1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/shm.h> 14 #include <linux/mman.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/syscalls.h> 18 #include <linux/capability.h> 19 #include <linux/init.h> 20 #include <linux/file.h> 21 #include <linux/fs.h> 22 #include <linux/personality.h> 23 #include <linux/security.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_event.h> 32 #include <linux/audit.h> 33 #include <linux/khugepaged.h> 34 #include <linux/uprobes.h> 35 #include <linux/rbtree_augmented.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/notifier.h> 38 #include <linux/memory.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/tlb.h> 43 #include <asm/mmu_context.h> 44 45 #include "internal.h" 46 47 #ifndef arch_mmap_check 48 #define arch_mmap_check(addr, len, flags) (0) 49 #endif 50 51 #ifndef arch_rebalance_pgtables 52 #define arch_rebalance_pgtables(addr, len) (addr) 53 #endif 54 55 static void unmap_region(struct mm_struct *mm, 56 struct vm_area_struct *vma, struct vm_area_struct *prev, 57 unsigned long start, unsigned long end); 58 59 /* description of effects of mapping type and prot in current implementation. 60 * this is due to the limited x86 page protection hardware. The expected 61 * behavior is in parens: 62 * 63 * map_type prot 64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 66 * w: (no) no w: (no) no w: (yes) yes w: (no) no 67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 68 * 69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 70 * w: (no) no w: (no) no w: (copy) copy w: (no) no 71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 72 * 73 */ 74 pgprot_t protection_map[16] = { 75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 77 }; 78 79 pgprot_t vm_get_page_prot(unsigned long vm_flags) 80 { 81 return __pgprot(pgprot_val(protection_map[vm_flags & 82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 83 pgprot_val(arch_vm_get_page_prot(vm_flags))); 84 } 85 EXPORT_SYMBOL(vm_get_page_prot); 86 87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 89 unsigned long sysctl_overcommit_kbytes __read_mostly; 90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 93 /* 94 * Make sure vm_committed_as in one cacheline and not cacheline shared with 95 * other variables. It can be updated by several CPUs frequently. 96 */ 97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 98 99 /* 100 * The global memory commitment made in the system can be a metric 101 * that can be used to drive ballooning decisions when Linux is hosted 102 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 103 * balancing memory across competing virtual machines that are hosted. 104 * Several metrics drive this policy engine including the guest reported 105 * memory commitment. 106 */ 107 unsigned long vm_memory_committed(void) 108 { 109 return percpu_counter_read_positive(&vm_committed_as); 110 } 111 EXPORT_SYMBOL_GPL(vm_memory_committed); 112 113 /* 114 * Check that a process has enough memory to allocate a new virtual 115 * mapping. 0 means there is enough memory for the allocation to 116 * succeed and -ENOMEM implies there is not. 117 * 118 * We currently support three overcommit policies, which are set via the 119 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 120 * 121 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 122 * Additional code 2002 Jul 20 by Robert Love. 123 * 124 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 125 * 126 * Note this is a helper function intended to be used by LSMs which 127 * wish to use this logic. 128 */ 129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 130 { 131 unsigned long free, allowed, reserve; 132 133 vm_acct_memory(pages); 134 135 /* 136 * Sometimes we want to use more memory than we have 137 */ 138 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 139 return 0; 140 141 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 142 free = global_page_state(NR_FREE_PAGES); 143 free += global_page_state(NR_FILE_PAGES); 144 145 /* 146 * shmem pages shouldn't be counted as free in this 147 * case, they can't be purged, only swapped out, and 148 * that won't affect the overall amount of available 149 * memory in the system. 150 */ 151 free -= global_page_state(NR_SHMEM); 152 153 free += get_nr_swap_pages(); 154 155 /* 156 * Any slabs which are created with the 157 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 158 * which are reclaimable, under pressure. The dentry 159 * cache and most inode caches should fall into this 160 */ 161 free += global_page_state(NR_SLAB_RECLAIMABLE); 162 163 /* 164 * Leave reserved pages. The pages are not for anonymous pages. 165 */ 166 if (free <= totalreserve_pages) 167 goto error; 168 else 169 free -= totalreserve_pages; 170 171 /* 172 * Reserve some for root 173 */ 174 if (!cap_sys_admin) 175 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 176 177 if (free > pages) 178 return 0; 179 180 goto error; 181 } 182 183 allowed = vm_commit_limit(); 184 /* 185 * Reserve some for root 186 */ 187 if (!cap_sys_admin) 188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 189 190 /* 191 * Don't let a single process grow so big a user can't recover 192 */ 193 if (mm) { 194 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 195 allowed -= min(mm->total_vm / 32, reserve); 196 } 197 198 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 199 return 0; 200 error: 201 vm_unacct_memory(pages); 202 203 return -ENOMEM; 204 } 205 206 /* 207 * Requires inode->i_mapping->i_mmap_mutex 208 */ 209 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 210 struct file *file, struct address_space *mapping) 211 { 212 if (vma->vm_flags & VM_DENYWRITE) 213 atomic_inc(&file_inode(file)->i_writecount); 214 if (vma->vm_flags & VM_SHARED) 215 mapping->i_mmap_writable--; 216 217 flush_dcache_mmap_lock(mapping); 218 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 219 list_del_init(&vma->shared.nonlinear); 220 else 221 vma_interval_tree_remove(vma, &mapping->i_mmap); 222 flush_dcache_mmap_unlock(mapping); 223 } 224 225 /* 226 * Unlink a file-based vm structure from its interval tree, to hide 227 * vma from rmap and vmtruncate before freeing its page tables. 228 */ 229 void unlink_file_vma(struct vm_area_struct *vma) 230 { 231 struct file *file = vma->vm_file; 232 233 if (file) { 234 struct address_space *mapping = file->f_mapping; 235 mutex_lock(&mapping->i_mmap_mutex); 236 __remove_shared_vm_struct(vma, file, mapping); 237 mutex_unlock(&mapping->i_mmap_mutex); 238 } 239 } 240 241 /* 242 * Close a vm structure and free it, returning the next. 243 */ 244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 245 { 246 struct vm_area_struct *next = vma->vm_next; 247 248 might_sleep(); 249 if (vma->vm_ops && vma->vm_ops->close) 250 vma->vm_ops->close(vma); 251 if (vma->vm_file) 252 fput(vma->vm_file); 253 mpol_put(vma_policy(vma)); 254 kmem_cache_free(vm_area_cachep, vma); 255 return next; 256 } 257 258 static unsigned long do_brk(unsigned long addr, unsigned long len); 259 260 SYSCALL_DEFINE1(brk, unsigned long, brk) 261 { 262 unsigned long rlim, retval; 263 unsigned long newbrk, oldbrk; 264 struct mm_struct *mm = current->mm; 265 unsigned long min_brk; 266 bool populate; 267 268 down_write(&mm->mmap_sem); 269 270 #ifdef CONFIG_COMPAT_BRK 271 /* 272 * CONFIG_COMPAT_BRK can still be overridden by setting 273 * randomize_va_space to 2, which will still cause mm->start_brk 274 * to be arbitrarily shifted 275 */ 276 if (current->brk_randomized) 277 min_brk = mm->start_brk; 278 else 279 min_brk = mm->end_data; 280 #else 281 min_brk = mm->start_brk; 282 #endif 283 if (brk < min_brk) 284 goto out; 285 286 /* 287 * Check against rlimit here. If this check is done later after the test 288 * of oldbrk with newbrk then it can escape the test and let the data 289 * segment grow beyond its set limit the in case where the limit is 290 * not page aligned -Ram Gupta 291 */ 292 rlim = rlimit(RLIMIT_DATA); 293 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 294 (mm->end_data - mm->start_data) > rlim) 295 goto out; 296 297 newbrk = PAGE_ALIGN(brk); 298 oldbrk = PAGE_ALIGN(mm->brk); 299 if (oldbrk == newbrk) 300 goto set_brk; 301 302 /* Always allow shrinking brk. */ 303 if (brk <= mm->brk) { 304 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 305 goto set_brk; 306 goto out; 307 } 308 309 /* Check against existing mmap mappings. */ 310 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 311 goto out; 312 313 /* Ok, looks good - let it rip. */ 314 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 315 goto out; 316 317 set_brk: 318 mm->brk = brk; 319 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 320 up_write(&mm->mmap_sem); 321 if (populate) 322 mm_populate(oldbrk, newbrk - oldbrk); 323 return brk; 324 325 out: 326 retval = mm->brk; 327 up_write(&mm->mmap_sem); 328 return retval; 329 } 330 331 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 332 { 333 unsigned long max, subtree_gap; 334 max = vma->vm_start; 335 if (vma->vm_prev) 336 max -= vma->vm_prev->vm_end; 337 if (vma->vm_rb.rb_left) { 338 subtree_gap = rb_entry(vma->vm_rb.rb_left, 339 struct vm_area_struct, vm_rb)->rb_subtree_gap; 340 if (subtree_gap > max) 341 max = subtree_gap; 342 } 343 if (vma->vm_rb.rb_right) { 344 subtree_gap = rb_entry(vma->vm_rb.rb_right, 345 struct vm_area_struct, vm_rb)->rb_subtree_gap; 346 if (subtree_gap > max) 347 max = subtree_gap; 348 } 349 return max; 350 } 351 352 #ifdef CONFIG_DEBUG_VM_RB 353 static int browse_rb(struct rb_root *root) 354 { 355 int i = 0, j, bug = 0; 356 struct rb_node *nd, *pn = NULL; 357 unsigned long prev = 0, pend = 0; 358 359 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 360 struct vm_area_struct *vma; 361 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 362 if (vma->vm_start < prev) { 363 printk("vm_start %lx prev %lx\n", vma->vm_start, prev); 364 bug = 1; 365 } 366 if (vma->vm_start < pend) { 367 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 368 bug = 1; 369 } 370 if (vma->vm_start > vma->vm_end) { 371 printk("vm_end %lx < vm_start %lx\n", 372 vma->vm_end, vma->vm_start); 373 bug = 1; 374 } 375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 376 printk("free gap %lx, correct %lx\n", 377 vma->rb_subtree_gap, 378 vma_compute_subtree_gap(vma)); 379 bug = 1; 380 } 381 i++; 382 pn = nd; 383 prev = vma->vm_start; 384 pend = vma->vm_end; 385 } 386 j = 0; 387 for (nd = pn; nd; nd = rb_prev(nd)) 388 j++; 389 if (i != j) { 390 printk("backwards %d, forwards %d\n", j, i); 391 bug = 1; 392 } 393 return bug ? -1 : i; 394 } 395 396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 397 { 398 struct rb_node *nd; 399 400 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 401 struct vm_area_struct *vma; 402 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 403 BUG_ON(vma != ignore && 404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); 405 } 406 } 407 408 void validate_mm(struct mm_struct *mm) 409 { 410 int bug = 0; 411 int i = 0; 412 unsigned long highest_address = 0; 413 struct vm_area_struct *vma = mm->mmap; 414 while (vma) { 415 struct anon_vma_chain *avc; 416 vma_lock_anon_vma(vma); 417 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 418 anon_vma_interval_tree_verify(avc); 419 vma_unlock_anon_vma(vma); 420 highest_address = vma->vm_end; 421 vma = vma->vm_next; 422 i++; 423 } 424 if (i != mm->map_count) { 425 printk("map_count %d vm_next %d\n", mm->map_count, i); 426 bug = 1; 427 } 428 if (highest_address != mm->highest_vm_end) { 429 printk("mm->highest_vm_end %lx, found %lx\n", 430 mm->highest_vm_end, highest_address); 431 bug = 1; 432 } 433 i = browse_rb(&mm->mm_rb); 434 if (i != mm->map_count) { 435 printk("map_count %d rb %d\n", mm->map_count, i); 436 bug = 1; 437 } 438 BUG_ON(bug); 439 } 440 #else 441 #define validate_mm_rb(root, ignore) do { } while (0) 442 #define validate_mm(mm) do { } while (0) 443 #endif 444 445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 446 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 447 448 /* 449 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 450 * vma->vm_prev->vm_end values changed, without modifying the vma's position 451 * in the rbtree. 452 */ 453 static void vma_gap_update(struct vm_area_struct *vma) 454 { 455 /* 456 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 457 * function that does exacltly what we want. 458 */ 459 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 460 } 461 462 static inline void vma_rb_insert(struct vm_area_struct *vma, 463 struct rb_root *root) 464 { 465 /* All rb_subtree_gap values must be consistent prior to insertion */ 466 validate_mm_rb(root, NULL); 467 468 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 469 } 470 471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 472 { 473 /* 474 * All rb_subtree_gap values must be consistent prior to erase, 475 * with the possible exception of the vma being erased. 476 */ 477 validate_mm_rb(root, vma); 478 479 /* 480 * Note rb_erase_augmented is a fairly large inline function, 481 * so make sure we instantiate it only once with our desired 482 * augmented rbtree callbacks. 483 */ 484 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 485 } 486 487 /* 488 * vma has some anon_vma assigned, and is already inserted on that 489 * anon_vma's interval trees. 490 * 491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 492 * vma must be removed from the anon_vma's interval trees using 493 * anon_vma_interval_tree_pre_update_vma(). 494 * 495 * After the update, the vma will be reinserted using 496 * anon_vma_interval_tree_post_update_vma(). 497 * 498 * The entire update must be protected by exclusive mmap_sem and by 499 * the root anon_vma's mutex. 500 */ 501 static inline void 502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 503 { 504 struct anon_vma_chain *avc; 505 506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 508 } 509 510 static inline void 511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 512 { 513 struct anon_vma_chain *avc; 514 515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 517 } 518 519 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 520 unsigned long end, struct vm_area_struct **pprev, 521 struct rb_node ***rb_link, struct rb_node **rb_parent) 522 { 523 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 524 525 __rb_link = &mm->mm_rb.rb_node; 526 rb_prev = __rb_parent = NULL; 527 528 while (*__rb_link) { 529 struct vm_area_struct *vma_tmp; 530 531 __rb_parent = *__rb_link; 532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 533 534 if (vma_tmp->vm_end > addr) { 535 /* Fail if an existing vma overlaps the area */ 536 if (vma_tmp->vm_start < end) 537 return -ENOMEM; 538 __rb_link = &__rb_parent->rb_left; 539 } else { 540 rb_prev = __rb_parent; 541 __rb_link = &__rb_parent->rb_right; 542 } 543 } 544 545 *pprev = NULL; 546 if (rb_prev) 547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 548 *rb_link = __rb_link; 549 *rb_parent = __rb_parent; 550 return 0; 551 } 552 553 static unsigned long count_vma_pages_range(struct mm_struct *mm, 554 unsigned long addr, unsigned long end) 555 { 556 unsigned long nr_pages = 0; 557 struct vm_area_struct *vma; 558 559 /* Find first overlaping mapping */ 560 vma = find_vma_intersection(mm, addr, end); 561 if (!vma) 562 return 0; 563 564 nr_pages = (min(end, vma->vm_end) - 565 max(addr, vma->vm_start)) >> PAGE_SHIFT; 566 567 /* Iterate over the rest of the overlaps */ 568 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 569 unsigned long overlap_len; 570 571 if (vma->vm_start > end) 572 break; 573 574 overlap_len = min(end, vma->vm_end) - vma->vm_start; 575 nr_pages += overlap_len >> PAGE_SHIFT; 576 } 577 578 return nr_pages; 579 } 580 581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 582 struct rb_node **rb_link, struct rb_node *rb_parent) 583 { 584 /* Update tracking information for the gap following the new vma. */ 585 if (vma->vm_next) 586 vma_gap_update(vma->vm_next); 587 else 588 mm->highest_vm_end = vma->vm_end; 589 590 /* 591 * vma->vm_prev wasn't known when we followed the rbtree to find the 592 * correct insertion point for that vma. As a result, we could not 593 * update the vma vm_rb parents rb_subtree_gap values on the way down. 594 * So, we first insert the vma with a zero rb_subtree_gap value 595 * (to be consistent with what we did on the way down), and then 596 * immediately update the gap to the correct value. Finally we 597 * rebalance the rbtree after all augmented values have been set. 598 */ 599 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 600 vma->rb_subtree_gap = 0; 601 vma_gap_update(vma); 602 vma_rb_insert(vma, &mm->mm_rb); 603 } 604 605 static void __vma_link_file(struct vm_area_struct *vma) 606 { 607 struct file *file; 608 609 file = vma->vm_file; 610 if (file) { 611 struct address_space *mapping = file->f_mapping; 612 613 if (vma->vm_flags & VM_DENYWRITE) 614 atomic_dec(&file_inode(file)->i_writecount); 615 if (vma->vm_flags & VM_SHARED) 616 mapping->i_mmap_writable++; 617 618 flush_dcache_mmap_lock(mapping); 619 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 620 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 621 else 622 vma_interval_tree_insert(vma, &mapping->i_mmap); 623 flush_dcache_mmap_unlock(mapping); 624 } 625 } 626 627 static void 628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 629 struct vm_area_struct *prev, struct rb_node **rb_link, 630 struct rb_node *rb_parent) 631 { 632 __vma_link_list(mm, vma, prev, rb_parent); 633 __vma_link_rb(mm, vma, rb_link, rb_parent); 634 } 635 636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 637 struct vm_area_struct *prev, struct rb_node **rb_link, 638 struct rb_node *rb_parent) 639 { 640 struct address_space *mapping = NULL; 641 642 if (vma->vm_file) 643 mapping = vma->vm_file->f_mapping; 644 645 if (mapping) 646 mutex_lock(&mapping->i_mmap_mutex); 647 648 __vma_link(mm, vma, prev, rb_link, rb_parent); 649 __vma_link_file(vma); 650 651 if (mapping) 652 mutex_unlock(&mapping->i_mmap_mutex); 653 654 mm->map_count++; 655 validate_mm(mm); 656 } 657 658 /* 659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 660 * mm's list and rbtree. It has already been inserted into the interval tree. 661 */ 662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 663 { 664 struct vm_area_struct *prev; 665 struct rb_node **rb_link, *rb_parent; 666 667 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 668 &prev, &rb_link, &rb_parent)) 669 BUG(); 670 __vma_link(mm, vma, prev, rb_link, rb_parent); 671 mm->map_count++; 672 } 673 674 static inline void 675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 676 struct vm_area_struct *prev) 677 { 678 struct vm_area_struct *next; 679 680 vma_rb_erase(vma, &mm->mm_rb); 681 prev->vm_next = next = vma->vm_next; 682 if (next) 683 next->vm_prev = prev; 684 if (mm->mmap_cache == vma) 685 mm->mmap_cache = prev; 686 } 687 688 /* 689 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 690 * is already present in an i_mmap tree without adjusting the tree. 691 * The following helper function should be used when such adjustments 692 * are necessary. The "insert" vma (if any) is to be inserted 693 * before we drop the necessary locks. 694 */ 695 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 696 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 697 { 698 struct mm_struct *mm = vma->vm_mm; 699 struct vm_area_struct *next = vma->vm_next; 700 struct vm_area_struct *importer = NULL; 701 struct address_space *mapping = NULL; 702 struct rb_root *root = NULL; 703 struct anon_vma *anon_vma = NULL; 704 struct file *file = vma->vm_file; 705 bool start_changed = false, end_changed = false; 706 long adjust_next = 0; 707 int remove_next = 0; 708 709 if (next && !insert) { 710 struct vm_area_struct *exporter = NULL; 711 712 if (end >= next->vm_end) { 713 /* 714 * vma expands, overlapping all the next, and 715 * perhaps the one after too (mprotect case 6). 716 */ 717 again: remove_next = 1 + (end > next->vm_end); 718 end = next->vm_end; 719 exporter = next; 720 importer = vma; 721 } else if (end > next->vm_start) { 722 /* 723 * vma expands, overlapping part of the next: 724 * mprotect case 5 shifting the boundary up. 725 */ 726 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 727 exporter = next; 728 importer = vma; 729 } else if (end < vma->vm_end) { 730 /* 731 * vma shrinks, and !insert tells it's not 732 * split_vma inserting another: so it must be 733 * mprotect case 4 shifting the boundary down. 734 */ 735 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 736 exporter = vma; 737 importer = next; 738 } 739 740 /* 741 * Easily overlooked: when mprotect shifts the boundary, 742 * make sure the expanding vma has anon_vma set if the 743 * shrinking vma had, to cover any anon pages imported. 744 */ 745 if (exporter && exporter->anon_vma && !importer->anon_vma) { 746 if (anon_vma_clone(importer, exporter)) 747 return -ENOMEM; 748 importer->anon_vma = exporter->anon_vma; 749 } 750 } 751 752 if (file) { 753 mapping = file->f_mapping; 754 if (!(vma->vm_flags & VM_NONLINEAR)) { 755 root = &mapping->i_mmap; 756 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 757 758 if (adjust_next) 759 uprobe_munmap(next, next->vm_start, 760 next->vm_end); 761 } 762 763 mutex_lock(&mapping->i_mmap_mutex); 764 if (insert) { 765 /* 766 * Put into interval tree now, so instantiated pages 767 * are visible to arm/parisc __flush_dcache_page 768 * throughout; but we cannot insert into address 769 * space until vma start or end is updated. 770 */ 771 __vma_link_file(insert); 772 } 773 } 774 775 vma_adjust_trans_huge(vma, start, end, adjust_next); 776 777 anon_vma = vma->anon_vma; 778 if (!anon_vma && adjust_next) 779 anon_vma = next->anon_vma; 780 if (anon_vma) { 781 VM_BUG_ON(adjust_next && next->anon_vma && 782 anon_vma != next->anon_vma); 783 anon_vma_lock_write(anon_vma); 784 anon_vma_interval_tree_pre_update_vma(vma); 785 if (adjust_next) 786 anon_vma_interval_tree_pre_update_vma(next); 787 } 788 789 if (root) { 790 flush_dcache_mmap_lock(mapping); 791 vma_interval_tree_remove(vma, root); 792 if (adjust_next) 793 vma_interval_tree_remove(next, root); 794 } 795 796 if (start != vma->vm_start) { 797 vma->vm_start = start; 798 start_changed = true; 799 } 800 if (end != vma->vm_end) { 801 vma->vm_end = end; 802 end_changed = true; 803 } 804 vma->vm_pgoff = pgoff; 805 if (adjust_next) { 806 next->vm_start += adjust_next << PAGE_SHIFT; 807 next->vm_pgoff += adjust_next; 808 } 809 810 if (root) { 811 if (adjust_next) 812 vma_interval_tree_insert(next, root); 813 vma_interval_tree_insert(vma, root); 814 flush_dcache_mmap_unlock(mapping); 815 } 816 817 if (remove_next) { 818 /* 819 * vma_merge has merged next into vma, and needs 820 * us to remove next before dropping the locks. 821 */ 822 __vma_unlink(mm, next, vma); 823 if (file) 824 __remove_shared_vm_struct(next, file, mapping); 825 } else if (insert) { 826 /* 827 * split_vma has split insert from vma, and needs 828 * us to insert it before dropping the locks 829 * (it may either follow vma or precede it). 830 */ 831 __insert_vm_struct(mm, insert); 832 } else { 833 if (start_changed) 834 vma_gap_update(vma); 835 if (end_changed) { 836 if (!next) 837 mm->highest_vm_end = end; 838 else if (!adjust_next) 839 vma_gap_update(next); 840 } 841 } 842 843 if (anon_vma) { 844 anon_vma_interval_tree_post_update_vma(vma); 845 if (adjust_next) 846 anon_vma_interval_tree_post_update_vma(next); 847 anon_vma_unlock_write(anon_vma); 848 } 849 if (mapping) 850 mutex_unlock(&mapping->i_mmap_mutex); 851 852 if (root) { 853 uprobe_mmap(vma); 854 855 if (adjust_next) 856 uprobe_mmap(next); 857 } 858 859 if (remove_next) { 860 if (file) { 861 uprobe_munmap(next, next->vm_start, next->vm_end); 862 fput(file); 863 } 864 if (next->anon_vma) 865 anon_vma_merge(vma, next); 866 mm->map_count--; 867 mpol_put(vma_policy(next)); 868 kmem_cache_free(vm_area_cachep, next); 869 /* 870 * In mprotect's case 6 (see comments on vma_merge), 871 * we must remove another next too. It would clutter 872 * up the code too much to do both in one go. 873 */ 874 next = vma->vm_next; 875 if (remove_next == 2) 876 goto again; 877 else if (next) 878 vma_gap_update(next); 879 else 880 mm->highest_vm_end = end; 881 } 882 if (insert && file) 883 uprobe_mmap(insert); 884 885 validate_mm(mm); 886 887 return 0; 888 } 889 890 /* 891 * If the vma has a ->close operation then the driver probably needs to release 892 * per-vma resources, so we don't attempt to merge those. 893 */ 894 static inline int is_mergeable_vma(struct vm_area_struct *vma, 895 struct file *file, unsigned long vm_flags) 896 { 897 /* 898 * VM_SOFTDIRTY should not prevent from VMA merging, if we 899 * match the flags but dirty bit -- the caller should mark 900 * merged VMA as dirty. If dirty bit won't be excluded from 901 * comparison, we increase pressue on the memory system forcing 902 * the kernel to generate new VMAs when old one could be 903 * extended instead. 904 */ 905 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 906 return 0; 907 if (vma->vm_file != file) 908 return 0; 909 if (vma->vm_ops && vma->vm_ops->close) 910 return 0; 911 return 1; 912 } 913 914 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 915 struct anon_vma *anon_vma2, 916 struct vm_area_struct *vma) 917 { 918 /* 919 * The list_is_singular() test is to avoid merging VMA cloned from 920 * parents. This can improve scalability caused by anon_vma lock. 921 */ 922 if ((!anon_vma1 || !anon_vma2) && (!vma || 923 list_is_singular(&vma->anon_vma_chain))) 924 return 1; 925 return anon_vma1 == anon_vma2; 926 } 927 928 /* 929 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 930 * in front of (at a lower virtual address and file offset than) the vma. 931 * 932 * We cannot merge two vmas if they have differently assigned (non-NULL) 933 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 934 * 935 * We don't check here for the merged mmap wrapping around the end of pagecache 936 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 937 * wrap, nor mmaps which cover the final page at index -1UL. 938 */ 939 static int 940 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 941 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 942 { 943 if (is_mergeable_vma(vma, file, vm_flags) && 944 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 945 if (vma->vm_pgoff == vm_pgoff) 946 return 1; 947 } 948 return 0; 949 } 950 951 /* 952 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 953 * beyond (at a higher virtual address and file offset than) the vma. 954 * 955 * We cannot merge two vmas if they have differently assigned (non-NULL) 956 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 957 */ 958 static int 959 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 960 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 961 { 962 if (is_mergeable_vma(vma, file, vm_flags) && 963 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 964 pgoff_t vm_pglen; 965 vm_pglen = vma_pages(vma); 966 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 967 return 1; 968 } 969 return 0; 970 } 971 972 /* 973 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 974 * whether that can be merged with its predecessor or its successor. 975 * Or both (it neatly fills a hole). 976 * 977 * In most cases - when called for mmap, brk or mremap - [addr,end) is 978 * certain not to be mapped by the time vma_merge is called; but when 979 * called for mprotect, it is certain to be already mapped (either at 980 * an offset within prev, or at the start of next), and the flags of 981 * this area are about to be changed to vm_flags - and the no-change 982 * case has already been eliminated. 983 * 984 * The following mprotect cases have to be considered, where AAAA is 985 * the area passed down from mprotect_fixup, never extending beyond one 986 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 987 * 988 * AAAA AAAA AAAA AAAA 989 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 990 * cannot merge might become might become might become 991 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 992 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 993 * mremap move: PPPPNNNNNNNN 8 994 * AAAA 995 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 996 * might become case 1 below case 2 below case 3 below 997 * 998 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 999 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1000 */ 1001 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1002 struct vm_area_struct *prev, unsigned long addr, 1003 unsigned long end, unsigned long vm_flags, 1004 struct anon_vma *anon_vma, struct file *file, 1005 pgoff_t pgoff, struct mempolicy *policy) 1006 { 1007 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1008 struct vm_area_struct *area, *next; 1009 int err; 1010 1011 /* 1012 * We later require that vma->vm_flags == vm_flags, 1013 * so this tests vma->vm_flags & VM_SPECIAL, too. 1014 */ 1015 if (vm_flags & VM_SPECIAL) 1016 return NULL; 1017 1018 if (prev) 1019 next = prev->vm_next; 1020 else 1021 next = mm->mmap; 1022 area = next; 1023 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1024 next = next->vm_next; 1025 1026 /* 1027 * Can it merge with the predecessor? 1028 */ 1029 if (prev && prev->vm_end == addr && 1030 mpol_equal(vma_policy(prev), policy) && 1031 can_vma_merge_after(prev, vm_flags, 1032 anon_vma, file, pgoff)) { 1033 /* 1034 * OK, it can. Can we now merge in the successor as well? 1035 */ 1036 if (next && end == next->vm_start && 1037 mpol_equal(policy, vma_policy(next)) && 1038 can_vma_merge_before(next, vm_flags, 1039 anon_vma, file, pgoff+pglen) && 1040 is_mergeable_anon_vma(prev->anon_vma, 1041 next->anon_vma, NULL)) { 1042 /* cases 1, 6 */ 1043 err = vma_adjust(prev, prev->vm_start, 1044 next->vm_end, prev->vm_pgoff, NULL); 1045 } else /* cases 2, 5, 7 */ 1046 err = vma_adjust(prev, prev->vm_start, 1047 end, prev->vm_pgoff, NULL); 1048 if (err) 1049 return NULL; 1050 khugepaged_enter_vma_merge(prev); 1051 return prev; 1052 } 1053 1054 /* 1055 * Can this new request be merged in front of next? 1056 */ 1057 if (next && end == next->vm_start && 1058 mpol_equal(policy, vma_policy(next)) && 1059 can_vma_merge_before(next, vm_flags, 1060 anon_vma, file, pgoff+pglen)) { 1061 if (prev && addr < prev->vm_end) /* case 4 */ 1062 err = vma_adjust(prev, prev->vm_start, 1063 addr, prev->vm_pgoff, NULL); 1064 else /* cases 3, 8 */ 1065 err = vma_adjust(area, addr, next->vm_end, 1066 next->vm_pgoff - pglen, NULL); 1067 if (err) 1068 return NULL; 1069 khugepaged_enter_vma_merge(area); 1070 return area; 1071 } 1072 1073 return NULL; 1074 } 1075 1076 /* 1077 * Rough compatbility check to quickly see if it's even worth looking 1078 * at sharing an anon_vma. 1079 * 1080 * They need to have the same vm_file, and the flags can only differ 1081 * in things that mprotect may change. 1082 * 1083 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1084 * we can merge the two vma's. For example, we refuse to merge a vma if 1085 * there is a vm_ops->close() function, because that indicates that the 1086 * driver is doing some kind of reference counting. But that doesn't 1087 * really matter for the anon_vma sharing case. 1088 */ 1089 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1090 { 1091 return a->vm_end == b->vm_start && 1092 mpol_equal(vma_policy(a), vma_policy(b)) && 1093 a->vm_file == b->vm_file && 1094 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1095 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1096 } 1097 1098 /* 1099 * Do some basic sanity checking to see if we can re-use the anon_vma 1100 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1101 * the same as 'old', the other will be the new one that is trying 1102 * to share the anon_vma. 1103 * 1104 * NOTE! This runs with mm_sem held for reading, so it is possible that 1105 * the anon_vma of 'old' is concurrently in the process of being set up 1106 * by another page fault trying to merge _that_. But that's ok: if it 1107 * is being set up, that automatically means that it will be a singleton 1108 * acceptable for merging, so we can do all of this optimistically. But 1109 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1110 * 1111 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1112 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1113 * is to return an anon_vma that is "complex" due to having gone through 1114 * a fork). 1115 * 1116 * We also make sure that the two vma's are compatible (adjacent, 1117 * and with the same memory policies). That's all stable, even with just 1118 * a read lock on the mm_sem. 1119 */ 1120 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1121 { 1122 if (anon_vma_compatible(a, b)) { 1123 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1124 1125 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1126 return anon_vma; 1127 } 1128 return NULL; 1129 } 1130 1131 /* 1132 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1133 * neighbouring vmas for a suitable anon_vma, before it goes off 1134 * to allocate a new anon_vma. It checks because a repetitive 1135 * sequence of mprotects and faults may otherwise lead to distinct 1136 * anon_vmas being allocated, preventing vma merge in subsequent 1137 * mprotect. 1138 */ 1139 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1140 { 1141 struct anon_vma *anon_vma; 1142 struct vm_area_struct *near; 1143 1144 near = vma->vm_next; 1145 if (!near) 1146 goto try_prev; 1147 1148 anon_vma = reusable_anon_vma(near, vma, near); 1149 if (anon_vma) 1150 return anon_vma; 1151 try_prev: 1152 near = vma->vm_prev; 1153 if (!near) 1154 goto none; 1155 1156 anon_vma = reusable_anon_vma(near, near, vma); 1157 if (anon_vma) 1158 return anon_vma; 1159 none: 1160 /* 1161 * There's no absolute need to look only at touching neighbours: 1162 * we could search further afield for "compatible" anon_vmas. 1163 * But it would probably just be a waste of time searching, 1164 * or lead to too many vmas hanging off the same anon_vma. 1165 * We're trying to allow mprotect remerging later on, 1166 * not trying to minimize memory used for anon_vmas. 1167 */ 1168 return NULL; 1169 } 1170 1171 #ifdef CONFIG_PROC_FS 1172 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1173 struct file *file, long pages) 1174 { 1175 const unsigned long stack_flags 1176 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1177 1178 mm->total_vm += pages; 1179 1180 if (file) { 1181 mm->shared_vm += pages; 1182 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1183 mm->exec_vm += pages; 1184 } else if (flags & stack_flags) 1185 mm->stack_vm += pages; 1186 } 1187 #endif /* CONFIG_PROC_FS */ 1188 1189 /* 1190 * If a hint addr is less than mmap_min_addr change hint to be as 1191 * low as possible but still greater than mmap_min_addr 1192 */ 1193 static inline unsigned long round_hint_to_min(unsigned long hint) 1194 { 1195 hint &= PAGE_MASK; 1196 if (((void *)hint != NULL) && 1197 (hint < mmap_min_addr)) 1198 return PAGE_ALIGN(mmap_min_addr); 1199 return hint; 1200 } 1201 1202 static inline int mlock_future_check(struct mm_struct *mm, 1203 unsigned long flags, 1204 unsigned long len) 1205 { 1206 unsigned long locked, lock_limit; 1207 1208 /* mlock MCL_FUTURE? */ 1209 if (flags & VM_LOCKED) { 1210 locked = len >> PAGE_SHIFT; 1211 locked += mm->locked_vm; 1212 lock_limit = rlimit(RLIMIT_MEMLOCK); 1213 lock_limit >>= PAGE_SHIFT; 1214 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1215 return -EAGAIN; 1216 } 1217 return 0; 1218 } 1219 1220 /* 1221 * The caller must hold down_write(¤t->mm->mmap_sem). 1222 */ 1223 1224 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1225 unsigned long len, unsigned long prot, 1226 unsigned long flags, unsigned long pgoff, 1227 unsigned long *populate) 1228 { 1229 struct mm_struct * mm = current->mm; 1230 vm_flags_t vm_flags; 1231 1232 *populate = 0; 1233 1234 /* 1235 * Does the application expect PROT_READ to imply PROT_EXEC? 1236 * 1237 * (the exception is when the underlying filesystem is noexec 1238 * mounted, in which case we dont add PROT_EXEC.) 1239 */ 1240 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1241 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1242 prot |= PROT_EXEC; 1243 1244 if (!len) 1245 return -EINVAL; 1246 1247 if (!(flags & MAP_FIXED)) 1248 addr = round_hint_to_min(addr); 1249 1250 /* Careful about overflows.. */ 1251 len = PAGE_ALIGN(len); 1252 if (!len) 1253 return -ENOMEM; 1254 1255 /* offset overflow? */ 1256 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1257 return -EOVERFLOW; 1258 1259 /* Too many mappings? */ 1260 if (mm->map_count > sysctl_max_map_count) 1261 return -ENOMEM; 1262 1263 /* Obtain the address to map to. we verify (or select) it and ensure 1264 * that it represents a valid section of the address space. 1265 */ 1266 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1267 if (addr & ~PAGE_MASK) 1268 return addr; 1269 1270 /* Do simple checking here so the lower-level routines won't have 1271 * to. we assume access permissions have been handled by the open 1272 * of the memory object, so we don't do any here. 1273 */ 1274 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1275 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1276 1277 if (flags & MAP_LOCKED) 1278 if (!can_do_mlock()) 1279 return -EPERM; 1280 1281 if (mlock_future_check(mm, vm_flags, len)) 1282 return -EAGAIN; 1283 1284 if (file) { 1285 struct inode *inode = file_inode(file); 1286 1287 switch (flags & MAP_TYPE) { 1288 case MAP_SHARED: 1289 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1290 return -EACCES; 1291 1292 /* 1293 * Make sure we don't allow writing to an append-only 1294 * file.. 1295 */ 1296 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1297 return -EACCES; 1298 1299 /* 1300 * Make sure there are no mandatory locks on the file. 1301 */ 1302 if (locks_verify_locked(inode)) 1303 return -EAGAIN; 1304 1305 vm_flags |= VM_SHARED | VM_MAYSHARE; 1306 if (!(file->f_mode & FMODE_WRITE)) 1307 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1308 1309 /* fall through */ 1310 case MAP_PRIVATE: 1311 if (!(file->f_mode & FMODE_READ)) 1312 return -EACCES; 1313 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1314 if (vm_flags & VM_EXEC) 1315 return -EPERM; 1316 vm_flags &= ~VM_MAYEXEC; 1317 } 1318 1319 if (!file->f_op->mmap) 1320 return -ENODEV; 1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1322 return -EINVAL; 1323 break; 1324 1325 default: 1326 return -EINVAL; 1327 } 1328 } else { 1329 switch (flags & MAP_TYPE) { 1330 case MAP_SHARED: 1331 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1332 return -EINVAL; 1333 /* 1334 * Ignore pgoff. 1335 */ 1336 pgoff = 0; 1337 vm_flags |= VM_SHARED | VM_MAYSHARE; 1338 break; 1339 case MAP_PRIVATE: 1340 /* 1341 * Set pgoff according to addr for anon_vma. 1342 */ 1343 pgoff = addr >> PAGE_SHIFT; 1344 break; 1345 default: 1346 return -EINVAL; 1347 } 1348 } 1349 1350 /* 1351 * Set 'VM_NORESERVE' if we should not account for the 1352 * memory use of this mapping. 1353 */ 1354 if (flags & MAP_NORESERVE) { 1355 /* We honor MAP_NORESERVE if allowed to overcommit */ 1356 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1357 vm_flags |= VM_NORESERVE; 1358 1359 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1360 if (file && is_file_hugepages(file)) 1361 vm_flags |= VM_NORESERVE; 1362 } 1363 1364 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1365 if (!IS_ERR_VALUE(addr) && 1366 ((vm_flags & VM_LOCKED) || 1367 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1368 *populate = len; 1369 return addr; 1370 } 1371 1372 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1373 unsigned long, prot, unsigned long, flags, 1374 unsigned long, fd, unsigned long, pgoff) 1375 { 1376 struct file *file = NULL; 1377 unsigned long retval = -EBADF; 1378 1379 if (!(flags & MAP_ANONYMOUS)) { 1380 audit_mmap_fd(fd, flags); 1381 file = fget(fd); 1382 if (!file) 1383 goto out; 1384 if (is_file_hugepages(file)) 1385 len = ALIGN(len, huge_page_size(hstate_file(file))); 1386 retval = -EINVAL; 1387 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1388 goto out_fput; 1389 } else if (flags & MAP_HUGETLB) { 1390 struct user_struct *user = NULL; 1391 struct hstate *hs; 1392 1393 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1394 if (!hs) 1395 return -EINVAL; 1396 1397 len = ALIGN(len, huge_page_size(hs)); 1398 /* 1399 * VM_NORESERVE is used because the reservations will be 1400 * taken when vm_ops->mmap() is called 1401 * A dummy user value is used because we are not locking 1402 * memory so no accounting is necessary 1403 */ 1404 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1405 VM_NORESERVE, 1406 &user, HUGETLB_ANONHUGE_INODE, 1407 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1408 if (IS_ERR(file)) 1409 return PTR_ERR(file); 1410 } 1411 1412 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1413 1414 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1415 out_fput: 1416 if (file) 1417 fput(file); 1418 out: 1419 return retval; 1420 } 1421 1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1423 struct mmap_arg_struct { 1424 unsigned long addr; 1425 unsigned long len; 1426 unsigned long prot; 1427 unsigned long flags; 1428 unsigned long fd; 1429 unsigned long offset; 1430 }; 1431 1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1433 { 1434 struct mmap_arg_struct a; 1435 1436 if (copy_from_user(&a, arg, sizeof(a))) 1437 return -EFAULT; 1438 if (a.offset & ~PAGE_MASK) 1439 return -EINVAL; 1440 1441 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1442 a.offset >> PAGE_SHIFT); 1443 } 1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1445 1446 /* 1447 * Some shared mappigns will want the pages marked read-only 1448 * to track write events. If so, we'll downgrade vm_page_prot 1449 * to the private version (using protection_map[] without the 1450 * VM_SHARED bit). 1451 */ 1452 int vma_wants_writenotify(struct vm_area_struct *vma) 1453 { 1454 vm_flags_t vm_flags = vma->vm_flags; 1455 1456 /* If it was private or non-writable, the write bit is already clear */ 1457 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1458 return 0; 1459 1460 /* The backer wishes to know when pages are first written to? */ 1461 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1462 return 1; 1463 1464 /* The open routine did something to the protections already? */ 1465 if (pgprot_val(vma->vm_page_prot) != 1466 pgprot_val(vm_get_page_prot(vm_flags))) 1467 return 0; 1468 1469 /* Specialty mapping? */ 1470 if (vm_flags & VM_PFNMAP) 1471 return 0; 1472 1473 /* Can the mapping track the dirty pages? */ 1474 return vma->vm_file && vma->vm_file->f_mapping && 1475 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1476 } 1477 1478 /* 1479 * We account for memory if it's a private writeable mapping, 1480 * not hugepages and VM_NORESERVE wasn't set. 1481 */ 1482 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1483 { 1484 /* 1485 * hugetlb has its own accounting separate from the core VM 1486 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1487 */ 1488 if (file && is_file_hugepages(file)) 1489 return 0; 1490 1491 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1492 } 1493 1494 unsigned long mmap_region(struct file *file, unsigned long addr, 1495 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1496 { 1497 struct mm_struct *mm = current->mm; 1498 struct vm_area_struct *vma, *prev; 1499 int error; 1500 struct rb_node **rb_link, *rb_parent; 1501 unsigned long charged = 0; 1502 1503 /* Check against address space limit. */ 1504 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1505 unsigned long nr_pages; 1506 1507 /* 1508 * MAP_FIXED may remove pages of mappings that intersects with 1509 * requested mapping. Account for the pages it would unmap. 1510 */ 1511 if (!(vm_flags & MAP_FIXED)) 1512 return -ENOMEM; 1513 1514 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1515 1516 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1517 return -ENOMEM; 1518 } 1519 1520 /* Clear old maps */ 1521 error = -ENOMEM; 1522 munmap_back: 1523 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1524 if (do_munmap(mm, addr, len)) 1525 return -ENOMEM; 1526 goto munmap_back; 1527 } 1528 1529 /* 1530 * Private writable mapping: check memory availability 1531 */ 1532 if (accountable_mapping(file, vm_flags)) { 1533 charged = len >> PAGE_SHIFT; 1534 if (security_vm_enough_memory_mm(mm, charged)) 1535 return -ENOMEM; 1536 vm_flags |= VM_ACCOUNT; 1537 } 1538 1539 /* 1540 * Can we just expand an old mapping? 1541 */ 1542 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1543 if (vma) 1544 goto out; 1545 1546 /* 1547 * Determine the object being mapped and call the appropriate 1548 * specific mapper. the address has already been validated, but 1549 * not unmapped, but the maps are removed from the list. 1550 */ 1551 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1552 if (!vma) { 1553 error = -ENOMEM; 1554 goto unacct_error; 1555 } 1556 1557 vma->vm_mm = mm; 1558 vma->vm_start = addr; 1559 vma->vm_end = addr + len; 1560 vma->vm_flags = vm_flags; 1561 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1562 vma->vm_pgoff = pgoff; 1563 INIT_LIST_HEAD(&vma->anon_vma_chain); 1564 1565 if (file) { 1566 if (vm_flags & VM_DENYWRITE) { 1567 error = deny_write_access(file); 1568 if (error) 1569 goto free_vma; 1570 } 1571 vma->vm_file = get_file(file); 1572 error = file->f_op->mmap(file, vma); 1573 if (error) 1574 goto unmap_and_free_vma; 1575 1576 /* Can addr have changed?? 1577 * 1578 * Answer: Yes, several device drivers can do it in their 1579 * f_op->mmap method. -DaveM 1580 * Bug: If addr is changed, prev, rb_link, rb_parent should 1581 * be updated for vma_link() 1582 */ 1583 WARN_ON_ONCE(addr != vma->vm_start); 1584 1585 addr = vma->vm_start; 1586 vm_flags = vma->vm_flags; 1587 } else if (vm_flags & VM_SHARED) { 1588 error = shmem_zero_setup(vma); 1589 if (error) 1590 goto free_vma; 1591 } 1592 1593 if (vma_wants_writenotify(vma)) { 1594 pgprot_t pprot = vma->vm_page_prot; 1595 1596 /* Can vma->vm_page_prot have changed?? 1597 * 1598 * Answer: Yes, drivers may have changed it in their 1599 * f_op->mmap method. 1600 * 1601 * Ensures that vmas marked as uncached stay that way. 1602 */ 1603 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1604 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1605 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1606 } 1607 1608 vma_link(mm, vma, prev, rb_link, rb_parent); 1609 /* Once vma denies write, undo our temporary denial count */ 1610 if (vm_flags & VM_DENYWRITE) 1611 allow_write_access(file); 1612 file = vma->vm_file; 1613 out: 1614 perf_event_mmap(vma); 1615 1616 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1617 if (vm_flags & VM_LOCKED) { 1618 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1619 vma == get_gate_vma(current->mm))) 1620 mm->locked_vm += (len >> PAGE_SHIFT); 1621 else 1622 vma->vm_flags &= ~VM_LOCKED; 1623 } 1624 1625 if (file) 1626 uprobe_mmap(vma); 1627 1628 /* 1629 * New (or expanded) vma always get soft dirty status. 1630 * Otherwise user-space soft-dirty page tracker won't 1631 * be able to distinguish situation when vma area unmapped, 1632 * then new mapped in-place (which must be aimed as 1633 * a completely new data area). 1634 */ 1635 vma->vm_flags |= VM_SOFTDIRTY; 1636 1637 return addr; 1638 1639 unmap_and_free_vma: 1640 if (vm_flags & VM_DENYWRITE) 1641 allow_write_access(file); 1642 vma->vm_file = NULL; 1643 fput(file); 1644 1645 /* Undo any partial mapping done by a device driver. */ 1646 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1647 charged = 0; 1648 free_vma: 1649 kmem_cache_free(vm_area_cachep, vma); 1650 unacct_error: 1651 if (charged) 1652 vm_unacct_memory(charged); 1653 return error; 1654 } 1655 1656 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1657 { 1658 /* 1659 * We implement the search by looking for an rbtree node that 1660 * immediately follows a suitable gap. That is, 1661 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1662 * - gap_end = vma->vm_start >= info->low_limit + length; 1663 * - gap_end - gap_start >= length 1664 */ 1665 1666 struct mm_struct *mm = current->mm; 1667 struct vm_area_struct *vma; 1668 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1669 1670 /* Adjust search length to account for worst case alignment overhead */ 1671 length = info->length + info->align_mask; 1672 if (length < info->length) 1673 return -ENOMEM; 1674 1675 /* Adjust search limits by the desired length */ 1676 if (info->high_limit < length) 1677 return -ENOMEM; 1678 high_limit = info->high_limit - length; 1679 1680 if (info->low_limit > high_limit) 1681 return -ENOMEM; 1682 low_limit = info->low_limit + length; 1683 1684 /* Check if rbtree root looks promising */ 1685 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1686 goto check_highest; 1687 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1688 if (vma->rb_subtree_gap < length) 1689 goto check_highest; 1690 1691 while (true) { 1692 /* Visit left subtree if it looks promising */ 1693 gap_end = vma->vm_start; 1694 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1695 struct vm_area_struct *left = 1696 rb_entry(vma->vm_rb.rb_left, 1697 struct vm_area_struct, vm_rb); 1698 if (left->rb_subtree_gap >= length) { 1699 vma = left; 1700 continue; 1701 } 1702 } 1703 1704 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1705 check_current: 1706 /* Check if current node has a suitable gap */ 1707 if (gap_start > high_limit) 1708 return -ENOMEM; 1709 if (gap_end >= low_limit && gap_end - gap_start >= length) 1710 goto found; 1711 1712 /* Visit right subtree if it looks promising */ 1713 if (vma->vm_rb.rb_right) { 1714 struct vm_area_struct *right = 1715 rb_entry(vma->vm_rb.rb_right, 1716 struct vm_area_struct, vm_rb); 1717 if (right->rb_subtree_gap >= length) { 1718 vma = right; 1719 continue; 1720 } 1721 } 1722 1723 /* Go back up the rbtree to find next candidate node */ 1724 while (true) { 1725 struct rb_node *prev = &vma->vm_rb; 1726 if (!rb_parent(prev)) 1727 goto check_highest; 1728 vma = rb_entry(rb_parent(prev), 1729 struct vm_area_struct, vm_rb); 1730 if (prev == vma->vm_rb.rb_left) { 1731 gap_start = vma->vm_prev->vm_end; 1732 gap_end = vma->vm_start; 1733 goto check_current; 1734 } 1735 } 1736 } 1737 1738 check_highest: 1739 /* Check highest gap, which does not precede any rbtree node */ 1740 gap_start = mm->highest_vm_end; 1741 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1742 if (gap_start > high_limit) 1743 return -ENOMEM; 1744 1745 found: 1746 /* We found a suitable gap. Clip it with the original low_limit. */ 1747 if (gap_start < info->low_limit) 1748 gap_start = info->low_limit; 1749 1750 /* Adjust gap address to the desired alignment */ 1751 gap_start += (info->align_offset - gap_start) & info->align_mask; 1752 1753 VM_BUG_ON(gap_start + info->length > info->high_limit); 1754 VM_BUG_ON(gap_start + info->length > gap_end); 1755 return gap_start; 1756 } 1757 1758 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1759 { 1760 struct mm_struct *mm = current->mm; 1761 struct vm_area_struct *vma; 1762 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1763 1764 /* Adjust search length to account for worst case alignment overhead */ 1765 length = info->length + info->align_mask; 1766 if (length < info->length) 1767 return -ENOMEM; 1768 1769 /* 1770 * Adjust search limits by the desired length. 1771 * See implementation comment at top of unmapped_area(). 1772 */ 1773 gap_end = info->high_limit; 1774 if (gap_end < length) 1775 return -ENOMEM; 1776 high_limit = gap_end - length; 1777 1778 if (info->low_limit > high_limit) 1779 return -ENOMEM; 1780 low_limit = info->low_limit + length; 1781 1782 /* Check highest gap, which does not precede any rbtree node */ 1783 gap_start = mm->highest_vm_end; 1784 if (gap_start <= high_limit) 1785 goto found_highest; 1786 1787 /* Check if rbtree root looks promising */ 1788 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1789 return -ENOMEM; 1790 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1791 if (vma->rb_subtree_gap < length) 1792 return -ENOMEM; 1793 1794 while (true) { 1795 /* Visit right subtree if it looks promising */ 1796 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1797 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1798 struct vm_area_struct *right = 1799 rb_entry(vma->vm_rb.rb_right, 1800 struct vm_area_struct, vm_rb); 1801 if (right->rb_subtree_gap >= length) { 1802 vma = right; 1803 continue; 1804 } 1805 } 1806 1807 check_current: 1808 /* Check if current node has a suitable gap */ 1809 gap_end = vma->vm_start; 1810 if (gap_end < low_limit) 1811 return -ENOMEM; 1812 if (gap_start <= high_limit && gap_end - gap_start >= length) 1813 goto found; 1814 1815 /* Visit left subtree if it looks promising */ 1816 if (vma->vm_rb.rb_left) { 1817 struct vm_area_struct *left = 1818 rb_entry(vma->vm_rb.rb_left, 1819 struct vm_area_struct, vm_rb); 1820 if (left->rb_subtree_gap >= length) { 1821 vma = left; 1822 continue; 1823 } 1824 } 1825 1826 /* Go back up the rbtree to find next candidate node */ 1827 while (true) { 1828 struct rb_node *prev = &vma->vm_rb; 1829 if (!rb_parent(prev)) 1830 return -ENOMEM; 1831 vma = rb_entry(rb_parent(prev), 1832 struct vm_area_struct, vm_rb); 1833 if (prev == vma->vm_rb.rb_right) { 1834 gap_start = vma->vm_prev ? 1835 vma->vm_prev->vm_end : 0; 1836 goto check_current; 1837 } 1838 } 1839 } 1840 1841 found: 1842 /* We found a suitable gap. Clip it with the original high_limit. */ 1843 if (gap_end > info->high_limit) 1844 gap_end = info->high_limit; 1845 1846 found_highest: 1847 /* Compute highest gap address at the desired alignment */ 1848 gap_end -= info->length; 1849 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1850 1851 VM_BUG_ON(gap_end < info->low_limit); 1852 VM_BUG_ON(gap_end < gap_start); 1853 return gap_end; 1854 } 1855 1856 /* Get an address range which is currently unmapped. 1857 * For shmat() with addr=0. 1858 * 1859 * Ugly calling convention alert: 1860 * Return value with the low bits set means error value, 1861 * ie 1862 * if (ret & ~PAGE_MASK) 1863 * error = ret; 1864 * 1865 * This function "knows" that -ENOMEM has the bits set. 1866 */ 1867 #ifndef HAVE_ARCH_UNMAPPED_AREA 1868 unsigned long 1869 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1870 unsigned long len, unsigned long pgoff, unsigned long flags) 1871 { 1872 struct mm_struct *mm = current->mm; 1873 struct vm_area_struct *vma; 1874 struct vm_unmapped_area_info info; 1875 1876 if (len > TASK_SIZE - mmap_min_addr) 1877 return -ENOMEM; 1878 1879 if (flags & MAP_FIXED) 1880 return addr; 1881 1882 if (addr) { 1883 addr = PAGE_ALIGN(addr); 1884 vma = find_vma(mm, addr); 1885 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1886 (!vma || addr + len <= vma->vm_start)) 1887 return addr; 1888 } 1889 1890 info.flags = 0; 1891 info.length = len; 1892 info.low_limit = mm->mmap_base; 1893 info.high_limit = TASK_SIZE; 1894 info.align_mask = 0; 1895 return vm_unmapped_area(&info); 1896 } 1897 #endif 1898 1899 /* 1900 * This mmap-allocator allocates new areas top-down from below the 1901 * stack's low limit (the base): 1902 */ 1903 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1904 unsigned long 1905 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1906 const unsigned long len, const unsigned long pgoff, 1907 const unsigned long flags) 1908 { 1909 struct vm_area_struct *vma; 1910 struct mm_struct *mm = current->mm; 1911 unsigned long addr = addr0; 1912 struct vm_unmapped_area_info info; 1913 1914 /* requested length too big for entire address space */ 1915 if (len > TASK_SIZE - mmap_min_addr) 1916 return -ENOMEM; 1917 1918 if (flags & MAP_FIXED) 1919 return addr; 1920 1921 /* requesting a specific address */ 1922 if (addr) { 1923 addr = PAGE_ALIGN(addr); 1924 vma = find_vma(mm, addr); 1925 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1926 (!vma || addr + len <= vma->vm_start)) 1927 return addr; 1928 } 1929 1930 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1931 info.length = len; 1932 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1933 info.high_limit = mm->mmap_base; 1934 info.align_mask = 0; 1935 addr = vm_unmapped_area(&info); 1936 1937 /* 1938 * A failed mmap() very likely causes application failure, 1939 * so fall back to the bottom-up function here. This scenario 1940 * can happen with large stack limits and large mmap() 1941 * allocations. 1942 */ 1943 if (addr & ~PAGE_MASK) { 1944 VM_BUG_ON(addr != -ENOMEM); 1945 info.flags = 0; 1946 info.low_limit = TASK_UNMAPPED_BASE; 1947 info.high_limit = TASK_SIZE; 1948 addr = vm_unmapped_area(&info); 1949 } 1950 1951 return addr; 1952 } 1953 #endif 1954 1955 unsigned long 1956 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1957 unsigned long pgoff, unsigned long flags) 1958 { 1959 unsigned long (*get_area)(struct file *, unsigned long, 1960 unsigned long, unsigned long, unsigned long); 1961 1962 unsigned long error = arch_mmap_check(addr, len, flags); 1963 if (error) 1964 return error; 1965 1966 /* Careful about overflows.. */ 1967 if (len > TASK_SIZE) 1968 return -ENOMEM; 1969 1970 get_area = current->mm->get_unmapped_area; 1971 if (file && file->f_op->get_unmapped_area) 1972 get_area = file->f_op->get_unmapped_area; 1973 addr = get_area(file, addr, len, pgoff, flags); 1974 if (IS_ERR_VALUE(addr)) 1975 return addr; 1976 1977 if (addr > TASK_SIZE - len) 1978 return -ENOMEM; 1979 if (addr & ~PAGE_MASK) 1980 return -EINVAL; 1981 1982 addr = arch_rebalance_pgtables(addr, len); 1983 error = security_mmap_addr(addr); 1984 return error ? error : addr; 1985 } 1986 1987 EXPORT_SYMBOL(get_unmapped_area); 1988 1989 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1990 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1991 { 1992 struct vm_area_struct *vma = NULL; 1993 1994 /* Check the cache first. */ 1995 /* (Cache hit rate is typically around 35%.) */ 1996 vma = ACCESS_ONCE(mm->mmap_cache); 1997 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1998 struct rb_node *rb_node; 1999 2000 rb_node = mm->mm_rb.rb_node; 2001 vma = NULL; 2002 2003 while (rb_node) { 2004 struct vm_area_struct *vma_tmp; 2005 2006 vma_tmp = rb_entry(rb_node, 2007 struct vm_area_struct, vm_rb); 2008 2009 if (vma_tmp->vm_end > addr) { 2010 vma = vma_tmp; 2011 if (vma_tmp->vm_start <= addr) 2012 break; 2013 rb_node = rb_node->rb_left; 2014 } else 2015 rb_node = rb_node->rb_right; 2016 } 2017 if (vma) 2018 mm->mmap_cache = vma; 2019 } 2020 return vma; 2021 } 2022 2023 EXPORT_SYMBOL(find_vma); 2024 2025 /* 2026 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2027 */ 2028 struct vm_area_struct * 2029 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2030 struct vm_area_struct **pprev) 2031 { 2032 struct vm_area_struct *vma; 2033 2034 vma = find_vma(mm, addr); 2035 if (vma) { 2036 *pprev = vma->vm_prev; 2037 } else { 2038 struct rb_node *rb_node = mm->mm_rb.rb_node; 2039 *pprev = NULL; 2040 while (rb_node) { 2041 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2042 rb_node = rb_node->rb_right; 2043 } 2044 } 2045 return vma; 2046 } 2047 2048 /* 2049 * Verify that the stack growth is acceptable and 2050 * update accounting. This is shared with both the 2051 * grow-up and grow-down cases. 2052 */ 2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2054 { 2055 struct mm_struct *mm = vma->vm_mm; 2056 struct rlimit *rlim = current->signal->rlim; 2057 unsigned long new_start; 2058 2059 /* address space limit tests */ 2060 if (!may_expand_vm(mm, grow)) 2061 return -ENOMEM; 2062 2063 /* Stack limit test */ 2064 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2065 return -ENOMEM; 2066 2067 /* mlock limit tests */ 2068 if (vma->vm_flags & VM_LOCKED) { 2069 unsigned long locked; 2070 unsigned long limit; 2071 locked = mm->locked_vm + grow; 2072 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2073 limit >>= PAGE_SHIFT; 2074 if (locked > limit && !capable(CAP_IPC_LOCK)) 2075 return -ENOMEM; 2076 } 2077 2078 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2079 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2080 vma->vm_end - size; 2081 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2082 return -EFAULT; 2083 2084 /* 2085 * Overcommit.. This must be the final test, as it will 2086 * update security statistics. 2087 */ 2088 if (security_vm_enough_memory_mm(mm, grow)) 2089 return -ENOMEM; 2090 2091 /* Ok, everything looks good - let it rip */ 2092 if (vma->vm_flags & VM_LOCKED) 2093 mm->locked_vm += grow; 2094 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2095 return 0; 2096 } 2097 2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2099 /* 2100 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2101 * vma is the last one with address > vma->vm_end. Have to extend vma. 2102 */ 2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2104 { 2105 int error; 2106 2107 if (!(vma->vm_flags & VM_GROWSUP)) 2108 return -EFAULT; 2109 2110 /* 2111 * We must make sure the anon_vma is allocated 2112 * so that the anon_vma locking is not a noop. 2113 */ 2114 if (unlikely(anon_vma_prepare(vma))) 2115 return -ENOMEM; 2116 vma_lock_anon_vma(vma); 2117 2118 /* 2119 * vma->vm_start/vm_end cannot change under us because the caller 2120 * is required to hold the mmap_sem in read mode. We need the 2121 * anon_vma lock to serialize against concurrent expand_stacks. 2122 * Also guard against wrapping around to address 0. 2123 */ 2124 if (address < PAGE_ALIGN(address+4)) 2125 address = PAGE_ALIGN(address+4); 2126 else { 2127 vma_unlock_anon_vma(vma); 2128 return -ENOMEM; 2129 } 2130 error = 0; 2131 2132 /* Somebody else might have raced and expanded it already */ 2133 if (address > vma->vm_end) { 2134 unsigned long size, grow; 2135 2136 size = address - vma->vm_start; 2137 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2138 2139 error = -ENOMEM; 2140 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2141 error = acct_stack_growth(vma, size, grow); 2142 if (!error) { 2143 /* 2144 * vma_gap_update() doesn't support concurrent 2145 * updates, but we only hold a shared mmap_sem 2146 * lock here, so we need to protect against 2147 * concurrent vma expansions. 2148 * vma_lock_anon_vma() doesn't help here, as 2149 * we don't guarantee that all growable vmas 2150 * in a mm share the same root anon vma. 2151 * So, we reuse mm->page_table_lock to guard 2152 * against concurrent vma expansions. 2153 */ 2154 spin_lock(&vma->vm_mm->page_table_lock); 2155 anon_vma_interval_tree_pre_update_vma(vma); 2156 vma->vm_end = address; 2157 anon_vma_interval_tree_post_update_vma(vma); 2158 if (vma->vm_next) 2159 vma_gap_update(vma->vm_next); 2160 else 2161 vma->vm_mm->highest_vm_end = address; 2162 spin_unlock(&vma->vm_mm->page_table_lock); 2163 2164 perf_event_mmap(vma); 2165 } 2166 } 2167 } 2168 vma_unlock_anon_vma(vma); 2169 khugepaged_enter_vma_merge(vma); 2170 validate_mm(vma->vm_mm); 2171 return error; 2172 } 2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2174 2175 /* 2176 * vma is the first one with address < vma->vm_start. Have to extend vma. 2177 */ 2178 int expand_downwards(struct vm_area_struct *vma, 2179 unsigned long address) 2180 { 2181 int error; 2182 2183 /* 2184 * We must make sure the anon_vma is allocated 2185 * so that the anon_vma locking is not a noop. 2186 */ 2187 if (unlikely(anon_vma_prepare(vma))) 2188 return -ENOMEM; 2189 2190 address &= PAGE_MASK; 2191 error = security_mmap_addr(address); 2192 if (error) 2193 return error; 2194 2195 vma_lock_anon_vma(vma); 2196 2197 /* 2198 * vma->vm_start/vm_end cannot change under us because the caller 2199 * is required to hold the mmap_sem in read mode. We need the 2200 * anon_vma lock to serialize against concurrent expand_stacks. 2201 */ 2202 2203 /* Somebody else might have raced and expanded it already */ 2204 if (address < vma->vm_start) { 2205 unsigned long size, grow; 2206 2207 size = vma->vm_end - address; 2208 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2209 2210 error = -ENOMEM; 2211 if (grow <= vma->vm_pgoff) { 2212 error = acct_stack_growth(vma, size, grow); 2213 if (!error) { 2214 /* 2215 * vma_gap_update() doesn't support concurrent 2216 * updates, but we only hold a shared mmap_sem 2217 * lock here, so we need to protect against 2218 * concurrent vma expansions. 2219 * vma_lock_anon_vma() doesn't help here, as 2220 * we don't guarantee that all growable vmas 2221 * in a mm share the same root anon vma. 2222 * So, we reuse mm->page_table_lock to guard 2223 * against concurrent vma expansions. 2224 */ 2225 spin_lock(&vma->vm_mm->page_table_lock); 2226 anon_vma_interval_tree_pre_update_vma(vma); 2227 vma->vm_start = address; 2228 vma->vm_pgoff -= grow; 2229 anon_vma_interval_tree_post_update_vma(vma); 2230 vma_gap_update(vma); 2231 spin_unlock(&vma->vm_mm->page_table_lock); 2232 2233 perf_event_mmap(vma); 2234 } 2235 } 2236 } 2237 vma_unlock_anon_vma(vma); 2238 khugepaged_enter_vma_merge(vma); 2239 validate_mm(vma->vm_mm); 2240 return error; 2241 } 2242 2243 /* 2244 * Note how expand_stack() refuses to expand the stack all the way to 2245 * abut the next virtual mapping, *unless* that mapping itself is also 2246 * a stack mapping. We want to leave room for a guard page, after all 2247 * (the guard page itself is not added here, that is done by the 2248 * actual page faulting logic) 2249 * 2250 * This matches the behavior of the guard page logic (see mm/memory.c: 2251 * check_stack_guard_page()), which only allows the guard page to be 2252 * removed under these circumstances. 2253 */ 2254 #ifdef CONFIG_STACK_GROWSUP 2255 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2256 { 2257 struct vm_area_struct *next; 2258 2259 address &= PAGE_MASK; 2260 next = vma->vm_next; 2261 if (next && next->vm_start == address + PAGE_SIZE) { 2262 if (!(next->vm_flags & VM_GROWSUP)) 2263 return -ENOMEM; 2264 } 2265 return expand_upwards(vma, address); 2266 } 2267 2268 struct vm_area_struct * 2269 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2270 { 2271 struct vm_area_struct *vma, *prev; 2272 2273 addr &= PAGE_MASK; 2274 vma = find_vma_prev(mm, addr, &prev); 2275 if (vma && (vma->vm_start <= addr)) 2276 return vma; 2277 if (!prev || expand_stack(prev, addr)) 2278 return NULL; 2279 if (prev->vm_flags & VM_LOCKED) 2280 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2281 return prev; 2282 } 2283 #else 2284 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2285 { 2286 struct vm_area_struct *prev; 2287 2288 address &= PAGE_MASK; 2289 prev = vma->vm_prev; 2290 if (prev && prev->vm_end == address) { 2291 if (!(prev->vm_flags & VM_GROWSDOWN)) 2292 return -ENOMEM; 2293 } 2294 return expand_downwards(vma, address); 2295 } 2296 2297 struct vm_area_struct * 2298 find_extend_vma(struct mm_struct * mm, unsigned long addr) 2299 { 2300 struct vm_area_struct * vma; 2301 unsigned long start; 2302 2303 addr &= PAGE_MASK; 2304 vma = find_vma(mm,addr); 2305 if (!vma) 2306 return NULL; 2307 if (vma->vm_start <= addr) 2308 return vma; 2309 if (!(vma->vm_flags & VM_GROWSDOWN)) 2310 return NULL; 2311 start = vma->vm_start; 2312 if (expand_stack(vma, addr)) 2313 return NULL; 2314 if (vma->vm_flags & VM_LOCKED) 2315 __mlock_vma_pages_range(vma, addr, start, NULL); 2316 return vma; 2317 } 2318 #endif 2319 2320 /* 2321 * Ok - we have the memory areas we should free on the vma list, 2322 * so release them, and do the vma updates. 2323 * 2324 * Called with the mm semaphore held. 2325 */ 2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2327 { 2328 unsigned long nr_accounted = 0; 2329 2330 /* Update high watermark before we lower total_vm */ 2331 update_hiwater_vm(mm); 2332 do { 2333 long nrpages = vma_pages(vma); 2334 2335 if (vma->vm_flags & VM_ACCOUNT) 2336 nr_accounted += nrpages; 2337 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2338 vma = remove_vma(vma); 2339 } while (vma); 2340 vm_unacct_memory(nr_accounted); 2341 validate_mm(mm); 2342 } 2343 2344 /* 2345 * Get rid of page table information in the indicated region. 2346 * 2347 * Called with the mm semaphore held. 2348 */ 2349 static void unmap_region(struct mm_struct *mm, 2350 struct vm_area_struct *vma, struct vm_area_struct *prev, 2351 unsigned long start, unsigned long end) 2352 { 2353 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 2354 struct mmu_gather tlb; 2355 2356 lru_add_drain(); 2357 tlb_gather_mmu(&tlb, mm, start, end); 2358 update_hiwater_rss(mm); 2359 unmap_vmas(&tlb, vma, start, end); 2360 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2361 next ? next->vm_start : USER_PGTABLES_CEILING); 2362 tlb_finish_mmu(&tlb, start, end); 2363 } 2364 2365 /* 2366 * Create a list of vma's touched by the unmap, removing them from the mm's 2367 * vma list as we go.. 2368 */ 2369 static void 2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2371 struct vm_area_struct *prev, unsigned long end) 2372 { 2373 struct vm_area_struct **insertion_point; 2374 struct vm_area_struct *tail_vma = NULL; 2375 2376 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2377 vma->vm_prev = NULL; 2378 do { 2379 vma_rb_erase(vma, &mm->mm_rb); 2380 mm->map_count--; 2381 tail_vma = vma; 2382 vma = vma->vm_next; 2383 } while (vma && vma->vm_start < end); 2384 *insertion_point = vma; 2385 if (vma) { 2386 vma->vm_prev = prev; 2387 vma_gap_update(vma); 2388 } else 2389 mm->highest_vm_end = prev ? prev->vm_end : 0; 2390 tail_vma->vm_next = NULL; 2391 mm->mmap_cache = NULL; /* Kill the cache. */ 2392 } 2393 2394 /* 2395 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2396 * munmap path where it doesn't make sense to fail. 2397 */ 2398 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 2399 unsigned long addr, int new_below) 2400 { 2401 struct vm_area_struct *new; 2402 int err = -ENOMEM; 2403 2404 if (is_vm_hugetlb_page(vma) && (addr & 2405 ~(huge_page_mask(hstate_vma(vma))))) 2406 return -EINVAL; 2407 2408 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2409 if (!new) 2410 goto out_err; 2411 2412 /* most fields are the same, copy all, and then fixup */ 2413 *new = *vma; 2414 2415 INIT_LIST_HEAD(&new->anon_vma_chain); 2416 2417 if (new_below) 2418 new->vm_end = addr; 2419 else { 2420 new->vm_start = addr; 2421 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2422 } 2423 2424 err = vma_dup_policy(vma, new); 2425 if (err) 2426 goto out_free_vma; 2427 2428 if (anon_vma_clone(new, vma)) 2429 goto out_free_mpol; 2430 2431 if (new->vm_file) 2432 get_file(new->vm_file); 2433 2434 if (new->vm_ops && new->vm_ops->open) 2435 new->vm_ops->open(new); 2436 2437 if (new_below) 2438 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2439 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2440 else 2441 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2442 2443 /* Success. */ 2444 if (!err) 2445 return 0; 2446 2447 /* Clean everything up if vma_adjust failed. */ 2448 if (new->vm_ops && new->vm_ops->close) 2449 new->vm_ops->close(new); 2450 if (new->vm_file) 2451 fput(new->vm_file); 2452 unlink_anon_vmas(new); 2453 out_free_mpol: 2454 mpol_put(vma_policy(new)); 2455 out_free_vma: 2456 kmem_cache_free(vm_area_cachep, new); 2457 out_err: 2458 return err; 2459 } 2460 2461 /* 2462 * Split a vma into two pieces at address 'addr', a new vma is allocated 2463 * either for the first part or the tail. 2464 */ 2465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2466 unsigned long addr, int new_below) 2467 { 2468 if (mm->map_count >= sysctl_max_map_count) 2469 return -ENOMEM; 2470 2471 return __split_vma(mm, vma, addr, new_below); 2472 } 2473 2474 /* Munmap is split into 2 main parts -- this part which finds 2475 * what needs doing, and the areas themselves, which do the 2476 * work. This now handles partial unmappings. 2477 * Jeremy Fitzhardinge <jeremy@goop.org> 2478 */ 2479 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2480 { 2481 unsigned long end; 2482 struct vm_area_struct *vma, *prev, *last; 2483 2484 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2485 return -EINVAL; 2486 2487 if ((len = PAGE_ALIGN(len)) == 0) 2488 return -EINVAL; 2489 2490 /* Find the first overlapping VMA */ 2491 vma = find_vma(mm, start); 2492 if (!vma) 2493 return 0; 2494 prev = vma->vm_prev; 2495 /* we have start < vma->vm_end */ 2496 2497 /* if it doesn't overlap, we have nothing.. */ 2498 end = start + len; 2499 if (vma->vm_start >= end) 2500 return 0; 2501 2502 /* 2503 * If we need to split any vma, do it now to save pain later. 2504 * 2505 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2506 * unmapped vm_area_struct will remain in use: so lower split_vma 2507 * places tmp vma above, and higher split_vma places tmp vma below. 2508 */ 2509 if (start > vma->vm_start) { 2510 int error; 2511 2512 /* 2513 * Make sure that map_count on return from munmap() will 2514 * not exceed its limit; but let map_count go just above 2515 * its limit temporarily, to help free resources as expected. 2516 */ 2517 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2518 return -ENOMEM; 2519 2520 error = __split_vma(mm, vma, start, 0); 2521 if (error) 2522 return error; 2523 prev = vma; 2524 } 2525 2526 /* Does it split the last one? */ 2527 last = find_vma(mm, end); 2528 if (last && end > last->vm_start) { 2529 int error = __split_vma(mm, last, end, 1); 2530 if (error) 2531 return error; 2532 } 2533 vma = prev? prev->vm_next: mm->mmap; 2534 2535 /* 2536 * unlock any mlock()ed ranges before detaching vmas 2537 */ 2538 if (mm->locked_vm) { 2539 struct vm_area_struct *tmp = vma; 2540 while (tmp && tmp->vm_start < end) { 2541 if (tmp->vm_flags & VM_LOCKED) { 2542 mm->locked_vm -= vma_pages(tmp); 2543 munlock_vma_pages_all(tmp); 2544 } 2545 tmp = tmp->vm_next; 2546 } 2547 } 2548 2549 /* 2550 * Remove the vma's, and unmap the actual pages 2551 */ 2552 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2553 unmap_region(mm, vma, prev, start, end); 2554 2555 /* Fix up all other VM information */ 2556 remove_vma_list(mm, vma); 2557 2558 return 0; 2559 } 2560 2561 int vm_munmap(unsigned long start, size_t len) 2562 { 2563 int ret; 2564 struct mm_struct *mm = current->mm; 2565 2566 down_write(&mm->mmap_sem); 2567 ret = do_munmap(mm, start, len); 2568 up_write(&mm->mmap_sem); 2569 return ret; 2570 } 2571 EXPORT_SYMBOL(vm_munmap); 2572 2573 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2574 { 2575 profile_munmap(addr); 2576 return vm_munmap(addr, len); 2577 } 2578 2579 static inline void verify_mm_writelocked(struct mm_struct *mm) 2580 { 2581 #ifdef CONFIG_DEBUG_VM 2582 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2583 WARN_ON(1); 2584 up_read(&mm->mmap_sem); 2585 } 2586 #endif 2587 } 2588 2589 /* 2590 * this is really a simplified "do_mmap". it only handles 2591 * anonymous maps. eventually we may be able to do some 2592 * brk-specific accounting here. 2593 */ 2594 static unsigned long do_brk(unsigned long addr, unsigned long len) 2595 { 2596 struct mm_struct * mm = current->mm; 2597 struct vm_area_struct * vma, * prev; 2598 unsigned long flags; 2599 struct rb_node ** rb_link, * rb_parent; 2600 pgoff_t pgoff = addr >> PAGE_SHIFT; 2601 int error; 2602 2603 len = PAGE_ALIGN(len); 2604 if (!len) 2605 return addr; 2606 2607 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2608 2609 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2610 if (error & ~PAGE_MASK) 2611 return error; 2612 2613 error = mlock_future_check(mm, mm->def_flags, len); 2614 if (error) 2615 return error; 2616 2617 /* 2618 * mm->mmap_sem is required to protect against another thread 2619 * changing the mappings in case we sleep. 2620 */ 2621 verify_mm_writelocked(mm); 2622 2623 /* 2624 * Clear old maps. this also does some error checking for us 2625 */ 2626 munmap_back: 2627 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2628 if (do_munmap(mm, addr, len)) 2629 return -ENOMEM; 2630 goto munmap_back; 2631 } 2632 2633 /* Check against address space limits *after* clearing old maps... */ 2634 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2635 return -ENOMEM; 2636 2637 if (mm->map_count > sysctl_max_map_count) 2638 return -ENOMEM; 2639 2640 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2641 return -ENOMEM; 2642 2643 /* Can we just expand an old private anonymous mapping? */ 2644 vma = vma_merge(mm, prev, addr, addr + len, flags, 2645 NULL, NULL, pgoff, NULL); 2646 if (vma) 2647 goto out; 2648 2649 /* 2650 * create a vma struct for an anonymous mapping 2651 */ 2652 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2653 if (!vma) { 2654 vm_unacct_memory(len >> PAGE_SHIFT); 2655 return -ENOMEM; 2656 } 2657 2658 INIT_LIST_HEAD(&vma->anon_vma_chain); 2659 vma->vm_mm = mm; 2660 vma->vm_start = addr; 2661 vma->vm_end = addr + len; 2662 vma->vm_pgoff = pgoff; 2663 vma->vm_flags = flags; 2664 vma->vm_page_prot = vm_get_page_prot(flags); 2665 vma_link(mm, vma, prev, rb_link, rb_parent); 2666 out: 2667 perf_event_mmap(vma); 2668 mm->total_vm += len >> PAGE_SHIFT; 2669 if (flags & VM_LOCKED) 2670 mm->locked_vm += (len >> PAGE_SHIFT); 2671 vma->vm_flags |= VM_SOFTDIRTY; 2672 return addr; 2673 } 2674 2675 unsigned long vm_brk(unsigned long addr, unsigned long len) 2676 { 2677 struct mm_struct *mm = current->mm; 2678 unsigned long ret; 2679 bool populate; 2680 2681 down_write(&mm->mmap_sem); 2682 ret = do_brk(addr, len); 2683 populate = ((mm->def_flags & VM_LOCKED) != 0); 2684 up_write(&mm->mmap_sem); 2685 if (populate) 2686 mm_populate(addr, len); 2687 return ret; 2688 } 2689 EXPORT_SYMBOL(vm_brk); 2690 2691 /* Release all mmaps. */ 2692 void exit_mmap(struct mm_struct *mm) 2693 { 2694 struct mmu_gather tlb; 2695 struct vm_area_struct *vma; 2696 unsigned long nr_accounted = 0; 2697 2698 /* mm's last user has gone, and its about to be pulled down */ 2699 mmu_notifier_release(mm); 2700 2701 if (mm->locked_vm) { 2702 vma = mm->mmap; 2703 while (vma) { 2704 if (vma->vm_flags & VM_LOCKED) 2705 munlock_vma_pages_all(vma); 2706 vma = vma->vm_next; 2707 } 2708 } 2709 2710 arch_exit_mmap(mm); 2711 2712 vma = mm->mmap; 2713 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2714 return; 2715 2716 lru_add_drain(); 2717 flush_cache_mm(mm); 2718 tlb_gather_mmu(&tlb, mm, 0, -1); 2719 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2720 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2721 unmap_vmas(&tlb, vma, 0, -1); 2722 2723 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2724 tlb_finish_mmu(&tlb, 0, -1); 2725 2726 /* 2727 * Walk the list again, actually closing and freeing it, 2728 * with preemption enabled, without holding any MM locks. 2729 */ 2730 while (vma) { 2731 if (vma->vm_flags & VM_ACCOUNT) 2732 nr_accounted += vma_pages(vma); 2733 vma = remove_vma(vma); 2734 } 2735 vm_unacct_memory(nr_accounted); 2736 2737 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2738 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2739 } 2740 2741 /* Insert vm structure into process list sorted by address 2742 * and into the inode's i_mmap tree. If vm_file is non-NULL 2743 * then i_mmap_mutex is taken here. 2744 */ 2745 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2746 { 2747 struct vm_area_struct *prev; 2748 struct rb_node **rb_link, *rb_parent; 2749 2750 /* 2751 * The vm_pgoff of a purely anonymous vma should be irrelevant 2752 * until its first write fault, when page's anon_vma and index 2753 * are set. But now set the vm_pgoff it will almost certainly 2754 * end up with (unless mremap moves it elsewhere before that 2755 * first wfault), so /proc/pid/maps tells a consistent story. 2756 * 2757 * By setting it to reflect the virtual start address of the 2758 * vma, merges and splits can happen in a seamless way, just 2759 * using the existing file pgoff checks and manipulations. 2760 * Similarly in do_mmap_pgoff and in do_brk. 2761 */ 2762 if (!vma->vm_file) { 2763 BUG_ON(vma->anon_vma); 2764 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2765 } 2766 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2767 &prev, &rb_link, &rb_parent)) 2768 return -ENOMEM; 2769 if ((vma->vm_flags & VM_ACCOUNT) && 2770 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2771 return -ENOMEM; 2772 2773 vma_link(mm, vma, prev, rb_link, rb_parent); 2774 return 0; 2775 } 2776 2777 /* 2778 * Copy the vma structure to a new location in the same mm, 2779 * prior to moving page table entries, to effect an mremap move. 2780 */ 2781 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2782 unsigned long addr, unsigned long len, pgoff_t pgoff, 2783 bool *need_rmap_locks) 2784 { 2785 struct vm_area_struct *vma = *vmap; 2786 unsigned long vma_start = vma->vm_start; 2787 struct mm_struct *mm = vma->vm_mm; 2788 struct vm_area_struct *new_vma, *prev; 2789 struct rb_node **rb_link, *rb_parent; 2790 bool faulted_in_anon_vma = true; 2791 2792 /* 2793 * If anonymous vma has not yet been faulted, update new pgoff 2794 * to match new location, to increase its chance of merging. 2795 */ 2796 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2797 pgoff = addr >> PAGE_SHIFT; 2798 faulted_in_anon_vma = false; 2799 } 2800 2801 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2802 return NULL; /* should never get here */ 2803 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2804 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2805 if (new_vma) { 2806 /* 2807 * Source vma may have been merged into new_vma 2808 */ 2809 if (unlikely(vma_start >= new_vma->vm_start && 2810 vma_start < new_vma->vm_end)) { 2811 /* 2812 * The only way we can get a vma_merge with 2813 * self during an mremap is if the vma hasn't 2814 * been faulted in yet and we were allowed to 2815 * reset the dst vma->vm_pgoff to the 2816 * destination address of the mremap to allow 2817 * the merge to happen. mremap must change the 2818 * vm_pgoff linearity between src and dst vmas 2819 * (in turn preventing a vma_merge) to be 2820 * safe. It is only safe to keep the vm_pgoff 2821 * linear if there are no pages mapped yet. 2822 */ 2823 VM_BUG_ON(faulted_in_anon_vma); 2824 *vmap = vma = new_vma; 2825 } 2826 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2827 } else { 2828 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2829 if (new_vma) { 2830 *new_vma = *vma; 2831 new_vma->vm_start = addr; 2832 new_vma->vm_end = addr + len; 2833 new_vma->vm_pgoff = pgoff; 2834 if (vma_dup_policy(vma, new_vma)) 2835 goto out_free_vma; 2836 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2837 if (anon_vma_clone(new_vma, vma)) 2838 goto out_free_mempol; 2839 if (new_vma->vm_file) 2840 get_file(new_vma->vm_file); 2841 if (new_vma->vm_ops && new_vma->vm_ops->open) 2842 new_vma->vm_ops->open(new_vma); 2843 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2844 *need_rmap_locks = false; 2845 } 2846 } 2847 return new_vma; 2848 2849 out_free_mempol: 2850 mpol_put(vma_policy(new_vma)); 2851 out_free_vma: 2852 kmem_cache_free(vm_area_cachep, new_vma); 2853 return NULL; 2854 } 2855 2856 /* 2857 * Return true if the calling process may expand its vm space by the passed 2858 * number of pages 2859 */ 2860 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2861 { 2862 unsigned long cur = mm->total_vm; /* pages */ 2863 unsigned long lim; 2864 2865 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2866 2867 if (cur + npages > lim) 2868 return 0; 2869 return 1; 2870 } 2871 2872 2873 static int special_mapping_fault(struct vm_area_struct *vma, 2874 struct vm_fault *vmf) 2875 { 2876 pgoff_t pgoff; 2877 struct page **pages; 2878 2879 /* 2880 * special mappings have no vm_file, and in that case, the mm 2881 * uses vm_pgoff internally. So we have to subtract it from here. 2882 * We are allowed to do this because we are the mm; do not copy 2883 * this code into drivers! 2884 */ 2885 pgoff = vmf->pgoff - vma->vm_pgoff; 2886 2887 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2888 pgoff--; 2889 2890 if (*pages) { 2891 struct page *page = *pages; 2892 get_page(page); 2893 vmf->page = page; 2894 return 0; 2895 } 2896 2897 return VM_FAULT_SIGBUS; 2898 } 2899 2900 /* 2901 * Having a close hook prevents vma merging regardless of flags. 2902 */ 2903 static void special_mapping_close(struct vm_area_struct *vma) 2904 { 2905 } 2906 2907 static const struct vm_operations_struct special_mapping_vmops = { 2908 .close = special_mapping_close, 2909 .fault = special_mapping_fault, 2910 }; 2911 2912 /* 2913 * Called with mm->mmap_sem held for writing. 2914 * Insert a new vma covering the given region, with the given flags. 2915 * Its pages are supplied by the given array of struct page *. 2916 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2917 * The region past the last page supplied will always produce SIGBUS. 2918 * The array pointer and the pages it points to are assumed to stay alive 2919 * for as long as this mapping might exist. 2920 */ 2921 int install_special_mapping(struct mm_struct *mm, 2922 unsigned long addr, unsigned long len, 2923 unsigned long vm_flags, struct page **pages) 2924 { 2925 int ret; 2926 struct vm_area_struct *vma; 2927 2928 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2929 if (unlikely(vma == NULL)) 2930 return -ENOMEM; 2931 2932 INIT_LIST_HEAD(&vma->anon_vma_chain); 2933 vma->vm_mm = mm; 2934 vma->vm_start = addr; 2935 vma->vm_end = addr + len; 2936 2937 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 2938 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2939 2940 vma->vm_ops = &special_mapping_vmops; 2941 vma->vm_private_data = pages; 2942 2943 ret = insert_vm_struct(mm, vma); 2944 if (ret) 2945 goto out; 2946 2947 mm->total_vm += len >> PAGE_SHIFT; 2948 2949 perf_event_mmap(vma); 2950 2951 return 0; 2952 2953 out: 2954 kmem_cache_free(vm_area_cachep, vma); 2955 return ret; 2956 } 2957 2958 static DEFINE_MUTEX(mm_all_locks_mutex); 2959 2960 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2961 { 2962 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2963 /* 2964 * The LSB of head.next can't change from under us 2965 * because we hold the mm_all_locks_mutex. 2966 */ 2967 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 2968 /* 2969 * We can safely modify head.next after taking the 2970 * anon_vma->root->rwsem. If some other vma in this mm shares 2971 * the same anon_vma we won't take it again. 2972 * 2973 * No need of atomic instructions here, head.next 2974 * can't change from under us thanks to the 2975 * anon_vma->root->rwsem. 2976 */ 2977 if (__test_and_set_bit(0, (unsigned long *) 2978 &anon_vma->root->rb_root.rb_node)) 2979 BUG(); 2980 } 2981 } 2982 2983 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2984 { 2985 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2986 /* 2987 * AS_MM_ALL_LOCKS can't change from under us because 2988 * we hold the mm_all_locks_mutex. 2989 * 2990 * Operations on ->flags have to be atomic because 2991 * even if AS_MM_ALL_LOCKS is stable thanks to the 2992 * mm_all_locks_mutex, there may be other cpus 2993 * changing other bitflags in parallel to us. 2994 */ 2995 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2996 BUG(); 2997 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2998 } 2999 } 3000 3001 /* 3002 * This operation locks against the VM for all pte/vma/mm related 3003 * operations that could ever happen on a certain mm. This includes 3004 * vmtruncate, try_to_unmap, and all page faults. 3005 * 3006 * The caller must take the mmap_sem in write mode before calling 3007 * mm_take_all_locks(). The caller isn't allowed to release the 3008 * mmap_sem until mm_drop_all_locks() returns. 3009 * 3010 * mmap_sem in write mode is required in order to block all operations 3011 * that could modify pagetables and free pages without need of 3012 * altering the vma layout (for example populate_range() with 3013 * nonlinear vmas). It's also needed in write mode to avoid new 3014 * anon_vmas to be associated with existing vmas. 3015 * 3016 * A single task can't take more than one mm_take_all_locks() in a row 3017 * or it would deadlock. 3018 * 3019 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3020 * mapping->flags avoid to take the same lock twice, if more than one 3021 * vma in this mm is backed by the same anon_vma or address_space. 3022 * 3023 * We can take all the locks in random order because the VM code 3024 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never 3025 * takes more than one of them in a row. Secondly we're protected 3026 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3027 * 3028 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3029 * that may have to take thousand of locks. 3030 * 3031 * mm_take_all_locks() can fail if it's interrupted by signals. 3032 */ 3033 int mm_take_all_locks(struct mm_struct *mm) 3034 { 3035 struct vm_area_struct *vma; 3036 struct anon_vma_chain *avc; 3037 3038 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3039 3040 mutex_lock(&mm_all_locks_mutex); 3041 3042 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3043 if (signal_pending(current)) 3044 goto out_unlock; 3045 if (vma->vm_file && vma->vm_file->f_mapping) 3046 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3047 } 3048 3049 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3050 if (signal_pending(current)) 3051 goto out_unlock; 3052 if (vma->anon_vma) 3053 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3054 vm_lock_anon_vma(mm, avc->anon_vma); 3055 } 3056 3057 return 0; 3058 3059 out_unlock: 3060 mm_drop_all_locks(mm); 3061 return -EINTR; 3062 } 3063 3064 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3065 { 3066 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3067 /* 3068 * The LSB of head.next can't change to 0 from under 3069 * us because we hold the mm_all_locks_mutex. 3070 * 3071 * We must however clear the bitflag before unlocking 3072 * the vma so the users using the anon_vma->rb_root will 3073 * never see our bitflag. 3074 * 3075 * No need of atomic instructions here, head.next 3076 * can't change from under us until we release the 3077 * anon_vma->root->rwsem. 3078 */ 3079 if (!__test_and_clear_bit(0, (unsigned long *) 3080 &anon_vma->root->rb_root.rb_node)) 3081 BUG(); 3082 anon_vma_unlock_write(anon_vma); 3083 } 3084 } 3085 3086 static void vm_unlock_mapping(struct address_space *mapping) 3087 { 3088 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3089 /* 3090 * AS_MM_ALL_LOCKS can't change to 0 from under us 3091 * because we hold the mm_all_locks_mutex. 3092 */ 3093 mutex_unlock(&mapping->i_mmap_mutex); 3094 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3095 &mapping->flags)) 3096 BUG(); 3097 } 3098 } 3099 3100 /* 3101 * The mmap_sem cannot be released by the caller until 3102 * mm_drop_all_locks() returns. 3103 */ 3104 void mm_drop_all_locks(struct mm_struct *mm) 3105 { 3106 struct vm_area_struct *vma; 3107 struct anon_vma_chain *avc; 3108 3109 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3110 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3111 3112 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3113 if (vma->anon_vma) 3114 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3115 vm_unlock_anon_vma(avc->anon_vma); 3116 if (vma->vm_file && vma->vm_file->f_mapping) 3117 vm_unlock_mapping(vma->vm_file->f_mapping); 3118 } 3119 3120 mutex_unlock(&mm_all_locks_mutex); 3121 } 3122 3123 /* 3124 * initialise the VMA slab 3125 */ 3126 void __init mmap_init(void) 3127 { 3128 int ret; 3129 3130 ret = percpu_counter_init(&vm_committed_as, 0); 3131 VM_BUG_ON(ret); 3132 } 3133 3134 /* 3135 * Initialise sysctl_user_reserve_kbytes. 3136 * 3137 * This is intended to prevent a user from starting a single memory hogging 3138 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3139 * mode. 3140 * 3141 * The default value is min(3% of free memory, 128MB) 3142 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3143 */ 3144 static int init_user_reserve(void) 3145 { 3146 unsigned long free_kbytes; 3147 3148 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3149 3150 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3151 return 0; 3152 } 3153 subsys_initcall(init_user_reserve); 3154 3155 /* 3156 * Initialise sysctl_admin_reserve_kbytes. 3157 * 3158 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3159 * to log in and kill a memory hogging process. 3160 * 3161 * Systems with more than 256MB will reserve 8MB, enough to recover 3162 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3163 * only reserve 3% of free pages by default. 3164 */ 3165 static int init_admin_reserve(void) 3166 { 3167 unsigned long free_kbytes; 3168 3169 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3170 3171 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3172 return 0; 3173 } 3174 subsys_initcall(init_admin_reserve); 3175 3176 /* 3177 * Reinititalise user and admin reserves if memory is added or removed. 3178 * 3179 * The default user reserve max is 128MB, and the default max for the 3180 * admin reserve is 8MB. These are usually, but not always, enough to 3181 * enable recovery from a memory hogging process using login/sshd, a shell, 3182 * and tools like top. It may make sense to increase or even disable the 3183 * reserve depending on the existence of swap or variations in the recovery 3184 * tools. So, the admin may have changed them. 3185 * 3186 * If memory is added and the reserves have been eliminated or increased above 3187 * the default max, then we'll trust the admin. 3188 * 3189 * If memory is removed and there isn't enough free memory, then we 3190 * need to reset the reserves. 3191 * 3192 * Otherwise keep the reserve set by the admin. 3193 */ 3194 static int reserve_mem_notifier(struct notifier_block *nb, 3195 unsigned long action, void *data) 3196 { 3197 unsigned long tmp, free_kbytes; 3198 3199 switch (action) { 3200 case MEM_ONLINE: 3201 /* Default max is 128MB. Leave alone if modified by operator. */ 3202 tmp = sysctl_user_reserve_kbytes; 3203 if (0 < tmp && tmp < (1UL << 17)) 3204 init_user_reserve(); 3205 3206 /* Default max is 8MB. Leave alone if modified by operator. */ 3207 tmp = sysctl_admin_reserve_kbytes; 3208 if (0 < tmp && tmp < (1UL << 13)) 3209 init_admin_reserve(); 3210 3211 break; 3212 case MEM_OFFLINE: 3213 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3214 3215 if (sysctl_user_reserve_kbytes > free_kbytes) { 3216 init_user_reserve(); 3217 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3218 sysctl_user_reserve_kbytes); 3219 } 3220 3221 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3222 init_admin_reserve(); 3223 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3224 sysctl_admin_reserve_kbytes); 3225 } 3226 break; 3227 default: 3228 break; 3229 } 3230 return NOTIFY_OK; 3231 } 3232 3233 static struct notifier_block reserve_mem_nb = { 3234 .notifier_call = reserve_mem_notifier, 3235 }; 3236 3237 static int __meminit init_reserve_notifier(void) 3238 { 3239 if (register_hotmemory_notifier(&reserve_mem_nb)) 3240 printk("Failed registering memory add/remove notifier for admin reserve"); 3241 3242 return 0; 3243 } 3244 subsys_initcall(init_reserve_notifier); 3245