes.
3157  *
3158  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3159  * to log in and kill a memory hogging process.
3160  *
3161  * Systems with more than 256MB will reserve 8MB, enough to recover
3162  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3163  * only reserve 3% of free pages by default.
3164  */
3165 static int init_admin_reserve(void)
3166 {
3167 	unsigned long free_kbytes;
3168 
3169 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3170 
3171 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3172 	return 0;
3173 }
3174 subsys_initcall(init_admin_reserve);
3175 
3176 /*
3177  * Reinititalise user and admin reserves if memory is added or removed.
3178  *
3179  * The default user reserve max is 128MB, and the default max for the
3180  * admin reserve is 8MB. These are usually, but not always, enough to
3181  * enable recovery from a memory hogging process using login/sshd, a shell,
3182  * and tools like top. It may make sense to increase or even disable the
3183  * reserve depending on the existence of swap or variations in the recovery
3184  * tools. So, the admin may have changed them.
3185  *
3186  * If memory is added and the reserves have been eliminated or increased above
3187  * the default max, then we'll trust the admin.
3188  *
3189  * If memory is removed and there isn't enough free memory, then we
3190  * need to reset the reserves.
3191  *
3192  * Otherwise keep the reserve set by the admin.
3193  */
3194 static int reserve_mem_notifier(struct notifier_block *nb,
3195 			     unsigned long action, void *data)
3196 {
3197 	unsigned long tmp, free_kbytes;
3198 
3199 	switch (action) {
3200 	case MEM_ONLINE:
3201 		/* Default max is 128MB. Leave alone if modified by operator. */
3202 		tmp = sysctl_user_reserve_kbytes;
3203 		if (0 < tmp && tmp < (1UL << 17))
3204 			init_user_reserve();
3205 
3206 		/* Default max is 8MB.  Leave alone if modified by operator. */
3207 		tmp = sysctl_admin_reserve_kbytes;
3208 		if (0 < tmp && tmp < (1UL << 13))
3209 			init_admin_reserve();
3210 
3211 		break;
3212 	case MEM_OFFLINE:
3213 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3214 
3215 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3216 			init_user_reserve();
3217 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3218 				sysctl_user_reserve_kbytes);
3219 		}
3220 
3221 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3222 			init_admin_reserve();
3223 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3224 				sysctl_admin_reserve_kbytes);
3225 		}
3226 		break;
3227 	default:
3228 		break;
3229 	}
3230 	return NOTIFY_OK;
3231 }
3232 
3233 static struct notifier_block reserve_mem_nb = {
3234 	.notifier_call = reserve_mem_notifier,
3235 };
3236 
3237 static int __meminit init_reserve_notifier(void)
3238 {
3239 	if (register_hotmemory_notifier(&reserve_mem_nb))
3240 		printk("Failed registering memory add/remove notifier for admin reserve");
3241 
3242 	return 0;
3243 }
3244 subsys_initcall(init_reserve_notifier);
3245