1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlb.h> 52 #include <asm/mmu_context.h> 53 54 #include "internal.h" 55 56 #ifndef arch_mmap_check 57 #define arch_mmap_check(addr, len, flags) (0) 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 69 #endif 70 71 static bool ignore_rlimit_data; 72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 73 74 static void unmap_region(struct mm_struct *mm, 75 struct vm_area_struct *vma, struct vm_area_struct *prev, 76 unsigned long start, unsigned long end); 77 78 /* description of effects of mapping type and prot in current implementation. 79 * this is due to the limited x86 page protection hardware. The expected 80 * behavior is in parens: 81 * 82 * map_type prot 83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 85 * w: (no) no w: (no) no w: (yes) yes w: (no) no 86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 87 * 88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 89 * w: (no) no w: (no) no w: (copy) copy w: (no) no 90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 91 * 92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 93 * MAP_PRIVATE: 94 * r: (no) no 95 * w: (no) no 96 * x: (yes) yes 97 */ 98 pgprot_t protection_map[16] __ro_after_init = { 99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 101 }; 102 103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 105 { 106 return prot; 107 } 108 #endif 109 110 pgprot_t vm_get_page_prot(unsigned long vm_flags) 111 { 112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 114 pgprot_val(arch_vm_get_page_prot(vm_flags))); 115 116 return arch_filter_pgprot(ret); 117 } 118 EXPORT_SYMBOL(vm_get_page_prot); 119 120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 121 { 122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 123 } 124 125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 126 void vma_set_page_prot(struct vm_area_struct *vma) 127 { 128 unsigned long vm_flags = vma->vm_flags; 129 pgprot_t vm_page_prot; 130 131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 132 if (vma_wants_writenotify(vma, vm_page_prot)) { 133 vm_flags &= ~VM_SHARED; 134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 135 } 136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 138 } 139 140 /* 141 * Requires inode->i_mapping->i_mmap_rwsem 142 */ 143 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 144 struct file *file, struct address_space *mapping) 145 { 146 if (vma->vm_flags & VM_DENYWRITE) 147 atomic_inc(&file_inode(file)->i_writecount); 148 if (vma->vm_flags & VM_SHARED) 149 mapping_unmap_writable(mapping); 150 151 flush_dcache_mmap_lock(mapping); 152 vma_interval_tree_remove(vma, &mapping->i_mmap); 153 flush_dcache_mmap_unlock(mapping); 154 } 155 156 /* 157 * Unlink a file-based vm structure from its interval tree, to hide 158 * vma from rmap and vmtruncate before freeing its page tables. 159 */ 160 void unlink_file_vma(struct vm_area_struct *vma) 161 { 162 struct file *file = vma->vm_file; 163 164 if (file) { 165 struct address_space *mapping = file->f_mapping; 166 i_mmap_lock_write(mapping); 167 __remove_shared_vm_struct(vma, file, mapping); 168 i_mmap_unlock_write(mapping); 169 } 170 } 171 172 /* 173 * Close a vm structure and free it, returning the next. 174 */ 175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 176 { 177 struct vm_area_struct *next = vma->vm_next; 178 179 might_sleep(); 180 if (vma->vm_ops && vma->vm_ops->close) 181 vma->vm_ops->close(vma); 182 if (vma->vm_file) 183 fput(vma->vm_file); 184 mpol_put(vma_policy(vma)); 185 vm_area_free(vma); 186 return next; 187 } 188 189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 190 struct list_head *uf); 191 SYSCALL_DEFINE1(brk, unsigned long, brk) 192 { 193 unsigned long retval; 194 unsigned long newbrk, oldbrk, origbrk; 195 struct mm_struct *mm = current->mm; 196 struct vm_area_struct *next; 197 unsigned long min_brk; 198 bool populate; 199 bool downgraded = false; 200 LIST_HEAD(uf); 201 202 if (down_write_killable(&mm->mmap_sem)) 203 return -EINTR; 204 205 origbrk = mm->brk; 206 207 #ifdef CONFIG_COMPAT_BRK 208 /* 209 * CONFIG_COMPAT_BRK can still be overridden by setting 210 * randomize_va_space to 2, which will still cause mm->start_brk 211 * to be arbitrarily shifted 212 */ 213 if (current->brk_randomized) 214 min_brk = mm->start_brk; 215 else 216 min_brk = mm->end_data; 217 #else 218 min_brk = mm->start_brk; 219 #endif 220 if (brk < min_brk) 221 goto out; 222 223 /* 224 * Check against rlimit here. If this check is done later after the test 225 * of oldbrk with newbrk then it can escape the test and let the data 226 * segment grow beyond its set limit the in case where the limit is 227 * not page aligned -Ram Gupta 228 */ 229 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 230 mm->end_data, mm->start_data)) 231 goto out; 232 233 newbrk = PAGE_ALIGN(brk); 234 oldbrk = PAGE_ALIGN(mm->brk); 235 if (oldbrk == newbrk) { 236 mm->brk = brk; 237 goto success; 238 } 239 240 /* 241 * Always allow shrinking brk. 242 * __do_munmap() may downgrade mmap_sem to read. 243 */ 244 if (brk <= mm->brk) { 245 int ret; 246 247 /* 248 * mm->brk must to be protected by write mmap_sem so update it 249 * before downgrading mmap_sem. When __do_munmap() fails, 250 * mm->brk will be restored from origbrk. 251 */ 252 mm->brk = brk; 253 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 254 if (ret < 0) { 255 mm->brk = origbrk; 256 goto out; 257 } else if (ret == 1) { 258 downgraded = true; 259 } 260 goto success; 261 } 262 263 /* Check against existing mmap mappings. */ 264 next = find_vma(mm, oldbrk); 265 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 266 goto out; 267 268 /* Ok, looks good - let it rip. */ 269 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 270 goto out; 271 mm->brk = brk; 272 273 success: 274 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 275 if (downgraded) 276 up_read(&mm->mmap_sem); 277 else 278 up_write(&mm->mmap_sem); 279 userfaultfd_unmap_complete(mm, &uf); 280 if (populate) 281 mm_populate(oldbrk, newbrk - oldbrk); 282 return brk; 283 284 out: 285 retval = origbrk; 286 up_write(&mm->mmap_sem); 287 return retval; 288 } 289 290 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 291 { 292 unsigned long max, prev_end, subtree_gap; 293 294 /* 295 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 296 * allow two stack_guard_gaps between them here, and when choosing 297 * an unmapped area; whereas when expanding we only require one. 298 * That's a little inconsistent, but keeps the code here simpler. 299 */ 300 max = vm_start_gap(vma); 301 if (vma->vm_prev) { 302 prev_end = vm_end_gap(vma->vm_prev); 303 if (max > prev_end) 304 max -= prev_end; 305 else 306 max = 0; 307 } 308 if (vma->vm_rb.rb_left) { 309 subtree_gap = rb_entry(vma->vm_rb.rb_left, 310 struct vm_area_struct, vm_rb)->rb_subtree_gap; 311 if (subtree_gap > max) 312 max = subtree_gap; 313 } 314 if (vma->vm_rb.rb_right) { 315 subtree_gap = rb_entry(vma->vm_rb.rb_right, 316 struct vm_area_struct, vm_rb)->rb_subtree_gap; 317 if (subtree_gap > max) 318 max = subtree_gap; 319 } 320 return max; 321 } 322 323 #ifdef CONFIG_DEBUG_VM_RB 324 static int browse_rb(struct mm_struct *mm) 325 { 326 struct rb_root *root = &mm->mm_rb; 327 int i = 0, j, bug = 0; 328 struct rb_node *nd, *pn = NULL; 329 unsigned long prev = 0, pend = 0; 330 331 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 332 struct vm_area_struct *vma; 333 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 334 if (vma->vm_start < prev) { 335 pr_emerg("vm_start %lx < prev %lx\n", 336 vma->vm_start, prev); 337 bug = 1; 338 } 339 if (vma->vm_start < pend) { 340 pr_emerg("vm_start %lx < pend %lx\n", 341 vma->vm_start, pend); 342 bug = 1; 343 } 344 if (vma->vm_start > vma->vm_end) { 345 pr_emerg("vm_start %lx > vm_end %lx\n", 346 vma->vm_start, vma->vm_end); 347 bug = 1; 348 } 349 spin_lock(&mm->page_table_lock); 350 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 351 pr_emerg("free gap %lx, correct %lx\n", 352 vma->rb_subtree_gap, 353 vma_compute_subtree_gap(vma)); 354 bug = 1; 355 } 356 spin_unlock(&mm->page_table_lock); 357 i++; 358 pn = nd; 359 prev = vma->vm_start; 360 pend = vma->vm_end; 361 } 362 j = 0; 363 for (nd = pn; nd; nd = rb_prev(nd)) 364 j++; 365 if (i != j) { 366 pr_emerg("backwards %d, forwards %d\n", j, i); 367 bug = 1; 368 } 369 return bug ? -1 : i; 370 } 371 372 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 373 { 374 struct rb_node *nd; 375 376 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 377 struct vm_area_struct *vma; 378 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 379 VM_BUG_ON_VMA(vma != ignore && 380 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 381 vma); 382 } 383 } 384 385 static void validate_mm(struct mm_struct *mm) 386 { 387 int bug = 0; 388 int i = 0; 389 unsigned long highest_address = 0; 390 struct vm_area_struct *vma = mm->mmap; 391 392 while (vma) { 393 struct anon_vma *anon_vma = vma->anon_vma; 394 struct anon_vma_chain *avc; 395 396 if (anon_vma) { 397 anon_vma_lock_read(anon_vma); 398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 399 anon_vma_interval_tree_verify(avc); 400 anon_vma_unlock_read(anon_vma); 401 } 402 403 highest_address = vm_end_gap(vma); 404 vma = vma->vm_next; 405 i++; 406 } 407 if (i != mm->map_count) { 408 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 409 bug = 1; 410 } 411 if (highest_address != mm->highest_vm_end) { 412 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 413 mm->highest_vm_end, highest_address); 414 bug = 1; 415 } 416 i = browse_rb(mm); 417 if (i != mm->map_count) { 418 if (i != -1) 419 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 420 bug = 1; 421 } 422 VM_BUG_ON_MM(bug, mm); 423 } 424 #else 425 #define validate_mm_rb(root, ignore) do { } while (0) 426 #define validate_mm(mm) do { } while (0) 427 #endif 428 429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 430 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 431 432 /* 433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 434 * vma->vm_prev->vm_end values changed, without modifying the vma's position 435 * in the rbtree. 436 */ 437 static void vma_gap_update(struct vm_area_struct *vma) 438 { 439 /* 440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 441 * function that does exactly what we want. 442 */ 443 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 444 } 445 446 static inline void vma_rb_insert(struct vm_area_struct *vma, 447 struct rb_root *root) 448 { 449 /* All rb_subtree_gap values must be consistent prior to insertion */ 450 validate_mm_rb(root, NULL); 451 452 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 453 } 454 455 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 456 { 457 /* 458 * Note rb_erase_augmented is a fairly large inline function, 459 * so make sure we instantiate it only once with our desired 460 * augmented rbtree callbacks. 461 */ 462 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 463 } 464 465 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 466 struct rb_root *root, 467 struct vm_area_struct *ignore) 468 { 469 /* 470 * All rb_subtree_gap values must be consistent prior to erase, 471 * with the possible exception of the "next" vma being erased if 472 * next->vm_start was reduced. 473 */ 474 validate_mm_rb(root, ignore); 475 476 __vma_rb_erase(vma, root); 477 } 478 479 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 480 struct rb_root *root) 481 { 482 /* 483 * All rb_subtree_gap values must be consistent prior to erase, 484 * with the possible exception of the vma being erased. 485 */ 486 validate_mm_rb(root, vma); 487 488 __vma_rb_erase(vma, root); 489 } 490 491 /* 492 * vma has some anon_vma assigned, and is already inserted on that 493 * anon_vma's interval trees. 494 * 495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 496 * vma must be removed from the anon_vma's interval trees using 497 * anon_vma_interval_tree_pre_update_vma(). 498 * 499 * After the update, the vma will be reinserted using 500 * anon_vma_interval_tree_post_update_vma(). 501 * 502 * The entire update must be protected by exclusive mmap_sem and by 503 * the root anon_vma's mutex. 504 */ 505 static inline void 506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 507 { 508 struct anon_vma_chain *avc; 509 510 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 511 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 512 } 513 514 static inline void 515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 516 { 517 struct anon_vma_chain *avc; 518 519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 520 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 521 } 522 523 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 524 unsigned long end, struct vm_area_struct **pprev, 525 struct rb_node ***rb_link, struct rb_node **rb_parent) 526 { 527 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 528 529 __rb_link = &mm->mm_rb.rb_node; 530 rb_prev = __rb_parent = NULL; 531 532 while (*__rb_link) { 533 struct vm_area_struct *vma_tmp; 534 535 __rb_parent = *__rb_link; 536 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 537 538 if (vma_tmp->vm_end > addr) { 539 /* Fail if an existing vma overlaps the area */ 540 if (vma_tmp->vm_start < end) 541 return -ENOMEM; 542 __rb_link = &__rb_parent->rb_left; 543 } else { 544 rb_prev = __rb_parent; 545 __rb_link = &__rb_parent->rb_right; 546 } 547 } 548 549 *pprev = NULL; 550 if (rb_prev) 551 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 552 *rb_link = __rb_link; 553 *rb_parent = __rb_parent; 554 return 0; 555 } 556 557 static unsigned long count_vma_pages_range(struct mm_struct *mm, 558 unsigned long addr, unsigned long end) 559 { 560 unsigned long nr_pages = 0; 561 struct vm_area_struct *vma; 562 563 /* Find first overlaping mapping */ 564 vma = find_vma_intersection(mm, addr, end); 565 if (!vma) 566 return 0; 567 568 nr_pages = (min(end, vma->vm_end) - 569 max(addr, vma->vm_start)) >> PAGE_SHIFT; 570 571 /* Iterate over the rest of the overlaps */ 572 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 573 unsigned long overlap_len; 574 575 if (vma->vm_start > end) 576 break; 577 578 overlap_len = min(end, vma->vm_end) - vma->vm_start; 579 nr_pages += overlap_len >> PAGE_SHIFT; 580 } 581 582 return nr_pages; 583 } 584 585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 586 struct rb_node **rb_link, struct rb_node *rb_parent) 587 { 588 /* Update tracking information for the gap following the new vma. */ 589 if (vma->vm_next) 590 vma_gap_update(vma->vm_next); 591 else 592 mm->highest_vm_end = vm_end_gap(vma); 593 594 /* 595 * vma->vm_prev wasn't known when we followed the rbtree to find the 596 * correct insertion point for that vma. As a result, we could not 597 * update the vma vm_rb parents rb_subtree_gap values on the way down. 598 * So, we first insert the vma with a zero rb_subtree_gap value 599 * (to be consistent with what we did on the way down), and then 600 * immediately update the gap to the correct value. Finally we 601 * rebalance the rbtree after all augmented values have been set. 602 */ 603 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 604 vma->rb_subtree_gap = 0; 605 vma_gap_update(vma); 606 vma_rb_insert(vma, &mm->mm_rb); 607 } 608 609 static void __vma_link_file(struct vm_area_struct *vma) 610 { 611 struct file *file; 612 613 file = vma->vm_file; 614 if (file) { 615 struct address_space *mapping = file->f_mapping; 616 617 if (vma->vm_flags & VM_DENYWRITE) 618 atomic_dec(&file_inode(file)->i_writecount); 619 if (vma->vm_flags & VM_SHARED) 620 atomic_inc(&mapping->i_mmap_writable); 621 622 flush_dcache_mmap_lock(mapping); 623 vma_interval_tree_insert(vma, &mapping->i_mmap); 624 flush_dcache_mmap_unlock(mapping); 625 } 626 } 627 628 static void 629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 630 struct vm_area_struct *prev, struct rb_node **rb_link, 631 struct rb_node *rb_parent) 632 { 633 __vma_link_list(mm, vma, prev, rb_parent); 634 __vma_link_rb(mm, vma, rb_link, rb_parent); 635 } 636 637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct vm_area_struct *prev, struct rb_node **rb_link, 639 struct rb_node *rb_parent) 640 { 641 struct address_space *mapping = NULL; 642 643 if (vma->vm_file) { 644 mapping = vma->vm_file->f_mapping; 645 i_mmap_lock_write(mapping); 646 } 647 648 __vma_link(mm, vma, prev, rb_link, rb_parent); 649 __vma_link_file(vma); 650 651 if (mapping) 652 i_mmap_unlock_write(mapping); 653 654 mm->map_count++; 655 validate_mm(mm); 656 } 657 658 /* 659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 660 * mm's list and rbtree. It has already been inserted into the interval tree. 661 */ 662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 663 { 664 struct vm_area_struct *prev; 665 struct rb_node **rb_link, *rb_parent; 666 667 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 668 &prev, &rb_link, &rb_parent)) 669 BUG(); 670 __vma_link(mm, vma, prev, rb_link, rb_parent); 671 mm->map_count++; 672 } 673 674 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 675 struct vm_area_struct *vma, 676 struct vm_area_struct *prev, 677 bool has_prev, 678 struct vm_area_struct *ignore) 679 { 680 struct vm_area_struct *next; 681 682 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 683 next = vma->vm_next; 684 if (has_prev) 685 prev->vm_next = next; 686 else { 687 prev = vma->vm_prev; 688 if (prev) 689 prev->vm_next = next; 690 else 691 mm->mmap = next; 692 } 693 if (next) 694 next->vm_prev = prev; 695 696 /* Kill the cache */ 697 vmacache_invalidate(mm); 698 } 699 700 static inline void __vma_unlink_prev(struct mm_struct *mm, 701 struct vm_area_struct *vma, 702 struct vm_area_struct *prev) 703 { 704 __vma_unlink_common(mm, vma, prev, true, vma); 705 } 706 707 /* 708 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 709 * is already present in an i_mmap tree without adjusting the tree. 710 * The following helper function should be used when such adjustments 711 * are necessary. The "insert" vma (if any) is to be inserted 712 * before we drop the necessary locks. 713 */ 714 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 715 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 716 struct vm_area_struct *expand) 717 { 718 struct mm_struct *mm = vma->vm_mm; 719 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 720 struct address_space *mapping = NULL; 721 struct rb_root_cached *root = NULL; 722 struct anon_vma *anon_vma = NULL; 723 struct file *file = vma->vm_file; 724 bool start_changed = false, end_changed = false; 725 long adjust_next = 0; 726 int remove_next = 0; 727 728 if (next && !insert) { 729 struct vm_area_struct *exporter = NULL, *importer = NULL; 730 731 if (end >= next->vm_end) { 732 /* 733 * vma expands, overlapping all the next, and 734 * perhaps the one after too (mprotect case 6). 735 * The only other cases that gets here are 736 * case 1, case 7 and case 8. 737 */ 738 if (next == expand) { 739 /* 740 * The only case where we don't expand "vma" 741 * and we expand "next" instead is case 8. 742 */ 743 VM_WARN_ON(end != next->vm_end); 744 /* 745 * remove_next == 3 means we're 746 * removing "vma" and that to do so we 747 * swapped "vma" and "next". 748 */ 749 remove_next = 3; 750 VM_WARN_ON(file != next->vm_file); 751 swap(vma, next); 752 } else { 753 VM_WARN_ON(expand != vma); 754 /* 755 * case 1, 6, 7, remove_next == 2 is case 6, 756 * remove_next == 1 is case 1 or 7. 757 */ 758 remove_next = 1 + (end > next->vm_end); 759 VM_WARN_ON(remove_next == 2 && 760 end != next->vm_next->vm_end); 761 VM_WARN_ON(remove_next == 1 && 762 end != next->vm_end); 763 /* trim end to next, for case 6 first pass */ 764 end = next->vm_end; 765 } 766 767 exporter = next; 768 importer = vma; 769 770 /* 771 * If next doesn't have anon_vma, import from vma after 772 * next, if the vma overlaps with it. 773 */ 774 if (remove_next == 2 && !next->anon_vma) 775 exporter = next->vm_next; 776 777 } else if (end > next->vm_start) { 778 /* 779 * vma expands, overlapping part of the next: 780 * mprotect case 5 shifting the boundary up. 781 */ 782 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 783 exporter = next; 784 importer = vma; 785 VM_WARN_ON(expand != importer); 786 } else if (end < vma->vm_end) { 787 /* 788 * vma shrinks, and !insert tells it's not 789 * split_vma inserting another: so it must be 790 * mprotect case 4 shifting the boundary down. 791 */ 792 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 793 exporter = vma; 794 importer = next; 795 VM_WARN_ON(expand != importer); 796 } 797 798 /* 799 * Easily overlooked: when mprotect shifts the boundary, 800 * make sure the expanding vma has anon_vma set if the 801 * shrinking vma had, to cover any anon pages imported. 802 */ 803 if (exporter && exporter->anon_vma && !importer->anon_vma) { 804 int error; 805 806 importer->anon_vma = exporter->anon_vma; 807 error = anon_vma_clone(importer, exporter); 808 if (error) 809 return error; 810 } 811 } 812 again: 813 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 814 815 if (file) { 816 mapping = file->f_mapping; 817 root = &mapping->i_mmap; 818 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 819 820 if (adjust_next) 821 uprobe_munmap(next, next->vm_start, next->vm_end); 822 823 i_mmap_lock_write(mapping); 824 if (insert) { 825 /* 826 * Put into interval tree now, so instantiated pages 827 * are visible to arm/parisc __flush_dcache_page 828 * throughout; but we cannot insert into address 829 * space until vma start or end is updated. 830 */ 831 __vma_link_file(insert); 832 } 833 } 834 835 anon_vma = vma->anon_vma; 836 if (!anon_vma && adjust_next) 837 anon_vma = next->anon_vma; 838 if (anon_vma) { 839 VM_WARN_ON(adjust_next && next->anon_vma && 840 anon_vma != next->anon_vma); 841 anon_vma_lock_write(anon_vma); 842 anon_vma_interval_tree_pre_update_vma(vma); 843 if (adjust_next) 844 anon_vma_interval_tree_pre_update_vma(next); 845 } 846 847 if (root) { 848 flush_dcache_mmap_lock(mapping); 849 vma_interval_tree_remove(vma, root); 850 if (adjust_next) 851 vma_interval_tree_remove(next, root); 852 } 853 854 if (start != vma->vm_start) { 855 vma->vm_start = start; 856 start_changed = true; 857 } 858 if (end != vma->vm_end) { 859 vma->vm_end = end; 860 end_changed = true; 861 } 862 vma->vm_pgoff = pgoff; 863 if (adjust_next) { 864 next->vm_start += adjust_next << PAGE_SHIFT; 865 next->vm_pgoff += adjust_next; 866 } 867 868 if (root) { 869 if (adjust_next) 870 vma_interval_tree_insert(next, root); 871 vma_interval_tree_insert(vma, root); 872 flush_dcache_mmap_unlock(mapping); 873 } 874 875 if (remove_next) { 876 /* 877 * vma_merge has merged next into vma, and needs 878 * us to remove next before dropping the locks. 879 */ 880 if (remove_next != 3) 881 __vma_unlink_prev(mm, next, vma); 882 else 883 /* 884 * vma is not before next if they've been 885 * swapped. 886 * 887 * pre-swap() next->vm_start was reduced so 888 * tell validate_mm_rb to ignore pre-swap() 889 * "next" (which is stored in post-swap() 890 * "vma"). 891 */ 892 __vma_unlink_common(mm, next, NULL, false, vma); 893 if (file) 894 __remove_shared_vm_struct(next, file, mapping); 895 } else if (insert) { 896 /* 897 * split_vma has split insert from vma, and needs 898 * us to insert it before dropping the locks 899 * (it may either follow vma or precede it). 900 */ 901 __insert_vm_struct(mm, insert); 902 } else { 903 if (start_changed) 904 vma_gap_update(vma); 905 if (end_changed) { 906 if (!next) 907 mm->highest_vm_end = vm_end_gap(vma); 908 else if (!adjust_next) 909 vma_gap_update(next); 910 } 911 } 912 913 if (anon_vma) { 914 anon_vma_interval_tree_post_update_vma(vma); 915 if (adjust_next) 916 anon_vma_interval_tree_post_update_vma(next); 917 anon_vma_unlock_write(anon_vma); 918 } 919 if (mapping) 920 i_mmap_unlock_write(mapping); 921 922 if (root) { 923 uprobe_mmap(vma); 924 925 if (adjust_next) 926 uprobe_mmap(next); 927 } 928 929 if (remove_next) { 930 if (file) { 931 uprobe_munmap(next, next->vm_start, next->vm_end); 932 fput(file); 933 } 934 if (next->anon_vma) 935 anon_vma_merge(vma, next); 936 mm->map_count--; 937 mpol_put(vma_policy(next)); 938 vm_area_free(next); 939 /* 940 * In mprotect's case 6 (see comments on vma_merge), 941 * we must remove another next too. It would clutter 942 * up the code too much to do both in one go. 943 */ 944 if (remove_next != 3) { 945 /* 946 * If "next" was removed and vma->vm_end was 947 * expanded (up) over it, in turn 948 * "next->vm_prev->vm_end" changed and the 949 * "vma->vm_next" gap must be updated. 950 */ 951 next = vma->vm_next; 952 } else { 953 /* 954 * For the scope of the comment "next" and 955 * "vma" considered pre-swap(): if "vma" was 956 * removed, next->vm_start was expanded (down) 957 * over it and the "next" gap must be updated. 958 * Because of the swap() the post-swap() "vma" 959 * actually points to pre-swap() "next" 960 * (post-swap() "next" as opposed is now a 961 * dangling pointer). 962 */ 963 next = vma; 964 } 965 if (remove_next == 2) { 966 remove_next = 1; 967 end = next->vm_end; 968 goto again; 969 } 970 else if (next) 971 vma_gap_update(next); 972 else { 973 /* 974 * If remove_next == 2 we obviously can't 975 * reach this path. 976 * 977 * If remove_next == 3 we can't reach this 978 * path because pre-swap() next is always not 979 * NULL. pre-swap() "next" is not being 980 * removed and its next->vm_end is not altered 981 * (and furthermore "end" already matches 982 * next->vm_end in remove_next == 3). 983 * 984 * We reach this only in the remove_next == 1 985 * case if the "next" vma that was removed was 986 * the highest vma of the mm. However in such 987 * case next->vm_end == "end" and the extended 988 * "vma" has vma->vm_end == next->vm_end so 989 * mm->highest_vm_end doesn't need any update 990 * in remove_next == 1 case. 991 */ 992 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 993 } 994 } 995 if (insert && file) 996 uprobe_mmap(insert); 997 998 validate_mm(mm); 999 1000 return 0; 1001 } 1002 1003 /* 1004 * If the vma has a ->close operation then the driver probably needs to release 1005 * per-vma resources, so we don't attempt to merge those. 1006 */ 1007 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1008 struct file *file, unsigned long vm_flags, 1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1010 { 1011 /* 1012 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1013 * match the flags but dirty bit -- the caller should mark 1014 * merged VMA as dirty. If dirty bit won't be excluded from 1015 * comparison, we increase pressure on the memory system forcing 1016 * the kernel to generate new VMAs when old one could be 1017 * extended instead. 1018 */ 1019 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1020 return 0; 1021 if (vma->vm_file != file) 1022 return 0; 1023 if (vma->vm_ops && vma->vm_ops->close) 1024 return 0; 1025 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1026 return 0; 1027 return 1; 1028 } 1029 1030 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1031 struct anon_vma *anon_vma2, 1032 struct vm_area_struct *vma) 1033 { 1034 /* 1035 * The list_is_singular() test is to avoid merging VMA cloned from 1036 * parents. This can improve scalability caused by anon_vma lock. 1037 */ 1038 if ((!anon_vma1 || !anon_vma2) && (!vma || 1039 list_is_singular(&vma->anon_vma_chain))) 1040 return 1; 1041 return anon_vma1 == anon_vma2; 1042 } 1043 1044 /* 1045 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1046 * in front of (at a lower virtual address and file offset than) the vma. 1047 * 1048 * We cannot merge two vmas if they have differently assigned (non-NULL) 1049 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1050 * 1051 * We don't check here for the merged mmap wrapping around the end of pagecache 1052 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1053 * wrap, nor mmaps which cover the final page at index -1UL. 1054 */ 1055 static int 1056 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1057 struct anon_vma *anon_vma, struct file *file, 1058 pgoff_t vm_pgoff, 1059 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1060 { 1061 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1062 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1063 if (vma->vm_pgoff == vm_pgoff) 1064 return 1; 1065 } 1066 return 0; 1067 } 1068 1069 /* 1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1071 * beyond (at a higher virtual address and file offset than) the vma. 1072 * 1073 * We cannot merge two vmas if they have differently assigned (non-NULL) 1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1075 */ 1076 static int 1077 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1078 struct anon_vma *anon_vma, struct file *file, 1079 pgoff_t vm_pgoff, 1080 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1081 { 1082 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1083 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1084 pgoff_t vm_pglen; 1085 vm_pglen = vma_pages(vma); 1086 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1094 * whether that can be merged with its predecessor or its successor. 1095 * Or both (it neatly fills a hole). 1096 * 1097 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1098 * certain not to be mapped by the time vma_merge is called; but when 1099 * called for mprotect, it is certain to be already mapped (either at 1100 * an offset within prev, or at the start of next), and the flags of 1101 * this area are about to be changed to vm_flags - and the no-change 1102 * case has already been eliminated. 1103 * 1104 * The following mprotect cases have to be considered, where AAAA is 1105 * the area passed down from mprotect_fixup, never extending beyond one 1106 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1107 * 1108 * AAAA AAAA AAAA AAAA 1109 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1110 * cannot merge might become might become might become 1111 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1112 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1113 * mremap move: PPPPXXXXXXXX 8 1114 * AAAA 1115 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1116 * might become case 1 below case 2 below case 3 below 1117 * 1118 * It is important for case 8 that the vma NNNN overlapping the 1119 * region AAAA is never going to extended over XXXX. Instead XXXX must 1120 * be extended in region AAAA and NNNN must be removed. This way in 1121 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1122 * rmap_locks, the properties of the merged vma will be already 1123 * correct for the whole merged range. Some of those properties like 1124 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1125 * be correct for the whole merged range immediately after the 1126 * rmap_locks are released. Otherwise if XXXX would be removed and 1127 * NNNN would be extended over the XXXX range, remove_migration_ptes 1128 * or other rmap walkers (if working on addresses beyond the "end" 1129 * parameter) may establish ptes with the wrong permissions of NNNN 1130 * instead of the right permissions of XXXX. 1131 */ 1132 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1133 struct vm_area_struct *prev, unsigned long addr, 1134 unsigned long end, unsigned long vm_flags, 1135 struct anon_vma *anon_vma, struct file *file, 1136 pgoff_t pgoff, struct mempolicy *policy, 1137 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1138 { 1139 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1140 struct vm_area_struct *area, *next; 1141 int err; 1142 1143 /* 1144 * We later require that vma->vm_flags == vm_flags, 1145 * so this tests vma->vm_flags & VM_SPECIAL, too. 1146 */ 1147 if (vm_flags & VM_SPECIAL) 1148 return NULL; 1149 1150 if (prev) 1151 next = prev->vm_next; 1152 else 1153 next = mm->mmap; 1154 area = next; 1155 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1156 next = next->vm_next; 1157 1158 /* verify some invariant that must be enforced by the caller */ 1159 VM_WARN_ON(prev && addr <= prev->vm_start); 1160 VM_WARN_ON(area && end > area->vm_end); 1161 VM_WARN_ON(addr >= end); 1162 1163 /* 1164 * Can it merge with the predecessor? 1165 */ 1166 if (prev && prev->vm_end == addr && 1167 mpol_equal(vma_policy(prev), policy) && 1168 can_vma_merge_after(prev, vm_flags, 1169 anon_vma, file, pgoff, 1170 vm_userfaultfd_ctx)) { 1171 /* 1172 * OK, it can. Can we now merge in the successor as well? 1173 */ 1174 if (next && end == next->vm_start && 1175 mpol_equal(policy, vma_policy(next)) && 1176 can_vma_merge_before(next, vm_flags, 1177 anon_vma, file, 1178 pgoff+pglen, 1179 vm_userfaultfd_ctx) && 1180 is_mergeable_anon_vma(prev->anon_vma, 1181 next->anon_vma, NULL)) { 1182 /* cases 1, 6 */ 1183 err = __vma_adjust(prev, prev->vm_start, 1184 next->vm_end, prev->vm_pgoff, NULL, 1185 prev); 1186 } else /* cases 2, 5, 7 */ 1187 err = __vma_adjust(prev, prev->vm_start, 1188 end, prev->vm_pgoff, NULL, prev); 1189 if (err) 1190 return NULL; 1191 khugepaged_enter_vma_merge(prev, vm_flags); 1192 return prev; 1193 } 1194 1195 /* 1196 * Can this new request be merged in front of next? 1197 */ 1198 if (next && end == next->vm_start && 1199 mpol_equal(policy, vma_policy(next)) && 1200 can_vma_merge_before(next, vm_flags, 1201 anon_vma, file, pgoff+pglen, 1202 vm_userfaultfd_ctx)) { 1203 if (prev && addr < prev->vm_end) /* case 4 */ 1204 err = __vma_adjust(prev, prev->vm_start, 1205 addr, prev->vm_pgoff, NULL, next); 1206 else { /* cases 3, 8 */ 1207 err = __vma_adjust(area, addr, next->vm_end, 1208 next->vm_pgoff - pglen, NULL, next); 1209 /* 1210 * In case 3 area is already equal to next and 1211 * this is a noop, but in case 8 "area" has 1212 * been removed and next was expanded over it. 1213 */ 1214 area = next; 1215 } 1216 if (err) 1217 return NULL; 1218 khugepaged_enter_vma_merge(area, vm_flags); 1219 return area; 1220 } 1221 1222 return NULL; 1223 } 1224 1225 /* 1226 * Rough compatbility check to quickly see if it's even worth looking 1227 * at sharing an anon_vma. 1228 * 1229 * They need to have the same vm_file, and the flags can only differ 1230 * in things that mprotect may change. 1231 * 1232 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1233 * we can merge the two vma's. For example, we refuse to merge a vma if 1234 * there is a vm_ops->close() function, because that indicates that the 1235 * driver is doing some kind of reference counting. But that doesn't 1236 * really matter for the anon_vma sharing case. 1237 */ 1238 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1239 { 1240 return a->vm_end == b->vm_start && 1241 mpol_equal(vma_policy(a), vma_policy(b)) && 1242 a->vm_file == b->vm_file && 1243 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1244 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1245 } 1246 1247 /* 1248 * Do some basic sanity checking to see if we can re-use the anon_vma 1249 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1250 * the same as 'old', the other will be the new one that is trying 1251 * to share the anon_vma. 1252 * 1253 * NOTE! This runs with mm_sem held for reading, so it is possible that 1254 * the anon_vma of 'old' is concurrently in the process of being set up 1255 * by another page fault trying to merge _that_. But that's ok: if it 1256 * is being set up, that automatically means that it will be a singleton 1257 * acceptable for merging, so we can do all of this optimistically. But 1258 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1259 * 1260 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1261 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1262 * is to return an anon_vma that is "complex" due to having gone through 1263 * a fork). 1264 * 1265 * We also make sure that the two vma's are compatible (adjacent, 1266 * and with the same memory policies). That's all stable, even with just 1267 * a read lock on the mm_sem. 1268 */ 1269 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1270 { 1271 if (anon_vma_compatible(a, b)) { 1272 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1273 1274 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1275 return anon_vma; 1276 } 1277 return NULL; 1278 } 1279 1280 /* 1281 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1282 * neighbouring vmas for a suitable anon_vma, before it goes off 1283 * to allocate a new anon_vma. It checks because a repetitive 1284 * sequence of mprotects and faults may otherwise lead to distinct 1285 * anon_vmas being allocated, preventing vma merge in subsequent 1286 * mprotect. 1287 */ 1288 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1289 { 1290 struct anon_vma *anon_vma; 1291 struct vm_area_struct *near; 1292 1293 near = vma->vm_next; 1294 if (!near) 1295 goto try_prev; 1296 1297 anon_vma = reusable_anon_vma(near, vma, near); 1298 if (anon_vma) 1299 return anon_vma; 1300 try_prev: 1301 near = vma->vm_prev; 1302 if (!near) 1303 goto none; 1304 1305 anon_vma = reusable_anon_vma(near, near, vma); 1306 if (anon_vma) 1307 return anon_vma; 1308 none: 1309 /* 1310 * There's no absolute need to look only at touching neighbours: 1311 * we could search further afield for "compatible" anon_vmas. 1312 * But it would probably just be a waste of time searching, 1313 * or lead to too many vmas hanging off the same anon_vma. 1314 * We're trying to allow mprotect remerging later on, 1315 * not trying to minimize memory used for anon_vmas. 1316 */ 1317 return NULL; 1318 } 1319 1320 /* 1321 * If a hint addr is less than mmap_min_addr change hint to be as 1322 * low as possible but still greater than mmap_min_addr 1323 */ 1324 static inline unsigned long round_hint_to_min(unsigned long hint) 1325 { 1326 hint &= PAGE_MASK; 1327 if (((void *)hint != NULL) && 1328 (hint < mmap_min_addr)) 1329 return PAGE_ALIGN(mmap_min_addr); 1330 return hint; 1331 } 1332 1333 static inline int mlock_future_check(struct mm_struct *mm, 1334 unsigned long flags, 1335 unsigned long len) 1336 { 1337 unsigned long locked, lock_limit; 1338 1339 /* mlock MCL_FUTURE? */ 1340 if (flags & VM_LOCKED) { 1341 locked = len >> PAGE_SHIFT; 1342 locked += mm->locked_vm; 1343 lock_limit = rlimit(RLIMIT_MEMLOCK); 1344 lock_limit >>= PAGE_SHIFT; 1345 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1346 return -EAGAIN; 1347 } 1348 return 0; 1349 } 1350 1351 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1352 { 1353 if (S_ISREG(inode->i_mode)) 1354 return MAX_LFS_FILESIZE; 1355 1356 if (S_ISBLK(inode->i_mode)) 1357 return MAX_LFS_FILESIZE; 1358 1359 /* Special "we do even unsigned file positions" case */ 1360 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1361 return 0; 1362 1363 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1364 return ULONG_MAX; 1365 } 1366 1367 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1368 unsigned long pgoff, unsigned long len) 1369 { 1370 u64 maxsize = file_mmap_size_max(file, inode); 1371 1372 if (maxsize && len > maxsize) 1373 return false; 1374 maxsize -= len; 1375 if (pgoff > maxsize >> PAGE_SHIFT) 1376 return false; 1377 return true; 1378 } 1379 1380 /* 1381 * The caller must hold down_write(¤t->mm->mmap_sem). 1382 */ 1383 unsigned long do_mmap(struct file *file, unsigned long addr, 1384 unsigned long len, unsigned long prot, 1385 unsigned long flags, vm_flags_t vm_flags, 1386 unsigned long pgoff, unsigned long *populate, 1387 struct list_head *uf) 1388 { 1389 struct mm_struct *mm = current->mm; 1390 int pkey = 0; 1391 1392 *populate = 0; 1393 1394 if (!len) 1395 return -EINVAL; 1396 1397 /* 1398 * Does the application expect PROT_READ to imply PROT_EXEC? 1399 * 1400 * (the exception is when the underlying filesystem is noexec 1401 * mounted, in which case we dont add PROT_EXEC.) 1402 */ 1403 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1404 if (!(file && path_noexec(&file->f_path))) 1405 prot |= PROT_EXEC; 1406 1407 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1408 if (flags & MAP_FIXED_NOREPLACE) 1409 flags |= MAP_FIXED; 1410 1411 if (!(flags & MAP_FIXED)) 1412 addr = round_hint_to_min(addr); 1413 1414 /* Careful about overflows.. */ 1415 len = PAGE_ALIGN(len); 1416 if (!len) 1417 return -ENOMEM; 1418 1419 /* offset overflow? */ 1420 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1421 return -EOVERFLOW; 1422 1423 /* Too many mappings? */ 1424 if (mm->map_count > sysctl_max_map_count) 1425 return -ENOMEM; 1426 1427 /* Obtain the address to map to. we verify (or select) it and ensure 1428 * that it represents a valid section of the address space. 1429 */ 1430 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1431 if (offset_in_page(addr)) 1432 return addr; 1433 1434 if (flags & MAP_FIXED_NOREPLACE) { 1435 struct vm_area_struct *vma = find_vma(mm, addr); 1436 1437 if (vma && vma->vm_start < addr + len) 1438 return -EEXIST; 1439 } 1440 1441 if (prot == PROT_EXEC) { 1442 pkey = execute_only_pkey(mm); 1443 if (pkey < 0) 1444 pkey = 0; 1445 } 1446 1447 /* Do simple checking here so the lower-level routines won't have 1448 * to. we assume access permissions have been handled by the open 1449 * of the memory object, so we don't do any here. 1450 */ 1451 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1452 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1453 1454 if (flags & MAP_LOCKED) 1455 if (!can_do_mlock()) 1456 return -EPERM; 1457 1458 if (mlock_future_check(mm, vm_flags, len)) 1459 return -EAGAIN; 1460 1461 if (file) { 1462 struct inode *inode = file_inode(file); 1463 unsigned long flags_mask; 1464 1465 if (!file_mmap_ok(file, inode, pgoff, len)) 1466 return -EOVERFLOW; 1467 1468 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1469 1470 switch (flags & MAP_TYPE) { 1471 case MAP_SHARED: 1472 /* 1473 * Force use of MAP_SHARED_VALIDATE with non-legacy 1474 * flags. E.g. MAP_SYNC is dangerous to use with 1475 * MAP_SHARED as you don't know which consistency model 1476 * you will get. We silently ignore unsupported flags 1477 * with MAP_SHARED to preserve backward compatibility. 1478 */ 1479 flags &= LEGACY_MAP_MASK; 1480 /* fall through */ 1481 case MAP_SHARED_VALIDATE: 1482 if (flags & ~flags_mask) 1483 return -EOPNOTSUPP; 1484 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1485 return -EACCES; 1486 1487 /* 1488 * Make sure we don't allow writing to an append-only 1489 * file.. 1490 */ 1491 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1492 return -EACCES; 1493 1494 /* 1495 * Make sure there are no mandatory locks on the file. 1496 */ 1497 if (locks_verify_locked(file)) 1498 return -EAGAIN; 1499 1500 vm_flags |= VM_SHARED | VM_MAYSHARE; 1501 if (!(file->f_mode & FMODE_WRITE)) 1502 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1503 1504 /* fall through */ 1505 case MAP_PRIVATE: 1506 if (!(file->f_mode & FMODE_READ)) 1507 return -EACCES; 1508 if (path_noexec(&file->f_path)) { 1509 if (vm_flags & VM_EXEC) 1510 return -EPERM; 1511 vm_flags &= ~VM_MAYEXEC; 1512 } 1513 1514 if (!file->f_op->mmap) 1515 return -ENODEV; 1516 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1517 return -EINVAL; 1518 break; 1519 1520 default: 1521 return -EINVAL; 1522 } 1523 } else { 1524 switch (flags & MAP_TYPE) { 1525 case MAP_SHARED: 1526 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1527 return -EINVAL; 1528 /* 1529 * Ignore pgoff. 1530 */ 1531 pgoff = 0; 1532 vm_flags |= VM_SHARED | VM_MAYSHARE; 1533 break; 1534 case MAP_PRIVATE: 1535 /* 1536 * Set pgoff according to addr for anon_vma. 1537 */ 1538 pgoff = addr >> PAGE_SHIFT; 1539 break; 1540 default: 1541 return -EINVAL; 1542 } 1543 } 1544 1545 /* 1546 * Set 'VM_NORESERVE' if we should not account for the 1547 * memory use of this mapping. 1548 */ 1549 if (flags & MAP_NORESERVE) { 1550 /* We honor MAP_NORESERVE if allowed to overcommit */ 1551 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1552 vm_flags |= VM_NORESERVE; 1553 1554 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1555 if (file && is_file_hugepages(file)) 1556 vm_flags |= VM_NORESERVE; 1557 } 1558 1559 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1560 if (!IS_ERR_VALUE(addr) && 1561 ((vm_flags & VM_LOCKED) || 1562 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1563 *populate = len; 1564 return addr; 1565 } 1566 1567 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1568 unsigned long prot, unsigned long flags, 1569 unsigned long fd, unsigned long pgoff) 1570 { 1571 struct file *file = NULL; 1572 unsigned long retval; 1573 1574 if (!(flags & MAP_ANONYMOUS)) { 1575 audit_mmap_fd(fd, flags); 1576 file = fget(fd); 1577 if (!file) 1578 return -EBADF; 1579 if (is_file_hugepages(file)) 1580 len = ALIGN(len, huge_page_size(hstate_file(file))); 1581 retval = -EINVAL; 1582 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1583 goto out_fput; 1584 } else if (flags & MAP_HUGETLB) { 1585 struct user_struct *user = NULL; 1586 struct hstate *hs; 1587 1588 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1589 if (!hs) 1590 return -EINVAL; 1591 1592 len = ALIGN(len, huge_page_size(hs)); 1593 /* 1594 * VM_NORESERVE is used because the reservations will be 1595 * taken when vm_ops->mmap() is called 1596 * A dummy user value is used because we are not locking 1597 * memory so no accounting is necessary 1598 */ 1599 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1600 VM_NORESERVE, 1601 &user, HUGETLB_ANONHUGE_INODE, 1602 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1603 if (IS_ERR(file)) 1604 return PTR_ERR(file); 1605 } 1606 1607 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1608 1609 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1610 out_fput: 1611 if (file) 1612 fput(file); 1613 return retval; 1614 } 1615 1616 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1617 unsigned long, prot, unsigned long, flags, 1618 unsigned long, fd, unsigned long, pgoff) 1619 { 1620 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1621 } 1622 1623 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1624 struct mmap_arg_struct { 1625 unsigned long addr; 1626 unsigned long len; 1627 unsigned long prot; 1628 unsigned long flags; 1629 unsigned long fd; 1630 unsigned long offset; 1631 }; 1632 1633 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1634 { 1635 struct mmap_arg_struct a; 1636 1637 if (copy_from_user(&a, arg, sizeof(a))) 1638 return -EFAULT; 1639 if (offset_in_page(a.offset)) 1640 return -EINVAL; 1641 1642 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1643 a.offset >> PAGE_SHIFT); 1644 } 1645 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1646 1647 /* 1648 * Some shared mappings will want the pages marked read-only 1649 * to track write events. If so, we'll downgrade vm_page_prot 1650 * to the private version (using protection_map[] without the 1651 * VM_SHARED bit). 1652 */ 1653 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1654 { 1655 vm_flags_t vm_flags = vma->vm_flags; 1656 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1657 1658 /* If it was private or non-writable, the write bit is already clear */ 1659 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1660 return 0; 1661 1662 /* The backer wishes to know when pages are first written to? */ 1663 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1664 return 1; 1665 1666 /* The open routine did something to the protections that pgprot_modify 1667 * won't preserve? */ 1668 if (pgprot_val(vm_page_prot) != 1669 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1670 return 0; 1671 1672 /* Do we need to track softdirty? */ 1673 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1674 return 1; 1675 1676 /* Specialty mapping? */ 1677 if (vm_flags & VM_PFNMAP) 1678 return 0; 1679 1680 /* Can the mapping track the dirty pages? */ 1681 return vma->vm_file && vma->vm_file->f_mapping && 1682 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1683 } 1684 1685 /* 1686 * We account for memory if it's a private writeable mapping, 1687 * not hugepages and VM_NORESERVE wasn't set. 1688 */ 1689 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1690 { 1691 /* 1692 * hugetlb has its own accounting separate from the core VM 1693 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1694 */ 1695 if (file && is_file_hugepages(file)) 1696 return 0; 1697 1698 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1699 } 1700 1701 unsigned long mmap_region(struct file *file, unsigned long addr, 1702 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1703 struct list_head *uf) 1704 { 1705 struct mm_struct *mm = current->mm; 1706 struct vm_area_struct *vma, *prev; 1707 int error; 1708 struct rb_node **rb_link, *rb_parent; 1709 unsigned long charged = 0; 1710 1711 /* Check against address space limit. */ 1712 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1713 unsigned long nr_pages; 1714 1715 /* 1716 * MAP_FIXED may remove pages of mappings that intersects with 1717 * requested mapping. Account for the pages it would unmap. 1718 */ 1719 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1720 1721 if (!may_expand_vm(mm, vm_flags, 1722 (len >> PAGE_SHIFT) - nr_pages)) 1723 return -ENOMEM; 1724 } 1725 1726 /* Clear old maps */ 1727 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1728 &rb_parent)) { 1729 if (do_munmap(mm, addr, len, uf)) 1730 return -ENOMEM; 1731 } 1732 1733 /* 1734 * Private writable mapping: check memory availability 1735 */ 1736 if (accountable_mapping(file, vm_flags)) { 1737 charged = len >> PAGE_SHIFT; 1738 if (security_vm_enough_memory_mm(mm, charged)) 1739 return -ENOMEM; 1740 vm_flags |= VM_ACCOUNT; 1741 } 1742 1743 /* 1744 * Can we just expand an old mapping? 1745 */ 1746 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1747 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1748 if (vma) 1749 goto out; 1750 1751 /* 1752 * Determine the object being mapped and call the appropriate 1753 * specific mapper. the address has already been validated, but 1754 * not unmapped, but the maps are removed from the list. 1755 */ 1756 vma = vm_area_alloc(mm); 1757 if (!vma) { 1758 error = -ENOMEM; 1759 goto unacct_error; 1760 } 1761 1762 vma->vm_start = addr; 1763 vma->vm_end = addr + len; 1764 vma->vm_flags = vm_flags; 1765 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1766 vma->vm_pgoff = pgoff; 1767 1768 if (file) { 1769 if (vm_flags & VM_DENYWRITE) { 1770 error = deny_write_access(file); 1771 if (error) 1772 goto free_vma; 1773 } 1774 if (vm_flags & VM_SHARED) { 1775 error = mapping_map_writable(file->f_mapping); 1776 if (error) 1777 goto allow_write_and_free_vma; 1778 } 1779 1780 /* ->mmap() can change vma->vm_file, but must guarantee that 1781 * vma_link() below can deny write-access if VM_DENYWRITE is set 1782 * and map writably if VM_SHARED is set. This usually means the 1783 * new file must not have been exposed to user-space, yet. 1784 */ 1785 vma->vm_file = get_file(file); 1786 error = call_mmap(file, vma); 1787 if (error) 1788 goto unmap_and_free_vma; 1789 1790 /* Can addr have changed?? 1791 * 1792 * Answer: Yes, several device drivers can do it in their 1793 * f_op->mmap method. -DaveM 1794 * Bug: If addr is changed, prev, rb_link, rb_parent should 1795 * be updated for vma_link() 1796 */ 1797 WARN_ON_ONCE(addr != vma->vm_start); 1798 1799 addr = vma->vm_start; 1800 vm_flags = vma->vm_flags; 1801 } else if (vm_flags & VM_SHARED) { 1802 error = shmem_zero_setup(vma); 1803 if (error) 1804 goto free_vma; 1805 } else { 1806 vma_set_anonymous(vma); 1807 } 1808 1809 vma_link(mm, vma, prev, rb_link, rb_parent); 1810 /* Once vma denies write, undo our temporary denial count */ 1811 if (file) { 1812 if (vm_flags & VM_SHARED) 1813 mapping_unmap_writable(file->f_mapping); 1814 if (vm_flags & VM_DENYWRITE) 1815 allow_write_access(file); 1816 } 1817 file = vma->vm_file; 1818 out: 1819 perf_event_mmap(vma); 1820 1821 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1822 if (vm_flags & VM_LOCKED) { 1823 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1824 is_vm_hugetlb_page(vma) || 1825 vma == get_gate_vma(current->mm)) 1826 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1827 else 1828 mm->locked_vm += (len >> PAGE_SHIFT); 1829 } 1830 1831 if (file) 1832 uprobe_mmap(vma); 1833 1834 /* 1835 * New (or expanded) vma always get soft dirty status. 1836 * Otherwise user-space soft-dirty page tracker won't 1837 * be able to distinguish situation when vma area unmapped, 1838 * then new mapped in-place (which must be aimed as 1839 * a completely new data area). 1840 */ 1841 vma->vm_flags |= VM_SOFTDIRTY; 1842 1843 vma_set_page_prot(vma); 1844 1845 return addr; 1846 1847 unmap_and_free_vma: 1848 vma->vm_file = NULL; 1849 fput(file); 1850 1851 /* Undo any partial mapping done by a device driver. */ 1852 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1853 charged = 0; 1854 if (vm_flags & VM_SHARED) 1855 mapping_unmap_writable(file->f_mapping); 1856 allow_write_and_free_vma: 1857 if (vm_flags & VM_DENYWRITE) 1858 allow_write_access(file); 1859 free_vma: 1860 vm_area_free(vma); 1861 unacct_error: 1862 if (charged) 1863 vm_unacct_memory(charged); 1864 return error; 1865 } 1866 1867 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1868 { 1869 /* 1870 * We implement the search by looking for an rbtree node that 1871 * immediately follows a suitable gap. That is, 1872 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1873 * - gap_end = vma->vm_start >= info->low_limit + length; 1874 * - gap_end - gap_start >= length 1875 */ 1876 1877 struct mm_struct *mm = current->mm; 1878 struct vm_area_struct *vma; 1879 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1880 1881 /* Adjust search length to account for worst case alignment overhead */ 1882 length = info->length + info->align_mask; 1883 if (length < info->length) 1884 return -ENOMEM; 1885 1886 /* Adjust search limits by the desired length */ 1887 if (info->high_limit < length) 1888 return -ENOMEM; 1889 high_limit = info->high_limit - length; 1890 1891 if (info->low_limit > high_limit) 1892 return -ENOMEM; 1893 low_limit = info->low_limit + length; 1894 1895 /* Check if rbtree root looks promising */ 1896 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1897 goto check_highest; 1898 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1899 if (vma->rb_subtree_gap < length) 1900 goto check_highest; 1901 1902 while (true) { 1903 /* Visit left subtree if it looks promising */ 1904 gap_end = vm_start_gap(vma); 1905 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1906 struct vm_area_struct *left = 1907 rb_entry(vma->vm_rb.rb_left, 1908 struct vm_area_struct, vm_rb); 1909 if (left->rb_subtree_gap >= length) { 1910 vma = left; 1911 continue; 1912 } 1913 } 1914 1915 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1916 check_current: 1917 /* Check if current node has a suitable gap */ 1918 if (gap_start > high_limit) 1919 return -ENOMEM; 1920 if (gap_end >= low_limit && 1921 gap_end > gap_start && gap_end - gap_start >= length) 1922 goto found; 1923 1924 /* Visit right subtree if it looks promising */ 1925 if (vma->vm_rb.rb_right) { 1926 struct vm_area_struct *right = 1927 rb_entry(vma->vm_rb.rb_right, 1928 struct vm_area_struct, vm_rb); 1929 if (right->rb_subtree_gap >= length) { 1930 vma = right; 1931 continue; 1932 } 1933 } 1934 1935 /* Go back up the rbtree to find next candidate node */ 1936 while (true) { 1937 struct rb_node *prev = &vma->vm_rb; 1938 if (!rb_parent(prev)) 1939 goto check_highest; 1940 vma = rb_entry(rb_parent(prev), 1941 struct vm_area_struct, vm_rb); 1942 if (prev == vma->vm_rb.rb_left) { 1943 gap_start = vm_end_gap(vma->vm_prev); 1944 gap_end = vm_start_gap(vma); 1945 goto check_current; 1946 } 1947 } 1948 } 1949 1950 check_highest: 1951 /* Check highest gap, which does not precede any rbtree node */ 1952 gap_start = mm->highest_vm_end; 1953 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1954 if (gap_start > high_limit) 1955 return -ENOMEM; 1956 1957 found: 1958 /* We found a suitable gap. Clip it with the original low_limit. */ 1959 if (gap_start < info->low_limit) 1960 gap_start = info->low_limit; 1961 1962 /* Adjust gap address to the desired alignment */ 1963 gap_start += (info->align_offset - gap_start) & info->align_mask; 1964 1965 VM_BUG_ON(gap_start + info->length > info->high_limit); 1966 VM_BUG_ON(gap_start + info->length > gap_end); 1967 return gap_start; 1968 } 1969 1970 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1971 { 1972 struct mm_struct *mm = current->mm; 1973 struct vm_area_struct *vma; 1974 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1975 1976 /* Adjust search length to account for worst case alignment overhead */ 1977 length = info->length + info->align_mask; 1978 if (length < info->length) 1979 return -ENOMEM; 1980 1981 /* 1982 * Adjust search limits by the desired length. 1983 * See implementation comment at top of unmapped_area(). 1984 */ 1985 gap_end = info->high_limit; 1986 if (gap_end < length) 1987 return -ENOMEM; 1988 high_limit = gap_end - length; 1989 1990 if (info->low_limit > high_limit) 1991 return -ENOMEM; 1992 low_limit = info->low_limit + length; 1993 1994 /* Check highest gap, which does not precede any rbtree node */ 1995 gap_start = mm->highest_vm_end; 1996 if (gap_start <= high_limit) 1997 goto found_highest; 1998 1999 /* Check if rbtree root looks promising */ 2000 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2001 return -ENOMEM; 2002 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2003 if (vma->rb_subtree_gap < length) 2004 return -ENOMEM; 2005 2006 while (true) { 2007 /* Visit right subtree if it looks promising */ 2008 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2009 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2010 struct vm_area_struct *right = 2011 rb_entry(vma->vm_rb.rb_right, 2012 struct vm_area_struct, vm_rb); 2013 if (right->rb_subtree_gap >= length) { 2014 vma = right; 2015 continue; 2016 } 2017 } 2018 2019 check_current: 2020 /* Check if current node has a suitable gap */ 2021 gap_end = vm_start_gap(vma); 2022 if (gap_end < low_limit) 2023 return -ENOMEM; 2024 if (gap_start <= high_limit && 2025 gap_end > gap_start && gap_end - gap_start >= length) 2026 goto found; 2027 2028 /* Visit left subtree if it looks promising */ 2029 if (vma->vm_rb.rb_left) { 2030 struct vm_area_struct *left = 2031 rb_entry(vma->vm_rb.rb_left, 2032 struct vm_area_struct, vm_rb); 2033 if (left->rb_subtree_gap >= length) { 2034 vma = left; 2035 continue; 2036 } 2037 } 2038 2039 /* Go back up the rbtree to find next candidate node */ 2040 while (true) { 2041 struct rb_node *prev = &vma->vm_rb; 2042 if (!rb_parent(prev)) 2043 return -ENOMEM; 2044 vma = rb_entry(rb_parent(prev), 2045 struct vm_area_struct, vm_rb); 2046 if (prev == vma->vm_rb.rb_right) { 2047 gap_start = vma->vm_prev ? 2048 vm_end_gap(vma->vm_prev) : 0; 2049 goto check_current; 2050 } 2051 } 2052 } 2053 2054 found: 2055 /* We found a suitable gap. Clip it with the original high_limit. */ 2056 if (gap_end > info->high_limit) 2057 gap_end = info->high_limit; 2058 2059 found_highest: 2060 /* Compute highest gap address at the desired alignment */ 2061 gap_end -= info->length; 2062 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2063 2064 VM_BUG_ON(gap_end < info->low_limit); 2065 VM_BUG_ON(gap_end < gap_start); 2066 return gap_end; 2067 } 2068 2069 2070 #ifndef arch_get_mmap_end 2071 #define arch_get_mmap_end(addr) (TASK_SIZE) 2072 #endif 2073 2074 #ifndef arch_get_mmap_base 2075 #define arch_get_mmap_base(addr, base) (base) 2076 #endif 2077 2078 /* Get an address range which is currently unmapped. 2079 * For shmat() with addr=0. 2080 * 2081 * Ugly calling convention alert: 2082 * Return value with the low bits set means error value, 2083 * ie 2084 * if (ret & ~PAGE_MASK) 2085 * error = ret; 2086 * 2087 * This function "knows" that -ENOMEM has the bits set. 2088 */ 2089 #ifndef HAVE_ARCH_UNMAPPED_AREA 2090 unsigned long 2091 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2092 unsigned long len, unsigned long pgoff, unsigned long flags) 2093 { 2094 struct mm_struct *mm = current->mm; 2095 struct vm_area_struct *vma, *prev; 2096 struct vm_unmapped_area_info info; 2097 const unsigned long mmap_end = arch_get_mmap_end(addr); 2098 2099 if (len > mmap_end - mmap_min_addr) 2100 return -ENOMEM; 2101 2102 if (flags & MAP_FIXED) 2103 return addr; 2104 2105 if (addr) { 2106 addr = PAGE_ALIGN(addr); 2107 vma = find_vma_prev(mm, addr, &prev); 2108 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2109 (!vma || addr + len <= vm_start_gap(vma)) && 2110 (!prev || addr >= vm_end_gap(prev))) 2111 return addr; 2112 } 2113 2114 info.flags = 0; 2115 info.length = len; 2116 info.low_limit = mm->mmap_base; 2117 info.high_limit = mmap_end; 2118 info.align_mask = 0; 2119 return vm_unmapped_area(&info); 2120 } 2121 #endif 2122 2123 /* 2124 * This mmap-allocator allocates new areas top-down from below the 2125 * stack's low limit (the base): 2126 */ 2127 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2128 unsigned long 2129 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2130 unsigned long len, unsigned long pgoff, 2131 unsigned long flags) 2132 { 2133 struct vm_area_struct *vma, *prev; 2134 struct mm_struct *mm = current->mm; 2135 struct vm_unmapped_area_info info; 2136 const unsigned long mmap_end = arch_get_mmap_end(addr); 2137 2138 /* requested length too big for entire address space */ 2139 if (len > mmap_end - mmap_min_addr) 2140 return -ENOMEM; 2141 2142 if (flags & MAP_FIXED) 2143 return addr; 2144 2145 /* requesting a specific address */ 2146 if (addr) { 2147 addr = PAGE_ALIGN(addr); 2148 vma = find_vma_prev(mm, addr, &prev); 2149 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2150 (!vma || addr + len <= vm_start_gap(vma)) && 2151 (!prev || addr >= vm_end_gap(prev))) 2152 return addr; 2153 } 2154 2155 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2156 info.length = len; 2157 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2158 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2159 info.align_mask = 0; 2160 addr = vm_unmapped_area(&info); 2161 2162 /* 2163 * A failed mmap() very likely causes application failure, 2164 * so fall back to the bottom-up function here. This scenario 2165 * can happen with large stack limits and large mmap() 2166 * allocations. 2167 */ 2168 if (offset_in_page(addr)) { 2169 VM_BUG_ON(addr != -ENOMEM); 2170 info.flags = 0; 2171 info.low_limit = TASK_UNMAPPED_BASE; 2172 info.high_limit = mmap_end; 2173 addr = vm_unmapped_area(&info); 2174 } 2175 2176 return addr; 2177 } 2178 #endif 2179 2180 unsigned long 2181 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2182 unsigned long pgoff, unsigned long flags) 2183 { 2184 unsigned long (*get_area)(struct file *, unsigned long, 2185 unsigned long, unsigned long, unsigned long); 2186 2187 unsigned long error = arch_mmap_check(addr, len, flags); 2188 if (error) 2189 return error; 2190 2191 /* Careful about overflows.. */ 2192 if (len > TASK_SIZE) 2193 return -ENOMEM; 2194 2195 get_area = current->mm->get_unmapped_area; 2196 if (file) { 2197 if (file->f_op->get_unmapped_area) 2198 get_area = file->f_op->get_unmapped_area; 2199 } else if (flags & MAP_SHARED) { 2200 /* 2201 * mmap_region() will call shmem_zero_setup() to create a file, 2202 * so use shmem's get_unmapped_area in case it can be huge. 2203 * do_mmap_pgoff() will clear pgoff, so match alignment. 2204 */ 2205 pgoff = 0; 2206 get_area = shmem_get_unmapped_area; 2207 } 2208 2209 addr = get_area(file, addr, len, pgoff, flags); 2210 if (IS_ERR_VALUE(addr)) 2211 return addr; 2212 2213 if (addr > TASK_SIZE - len) 2214 return -ENOMEM; 2215 if (offset_in_page(addr)) 2216 return -EINVAL; 2217 2218 error = security_mmap_addr(addr); 2219 return error ? error : addr; 2220 } 2221 2222 EXPORT_SYMBOL(get_unmapped_area); 2223 2224 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2225 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2226 { 2227 struct rb_node *rb_node; 2228 struct vm_area_struct *vma; 2229 2230 /* Check the cache first. */ 2231 vma = vmacache_find(mm, addr); 2232 if (likely(vma)) 2233 return vma; 2234 2235 rb_node = mm->mm_rb.rb_node; 2236 2237 while (rb_node) { 2238 struct vm_area_struct *tmp; 2239 2240 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2241 2242 if (tmp->vm_end > addr) { 2243 vma = tmp; 2244 if (tmp->vm_start <= addr) 2245 break; 2246 rb_node = rb_node->rb_left; 2247 } else 2248 rb_node = rb_node->rb_right; 2249 } 2250 2251 if (vma) 2252 vmacache_update(addr, vma); 2253 return vma; 2254 } 2255 2256 EXPORT_SYMBOL(find_vma); 2257 2258 /* 2259 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2260 */ 2261 struct vm_area_struct * 2262 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2263 struct vm_area_struct **pprev) 2264 { 2265 struct vm_area_struct *vma; 2266 2267 vma = find_vma(mm, addr); 2268 if (vma) { 2269 *pprev = vma->vm_prev; 2270 } else { 2271 struct rb_node *rb_node = mm->mm_rb.rb_node; 2272 *pprev = NULL; 2273 while (rb_node) { 2274 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2275 rb_node = rb_node->rb_right; 2276 } 2277 } 2278 return vma; 2279 } 2280 2281 /* 2282 * Verify that the stack growth is acceptable and 2283 * update accounting. This is shared with both the 2284 * grow-up and grow-down cases. 2285 */ 2286 static int acct_stack_growth(struct vm_area_struct *vma, 2287 unsigned long size, unsigned long grow) 2288 { 2289 struct mm_struct *mm = vma->vm_mm; 2290 unsigned long new_start; 2291 2292 /* address space limit tests */ 2293 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2294 return -ENOMEM; 2295 2296 /* Stack limit test */ 2297 if (size > rlimit(RLIMIT_STACK)) 2298 return -ENOMEM; 2299 2300 /* mlock limit tests */ 2301 if (vma->vm_flags & VM_LOCKED) { 2302 unsigned long locked; 2303 unsigned long limit; 2304 locked = mm->locked_vm + grow; 2305 limit = rlimit(RLIMIT_MEMLOCK); 2306 limit >>= PAGE_SHIFT; 2307 if (locked > limit && !capable(CAP_IPC_LOCK)) 2308 return -ENOMEM; 2309 } 2310 2311 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2312 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2313 vma->vm_end - size; 2314 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2315 return -EFAULT; 2316 2317 /* 2318 * Overcommit.. This must be the final test, as it will 2319 * update security statistics. 2320 */ 2321 if (security_vm_enough_memory_mm(mm, grow)) 2322 return -ENOMEM; 2323 2324 return 0; 2325 } 2326 2327 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2328 /* 2329 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2330 * vma is the last one with address > vma->vm_end. Have to extend vma. 2331 */ 2332 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2333 { 2334 struct mm_struct *mm = vma->vm_mm; 2335 struct vm_area_struct *next; 2336 unsigned long gap_addr; 2337 int error = 0; 2338 2339 if (!(vma->vm_flags & VM_GROWSUP)) 2340 return -EFAULT; 2341 2342 /* Guard against exceeding limits of the address space. */ 2343 address &= PAGE_MASK; 2344 if (address >= (TASK_SIZE & PAGE_MASK)) 2345 return -ENOMEM; 2346 address += PAGE_SIZE; 2347 2348 /* Enforce stack_guard_gap */ 2349 gap_addr = address + stack_guard_gap; 2350 2351 /* Guard against overflow */ 2352 if (gap_addr < address || gap_addr > TASK_SIZE) 2353 gap_addr = TASK_SIZE; 2354 2355 next = vma->vm_next; 2356 if (next && next->vm_start < gap_addr && 2357 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2358 if (!(next->vm_flags & VM_GROWSUP)) 2359 return -ENOMEM; 2360 /* Check that both stack segments have the same anon_vma? */ 2361 } 2362 2363 /* We must make sure the anon_vma is allocated. */ 2364 if (unlikely(anon_vma_prepare(vma))) 2365 return -ENOMEM; 2366 2367 /* 2368 * vma->vm_start/vm_end cannot change under us because the caller 2369 * is required to hold the mmap_sem in read mode. We need the 2370 * anon_vma lock to serialize against concurrent expand_stacks. 2371 */ 2372 anon_vma_lock_write(vma->anon_vma); 2373 2374 /* Somebody else might have raced and expanded it already */ 2375 if (address > vma->vm_end) { 2376 unsigned long size, grow; 2377 2378 size = address - vma->vm_start; 2379 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2380 2381 error = -ENOMEM; 2382 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2383 error = acct_stack_growth(vma, size, grow); 2384 if (!error) { 2385 /* 2386 * vma_gap_update() doesn't support concurrent 2387 * updates, but we only hold a shared mmap_sem 2388 * lock here, so we need to protect against 2389 * concurrent vma expansions. 2390 * anon_vma_lock_write() doesn't help here, as 2391 * we don't guarantee that all growable vmas 2392 * in a mm share the same root anon vma. 2393 * So, we reuse mm->page_table_lock to guard 2394 * against concurrent vma expansions. 2395 */ 2396 spin_lock(&mm->page_table_lock); 2397 if (vma->vm_flags & VM_LOCKED) 2398 mm->locked_vm += grow; 2399 vm_stat_account(mm, vma->vm_flags, grow); 2400 anon_vma_interval_tree_pre_update_vma(vma); 2401 vma->vm_end = address; 2402 anon_vma_interval_tree_post_update_vma(vma); 2403 if (vma->vm_next) 2404 vma_gap_update(vma->vm_next); 2405 else 2406 mm->highest_vm_end = vm_end_gap(vma); 2407 spin_unlock(&mm->page_table_lock); 2408 2409 perf_event_mmap(vma); 2410 } 2411 } 2412 } 2413 anon_vma_unlock_write(vma->anon_vma); 2414 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2415 validate_mm(mm); 2416 return error; 2417 } 2418 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2419 2420 /* 2421 * vma is the first one with address < vma->vm_start. Have to extend vma. 2422 */ 2423 int expand_downwards(struct vm_area_struct *vma, 2424 unsigned long address) 2425 { 2426 struct mm_struct *mm = vma->vm_mm; 2427 struct vm_area_struct *prev; 2428 int error = 0; 2429 2430 address &= PAGE_MASK; 2431 if (address < mmap_min_addr) 2432 return -EPERM; 2433 2434 /* Enforce stack_guard_gap */ 2435 prev = vma->vm_prev; 2436 /* Check that both stack segments have the same anon_vma? */ 2437 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2438 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2439 if (address - prev->vm_end < stack_guard_gap) 2440 return -ENOMEM; 2441 } 2442 2443 /* We must make sure the anon_vma is allocated. */ 2444 if (unlikely(anon_vma_prepare(vma))) 2445 return -ENOMEM; 2446 2447 /* 2448 * vma->vm_start/vm_end cannot change under us because the caller 2449 * is required to hold the mmap_sem in read mode. We need the 2450 * anon_vma lock to serialize against concurrent expand_stacks. 2451 */ 2452 anon_vma_lock_write(vma->anon_vma); 2453 2454 /* Somebody else might have raced and expanded it already */ 2455 if (address < vma->vm_start) { 2456 unsigned long size, grow; 2457 2458 size = vma->vm_end - address; 2459 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2460 2461 error = -ENOMEM; 2462 if (grow <= vma->vm_pgoff) { 2463 error = acct_stack_growth(vma, size, grow); 2464 if (!error) { 2465 /* 2466 * vma_gap_update() doesn't support concurrent 2467 * updates, but we only hold a shared mmap_sem 2468 * lock here, so we need to protect against 2469 * concurrent vma expansions. 2470 * anon_vma_lock_write() doesn't help here, as 2471 * we don't guarantee that all growable vmas 2472 * in a mm share the same root anon vma. 2473 * So, we reuse mm->page_table_lock to guard 2474 * against concurrent vma expansions. 2475 */ 2476 spin_lock(&mm->page_table_lock); 2477 if (vma->vm_flags & VM_LOCKED) 2478 mm->locked_vm += grow; 2479 vm_stat_account(mm, vma->vm_flags, grow); 2480 anon_vma_interval_tree_pre_update_vma(vma); 2481 vma->vm_start = address; 2482 vma->vm_pgoff -= grow; 2483 anon_vma_interval_tree_post_update_vma(vma); 2484 vma_gap_update(vma); 2485 spin_unlock(&mm->page_table_lock); 2486 2487 perf_event_mmap(vma); 2488 } 2489 } 2490 } 2491 anon_vma_unlock_write(vma->anon_vma); 2492 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2493 validate_mm(mm); 2494 return error; 2495 } 2496 2497 /* enforced gap between the expanding stack and other mappings. */ 2498 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2499 2500 static int __init cmdline_parse_stack_guard_gap(char *p) 2501 { 2502 unsigned long val; 2503 char *endptr; 2504 2505 val = simple_strtoul(p, &endptr, 10); 2506 if (!*endptr) 2507 stack_guard_gap = val << PAGE_SHIFT; 2508 2509 return 0; 2510 } 2511 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2512 2513 #ifdef CONFIG_STACK_GROWSUP 2514 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2515 { 2516 return expand_upwards(vma, address); 2517 } 2518 2519 struct vm_area_struct * 2520 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2521 { 2522 struct vm_area_struct *vma, *prev; 2523 2524 addr &= PAGE_MASK; 2525 vma = find_vma_prev(mm, addr, &prev); 2526 if (vma && (vma->vm_start <= addr)) 2527 return vma; 2528 if (!prev || expand_stack(prev, addr)) 2529 return NULL; 2530 if (prev->vm_flags & VM_LOCKED) 2531 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2532 return prev; 2533 } 2534 #else 2535 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2536 { 2537 return expand_downwards(vma, address); 2538 } 2539 2540 struct vm_area_struct * 2541 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2542 { 2543 struct vm_area_struct *vma; 2544 unsigned long start; 2545 2546 addr &= PAGE_MASK; 2547 vma = find_vma(mm, addr); 2548 if (!vma) 2549 return NULL; 2550 if (vma->vm_start <= addr) 2551 return vma; 2552 if (!(vma->vm_flags & VM_GROWSDOWN)) 2553 return NULL; 2554 start = vma->vm_start; 2555 if (expand_stack(vma, addr)) 2556 return NULL; 2557 if (vma->vm_flags & VM_LOCKED) 2558 populate_vma_page_range(vma, addr, start, NULL); 2559 return vma; 2560 } 2561 #endif 2562 2563 EXPORT_SYMBOL_GPL(find_extend_vma); 2564 2565 /* 2566 * Ok - we have the memory areas we should free on the vma list, 2567 * so release them, and do the vma updates. 2568 * 2569 * Called with the mm semaphore held. 2570 */ 2571 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2572 { 2573 unsigned long nr_accounted = 0; 2574 2575 /* Update high watermark before we lower total_vm */ 2576 update_hiwater_vm(mm); 2577 do { 2578 long nrpages = vma_pages(vma); 2579 2580 if (vma->vm_flags & VM_ACCOUNT) 2581 nr_accounted += nrpages; 2582 vm_stat_account(mm, vma->vm_flags, -nrpages); 2583 vma = remove_vma(vma); 2584 } while (vma); 2585 vm_unacct_memory(nr_accounted); 2586 validate_mm(mm); 2587 } 2588 2589 /* 2590 * Get rid of page table information in the indicated region. 2591 * 2592 * Called with the mm semaphore held. 2593 */ 2594 static void unmap_region(struct mm_struct *mm, 2595 struct vm_area_struct *vma, struct vm_area_struct *prev, 2596 unsigned long start, unsigned long end) 2597 { 2598 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2599 struct mmu_gather tlb; 2600 2601 lru_add_drain(); 2602 tlb_gather_mmu(&tlb, mm, start, end); 2603 update_hiwater_rss(mm); 2604 unmap_vmas(&tlb, vma, start, end); 2605 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2606 next ? next->vm_start : USER_PGTABLES_CEILING); 2607 tlb_finish_mmu(&tlb, start, end); 2608 } 2609 2610 /* 2611 * Create a list of vma's touched by the unmap, removing them from the mm's 2612 * vma list as we go.. 2613 */ 2614 static void 2615 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2616 struct vm_area_struct *prev, unsigned long end) 2617 { 2618 struct vm_area_struct **insertion_point; 2619 struct vm_area_struct *tail_vma = NULL; 2620 2621 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2622 vma->vm_prev = NULL; 2623 do { 2624 vma_rb_erase(vma, &mm->mm_rb); 2625 mm->map_count--; 2626 tail_vma = vma; 2627 vma = vma->vm_next; 2628 } while (vma && vma->vm_start < end); 2629 *insertion_point = vma; 2630 if (vma) { 2631 vma->vm_prev = prev; 2632 vma_gap_update(vma); 2633 } else 2634 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2635 tail_vma->vm_next = NULL; 2636 2637 /* Kill the cache */ 2638 vmacache_invalidate(mm); 2639 } 2640 2641 /* 2642 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2643 * has already been checked or doesn't make sense to fail. 2644 */ 2645 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2646 unsigned long addr, int new_below) 2647 { 2648 struct vm_area_struct *new; 2649 int err; 2650 2651 if (vma->vm_ops && vma->vm_ops->split) { 2652 err = vma->vm_ops->split(vma, addr); 2653 if (err) 2654 return err; 2655 } 2656 2657 new = vm_area_dup(vma); 2658 if (!new) 2659 return -ENOMEM; 2660 2661 if (new_below) 2662 new->vm_end = addr; 2663 else { 2664 new->vm_start = addr; 2665 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2666 } 2667 2668 err = vma_dup_policy(vma, new); 2669 if (err) 2670 goto out_free_vma; 2671 2672 err = anon_vma_clone(new, vma); 2673 if (err) 2674 goto out_free_mpol; 2675 2676 if (new->vm_file) 2677 get_file(new->vm_file); 2678 2679 if (new->vm_ops && new->vm_ops->open) 2680 new->vm_ops->open(new); 2681 2682 if (new_below) 2683 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2684 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2685 else 2686 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2687 2688 /* Success. */ 2689 if (!err) 2690 return 0; 2691 2692 /* Clean everything up if vma_adjust failed. */ 2693 if (new->vm_ops && new->vm_ops->close) 2694 new->vm_ops->close(new); 2695 if (new->vm_file) 2696 fput(new->vm_file); 2697 unlink_anon_vmas(new); 2698 out_free_mpol: 2699 mpol_put(vma_policy(new)); 2700 out_free_vma: 2701 vm_area_free(new); 2702 return err; 2703 } 2704 2705 /* 2706 * Split a vma into two pieces at address 'addr', a new vma is allocated 2707 * either for the first part or the tail. 2708 */ 2709 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2710 unsigned long addr, int new_below) 2711 { 2712 if (mm->map_count >= sysctl_max_map_count) 2713 return -ENOMEM; 2714 2715 return __split_vma(mm, vma, addr, new_below); 2716 } 2717 2718 /* Munmap is split into 2 main parts -- this part which finds 2719 * what needs doing, and the areas themselves, which do the 2720 * work. This now handles partial unmappings. 2721 * Jeremy Fitzhardinge <jeremy@goop.org> 2722 */ 2723 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2724 struct list_head *uf, bool downgrade) 2725 { 2726 unsigned long end; 2727 struct vm_area_struct *vma, *prev, *last; 2728 2729 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2730 return -EINVAL; 2731 2732 len = PAGE_ALIGN(len); 2733 if (len == 0) 2734 return -EINVAL; 2735 2736 /* Find the first overlapping VMA */ 2737 vma = find_vma(mm, start); 2738 if (!vma) 2739 return 0; 2740 prev = vma->vm_prev; 2741 /* we have start < vma->vm_end */ 2742 2743 /* if it doesn't overlap, we have nothing.. */ 2744 end = start + len; 2745 if (vma->vm_start >= end) 2746 return 0; 2747 2748 /* 2749 * If we need to split any vma, do it now to save pain later. 2750 * 2751 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2752 * unmapped vm_area_struct will remain in use: so lower split_vma 2753 * places tmp vma above, and higher split_vma places tmp vma below. 2754 */ 2755 if (start > vma->vm_start) { 2756 int error; 2757 2758 /* 2759 * Make sure that map_count on return from munmap() will 2760 * not exceed its limit; but let map_count go just above 2761 * its limit temporarily, to help free resources as expected. 2762 */ 2763 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2764 return -ENOMEM; 2765 2766 error = __split_vma(mm, vma, start, 0); 2767 if (error) 2768 return error; 2769 prev = vma; 2770 } 2771 2772 /* Does it split the last one? */ 2773 last = find_vma(mm, end); 2774 if (last && end > last->vm_start) { 2775 int error = __split_vma(mm, last, end, 1); 2776 if (error) 2777 return error; 2778 } 2779 vma = prev ? prev->vm_next : mm->mmap; 2780 2781 if (unlikely(uf)) { 2782 /* 2783 * If userfaultfd_unmap_prep returns an error the vmas 2784 * will remain splitted, but userland will get a 2785 * highly unexpected error anyway. This is no 2786 * different than the case where the first of the two 2787 * __split_vma fails, but we don't undo the first 2788 * split, despite we could. This is unlikely enough 2789 * failure that it's not worth optimizing it for. 2790 */ 2791 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2792 if (error) 2793 return error; 2794 } 2795 2796 /* 2797 * unlock any mlock()ed ranges before detaching vmas 2798 */ 2799 if (mm->locked_vm) { 2800 struct vm_area_struct *tmp = vma; 2801 while (tmp && tmp->vm_start < end) { 2802 if (tmp->vm_flags & VM_LOCKED) { 2803 mm->locked_vm -= vma_pages(tmp); 2804 munlock_vma_pages_all(tmp); 2805 } 2806 2807 tmp = tmp->vm_next; 2808 } 2809 } 2810 2811 /* Detach vmas from rbtree */ 2812 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2813 2814 /* 2815 * mpx unmap needs to be called with mmap_sem held for write. 2816 * It is safe to call it before unmap_region(). 2817 */ 2818 arch_unmap(mm, vma, start, end); 2819 2820 if (downgrade) 2821 downgrade_write(&mm->mmap_sem); 2822 2823 unmap_region(mm, vma, prev, start, end); 2824 2825 /* Fix up all other VM information */ 2826 remove_vma_list(mm, vma); 2827 2828 return downgrade ? 1 : 0; 2829 } 2830 2831 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2832 struct list_head *uf) 2833 { 2834 return __do_munmap(mm, start, len, uf, false); 2835 } 2836 2837 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2838 { 2839 int ret; 2840 struct mm_struct *mm = current->mm; 2841 LIST_HEAD(uf); 2842 2843 if (down_write_killable(&mm->mmap_sem)) 2844 return -EINTR; 2845 2846 ret = __do_munmap(mm, start, len, &uf, downgrade); 2847 /* 2848 * Returning 1 indicates mmap_sem is downgraded. 2849 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2850 * it to 0 before return. 2851 */ 2852 if (ret == 1) { 2853 up_read(&mm->mmap_sem); 2854 ret = 0; 2855 } else 2856 up_write(&mm->mmap_sem); 2857 2858 userfaultfd_unmap_complete(mm, &uf); 2859 return ret; 2860 } 2861 2862 int vm_munmap(unsigned long start, size_t len) 2863 { 2864 return __vm_munmap(start, len, false); 2865 } 2866 EXPORT_SYMBOL(vm_munmap); 2867 2868 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2869 { 2870 profile_munmap(addr); 2871 return __vm_munmap(addr, len, true); 2872 } 2873 2874 2875 /* 2876 * Emulation of deprecated remap_file_pages() syscall. 2877 */ 2878 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2879 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2880 { 2881 2882 struct mm_struct *mm = current->mm; 2883 struct vm_area_struct *vma; 2884 unsigned long populate = 0; 2885 unsigned long ret = -EINVAL; 2886 struct file *file; 2887 2888 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2889 current->comm, current->pid); 2890 2891 if (prot) 2892 return ret; 2893 start = start & PAGE_MASK; 2894 size = size & PAGE_MASK; 2895 2896 if (start + size <= start) 2897 return ret; 2898 2899 /* Does pgoff wrap? */ 2900 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2901 return ret; 2902 2903 if (down_write_killable(&mm->mmap_sem)) 2904 return -EINTR; 2905 2906 vma = find_vma(mm, start); 2907 2908 if (!vma || !(vma->vm_flags & VM_SHARED)) 2909 goto out; 2910 2911 if (start < vma->vm_start) 2912 goto out; 2913 2914 if (start + size > vma->vm_end) { 2915 struct vm_area_struct *next; 2916 2917 for (next = vma->vm_next; next; next = next->vm_next) { 2918 /* hole between vmas ? */ 2919 if (next->vm_start != next->vm_prev->vm_end) 2920 goto out; 2921 2922 if (next->vm_file != vma->vm_file) 2923 goto out; 2924 2925 if (next->vm_flags != vma->vm_flags) 2926 goto out; 2927 2928 if (start + size <= next->vm_end) 2929 break; 2930 } 2931 2932 if (!next) 2933 goto out; 2934 } 2935 2936 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2937 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2938 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2939 2940 flags &= MAP_NONBLOCK; 2941 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2942 if (vma->vm_flags & VM_LOCKED) { 2943 struct vm_area_struct *tmp; 2944 flags |= MAP_LOCKED; 2945 2946 /* drop PG_Mlocked flag for over-mapped range */ 2947 for (tmp = vma; tmp->vm_start >= start + size; 2948 tmp = tmp->vm_next) { 2949 /* 2950 * Split pmd and munlock page on the border 2951 * of the range. 2952 */ 2953 vma_adjust_trans_huge(tmp, start, start + size, 0); 2954 2955 munlock_vma_pages_range(tmp, 2956 max(tmp->vm_start, start), 2957 min(tmp->vm_end, start + size)); 2958 } 2959 } 2960 2961 file = get_file(vma->vm_file); 2962 ret = do_mmap_pgoff(vma->vm_file, start, size, 2963 prot, flags, pgoff, &populate, NULL); 2964 fput(file); 2965 out: 2966 up_write(&mm->mmap_sem); 2967 if (populate) 2968 mm_populate(ret, populate); 2969 if (!IS_ERR_VALUE(ret)) 2970 ret = 0; 2971 return ret; 2972 } 2973 2974 /* 2975 * this is really a simplified "do_mmap". it only handles 2976 * anonymous maps. eventually we may be able to do some 2977 * brk-specific accounting here. 2978 */ 2979 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2980 { 2981 struct mm_struct *mm = current->mm; 2982 struct vm_area_struct *vma, *prev; 2983 struct rb_node **rb_link, *rb_parent; 2984 pgoff_t pgoff = addr >> PAGE_SHIFT; 2985 int error; 2986 2987 /* Until we need other flags, refuse anything except VM_EXEC. */ 2988 if ((flags & (~VM_EXEC)) != 0) 2989 return -EINVAL; 2990 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2991 2992 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2993 if (offset_in_page(error)) 2994 return error; 2995 2996 error = mlock_future_check(mm, mm->def_flags, len); 2997 if (error) 2998 return error; 2999 3000 /* 3001 * Clear old maps. this also does some error checking for us 3002 */ 3003 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3004 &rb_parent)) { 3005 if (do_munmap(mm, addr, len, uf)) 3006 return -ENOMEM; 3007 } 3008 3009 /* Check against address space limits *after* clearing old maps... */ 3010 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3011 return -ENOMEM; 3012 3013 if (mm->map_count > sysctl_max_map_count) 3014 return -ENOMEM; 3015 3016 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3017 return -ENOMEM; 3018 3019 /* Can we just expand an old private anonymous mapping? */ 3020 vma = vma_merge(mm, prev, addr, addr + len, flags, 3021 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3022 if (vma) 3023 goto out; 3024 3025 /* 3026 * create a vma struct for an anonymous mapping 3027 */ 3028 vma = vm_area_alloc(mm); 3029 if (!vma) { 3030 vm_unacct_memory(len >> PAGE_SHIFT); 3031 return -ENOMEM; 3032 } 3033 3034 vma_set_anonymous(vma); 3035 vma->vm_start = addr; 3036 vma->vm_end = addr + len; 3037 vma->vm_pgoff = pgoff; 3038 vma->vm_flags = flags; 3039 vma->vm_page_prot = vm_get_page_prot(flags); 3040 vma_link(mm, vma, prev, rb_link, rb_parent); 3041 out: 3042 perf_event_mmap(vma); 3043 mm->total_vm += len >> PAGE_SHIFT; 3044 mm->data_vm += len >> PAGE_SHIFT; 3045 if (flags & VM_LOCKED) 3046 mm->locked_vm += (len >> PAGE_SHIFT); 3047 vma->vm_flags |= VM_SOFTDIRTY; 3048 return 0; 3049 } 3050 3051 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3052 { 3053 struct mm_struct *mm = current->mm; 3054 unsigned long len; 3055 int ret; 3056 bool populate; 3057 LIST_HEAD(uf); 3058 3059 len = PAGE_ALIGN(request); 3060 if (len < request) 3061 return -ENOMEM; 3062 if (!len) 3063 return 0; 3064 3065 if (down_write_killable(&mm->mmap_sem)) 3066 return -EINTR; 3067 3068 ret = do_brk_flags(addr, len, flags, &uf); 3069 populate = ((mm->def_flags & VM_LOCKED) != 0); 3070 up_write(&mm->mmap_sem); 3071 userfaultfd_unmap_complete(mm, &uf); 3072 if (populate && !ret) 3073 mm_populate(addr, len); 3074 return ret; 3075 } 3076 EXPORT_SYMBOL(vm_brk_flags); 3077 3078 int vm_brk(unsigned long addr, unsigned long len) 3079 { 3080 return vm_brk_flags(addr, len, 0); 3081 } 3082 EXPORT_SYMBOL(vm_brk); 3083 3084 /* Release all mmaps. */ 3085 void exit_mmap(struct mm_struct *mm) 3086 { 3087 struct mmu_gather tlb; 3088 struct vm_area_struct *vma; 3089 unsigned long nr_accounted = 0; 3090 3091 /* mm's last user has gone, and its about to be pulled down */ 3092 mmu_notifier_release(mm); 3093 3094 if (unlikely(mm_is_oom_victim(mm))) { 3095 /* 3096 * Manually reap the mm to free as much memory as possible. 3097 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3098 * this mm from further consideration. Taking mm->mmap_sem for 3099 * write after setting MMF_OOM_SKIP will guarantee that the oom 3100 * reaper will not run on this mm again after mmap_sem is 3101 * dropped. 3102 * 3103 * Nothing can be holding mm->mmap_sem here and the above call 3104 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3105 * __oom_reap_task_mm() will not block. 3106 * 3107 * This needs to be done before calling munlock_vma_pages_all(), 3108 * which clears VM_LOCKED, otherwise the oom reaper cannot 3109 * reliably test it. 3110 */ 3111 (void)__oom_reap_task_mm(mm); 3112 3113 set_bit(MMF_OOM_SKIP, &mm->flags); 3114 down_write(&mm->mmap_sem); 3115 up_write(&mm->mmap_sem); 3116 } 3117 3118 if (mm->locked_vm) { 3119 vma = mm->mmap; 3120 while (vma) { 3121 if (vma->vm_flags & VM_LOCKED) 3122 munlock_vma_pages_all(vma); 3123 vma = vma->vm_next; 3124 } 3125 } 3126 3127 arch_exit_mmap(mm); 3128 3129 vma = mm->mmap; 3130 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3131 return; 3132 3133 lru_add_drain(); 3134 flush_cache_mm(mm); 3135 tlb_gather_mmu(&tlb, mm, 0, -1); 3136 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3137 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3138 unmap_vmas(&tlb, vma, 0, -1); 3139 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3140 tlb_finish_mmu(&tlb, 0, -1); 3141 3142 /* 3143 * Walk the list again, actually closing and freeing it, 3144 * with preemption enabled, without holding any MM locks. 3145 */ 3146 while (vma) { 3147 if (vma->vm_flags & VM_ACCOUNT) 3148 nr_accounted += vma_pages(vma); 3149 vma = remove_vma(vma); 3150 } 3151 vm_unacct_memory(nr_accounted); 3152 } 3153 3154 /* Insert vm structure into process list sorted by address 3155 * and into the inode's i_mmap tree. If vm_file is non-NULL 3156 * then i_mmap_rwsem is taken here. 3157 */ 3158 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3159 { 3160 struct vm_area_struct *prev; 3161 struct rb_node **rb_link, *rb_parent; 3162 3163 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3164 &prev, &rb_link, &rb_parent)) 3165 return -ENOMEM; 3166 if ((vma->vm_flags & VM_ACCOUNT) && 3167 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3168 return -ENOMEM; 3169 3170 /* 3171 * The vm_pgoff of a purely anonymous vma should be irrelevant 3172 * until its first write fault, when page's anon_vma and index 3173 * are set. But now set the vm_pgoff it will almost certainly 3174 * end up with (unless mremap moves it elsewhere before that 3175 * first wfault), so /proc/pid/maps tells a consistent story. 3176 * 3177 * By setting it to reflect the virtual start address of the 3178 * vma, merges and splits can happen in a seamless way, just 3179 * using the existing file pgoff checks and manipulations. 3180 * Similarly in do_mmap_pgoff and in do_brk. 3181 */ 3182 if (vma_is_anonymous(vma)) { 3183 BUG_ON(vma->anon_vma); 3184 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3185 } 3186 3187 vma_link(mm, vma, prev, rb_link, rb_parent); 3188 return 0; 3189 } 3190 3191 /* 3192 * Copy the vma structure to a new location in the same mm, 3193 * prior to moving page table entries, to effect an mremap move. 3194 */ 3195 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3196 unsigned long addr, unsigned long len, pgoff_t pgoff, 3197 bool *need_rmap_locks) 3198 { 3199 struct vm_area_struct *vma = *vmap; 3200 unsigned long vma_start = vma->vm_start; 3201 struct mm_struct *mm = vma->vm_mm; 3202 struct vm_area_struct *new_vma, *prev; 3203 struct rb_node **rb_link, *rb_parent; 3204 bool faulted_in_anon_vma = true; 3205 3206 /* 3207 * If anonymous vma has not yet been faulted, update new pgoff 3208 * to match new location, to increase its chance of merging. 3209 */ 3210 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3211 pgoff = addr >> PAGE_SHIFT; 3212 faulted_in_anon_vma = false; 3213 } 3214 3215 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3216 return NULL; /* should never get here */ 3217 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3218 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3219 vma->vm_userfaultfd_ctx); 3220 if (new_vma) { 3221 /* 3222 * Source vma may have been merged into new_vma 3223 */ 3224 if (unlikely(vma_start >= new_vma->vm_start && 3225 vma_start < new_vma->vm_end)) { 3226 /* 3227 * The only way we can get a vma_merge with 3228 * self during an mremap is if the vma hasn't 3229 * been faulted in yet and we were allowed to 3230 * reset the dst vma->vm_pgoff to the 3231 * destination address of the mremap to allow 3232 * the merge to happen. mremap must change the 3233 * vm_pgoff linearity between src and dst vmas 3234 * (in turn preventing a vma_merge) to be 3235 * safe. It is only safe to keep the vm_pgoff 3236 * linear if there are no pages mapped yet. 3237 */ 3238 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3239 *vmap = vma = new_vma; 3240 } 3241 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3242 } else { 3243 new_vma = vm_area_dup(vma); 3244 if (!new_vma) 3245 goto out; 3246 new_vma->vm_start = addr; 3247 new_vma->vm_end = addr + len; 3248 new_vma->vm_pgoff = pgoff; 3249 if (vma_dup_policy(vma, new_vma)) 3250 goto out_free_vma; 3251 if (anon_vma_clone(new_vma, vma)) 3252 goto out_free_mempol; 3253 if (new_vma->vm_file) 3254 get_file(new_vma->vm_file); 3255 if (new_vma->vm_ops && new_vma->vm_ops->open) 3256 new_vma->vm_ops->open(new_vma); 3257 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3258 *need_rmap_locks = false; 3259 } 3260 return new_vma; 3261 3262 out_free_mempol: 3263 mpol_put(vma_policy(new_vma)); 3264 out_free_vma: 3265 vm_area_free(new_vma); 3266 out: 3267 return NULL; 3268 } 3269 3270 /* 3271 * Return true if the calling process may expand its vm space by the passed 3272 * number of pages 3273 */ 3274 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3275 { 3276 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3277 return false; 3278 3279 if (is_data_mapping(flags) && 3280 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3281 /* Workaround for Valgrind */ 3282 if (rlimit(RLIMIT_DATA) == 0 && 3283 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3284 return true; 3285 3286 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3287 current->comm, current->pid, 3288 (mm->data_vm + npages) << PAGE_SHIFT, 3289 rlimit(RLIMIT_DATA), 3290 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3291 3292 if (!ignore_rlimit_data) 3293 return false; 3294 } 3295 3296 return true; 3297 } 3298 3299 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3300 { 3301 mm->total_vm += npages; 3302 3303 if (is_exec_mapping(flags)) 3304 mm->exec_vm += npages; 3305 else if (is_stack_mapping(flags)) 3306 mm->stack_vm += npages; 3307 else if (is_data_mapping(flags)) 3308 mm->data_vm += npages; 3309 } 3310 3311 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3312 3313 /* 3314 * Having a close hook prevents vma merging regardless of flags. 3315 */ 3316 static void special_mapping_close(struct vm_area_struct *vma) 3317 { 3318 } 3319 3320 static const char *special_mapping_name(struct vm_area_struct *vma) 3321 { 3322 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3323 } 3324 3325 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3326 { 3327 struct vm_special_mapping *sm = new_vma->vm_private_data; 3328 3329 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3330 return -EFAULT; 3331 3332 if (sm->mremap) 3333 return sm->mremap(sm, new_vma); 3334 3335 return 0; 3336 } 3337 3338 static const struct vm_operations_struct special_mapping_vmops = { 3339 .close = special_mapping_close, 3340 .fault = special_mapping_fault, 3341 .mremap = special_mapping_mremap, 3342 .name = special_mapping_name, 3343 }; 3344 3345 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3346 .close = special_mapping_close, 3347 .fault = special_mapping_fault, 3348 }; 3349 3350 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3351 { 3352 struct vm_area_struct *vma = vmf->vma; 3353 pgoff_t pgoff; 3354 struct page **pages; 3355 3356 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3357 pages = vma->vm_private_data; 3358 } else { 3359 struct vm_special_mapping *sm = vma->vm_private_data; 3360 3361 if (sm->fault) 3362 return sm->fault(sm, vmf->vma, vmf); 3363 3364 pages = sm->pages; 3365 } 3366 3367 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3368 pgoff--; 3369 3370 if (*pages) { 3371 struct page *page = *pages; 3372 get_page(page); 3373 vmf->page = page; 3374 return 0; 3375 } 3376 3377 return VM_FAULT_SIGBUS; 3378 } 3379 3380 static struct vm_area_struct *__install_special_mapping( 3381 struct mm_struct *mm, 3382 unsigned long addr, unsigned long len, 3383 unsigned long vm_flags, void *priv, 3384 const struct vm_operations_struct *ops) 3385 { 3386 int ret; 3387 struct vm_area_struct *vma; 3388 3389 vma = vm_area_alloc(mm); 3390 if (unlikely(vma == NULL)) 3391 return ERR_PTR(-ENOMEM); 3392 3393 vma->vm_start = addr; 3394 vma->vm_end = addr + len; 3395 3396 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3397 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3398 3399 vma->vm_ops = ops; 3400 vma->vm_private_data = priv; 3401 3402 ret = insert_vm_struct(mm, vma); 3403 if (ret) 3404 goto out; 3405 3406 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3407 3408 perf_event_mmap(vma); 3409 3410 return vma; 3411 3412 out: 3413 vm_area_free(vma); 3414 return ERR_PTR(ret); 3415 } 3416 3417 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3418 const struct vm_special_mapping *sm) 3419 { 3420 return vma->vm_private_data == sm && 3421 (vma->vm_ops == &special_mapping_vmops || 3422 vma->vm_ops == &legacy_special_mapping_vmops); 3423 } 3424 3425 /* 3426 * Called with mm->mmap_sem held for writing. 3427 * Insert a new vma covering the given region, with the given flags. 3428 * Its pages are supplied by the given array of struct page *. 3429 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3430 * The region past the last page supplied will always produce SIGBUS. 3431 * The array pointer and the pages it points to are assumed to stay alive 3432 * for as long as this mapping might exist. 3433 */ 3434 struct vm_area_struct *_install_special_mapping( 3435 struct mm_struct *mm, 3436 unsigned long addr, unsigned long len, 3437 unsigned long vm_flags, const struct vm_special_mapping *spec) 3438 { 3439 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3440 &special_mapping_vmops); 3441 } 3442 3443 int install_special_mapping(struct mm_struct *mm, 3444 unsigned long addr, unsigned long len, 3445 unsigned long vm_flags, struct page **pages) 3446 { 3447 struct vm_area_struct *vma = __install_special_mapping( 3448 mm, addr, len, vm_flags, (void *)pages, 3449 &legacy_special_mapping_vmops); 3450 3451 return PTR_ERR_OR_ZERO(vma); 3452 } 3453 3454 static DEFINE_MUTEX(mm_all_locks_mutex); 3455 3456 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3457 { 3458 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3459 /* 3460 * The LSB of head.next can't change from under us 3461 * because we hold the mm_all_locks_mutex. 3462 */ 3463 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3464 /* 3465 * We can safely modify head.next after taking the 3466 * anon_vma->root->rwsem. If some other vma in this mm shares 3467 * the same anon_vma we won't take it again. 3468 * 3469 * No need of atomic instructions here, head.next 3470 * can't change from under us thanks to the 3471 * anon_vma->root->rwsem. 3472 */ 3473 if (__test_and_set_bit(0, (unsigned long *) 3474 &anon_vma->root->rb_root.rb_root.rb_node)) 3475 BUG(); 3476 } 3477 } 3478 3479 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3480 { 3481 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3482 /* 3483 * AS_MM_ALL_LOCKS can't change from under us because 3484 * we hold the mm_all_locks_mutex. 3485 * 3486 * Operations on ->flags have to be atomic because 3487 * even if AS_MM_ALL_LOCKS is stable thanks to the 3488 * mm_all_locks_mutex, there may be other cpus 3489 * changing other bitflags in parallel to us. 3490 */ 3491 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3492 BUG(); 3493 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3494 } 3495 } 3496 3497 /* 3498 * This operation locks against the VM for all pte/vma/mm related 3499 * operations that could ever happen on a certain mm. This includes 3500 * vmtruncate, try_to_unmap, and all page faults. 3501 * 3502 * The caller must take the mmap_sem in write mode before calling 3503 * mm_take_all_locks(). The caller isn't allowed to release the 3504 * mmap_sem until mm_drop_all_locks() returns. 3505 * 3506 * mmap_sem in write mode is required in order to block all operations 3507 * that could modify pagetables and free pages without need of 3508 * altering the vma layout. It's also needed in write mode to avoid new 3509 * anon_vmas to be associated with existing vmas. 3510 * 3511 * A single task can't take more than one mm_take_all_locks() in a row 3512 * or it would deadlock. 3513 * 3514 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3515 * mapping->flags avoid to take the same lock twice, if more than one 3516 * vma in this mm is backed by the same anon_vma or address_space. 3517 * 3518 * We take locks in following order, accordingly to comment at beginning 3519 * of mm/rmap.c: 3520 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3521 * hugetlb mapping); 3522 * - all i_mmap_rwsem locks; 3523 * - all anon_vma->rwseml 3524 * 3525 * We can take all locks within these types randomly because the VM code 3526 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3527 * mm_all_locks_mutex. 3528 * 3529 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3530 * that may have to take thousand of locks. 3531 * 3532 * mm_take_all_locks() can fail if it's interrupted by signals. 3533 */ 3534 int mm_take_all_locks(struct mm_struct *mm) 3535 { 3536 struct vm_area_struct *vma; 3537 struct anon_vma_chain *avc; 3538 3539 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3540 3541 mutex_lock(&mm_all_locks_mutex); 3542 3543 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3544 if (signal_pending(current)) 3545 goto out_unlock; 3546 if (vma->vm_file && vma->vm_file->f_mapping && 3547 is_vm_hugetlb_page(vma)) 3548 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3549 } 3550 3551 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3552 if (signal_pending(current)) 3553 goto out_unlock; 3554 if (vma->vm_file && vma->vm_file->f_mapping && 3555 !is_vm_hugetlb_page(vma)) 3556 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3557 } 3558 3559 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3560 if (signal_pending(current)) 3561 goto out_unlock; 3562 if (vma->anon_vma) 3563 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3564 vm_lock_anon_vma(mm, avc->anon_vma); 3565 } 3566 3567 return 0; 3568 3569 out_unlock: 3570 mm_drop_all_locks(mm); 3571 return -EINTR; 3572 } 3573 3574 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3575 { 3576 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3577 /* 3578 * The LSB of head.next can't change to 0 from under 3579 * us because we hold the mm_all_locks_mutex. 3580 * 3581 * We must however clear the bitflag before unlocking 3582 * the vma so the users using the anon_vma->rb_root will 3583 * never see our bitflag. 3584 * 3585 * No need of atomic instructions here, head.next 3586 * can't change from under us until we release the 3587 * anon_vma->root->rwsem. 3588 */ 3589 if (!__test_and_clear_bit(0, (unsigned long *) 3590 &anon_vma->root->rb_root.rb_root.rb_node)) 3591 BUG(); 3592 anon_vma_unlock_write(anon_vma); 3593 } 3594 } 3595 3596 static void vm_unlock_mapping(struct address_space *mapping) 3597 { 3598 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3599 /* 3600 * AS_MM_ALL_LOCKS can't change to 0 from under us 3601 * because we hold the mm_all_locks_mutex. 3602 */ 3603 i_mmap_unlock_write(mapping); 3604 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3605 &mapping->flags)) 3606 BUG(); 3607 } 3608 } 3609 3610 /* 3611 * The mmap_sem cannot be released by the caller until 3612 * mm_drop_all_locks() returns. 3613 */ 3614 void mm_drop_all_locks(struct mm_struct *mm) 3615 { 3616 struct vm_area_struct *vma; 3617 struct anon_vma_chain *avc; 3618 3619 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3620 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3621 3622 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3623 if (vma->anon_vma) 3624 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3625 vm_unlock_anon_vma(avc->anon_vma); 3626 if (vma->vm_file && vma->vm_file->f_mapping) 3627 vm_unlock_mapping(vma->vm_file->f_mapping); 3628 } 3629 3630 mutex_unlock(&mm_all_locks_mutex); 3631 } 3632 3633 /* 3634 * initialise the percpu counter for VM 3635 */ 3636 void __init mmap_init(void) 3637 { 3638 int ret; 3639 3640 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3641 VM_BUG_ON(ret); 3642 } 3643 3644 /* 3645 * Initialise sysctl_user_reserve_kbytes. 3646 * 3647 * This is intended to prevent a user from starting a single memory hogging 3648 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3649 * mode. 3650 * 3651 * The default value is min(3% of free memory, 128MB) 3652 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3653 */ 3654 static int init_user_reserve(void) 3655 { 3656 unsigned long free_kbytes; 3657 3658 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3659 3660 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3661 return 0; 3662 } 3663 subsys_initcall(init_user_reserve); 3664 3665 /* 3666 * Initialise sysctl_admin_reserve_kbytes. 3667 * 3668 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3669 * to log in and kill a memory hogging process. 3670 * 3671 * Systems with more than 256MB will reserve 8MB, enough to recover 3672 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3673 * only reserve 3% of free pages by default. 3674 */ 3675 static int init_admin_reserve(void) 3676 { 3677 unsigned long free_kbytes; 3678 3679 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3680 3681 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3682 return 0; 3683 } 3684 subsys_initcall(init_admin_reserve); 3685 3686 /* 3687 * Reinititalise user and admin reserves if memory is added or removed. 3688 * 3689 * The default user reserve max is 128MB, and the default max for the 3690 * admin reserve is 8MB. These are usually, but not always, enough to 3691 * enable recovery from a memory hogging process using login/sshd, a shell, 3692 * and tools like top. It may make sense to increase or even disable the 3693 * reserve depending on the existence of swap or variations in the recovery 3694 * tools. So, the admin may have changed them. 3695 * 3696 * If memory is added and the reserves have been eliminated or increased above 3697 * the default max, then we'll trust the admin. 3698 * 3699 * If memory is removed and there isn't enough free memory, then we 3700 * need to reset the reserves. 3701 * 3702 * Otherwise keep the reserve set by the admin. 3703 */ 3704 static int reserve_mem_notifier(struct notifier_block *nb, 3705 unsigned long action, void *data) 3706 { 3707 unsigned long tmp, free_kbytes; 3708 3709 switch (action) { 3710 case MEM_ONLINE: 3711 /* Default max is 128MB. Leave alone if modified by operator. */ 3712 tmp = sysctl_user_reserve_kbytes; 3713 if (0 < tmp && tmp < (1UL << 17)) 3714 init_user_reserve(); 3715 3716 /* Default max is 8MB. Leave alone if modified by operator. */ 3717 tmp = sysctl_admin_reserve_kbytes; 3718 if (0 < tmp && tmp < (1UL << 13)) 3719 init_admin_reserve(); 3720 3721 break; 3722 case MEM_OFFLINE: 3723 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3724 3725 if (sysctl_user_reserve_kbytes > free_kbytes) { 3726 init_user_reserve(); 3727 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3728 sysctl_user_reserve_kbytes); 3729 } 3730 3731 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3732 init_admin_reserve(); 3733 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3734 sysctl_admin_reserve_kbytes); 3735 } 3736 break; 3737 default: 3738 break; 3739 } 3740 return NOTIFY_OK; 3741 } 3742 3743 static struct notifier_block reserve_mem_nb = { 3744 .notifier_call = reserve_mem_notifier, 3745 }; 3746 3747 static int __meminit init_reserve_notifier(void) 3748 { 3749 if (register_hotmemory_notifier(&reserve_mem_nb)) 3750 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3751 3752 return 0; 3753 } 3754 subsys_initcall(init_reserve_notifier); 3755