xref: /openbmc/linux/mm/mmap.c (revision 305c8388)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 	return prot;
106 }
107 #endif
108 
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 
115 	return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118 
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123 
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 	unsigned long vm_flags = vma->vm_flags;
128 	pgprot_t vm_page_prot;
129 
130 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 	if (vma_wants_writenotify(vma, vm_page_prot)) {
132 		vm_flags &= ~VM_SHARED;
133 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 	}
135 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138 
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 		struct file *file, struct address_space *mapping)
144 {
145 	if (vma->vm_flags & VM_DENYWRITE)
146 		atomic_inc(&file_inode(file)->i_writecount);
147 	if (vma->vm_flags & VM_SHARED)
148 		mapping_unmap_writable(mapping);
149 
150 	flush_dcache_mmap_lock(mapping);
151 	vma_interval_tree_remove(vma, &mapping->i_mmap);
152 	flush_dcache_mmap_unlock(mapping);
153 }
154 
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 	struct file *file = vma->vm_file;
162 
163 	if (file) {
164 		struct address_space *mapping = file->f_mapping;
165 		i_mmap_lock_write(mapping);
166 		__remove_shared_vm_struct(vma, file, mapping);
167 		i_mmap_unlock_write(mapping);
168 	}
169 }
170 
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 	struct vm_area_struct *next = vma->vm_next;
177 
178 	might_sleep();
179 	if (vma->vm_ops && vma->vm_ops->close)
180 		vma->vm_ops->close(vma);
181 	if (vma->vm_file)
182 		fput(vma->vm_file);
183 	mpol_put(vma_policy(vma));
184 	vm_area_free(vma);
185 	return next;
186 }
187 
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 		struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long retval;
193 	unsigned long newbrk, oldbrk, origbrk;
194 	struct mm_struct *mm = current->mm;
195 	struct vm_area_struct *next;
196 	unsigned long min_brk;
197 	bool populate;
198 	bool downgraded = false;
199 	LIST_HEAD(uf);
200 
201 	if (mmap_write_lock_killable(mm))
202 		return -EINTR;
203 
204 	origbrk = mm->brk;
205 
206 #ifdef CONFIG_COMPAT_BRK
207 	/*
208 	 * CONFIG_COMPAT_BRK can still be overridden by setting
209 	 * randomize_va_space to 2, which will still cause mm->start_brk
210 	 * to be arbitrarily shifted
211 	 */
212 	if (current->brk_randomized)
213 		min_brk = mm->start_brk;
214 	else
215 		min_brk = mm->end_data;
216 #else
217 	min_brk = mm->start_brk;
218 #endif
219 	if (brk < min_brk)
220 		goto out;
221 
222 	/*
223 	 * Check against rlimit here. If this check is done later after the test
224 	 * of oldbrk with newbrk then it can escape the test and let the data
225 	 * segment grow beyond its set limit the in case where the limit is
226 	 * not page aligned -Ram Gupta
227 	 */
228 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 			      mm->end_data, mm->start_data))
230 		goto out;
231 
232 	newbrk = PAGE_ALIGN(brk);
233 	oldbrk = PAGE_ALIGN(mm->brk);
234 	if (oldbrk == newbrk) {
235 		mm->brk = brk;
236 		goto success;
237 	}
238 
239 	/*
240 	 * Always allow shrinking brk.
241 	 * __do_munmap() may downgrade mmap_lock to read.
242 	 */
243 	if (brk <= mm->brk) {
244 		int ret;
245 
246 		/*
247 		 * mm->brk must to be protected by write mmap_lock so update it
248 		 * before downgrading mmap_lock. When __do_munmap() fails,
249 		 * mm->brk will be restored from origbrk.
250 		 */
251 		mm->brk = brk;
252 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 		if (ret < 0) {
254 			mm->brk = origbrk;
255 			goto out;
256 		} else if (ret == 1) {
257 			downgraded = true;
258 		}
259 		goto success;
260 	}
261 
262 	/* Check against existing mmap mappings. */
263 	next = find_vma(mm, oldbrk);
264 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 		goto out;
266 
267 	/* Ok, looks good - let it rip. */
268 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 		goto out;
270 	mm->brk = brk;
271 
272 success:
273 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 	if (downgraded)
275 		mmap_read_unlock(mm);
276 	else
277 		mmap_write_unlock(mm);
278 	userfaultfd_unmap_complete(mm, &uf);
279 	if (populate)
280 		mm_populate(oldbrk, newbrk - oldbrk);
281 	return brk;
282 
283 out:
284 	retval = origbrk;
285 	mmap_write_unlock(mm);
286 	return retval;
287 }
288 
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 	unsigned long gap, prev_end;
292 
293 	/*
294 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 	 * allow two stack_guard_gaps between them here, and when choosing
296 	 * an unmapped area; whereas when expanding we only require one.
297 	 * That's a little inconsistent, but keeps the code here simpler.
298 	 */
299 	gap = vm_start_gap(vma);
300 	if (vma->vm_prev) {
301 		prev_end = vm_end_gap(vma->vm_prev);
302 		if (gap > prev_end)
303 			gap -= prev_end;
304 		else
305 			gap = 0;
306 	}
307 	return gap;
308 }
309 
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 	unsigned long max = vma_compute_gap(vma), subtree_gap;
314 	if (vma->vm_rb.rb_left) {
315 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 		if (subtree_gap > max)
318 			max = subtree_gap;
319 	}
320 	if (vma->vm_rb.rb_right) {
321 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 		if (subtree_gap > max)
324 			max = subtree_gap;
325 	}
326 	return max;
327 }
328 
329 static int browse_rb(struct mm_struct *mm)
330 {
331 	struct rb_root *root = &mm->mm_rb;
332 	int i = 0, j, bug = 0;
333 	struct rb_node *nd, *pn = NULL;
334 	unsigned long prev = 0, pend = 0;
335 
336 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 		struct vm_area_struct *vma;
338 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 		if (vma->vm_start < prev) {
340 			pr_emerg("vm_start %lx < prev %lx\n",
341 				  vma->vm_start, prev);
342 			bug = 1;
343 		}
344 		if (vma->vm_start < pend) {
345 			pr_emerg("vm_start %lx < pend %lx\n",
346 				  vma->vm_start, pend);
347 			bug = 1;
348 		}
349 		if (vma->vm_start > vma->vm_end) {
350 			pr_emerg("vm_start %lx > vm_end %lx\n",
351 				  vma->vm_start, vma->vm_end);
352 			bug = 1;
353 		}
354 		spin_lock(&mm->page_table_lock);
355 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 			pr_emerg("free gap %lx, correct %lx\n",
357 			       vma->rb_subtree_gap,
358 			       vma_compute_subtree_gap(vma));
359 			bug = 1;
360 		}
361 		spin_unlock(&mm->page_table_lock);
362 		i++;
363 		pn = nd;
364 		prev = vma->vm_start;
365 		pend = vma->vm_end;
366 	}
367 	j = 0;
368 	for (nd = pn; nd; nd = rb_prev(nd))
369 		j++;
370 	if (i != j) {
371 		pr_emerg("backwards %d, forwards %d\n", j, i);
372 		bug = 1;
373 	}
374 	return bug ? -1 : i;
375 }
376 
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 	struct rb_node *nd;
380 
381 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 		struct vm_area_struct *vma;
383 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 		VM_BUG_ON_VMA(vma != ignore &&
385 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 			vma);
387 	}
388 }
389 
390 static void validate_mm(struct mm_struct *mm)
391 {
392 	int bug = 0;
393 	int i = 0;
394 	unsigned long highest_address = 0;
395 	struct vm_area_struct *vma = mm->mmap;
396 
397 	while (vma) {
398 		struct anon_vma *anon_vma = vma->anon_vma;
399 		struct anon_vma_chain *avc;
400 
401 		if (anon_vma) {
402 			anon_vma_lock_read(anon_vma);
403 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 				anon_vma_interval_tree_verify(avc);
405 			anon_vma_unlock_read(anon_vma);
406 		}
407 
408 		highest_address = vm_end_gap(vma);
409 		vma = vma->vm_next;
410 		i++;
411 	}
412 	if (i != mm->map_count) {
413 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 		bug = 1;
415 	}
416 	if (highest_address != mm->highest_vm_end) {
417 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 			  mm->highest_vm_end, highest_address);
419 		bug = 1;
420 	}
421 	i = browse_rb(mm);
422 	if (i != mm->map_count) {
423 		if (i != -1)
424 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 		bug = 1;
426 	}
427 	VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433 
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 			 struct vm_area_struct, vm_rb,
436 			 unsigned long, rb_subtree_gap, vma_compute_gap)
437 
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 	/*
446 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 	 * a callback function that does exactly what we want.
448 	 */
449 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451 
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 				 struct rb_root *root)
454 {
455 	/* All rb_subtree_gap values must be consistent prior to insertion */
456 	validate_mm_rb(root, NULL);
457 
458 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460 
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 	/*
464 	 * Note rb_erase_augmented is a fairly large inline function,
465 	 * so make sure we instantiate it only once with our desired
466 	 * augmented rbtree callbacks.
467 	 */
468 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470 
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 						struct rb_root *root,
473 						struct vm_area_struct *ignore)
474 {
475 	/*
476 	 * All rb_subtree_gap values must be consistent prior to erase,
477 	 * with the possible exception of the "next" vma being erased if
478 	 * next->vm_start was reduced.
479 	 */
480 	validate_mm_rb(root, ignore);
481 
482 	__vma_rb_erase(vma, root);
483 }
484 
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486 					 struct rb_root *root)
487 {
488 	/*
489 	 * All rb_subtree_gap values must be consistent prior to erase,
490 	 * with the possible exception of the vma being erased.
491 	 */
492 	validate_mm_rb(root, vma);
493 
494 	__vma_rb_erase(vma, root);
495 }
496 
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 	struct anon_vma_chain *avc;
524 
525 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528 
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 		unsigned long end, struct vm_area_struct **pprev,
531 		struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 
535 	__rb_link = &mm->mm_rb.rb_node;
536 	rb_prev = __rb_parent = NULL;
537 
538 	while (*__rb_link) {
539 		struct vm_area_struct *vma_tmp;
540 
541 		__rb_parent = *__rb_link;
542 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543 
544 		if (vma_tmp->vm_end > addr) {
545 			/* Fail if an existing vma overlaps the area */
546 			if (vma_tmp->vm_start < end)
547 				return -ENOMEM;
548 			__rb_link = &__rb_parent->rb_left;
549 		} else {
550 			rb_prev = __rb_parent;
551 			__rb_link = &__rb_parent->rb_right;
552 		}
553 	}
554 
555 	*pprev = NULL;
556 	if (rb_prev)
557 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558 	*rb_link = __rb_link;
559 	*rb_parent = __rb_parent;
560 	return 0;
561 }
562 
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564 		unsigned long addr, unsigned long end)
565 {
566 	unsigned long nr_pages = 0;
567 	struct vm_area_struct *vma;
568 
569 	/* Find first overlaping mapping */
570 	vma = find_vma_intersection(mm, addr, end);
571 	if (!vma)
572 		return 0;
573 
574 	nr_pages = (min(end, vma->vm_end) -
575 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
576 
577 	/* Iterate over the rest of the overlaps */
578 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579 		unsigned long overlap_len;
580 
581 		if (vma->vm_start > end)
582 			break;
583 
584 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
585 		nr_pages += overlap_len >> PAGE_SHIFT;
586 	}
587 
588 	return nr_pages;
589 }
590 
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592 		struct rb_node **rb_link, struct rb_node *rb_parent)
593 {
594 	/* Update tracking information for the gap following the new vma. */
595 	if (vma->vm_next)
596 		vma_gap_update(vma->vm_next);
597 	else
598 		mm->highest_vm_end = vm_end_gap(vma);
599 
600 	/*
601 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
602 	 * correct insertion point for that vma. As a result, we could not
603 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
604 	 * So, we first insert the vma with a zero rb_subtree_gap value
605 	 * (to be consistent with what we did on the way down), and then
606 	 * immediately update the gap to the correct value. Finally we
607 	 * rebalance the rbtree after all augmented values have been set.
608 	 */
609 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610 	vma->rb_subtree_gap = 0;
611 	vma_gap_update(vma);
612 	vma_rb_insert(vma, &mm->mm_rb);
613 }
614 
615 static void __vma_link_file(struct vm_area_struct *vma)
616 {
617 	struct file *file;
618 
619 	file = vma->vm_file;
620 	if (file) {
621 		struct address_space *mapping = file->f_mapping;
622 
623 		if (vma->vm_flags & VM_DENYWRITE)
624 			atomic_dec(&file_inode(file)->i_writecount);
625 		if (vma->vm_flags & VM_SHARED)
626 			atomic_inc(&mapping->i_mmap_writable);
627 
628 		flush_dcache_mmap_lock(mapping);
629 		vma_interval_tree_insert(vma, &mapping->i_mmap);
630 		flush_dcache_mmap_unlock(mapping);
631 	}
632 }
633 
634 static void
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 	struct vm_area_struct *prev, struct rb_node **rb_link,
637 	struct rb_node *rb_parent)
638 {
639 	__vma_link_list(mm, vma, prev);
640 	__vma_link_rb(mm, vma, rb_link, rb_parent);
641 }
642 
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644 			struct vm_area_struct *prev, struct rb_node **rb_link,
645 			struct rb_node *rb_parent)
646 {
647 	struct address_space *mapping = NULL;
648 
649 	if (vma->vm_file) {
650 		mapping = vma->vm_file->f_mapping;
651 		i_mmap_lock_write(mapping);
652 	}
653 
654 	__vma_link(mm, vma, prev, rb_link, rb_parent);
655 	__vma_link_file(vma);
656 
657 	if (mapping)
658 		i_mmap_unlock_write(mapping);
659 
660 	mm->map_count++;
661 	validate_mm(mm);
662 }
663 
664 /*
665  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666  * mm's list and rbtree.  It has already been inserted into the interval tree.
667  */
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 {
670 	struct vm_area_struct *prev;
671 	struct rb_node **rb_link, *rb_parent;
672 
673 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674 			   &prev, &rb_link, &rb_parent))
675 		BUG();
676 	__vma_link(mm, vma, prev, rb_link, rb_parent);
677 	mm->map_count++;
678 }
679 
680 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
681 						struct vm_area_struct *vma,
682 						struct vm_area_struct *ignore)
683 {
684 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685 	__vma_unlink_list(mm, vma);
686 	/* Kill the cache */
687 	vmacache_invalidate(mm);
688 }
689 
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699 	struct vm_area_struct *expand)
700 {
701 	struct mm_struct *mm = vma->vm_mm;
702 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703 	struct address_space *mapping = NULL;
704 	struct rb_root_cached *root = NULL;
705 	struct anon_vma *anon_vma = NULL;
706 	struct file *file = vma->vm_file;
707 	bool start_changed = false, end_changed = false;
708 	long adjust_next = 0;
709 	int remove_next = 0;
710 
711 	if (next && !insert) {
712 		struct vm_area_struct *exporter = NULL, *importer = NULL;
713 
714 		if (end >= next->vm_end) {
715 			/*
716 			 * vma expands, overlapping all the next, and
717 			 * perhaps the one after too (mprotect case 6).
718 			 * The only other cases that gets here are
719 			 * case 1, case 7 and case 8.
720 			 */
721 			if (next == expand) {
722 				/*
723 				 * The only case where we don't expand "vma"
724 				 * and we expand "next" instead is case 8.
725 				 */
726 				VM_WARN_ON(end != next->vm_end);
727 				/*
728 				 * remove_next == 3 means we're
729 				 * removing "vma" and that to do so we
730 				 * swapped "vma" and "next".
731 				 */
732 				remove_next = 3;
733 				VM_WARN_ON(file != next->vm_file);
734 				swap(vma, next);
735 			} else {
736 				VM_WARN_ON(expand != vma);
737 				/*
738 				 * case 1, 6, 7, remove_next == 2 is case 6,
739 				 * remove_next == 1 is case 1 or 7.
740 				 */
741 				remove_next = 1 + (end > next->vm_end);
742 				VM_WARN_ON(remove_next == 2 &&
743 					   end != next->vm_next->vm_end);
744 				/* trim end to next, for case 6 first pass */
745 				end = next->vm_end;
746 			}
747 
748 			exporter = next;
749 			importer = vma;
750 
751 			/*
752 			 * If next doesn't have anon_vma, import from vma after
753 			 * next, if the vma overlaps with it.
754 			 */
755 			if (remove_next == 2 && !next->anon_vma)
756 				exporter = next->vm_next;
757 
758 		} else if (end > next->vm_start) {
759 			/*
760 			 * vma expands, overlapping part of the next:
761 			 * mprotect case 5 shifting the boundary up.
762 			 */
763 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
764 			exporter = next;
765 			importer = vma;
766 			VM_WARN_ON(expand != importer);
767 		} else if (end < vma->vm_end) {
768 			/*
769 			 * vma shrinks, and !insert tells it's not
770 			 * split_vma inserting another: so it must be
771 			 * mprotect case 4 shifting the boundary down.
772 			 */
773 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
774 			exporter = vma;
775 			importer = next;
776 			VM_WARN_ON(expand != importer);
777 		}
778 
779 		/*
780 		 * Easily overlooked: when mprotect shifts the boundary,
781 		 * make sure the expanding vma has anon_vma set if the
782 		 * shrinking vma had, to cover any anon pages imported.
783 		 */
784 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
785 			int error;
786 
787 			importer->anon_vma = exporter->anon_vma;
788 			error = anon_vma_clone(importer, exporter);
789 			if (error)
790 				return error;
791 		}
792 	}
793 again:
794 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
795 
796 	if (file) {
797 		mapping = file->f_mapping;
798 		root = &mapping->i_mmap;
799 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
800 
801 		if (adjust_next)
802 			uprobe_munmap(next, next->vm_start, next->vm_end);
803 
804 		i_mmap_lock_write(mapping);
805 		if (insert) {
806 			/*
807 			 * Put into interval tree now, so instantiated pages
808 			 * are visible to arm/parisc __flush_dcache_page
809 			 * throughout; but we cannot insert into address
810 			 * space until vma start or end is updated.
811 			 */
812 			__vma_link_file(insert);
813 		}
814 	}
815 
816 	anon_vma = vma->anon_vma;
817 	if (!anon_vma && adjust_next)
818 		anon_vma = next->anon_vma;
819 	if (anon_vma) {
820 		VM_WARN_ON(adjust_next && next->anon_vma &&
821 			   anon_vma != next->anon_vma);
822 		anon_vma_lock_write(anon_vma);
823 		anon_vma_interval_tree_pre_update_vma(vma);
824 		if (adjust_next)
825 			anon_vma_interval_tree_pre_update_vma(next);
826 	}
827 
828 	if (root) {
829 		flush_dcache_mmap_lock(mapping);
830 		vma_interval_tree_remove(vma, root);
831 		if (adjust_next)
832 			vma_interval_tree_remove(next, root);
833 	}
834 
835 	if (start != vma->vm_start) {
836 		vma->vm_start = start;
837 		start_changed = true;
838 	}
839 	if (end != vma->vm_end) {
840 		vma->vm_end = end;
841 		end_changed = true;
842 	}
843 	vma->vm_pgoff = pgoff;
844 	if (adjust_next) {
845 		next->vm_start += adjust_next << PAGE_SHIFT;
846 		next->vm_pgoff += adjust_next;
847 	}
848 
849 	if (root) {
850 		if (adjust_next)
851 			vma_interval_tree_insert(next, root);
852 		vma_interval_tree_insert(vma, root);
853 		flush_dcache_mmap_unlock(mapping);
854 	}
855 
856 	if (remove_next) {
857 		/*
858 		 * vma_merge has merged next into vma, and needs
859 		 * us to remove next before dropping the locks.
860 		 */
861 		if (remove_next != 3)
862 			__vma_unlink_common(mm, next, next);
863 		else
864 			/*
865 			 * vma is not before next if they've been
866 			 * swapped.
867 			 *
868 			 * pre-swap() next->vm_start was reduced so
869 			 * tell validate_mm_rb to ignore pre-swap()
870 			 * "next" (which is stored in post-swap()
871 			 * "vma").
872 			 */
873 			__vma_unlink_common(mm, next, vma);
874 		if (file)
875 			__remove_shared_vm_struct(next, file, mapping);
876 	} else if (insert) {
877 		/*
878 		 * split_vma has split insert from vma, and needs
879 		 * us to insert it before dropping the locks
880 		 * (it may either follow vma or precede it).
881 		 */
882 		__insert_vm_struct(mm, insert);
883 	} else {
884 		if (start_changed)
885 			vma_gap_update(vma);
886 		if (end_changed) {
887 			if (!next)
888 				mm->highest_vm_end = vm_end_gap(vma);
889 			else if (!adjust_next)
890 				vma_gap_update(next);
891 		}
892 	}
893 
894 	if (anon_vma) {
895 		anon_vma_interval_tree_post_update_vma(vma);
896 		if (adjust_next)
897 			anon_vma_interval_tree_post_update_vma(next);
898 		anon_vma_unlock_write(anon_vma);
899 	}
900 	if (mapping)
901 		i_mmap_unlock_write(mapping);
902 
903 	if (root) {
904 		uprobe_mmap(vma);
905 
906 		if (adjust_next)
907 			uprobe_mmap(next);
908 	}
909 
910 	if (remove_next) {
911 		if (file) {
912 			uprobe_munmap(next, next->vm_start, next->vm_end);
913 			fput(file);
914 		}
915 		if (next->anon_vma)
916 			anon_vma_merge(vma, next);
917 		mm->map_count--;
918 		mpol_put(vma_policy(next));
919 		vm_area_free(next);
920 		/*
921 		 * In mprotect's case 6 (see comments on vma_merge),
922 		 * we must remove another next too. It would clutter
923 		 * up the code too much to do both in one go.
924 		 */
925 		if (remove_next != 3) {
926 			/*
927 			 * If "next" was removed and vma->vm_end was
928 			 * expanded (up) over it, in turn
929 			 * "next->vm_prev->vm_end" changed and the
930 			 * "vma->vm_next" gap must be updated.
931 			 */
932 			next = vma->vm_next;
933 		} else {
934 			/*
935 			 * For the scope of the comment "next" and
936 			 * "vma" considered pre-swap(): if "vma" was
937 			 * removed, next->vm_start was expanded (down)
938 			 * over it and the "next" gap must be updated.
939 			 * Because of the swap() the post-swap() "vma"
940 			 * actually points to pre-swap() "next"
941 			 * (post-swap() "next" as opposed is now a
942 			 * dangling pointer).
943 			 */
944 			next = vma;
945 		}
946 		if (remove_next == 2) {
947 			remove_next = 1;
948 			end = next->vm_end;
949 			goto again;
950 		}
951 		else if (next)
952 			vma_gap_update(next);
953 		else {
954 			/*
955 			 * If remove_next == 2 we obviously can't
956 			 * reach this path.
957 			 *
958 			 * If remove_next == 3 we can't reach this
959 			 * path because pre-swap() next is always not
960 			 * NULL. pre-swap() "next" is not being
961 			 * removed and its next->vm_end is not altered
962 			 * (and furthermore "end" already matches
963 			 * next->vm_end in remove_next == 3).
964 			 *
965 			 * We reach this only in the remove_next == 1
966 			 * case if the "next" vma that was removed was
967 			 * the highest vma of the mm. However in such
968 			 * case next->vm_end == "end" and the extended
969 			 * "vma" has vma->vm_end == next->vm_end so
970 			 * mm->highest_vm_end doesn't need any update
971 			 * in remove_next == 1 case.
972 			 */
973 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
974 		}
975 	}
976 	if (insert && file)
977 		uprobe_mmap(insert);
978 
979 	validate_mm(mm);
980 
981 	return 0;
982 }
983 
984 /*
985  * If the vma has a ->close operation then the driver probably needs to release
986  * per-vma resources, so we don't attempt to merge those.
987  */
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989 				struct file *file, unsigned long vm_flags,
990 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
991 {
992 	/*
993 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
994 	 * match the flags but dirty bit -- the caller should mark
995 	 * merged VMA as dirty. If dirty bit won't be excluded from
996 	 * comparison, we increase pressure on the memory system forcing
997 	 * the kernel to generate new VMAs when old one could be
998 	 * extended instead.
999 	 */
1000 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001 		return 0;
1002 	if (vma->vm_file != file)
1003 		return 0;
1004 	if (vma->vm_ops && vma->vm_ops->close)
1005 		return 0;
1006 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007 		return 0;
1008 	return 1;
1009 }
1010 
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012 					struct anon_vma *anon_vma2,
1013 					struct vm_area_struct *vma)
1014 {
1015 	/*
1016 	 * The list_is_singular() test is to avoid merging VMA cloned from
1017 	 * parents. This can improve scalability caused by anon_vma lock.
1018 	 */
1019 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020 		list_is_singular(&vma->anon_vma_chain)))
1021 		return 1;
1022 	return anon_vma1 == anon_vma2;
1023 }
1024 
1025 /*
1026  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027  * in front of (at a lower virtual address and file offset than) the vma.
1028  *
1029  * We cannot merge two vmas if they have differently assigned (non-NULL)
1030  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031  *
1032  * We don't check here for the merged mmap wrapping around the end of pagecache
1033  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1034  * wrap, nor mmaps which cover the final page at index -1UL.
1035  */
1036 static int
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038 		     struct anon_vma *anon_vma, struct file *file,
1039 		     pgoff_t vm_pgoff,
1040 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 {
1042 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044 		if (vma->vm_pgoff == vm_pgoff)
1045 			return 1;
1046 	}
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052  * beyond (at a higher virtual address and file offset than) the vma.
1053  *
1054  * We cannot merge two vmas if they have differently assigned (non-NULL)
1055  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056  */
1057 static int
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059 		    struct anon_vma *anon_vma, struct file *file,
1060 		    pgoff_t vm_pgoff,
1061 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 		pgoff_t vm_pglen;
1066 		vm_pglen = vma_pages(vma);
1067 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068 			return 1;
1069 	}
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075  * whether that can be merged with its predecessor or its successor.
1076  * Or both (it neatly fills a hole).
1077  *
1078  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079  * certain not to be mapped by the time vma_merge is called; but when
1080  * called for mprotect, it is certain to be already mapped (either at
1081  * an offset within prev, or at the start of next), and the flags of
1082  * this area are about to be changed to vm_flags - and the no-change
1083  * case has already been eliminated.
1084  *
1085  * The following mprotect cases have to be considered, where AAAA is
1086  * the area passed down from mprotect_fixup, never extending beyond one
1087  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088  *
1089  *     AAAA             AAAA                   AAAA
1090  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1091  *    cannot merge    might become       might become
1092  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1093  *    mmap, brk or    case 4 below       case 5 below
1094  *    mremap move:
1095  *                        AAAA               AAAA
1096  *                    PPPP    NNNN       PPPPNNNNXXXX
1097  *                    might become       might become
1098  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1099  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1100  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1101  *
1102  * It is important for case 8 that the vma NNNN overlapping the
1103  * region AAAA is never going to extended over XXXX. Instead XXXX must
1104  * be extended in region AAAA and NNNN must be removed. This way in
1105  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106  * rmap_locks, the properties of the merged vma will be already
1107  * correct for the whole merged range. Some of those properties like
1108  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109  * be correct for the whole merged range immediately after the
1110  * rmap_locks are released. Otherwise if XXXX would be removed and
1111  * NNNN would be extended over the XXXX range, remove_migration_ptes
1112  * or other rmap walkers (if working on addresses beyond the "end"
1113  * parameter) may establish ptes with the wrong permissions of NNNN
1114  * instead of the right permissions of XXXX.
1115  */
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117 			struct vm_area_struct *prev, unsigned long addr,
1118 			unsigned long end, unsigned long vm_flags,
1119 			struct anon_vma *anon_vma, struct file *file,
1120 			pgoff_t pgoff, struct mempolicy *policy,
1121 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 {
1123 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124 	struct vm_area_struct *area, *next;
1125 	int err;
1126 
1127 	/*
1128 	 * We later require that vma->vm_flags == vm_flags,
1129 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130 	 */
1131 	if (vm_flags & VM_SPECIAL)
1132 		return NULL;
1133 
1134 	if (prev)
1135 		next = prev->vm_next;
1136 	else
1137 		next = mm->mmap;
1138 	area = next;
1139 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1140 		next = next->vm_next;
1141 
1142 	/* verify some invariant that must be enforced by the caller */
1143 	VM_WARN_ON(prev && addr <= prev->vm_start);
1144 	VM_WARN_ON(area && end > area->vm_end);
1145 	VM_WARN_ON(addr >= end);
1146 
1147 	/*
1148 	 * Can it merge with the predecessor?
1149 	 */
1150 	if (prev && prev->vm_end == addr &&
1151 			mpol_equal(vma_policy(prev), policy) &&
1152 			can_vma_merge_after(prev, vm_flags,
1153 					    anon_vma, file, pgoff,
1154 					    vm_userfaultfd_ctx)) {
1155 		/*
1156 		 * OK, it can.  Can we now merge in the successor as well?
1157 		 */
1158 		if (next && end == next->vm_start &&
1159 				mpol_equal(policy, vma_policy(next)) &&
1160 				can_vma_merge_before(next, vm_flags,
1161 						     anon_vma, file,
1162 						     pgoff+pglen,
1163 						     vm_userfaultfd_ctx) &&
1164 				is_mergeable_anon_vma(prev->anon_vma,
1165 						      next->anon_vma, NULL)) {
1166 							/* cases 1, 6 */
1167 			err = __vma_adjust(prev, prev->vm_start,
1168 					 next->vm_end, prev->vm_pgoff, NULL,
1169 					 prev);
1170 		} else					/* cases 2, 5, 7 */
1171 			err = __vma_adjust(prev, prev->vm_start,
1172 					 end, prev->vm_pgoff, NULL, prev);
1173 		if (err)
1174 			return NULL;
1175 		khugepaged_enter_vma_merge(prev, vm_flags);
1176 		return prev;
1177 	}
1178 
1179 	/*
1180 	 * Can this new request be merged in front of next?
1181 	 */
1182 	if (next && end == next->vm_start &&
1183 			mpol_equal(policy, vma_policy(next)) &&
1184 			can_vma_merge_before(next, vm_flags,
1185 					     anon_vma, file, pgoff+pglen,
1186 					     vm_userfaultfd_ctx)) {
1187 		if (prev && addr < prev->vm_end)	/* case 4 */
1188 			err = __vma_adjust(prev, prev->vm_start,
1189 					 addr, prev->vm_pgoff, NULL, next);
1190 		else {					/* cases 3, 8 */
1191 			err = __vma_adjust(area, addr, next->vm_end,
1192 					 next->vm_pgoff - pglen, NULL, next);
1193 			/*
1194 			 * In case 3 area is already equal to next and
1195 			 * this is a noop, but in case 8 "area" has
1196 			 * been removed and next was expanded over it.
1197 			 */
1198 			area = next;
1199 		}
1200 		if (err)
1201 			return NULL;
1202 		khugepaged_enter_vma_merge(area, vm_flags);
1203 		return area;
1204 	}
1205 
1206 	return NULL;
1207 }
1208 
1209 /*
1210  * Rough compatibility check to quickly see if it's even worth looking
1211  * at sharing an anon_vma.
1212  *
1213  * They need to have the same vm_file, and the flags can only differ
1214  * in things that mprotect may change.
1215  *
1216  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217  * we can merge the two vma's. For example, we refuse to merge a vma if
1218  * there is a vm_ops->close() function, because that indicates that the
1219  * driver is doing some kind of reference counting. But that doesn't
1220  * really matter for the anon_vma sharing case.
1221  */
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 {
1224 	return a->vm_end == b->vm_start &&
1225 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1226 		a->vm_file == b->vm_file &&
1227 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 }
1230 
1231 /*
1232  * Do some basic sanity checking to see if we can re-use the anon_vma
1233  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234  * the same as 'old', the other will be the new one that is trying
1235  * to share the anon_vma.
1236  *
1237  * NOTE! This runs with mm_sem held for reading, so it is possible that
1238  * the anon_vma of 'old' is concurrently in the process of being set up
1239  * by another page fault trying to merge _that_. But that's ok: if it
1240  * is being set up, that automatically means that it will be a singleton
1241  * acceptable for merging, so we can do all of this optimistically. But
1242  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243  *
1244  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246  * is to return an anon_vma that is "complex" due to having gone through
1247  * a fork).
1248  *
1249  * We also make sure that the two vma's are compatible (adjacent,
1250  * and with the same memory policies). That's all stable, even with just
1251  * a read lock on the mm_sem.
1252  */
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 {
1255 	if (anon_vma_compatible(a, b)) {
1256 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257 
1258 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259 			return anon_vma;
1260 	}
1261 	return NULL;
1262 }
1263 
1264 /*
1265  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266  * neighbouring vmas for a suitable anon_vma, before it goes off
1267  * to allocate a new anon_vma.  It checks because a repetitive
1268  * sequence of mprotects and faults may otherwise lead to distinct
1269  * anon_vmas being allocated, preventing vma merge in subsequent
1270  * mprotect.
1271  */
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 {
1274 	struct anon_vma *anon_vma = NULL;
1275 
1276 	/* Try next first. */
1277 	if (vma->vm_next) {
1278 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279 		if (anon_vma)
1280 			return anon_vma;
1281 	}
1282 
1283 	/* Try prev next. */
1284 	if (vma->vm_prev)
1285 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286 
1287 	/*
1288 	 * We might reach here with anon_vma == NULL if we can't find
1289 	 * any reusable anon_vma.
1290 	 * There's no absolute need to look only at touching neighbours:
1291 	 * we could search further afield for "compatible" anon_vmas.
1292 	 * But it would probably just be a waste of time searching,
1293 	 * or lead to too many vmas hanging off the same anon_vma.
1294 	 * We're trying to allow mprotect remerging later on,
1295 	 * not trying to minimize memory used for anon_vmas.
1296 	 */
1297 	return anon_vma;
1298 }
1299 
1300 /*
1301  * If a hint addr is less than mmap_min_addr change hint to be as
1302  * low as possible but still greater than mmap_min_addr
1303  */
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1305 {
1306 	hint &= PAGE_MASK;
1307 	if (((void *)hint != NULL) &&
1308 	    (hint < mmap_min_addr))
1309 		return PAGE_ALIGN(mmap_min_addr);
1310 	return hint;
1311 }
1312 
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314 				     unsigned long flags,
1315 				     unsigned long len)
1316 {
1317 	unsigned long locked, lock_limit;
1318 
1319 	/*  mlock MCL_FUTURE? */
1320 	if (flags & VM_LOCKED) {
1321 		locked = len >> PAGE_SHIFT;
1322 		locked += mm->locked_vm;
1323 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1324 		lock_limit >>= PAGE_SHIFT;
1325 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326 			return -EAGAIN;
1327 	}
1328 	return 0;
1329 }
1330 
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 {
1333 	if (S_ISREG(inode->i_mode))
1334 		return MAX_LFS_FILESIZE;
1335 
1336 	if (S_ISBLK(inode->i_mode))
1337 		return MAX_LFS_FILESIZE;
1338 
1339 	if (S_ISSOCK(inode->i_mode))
1340 		return MAX_LFS_FILESIZE;
1341 
1342 	/* Special "we do even unsigned file positions" case */
1343 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344 		return 0;
1345 
1346 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347 	return ULONG_MAX;
1348 }
1349 
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351 				unsigned long pgoff, unsigned long len)
1352 {
1353 	u64 maxsize = file_mmap_size_max(file, inode);
1354 
1355 	if (maxsize && len > maxsize)
1356 		return false;
1357 	maxsize -= len;
1358 	if (pgoff > maxsize >> PAGE_SHIFT)
1359 		return false;
1360 	return true;
1361 }
1362 
1363 /*
1364  * The caller must write-lock current->mm->mmap_lock.
1365  */
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367 			unsigned long len, unsigned long prot,
1368 			unsigned long flags, vm_flags_t vm_flags,
1369 			unsigned long pgoff, unsigned long *populate,
1370 			struct list_head *uf)
1371 {
1372 	struct mm_struct *mm = current->mm;
1373 	int pkey = 0;
1374 
1375 	*populate = 0;
1376 
1377 	if (!len)
1378 		return -EINVAL;
1379 
1380 	/*
1381 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1382 	 *
1383 	 * (the exception is when the underlying filesystem is noexec
1384 	 *  mounted, in which case we dont add PROT_EXEC.)
1385 	 */
1386 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387 		if (!(file && path_noexec(&file->f_path)))
1388 			prot |= PROT_EXEC;
1389 
1390 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1391 	if (flags & MAP_FIXED_NOREPLACE)
1392 		flags |= MAP_FIXED;
1393 
1394 	if (!(flags & MAP_FIXED))
1395 		addr = round_hint_to_min(addr);
1396 
1397 	/* Careful about overflows.. */
1398 	len = PAGE_ALIGN(len);
1399 	if (!len)
1400 		return -ENOMEM;
1401 
1402 	/* offset overflow? */
1403 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404 		return -EOVERFLOW;
1405 
1406 	/* Too many mappings? */
1407 	if (mm->map_count > sysctl_max_map_count)
1408 		return -ENOMEM;
1409 
1410 	/* Obtain the address to map to. we verify (or select) it and ensure
1411 	 * that it represents a valid section of the address space.
1412 	 */
1413 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414 	if (IS_ERR_VALUE(addr))
1415 		return addr;
1416 
1417 	if (flags & MAP_FIXED_NOREPLACE) {
1418 		struct vm_area_struct *vma = find_vma(mm, addr);
1419 
1420 		if (vma && vma->vm_start < addr + len)
1421 			return -EEXIST;
1422 	}
1423 
1424 	if (prot == PROT_EXEC) {
1425 		pkey = execute_only_pkey(mm);
1426 		if (pkey < 0)
1427 			pkey = 0;
1428 	}
1429 
1430 	/* Do simple checking here so the lower-level routines won't have
1431 	 * to. we assume access permissions have been handled by the open
1432 	 * of the memory object, so we don't do any here.
1433 	 */
1434 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436 
1437 	if (flags & MAP_LOCKED)
1438 		if (!can_do_mlock())
1439 			return -EPERM;
1440 
1441 	if (mlock_future_check(mm, vm_flags, len))
1442 		return -EAGAIN;
1443 
1444 	if (file) {
1445 		struct inode *inode = file_inode(file);
1446 		unsigned long flags_mask;
1447 
1448 		if (!file_mmap_ok(file, inode, pgoff, len))
1449 			return -EOVERFLOW;
1450 
1451 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452 
1453 		switch (flags & MAP_TYPE) {
1454 		case MAP_SHARED:
1455 			/*
1456 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457 			 * flags. E.g. MAP_SYNC is dangerous to use with
1458 			 * MAP_SHARED as you don't know which consistency model
1459 			 * you will get. We silently ignore unsupported flags
1460 			 * with MAP_SHARED to preserve backward compatibility.
1461 			 */
1462 			flags &= LEGACY_MAP_MASK;
1463 			fallthrough;
1464 		case MAP_SHARED_VALIDATE:
1465 			if (flags & ~flags_mask)
1466 				return -EOPNOTSUPP;
1467 			if (prot & PROT_WRITE) {
1468 				if (!(file->f_mode & FMODE_WRITE))
1469 					return -EACCES;
1470 				if (IS_SWAPFILE(file->f_mapping->host))
1471 					return -ETXTBSY;
1472 			}
1473 
1474 			/*
1475 			 * Make sure we don't allow writing to an append-only
1476 			 * file..
1477 			 */
1478 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479 				return -EACCES;
1480 
1481 			/*
1482 			 * Make sure there are no mandatory locks on the file.
1483 			 */
1484 			if (locks_verify_locked(file))
1485 				return -EAGAIN;
1486 
1487 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1488 			if (!(file->f_mode & FMODE_WRITE))
1489 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490 			fallthrough;
1491 		case MAP_PRIVATE:
1492 			if (!(file->f_mode & FMODE_READ))
1493 				return -EACCES;
1494 			if (path_noexec(&file->f_path)) {
1495 				if (vm_flags & VM_EXEC)
1496 					return -EPERM;
1497 				vm_flags &= ~VM_MAYEXEC;
1498 			}
1499 
1500 			if (!file->f_op->mmap)
1501 				return -ENODEV;
1502 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 				return -EINVAL;
1504 			break;
1505 
1506 		default:
1507 			return -EINVAL;
1508 		}
1509 	} else {
1510 		switch (flags & MAP_TYPE) {
1511 		case MAP_SHARED:
1512 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 				return -EINVAL;
1514 			/*
1515 			 * Ignore pgoff.
1516 			 */
1517 			pgoff = 0;
1518 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519 			break;
1520 		case MAP_PRIVATE:
1521 			/*
1522 			 * Set pgoff according to addr for anon_vma.
1523 			 */
1524 			pgoff = addr >> PAGE_SHIFT;
1525 			break;
1526 		default:
1527 			return -EINVAL;
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * Set 'VM_NORESERVE' if we should not account for the
1533 	 * memory use of this mapping.
1534 	 */
1535 	if (flags & MAP_NORESERVE) {
1536 		/* We honor MAP_NORESERVE if allowed to overcommit */
1537 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 			vm_flags |= VM_NORESERVE;
1539 
1540 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 		if (file && is_file_hugepages(file))
1542 			vm_flags |= VM_NORESERVE;
1543 	}
1544 
1545 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 	if (!IS_ERR_VALUE(addr) &&
1547 	    ((vm_flags & VM_LOCKED) ||
1548 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549 		*populate = len;
1550 	return addr;
1551 }
1552 
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 			      unsigned long prot, unsigned long flags,
1555 			      unsigned long fd, unsigned long pgoff)
1556 {
1557 	struct file *file = NULL;
1558 	unsigned long retval;
1559 
1560 	if (!(flags & MAP_ANONYMOUS)) {
1561 		audit_mmap_fd(fd, flags);
1562 		file = fget(fd);
1563 		if (!file)
1564 			return -EBADF;
1565 		if (is_file_hugepages(file))
1566 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1567 		retval = -EINVAL;
1568 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1569 			goto out_fput;
1570 	} else if (flags & MAP_HUGETLB) {
1571 		struct user_struct *user = NULL;
1572 		struct hstate *hs;
1573 
1574 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1575 		if (!hs)
1576 			return -EINVAL;
1577 
1578 		len = ALIGN(len, huge_page_size(hs));
1579 		/*
1580 		 * VM_NORESERVE is used because the reservations will be
1581 		 * taken when vm_ops->mmap() is called
1582 		 * A dummy user value is used because we are not locking
1583 		 * memory so no accounting is necessary
1584 		 */
1585 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1586 				VM_NORESERVE,
1587 				&user, HUGETLB_ANONHUGE_INODE,
1588 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1589 		if (IS_ERR(file))
1590 			return PTR_ERR(file);
1591 	}
1592 
1593 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1594 
1595 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1596 out_fput:
1597 	if (file)
1598 		fput(file);
1599 	return retval;
1600 }
1601 
1602 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1603 		unsigned long, prot, unsigned long, flags,
1604 		unsigned long, fd, unsigned long, pgoff)
1605 {
1606 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1607 }
1608 
1609 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1610 struct mmap_arg_struct {
1611 	unsigned long addr;
1612 	unsigned long len;
1613 	unsigned long prot;
1614 	unsigned long flags;
1615 	unsigned long fd;
1616 	unsigned long offset;
1617 };
1618 
1619 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1620 {
1621 	struct mmap_arg_struct a;
1622 
1623 	if (copy_from_user(&a, arg, sizeof(a)))
1624 		return -EFAULT;
1625 	if (offset_in_page(a.offset))
1626 		return -EINVAL;
1627 
1628 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1629 			       a.offset >> PAGE_SHIFT);
1630 }
1631 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1632 
1633 /*
1634  * Some shared mappings will want the pages marked read-only
1635  * to track write events. If so, we'll downgrade vm_page_prot
1636  * to the private version (using protection_map[] without the
1637  * VM_SHARED bit).
1638  */
1639 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1640 {
1641 	vm_flags_t vm_flags = vma->vm_flags;
1642 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1643 
1644 	/* If it was private or non-writable, the write bit is already clear */
1645 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1646 		return 0;
1647 
1648 	/* The backer wishes to know when pages are first written to? */
1649 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1650 		return 1;
1651 
1652 	/* The open routine did something to the protections that pgprot_modify
1653 	 * won't preserve? */
1654 	if (pgprot_val(vm_page_prot) !=
1655 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1656 		return 0;
1657 
1658 	/* Do we need to track softdirty? */
1659 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1660 		return 1;
1661 
1662 	/* Specialty mapping? */
1663 	if (vm_flags & VM_PFNMAP)
1664 		return 0;
1665 
1666 	/* Can the mapping track the dirty pages? */
1667 	return vma->vm_file && vma->vm_file->f_mapping &&
1668 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1669 }
1670 
1671 /*
1672  * We account for memory if it's a private writeable mapping,
1673  * not hugepages and VM_NORESERVE wasn't set.
1674  */
1675 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1676 {
1677 	/*
1678 	 * hugetlb has its own accounting separate from the core VM
1679 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1680 	 */
1681 	if (file && is_file_hugepages(file))
1682 		return 0;
1683 
1684 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1685 }
1686 
1687 unsigned long mmap_region(struct file *file, unsigned long addr,
1688 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1689 		struct list_head *uf)
1690 {
1691 	struct mm_struct *mm = current->mm;
1692 	struct vm_area_struct *vma, *prev;
1693 	int error;
1694 	struct rb_node **rb_link, *rb_parent;
1695 	unsigned long charged = 0;
1696 
1697 	/* Check against address space limit. */
1698 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1699 		unsigned long nr_pages;
1700 
1701 		/*
1702 		 * MAP_FIXED may remove pages of mappings that intersects with
1703 		 * requested mapping. Account for the pages it would unmap.
1704 		 */
1705 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1706 
1707 		if (!may_expand_vm(mm, vm_flags,
1708 					(len >> PAGE_SHIFT) - nr_pages))
1709 			return -ENOMEM;
1710 	}
1711 
1712 	/* Clear old maps */
1713 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1714 			      &rb_parent)) {
1715 		if (do_munmap(mm, addr, len, uf))
1716 			return -ENOMEM;
1717 	}
1718 
1719 	/*
1720 	 * Private writable mapping: check memory availability
1721 	 */
1722 	if (accountable_mapping(file, vm_flags)) {
1723 		charged = len >> PAGE_SHIFT;
1724 		if (security_vm_enough_memory_mm(mm, charged))
1725 			return -ENOMEM;
1726 		vm_flags |= VM_ACCOUNT;
1727 	}
1728 
1729 	/*
1730 	 * Can we just expand an old mapping?
1731 	 */
1732 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1733 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1734 	if (vma)
1735 		goto out;
1736 
1737 	/*
1738 	 * Determine the object being mapped and call the appropriate
1739 	 * specific mapper. the address has already been validated, but
1740 	 * not unmapped, but the maps are removed from the list.
1741 	 */
1742 	vma = vm_area_alloc(mm);
1743 	if (!vma) {
1744 		error = -ENOMEM;
1745 		goto unacct_error;
1746 	}
1747 
1748 	vma->vm_start = addr;
1749 	vma->vm_end = addr + len;
1750 	vma->vm_flags = vm_flags;
1751 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1752 	vma->vm_pgoff = pgoff;
1753 
1754 	if (file) {
1755 		if (vm_flags & VM_DENYWRITE) {
1756 			error = deny_write_access(file);
1757 			if (error)
1758 				goto free_vma;
1759 		}
1760 		if (vm_flags & VM_SHARED) {
1761 			error = mapping_map_writable(file->f_mapping);
1762 			if (error)
1763 				goto allow_write_and_free_vma;
1764 		}
1765 
1766 		/* ->mmap() can change vma->vm_file, but must guarantee that
1767 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1768 		 * and map writably if VM_SHARED is set. This usually means the
1769 		 * new file must not have been exposed to user-space, yet.
1770 		 */
1771 		vma->vm_file = get_file(file);
1772 		error = call_mmap(file, vma);
1773 		if (error)
1774 			goto unmap_and_free_vma;
1775 
1776 		/* Can addr have changed??
1777 		 *
1778 		 * Answer: Yes, several device drivers can do it in their
1779 		 *         f_op->mmap method. -DaveM
1780 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1781 		 *      be updated for vma_link()
1782 		 */
1783 		WARN_ON_ONCE(addr != vma->vm_start);
1784 
1785 		addr = vma->vm_start;
1786 		vm_flags = vma->vm_flags;
1787 	} else if (vm_flags & VM_SHARED) {
1788 		error = shmem_zero_setup(vma);
1789 		if (error)
1790 			goto free_vma;
1791 	} else {
1792 		vma_set_anonymous(vma);
1793 	}
1794 
1795 	vma_link(mm, vma, prev, rb_link, rb_parent);
1796 	/* Once vma denies write, undo our temporary denial count */
1797 	if (file) {
1798 		if (vm_flags & VM_SHARED)
1799 			mapping_unmap_writable(file->f_mapping);
1800 		if (vm_flags & VM_DENYWRITE)
1801 			allow_write_access(file);
1802 	}
1803 	file = vma->vm_file;
1804 out:
1805 	perf_event_mmap(vma);
1806 
1807 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1808 	if (vm_flags & VM_LOCKED) {
1809 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1810 					is_vm_hugetlb_page(vma) ||
1811 					vma == get_gate_vma(current->mm))
1812 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1813 		else
1814 			mm->locked_vm += (len >> PAGE_SHIFT);
1815 	}
1816 
1817 	if (file)
1818 		uprobe_mmap(vma);
1819 
1820 	/*
1821 	 * New (or expanded) vma always get soft dirty status.
1822 	 * Otherwise user-space soft-dirty page tracker won't
1823 	 * be able to distinguish situation when vma area unmapped,
1824 	 * then new mapped in-place (which must be aimed as
1825 	 * a completely new data area).
1826 	 */
1827 	vma->vm_flags |= VM_SOFTDIRTY;
1828 
1829 	vma_set_page_prot(vma);
1830 
1831 	return addr;
1832 
1833 unmap_and_free_vma:
1834 	vma->vm_file = NULL;
1835 	fput(file);
1836 
1837 	/* Undo any partial mapping done by a device driver. */
1838 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1839 	charged = 0;
1840 	if (vm_flags & VM_SHARED)
1841 		mapping_unmap_writable(file->f_mapping);
1842 allow_write_and_free_vma:
1843 	if (vm_flags & VM_DENYWRITE)
1844 		allow_write_access(file);
1845 free_vma:
1846 	vm_area_free(vma);
1847 unacct_error:
1848 	if (charged)
1849 		vm_unacct_memory(charged);
1850 	return error;
1851 }
1852 
1853 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1854 {
1855 	/*
1856 	 * We implement the search by looking for an rbtree node that
1857 	 * immediately follows a suitable gap. That is,
1858 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1859 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1860 	 * - gap_end - gap_start >= length
1861 	 */
1862 
1863 	struct mm_struct *mm = current->mm;
1864 	struct vm_area_struct *vma;
1865 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1866 
1867 	/* Adjust search length to account for worst case alignment overhead */
1868 	length = info->length + info->align_mask;
1869 	if (length < info->length)
1870 		return -ENOMEM;
1871 
1872 	/* Adjust search limits by the desired length */
1873 	if (info->high_limit < length)
1874 		return -ENOMEM;
1875 	high_limit = info->high_limit - length;
1876 
1877 	if (info->low_limit > high_limit)
1878 		return -ENOMEM;
1879 	low_limit = info->low_limit + length;
1880 
1881 	/* Check if rbtree root looks promising */
1882 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1883 		goto check_highest;
1884 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1885 	if (vma->rb_subtree_gap < length)
1886 		goto check_highest;
1887 
1888 	while (true) {
1889 		/* Visit left subtree if it looks promising */
1890 		gap_end = vm_start_gap(vma);
1891 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1892 			struct vm_area_struct *left =
1893 				rb_entry(vma->vm_rb.rb_left,
1894 					 struct vm_area_struct, vm_rb);
1895 			if (left->rb_subtree_gap >= length) {
1896 				vma = left;
1897 				continue;
1898 			}
1899 		}
1900 
1901 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1902 check_current:
1903 		/* Check if current node has a suitable gap */
1904 		if (gap_start > high_limit)
1905 			return -ENOMEM;
1906 		if (gap_end >= low_limit &&
1907 		    gap_end > gap_start && gap_end - gap_start >= length)
1908 			goto found;
1909 
1910 		/* Visit right subtree if it looks promising */
1911 		if (vma->vm_rb.rb_right) {
1912 			struct vm_area_struct *right =
1913 				rb_entry(vma->vm_rb.rb_right,
1914 					 struct vm_area_struct, vm_rb);
1915 			if (right->rb_subtree_gap >= length) {
1916 				vma = right;
1917 				continue;
1918 			}
1919 		}
1920 
1921 		/* Go back up the rbtree to find next candidate node */
1922 		while (true) {
1923 			struct rb_node *prev = &vma->vm_rb;
1924 			if (!rb_parent(prev))
1925 				goto check_highest;
1926 			vma = rb_entry(rb_parent(prev),
1927 				       struct vm_area_struct, vm_rb);
1928 			if (prev == vma->vm_rb.rb_left) {
1929 				gap_start = vm_end_gap(vma->vm_prev);
1930 				gap_end = vm_start_gap(vma);
1931 				goto check_current;
1932 			}
1933 		}
1934 	}
1935 
1936 check_highest:
1937 	/* Check highest gap, which does not precede any rbtree node */
1938 	gap_start = mm->highest_vm_end;
1939 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1940 	if (gap_start > high_limit)
1941 		return -ENOMEM;
1942 
1943 found:
1944 	/* We found a suitable gap. Clip it with the original low_limit. */
1945 	if (gap_start < info->low_limit)
1946 		gap_start = info->low_limit;
1947 
1948 	/* Adjust gap address to the desired alignment */
1949 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1950 
1951 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1952 	VM_BUG_ON(gap_start + info->length > gap_end);
1953 	return gap_start;
1954 }
1955 
1956 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1957 {
1958 	struct mm_struct *mm = current->mm;
1959 	struct vm_area_struct *vma;
1960 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1961 
1962 	/* Adjust search length to account for worst case alignment overhead */
1963 	length = info->length + info->align_mask;
1964 	if (length < info->length)
1965 		return -ENOMEM;
1966 
1967 	/*
1968 	 * Adjust search limits by the desired length.
1969 	 * See implementation comment at top of unmapped_area().
1970 	 */
1971 	gap_end = info->high_limit;
1972 	if (gap_end < length)
1973 		return -ENOMEM;
1974 	high_limit = gap_end - length;
1975 
1976 	if (info->low_limit > high_limit)
1977 		return -ENOMEM;
1978 	low_limit = info->low_limit + length;
1979 
1980 	/* Check highest gap, which does not precede any rbtree node */
1981 	gap_start = mm->highest_vm_end;
1982 	if (gap_start <= high_limit)
1983 		goto found_highest;
1984 
1985 	/* Check if rbtree root looks promising */
1986 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1987 		return -ENOMEM;
1988 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1989 	if (vma->rb_subtree_gap < length)
1990 		return -ENOMEM;
1991 
1992 	while (true) {
1993 		/* Visit right subtree if it looks promising */
1994 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1995 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1996 			struct vm_area_struct *right =
1997 				rb_entry(vma->vm_rb.rb_right,
1998 					 struct vm_area_struct, vm_rb);
1999 			if (right->rb_subtree_gap >= length) {
2000 				vma = right;
2001 				continue;
2002 			}
2003 		}
2004 
2005 check_current:
2006 		/* Check if current node has a suitable gap */
2007 		gap_end = vm_start_gap(vma);
2008 		if (gap_end < low_limit)
2009 			return -ENOMEM;
2010 		if (gap_start <= high_limit &&
2011 		    gap_end > gap_start && gap_end - gap_start >= length)
2012 			goto found;
2013 
2014 		/* Visit left subtree if it looks promising */
2015 		if (vma->vm_rb.rb_left) {
2016 			struct vm_area_struct *left =
2017 				rb_entry(vma->vm_rb.rb_left,
2018 					 struct vm_area_struct, vm_rb);
2019 			if (left->rb_subtree_gap >= length) {
2020 				vma = left;
2021 				continue;
2022 			}
2023 		}
2024 
2025 		/* Go back up the rbtree to find next candidate node */
2026 		while (true) {
2027 			struct rb_node *prev = &vma->vm_rb;
2028 			if (!rb_parent(prev))
2029 				return -ENOMEM;
2030 			vma = rb_entry(rb_parent(prev),
2031 				       struct vm_area_struct, vm_rb);
2032 			if (prev == vma->vm_rb.rb_right) {
2033 				gap_start = vma->vm_prev ?
2034 					vm_end_gap(vma->vm_prev) : 0;
2035 				goto check_current;
2036 			}
2037 		}
2038 	}
2039 
2040 found:
2041 	/* We found a suitable gap. Clip it with the original high_limit. */
2042 	if (gap_end > info->high_limit)
2043 		gap_end = info->high_limit;
2044 
2045 found_highest:
2046 	/* Compute highest gap address at the desired alignment */
2047 	gap_end -= info->length;
2048 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2049 
2050 	VM_BUG_ON(gap_end < info->low_limit);
2051 	VM_BUG_ON(gap_end < gap_start);
2052 	return gap_end;
2053 }
2054 
2055 /*
2056  * Search for an unmapped address range.
2057  *
2058  * We are looking for a range that:
2059  * - does not intersect with any VMA;
2060  * - is contained within the [low_limit, high_limit) interval;
2061  * - is at least the desired size.
2062  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2063  */
2064 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2065 {
2066 	unsigned long addr;
2067 
2068 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2069 		addr = unmapped_area_topdown(info);
2070 	else
2071 		addr = unmapped_area(info);
2072 
2073 	trace_vm_unmapped_area(addr, info);
2074 	return addr;
2075 }
2076 
2077 #ifndef arch_get_mmap_end
2078 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2079 #endif
2080 
2081 #ifndef arch_get_mmap_base
2082 #define arch_get_mmap_base(addr, base) (base)
2083 #endif
2084 
2085 /* Get an address range which is currently unmapped.
2086  * For shmat() with addr=0.
2087  *
2088  * Ugly calling convention alert:
2089  * Return value with the low bits set means error value,
2090  * ie
2091  *	if (ret & ~PAGE_MASK)
2092  *		error = ret;
2093  *
2094  * This function "knows" that -ENOMEM has the bits set.
2095  */
2096 #ifndef HAVE_ARCH_UNMAPPED_AREA
2097 unsigned long
2098 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2099 		unsigned long len, unsigned long pgoff, unsigned long flags)
2100 {
2101 	struct mm_struct *mm = current->mm;
2102 	struct vm_area_struct *vma, *prev;
2103 	struct vm_unmapped_area_info info;
2104 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2105 
2106 	if (len > mmap_end - mmap_min_addr)
2107 		return -ENOMEM;
2108 
2109 	if (flags & MAP_FIXED)
2110 		return addr;
2111 
2112 	if (addr) {
2113 		addr = PAGE_ALIGN(addr);
2114 		vma = find_vma_prev(mm, addr, &prev);
2115 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2116 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2117 		    (!prev || addr >= vm_end_gap(prev)))
2118 			return addr;
2119 	}
2120 
2121 	info.flags = 0;
2122 	info.length = len;
2123 	info.low_limit = mm->mmap_base;
2124 	info.high_limit = mmap_end;
2125 	info.align_mask = 0;
2126 	info.align_offset = 0;
2127 	return vm_unmapped_area(&info);
2128 }
2129 #endif
2130 
2131 /*
2132  * This mmap-allocator allocates new areas top-down from below the
2133  * stack's low limit (the base):
2134  */
2135 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2136 unsigned long
2137 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2138 			  unsigned long len, unsigned long pgoff,
2139 			  unsigned long flags)
2140 {
2141 	struct vm_area_struct *vma, *prev;
2142 	struct mm_struct *mm = current->mm;
2143 	struct vm_unmapped_area_info info;
2144 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2145 
2146 	/* requested length too big for entire address space */
2147 	if (len > mmap_end - mmap_min_addr)
2148 		return -ENOMEM;
2149 
2150 	if (flags & MAP_FIXED)
2151 		return addr;
2152 
2153 	/* requesting a specific address */
2154 	if (addr) {
2155 		addr = PAGE_ALIGN(addr);
2156 		vma = find_vma_prev(mm, addr, &prev);
2157 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2158 				(!vma || addr + len <= vm_start_gap(vma)) &&
2159 				(!prev || addr >= vm_end_gap(prev)))
2160 			return addr;
2161 	}
2162 
2163 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2164 	info.length = len;
2165 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2166 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2167 	info.align_mask = 0;
2168 	info.align_offset = 0;
2169 	addr = vm_unmapped_area(&info);
2170 
2171 	/*
2172 	 * A failed mmap() very likely causes application failure,
2173 	 * so fall back to the bottom-up function here. This scenario
2174 	 * can happen with large stack limits and large mmap()
2175 	 * allocations.
2176 	 */
2177 	if (offset_in_page(addr)) {
2178 		VM_BUG_ON(addr != -ENOMEM);
2179 		info.flags = 0;
2180 		info.low_limit = TASK_UNMAPPED_BASE;
2181 		info.high_limit = mmap_end;
2182 		addr = vm_unmapped_area(&info);
2183 	}
2184 
2185 	return addr;
2186 }
2187 #endif
2188 
2189 unsigned long
2190 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2191 		unsigned long pgoff, unsigned long flags)
2192 {
2193 	unsigned long (*get_area)(struct file *, unsigned long,
2194 				  unsigned long, unsigned long, unsigned long);
2195 
2196 	unsigned long error = arch_mmap_check(addr, len, flags);
2197 	if (error)
2198 		return error;
2199 
2200 	/* Careful about overflows.. */
2201 	if (len > TASK_SIZE)
2202 		return -ENOMEM;
2203 
2204 	get_area = current->mm->get_unmapped_area;
2205 	if (file) {
2206 		if (file->f_op->get_unmapped_area)
2207 			get_area = file->f_op->get_unmapped_area;
2208 	} else if (flags & MAP_SHARED) {
2209 		/*
2210 		 * mmap_region() will call shmem_zero_setup() to create a file,
2211 		 * so use shmem's get_unmapped_area in case it can be huge.
2212 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2213 		 */
2214 		pgoff = 0;
2215 		get_area = shmem_get_unmapped_area;
2216 	}
2217 
2218 	addr = get_area(file, addr, len, pgoff, flags);
2219 	if (IS_ERR_VALUE(addr))
2220 		return addr;
2221 
2222 	if (addr > TASK_SIZE - len)
2223 		return -ENOMEM;
2224 	if (offset_in_page(addr))
2225 		return -EINVAL;
2226 
2227 	error = security_mmap_addr(addr);
2228 	return error ? error : addr;
2229 }
2230 
2231 EXPORT_SYMBOL(get_unmapped_area);
2232 
2233 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2234 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2235 {
2236 	struct rb_node *rb_node;
2237 	struct vm_area_struct *vma;
2238 
2239 	/* Check the cache first. */
2240 	vma = vmacache_find(mm, addr);
2241 	if (likely(vma))
2242 		return vma;
2243 
2244 	rb_node = mm->mm_rb.rb_node;
2245 
2246 	while (rb_node) {
2247 		struct vm_area_struct *tmp;
2248 
2249 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2250 
2251 		if (tmp->vm_end > addr) {
2252 			vma = tmp;
2253 			if (tmp->vm_start <= addr)
2254 				break;
2255 			rb_node = rb_node->rb_left;
2256 		} else
2257 			rb_node = rb_node->rb_right;
2258 	}
2259 
2260 	if (vma)
2261 		vmacache_update(addr, vma);
2262 	return vma;
2263 }
2264 
2265 EXPORT_SYMBOL(find_vma);
2266 
2267 /*
2268  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2269  */
2270 struct vm_area_struct *
2271 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2272 			struct vm_area_struct **pprev)
2273 {
2274 	struct vm_area_struct *vma;
2275 
2276 	vma = find_vma(mm, addr);
2277 	if (vma) {
2278 		*pprev = vma->vm_prev;
2279 	} else {
2280 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2281 
2282 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2283 	}
2284 	return vma;
2285 }
2286 
2287 /*
2288  * Verify that the stack growth is acceptable and
2289  * update accounting. This is shared with both the
2290  * grow-up and grow-down cases.
2291  */
2292 static int acct_stack_growth(struct vm_area_struct *vma,
2293 			     unsigned long size, unsigned long grow)
2294 {
2295 	struct mm_struct *mm = vma->vm_mm;
2296 	unsigned long new_start;
2297 
2298 	/* address space limit tests */
2299 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2300 		return -ENOMEM;
2301 
2302 	/* Stack limit test */
2303 	if (size > rlimit(RLIMIT_STACK))
2304 		return -ENOMEM;
2305 
2306 	/* mlock limit tests */
2307 	if (vma->vm_flags & VM_LOCKED) {
2308 		unsigned long locked;
2309 		unsigned long limit;
2310 		locked = mm->locked_vm + grow;
2311 		limit = rlimit(RLIMIT_MEMLOCK);
2312 		limit >>= PAGE_SHIFT;
2313 		if (locked > limit && !capable(CAP_IPC_LOCK))
2314 			return -ENOMEM;
2315 	}
2316 
2317 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2318 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2319 			vma->vm_end - size;
2320 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2321 		return -EFAULT;
2322 
2323 	/*
2324 	 * Overcommit..  This must be the final test, as it will
2325 	 * update security statistics.
2326 	 */
2327 	if (security_vm_enough_memory_mm(mm, grow))
2328 		return -ENOMEM;
2329 
2330 	return 0;
2331 }
2332 
2333 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2334 /*
2335  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2336  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2337  */
2338 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2339 {
2340 	struct mm_struct *mm = vma->vm_mm;
2341 	struct vm_area_struct *next;
2342 	unsigned long gap_addr;
2343 	int error = 0;
2344 
2345 	if (!(vma->vm_flags & VM_GROWSUP))
2346 		return -EFAULT;
2347 
2348 	/* Guard against exceeding limits of the address space. */
2349 	address &= PAGE_MASK;
2350 	if (address >= (TASK_SIZE & PAGE_MASK))
2351 		return -ENOMEM;
2352 	address += PAGE_SIZE;
2353 
2354 	/* Enforce stack_guard_gap */
2355 	gap_addr = address + stack_guard_gap;
2356 
2357 	/* Guard against overflow */
2358 	if (gap_addr < address || gap_addr > TASK_SIZE)
2359 		gap_addr = TASK_SIZE;
2360 
2361 	next = vma->vm_next;
2362 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2363 		if (!(next->vm_flags & VM_GROWSUP))
2364 			return -ENOMEM;
2365 		/* Check that both stack segments have the same anon_vma? */
2366 	}
2367 
2368 	/* We must make sure the anon_vma is allocated. */
2369 	if (unlikely(anon_vma_prepare(vma)))
2370 		return -ENOMEM;
2371 
2372 	/*
2373 	 * vma->vm_start/vm_end cannot change under us because the caller
2374 	 * is required to hold the mmap_lock in read mode.  We need the
2375 	 * anon_vma lock to serialize against concurrent expand_stacks.
2376 	 */
2377 	anon_vma_lock_write(vma->anon_vma);
2378 
2379 	/* Somebody else might have raced and expanded it already */
2380 	if (address > vma->vm_end) {
2381 		unsigned long size, grow;
2382 
2383 		size = address - vma->vm_start;
2384 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2385 
2386 		error = -ENOMEM;
2387 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2388 			error = acct_stack_growth(vma, size, grow);
2389 			if (!error) {
2390 				/*
2391 				 * vma_gap_update() doesn't support concurrent
2392 				 * updates, but we only hold a shared mmap_lock
2393 				 * lock here, so we need to protect against
2394 				 * concurrent vma expansions.
2395 				 * anon_vma_lock_write() doesn't help here, as
2396 				 * we don't guarantee that all growable vmas
2397 				 * in a mm share the same root anon vma.
2398 				 * So, we reuse mm->page_table_lock to guard
2399 				 * against concurrent vma expansions.
2400 				 */
2401 				spin_lock(&mm->page_table_lock);
2402 				if (vma->vm_flags & VM_LOCKED)
2403 					mm->locked_vm += grow;
2404 				vm_stat_account(mm, vma->vm_flags, grow);
2405 				anon_vma_interval_tree_pre_update_vma(vma);
2406 				vma->vm_end = address;
2407 				anon_vma_interval_tree_post_update_vma(vma);
2408 				if (vma->vm_next)
2409 					vma_gap_update(vma->vm_next);
2410 				else
2411 					mm->highest_vm_end = vm_end_gap(vma);
2412 				spin_unlock(&mm->page_table_lock);
2413 
2414 				perf_event_mmap(vma);
2415 			}
2416 		}
2417 	}
2418 	anon_vma_unlock_write(vma->anon_vma);
2419 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2420 	validate_mm(mm);
2421 	return error;
2422 }
2423 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2424 
2425 /*
2426  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2427  */
2428 int expand_downwards(struct vm_area_struct *vma,
2429 				   unsigned long address)
2430 {
2431 	struct mm_struct *mm = vma->vm_mm;
2432 	struct vm_area_struct *prev;
2433 	int error = 0;
2434 
2435 	address &= PAGE_MASK;
2436 	if (address < mmap_min_addr)
2437 		return -EPERM;
2438 
2439 	/* Enforce stack_guard_gap */
2440 	prev = vma->vm_prev;
2441 	/* Check that both stack segments have the same anon_vma? */
2442 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2443 			vma_is_accessible(prev)) {
2444 		if (address - prev->vm_end < stack_guard_gap)
2445 			return -ENOMEM;
2446 	}
2447 
2448 	/* We must make sure the anon_vma is allocated. */
2449 	if (unlikely(anon_vma_prepare(vma)))
2450 		return -ENOMEM;
2451 
2452 	/*
2453 	 * vma->vm_start/vm_end cannot change under us because the caller
2454 	 * is required to hold the mmap_lock in read mode.  We need the
2455 	 * anon_vma lock to serialize against concurrent expand_stacks.
2456 	 */
2457 	anon_vma_lock_write(vma->anon_vma);
2458 
2459 	/* Somebody else might have raced and expanded it already */
2460 	if (address < vma->vm_start) {
2461 		unsigned long size, grow;
2462 
2463 		size = vma->vm_end - address;
2464 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2465 
2466 		error = -ENOMEM;
2467 		if (grow <= vma->vm_pgoff) {
2468 			error = acct_stack_growth(vma, size, grow);
2469 			if (!error) {
2470 				/*
2471 				 * vma_gap_update() doesn't support concurrent
2472 				 * updates, but we only hold a shared mmap_lock
2473 				 * lock here, so we need to protect against
2474 				 * concurrent vma expansions.
2475 				 * anon_vma_lock_write() doesn't help here, as
2476 				 * we don't guarantee that all growable vmas
2477 				 * in a mm share the same root anon vma.
2478 				 * So, we reuse mm->page_table_lock to guard
2479 				 * against concurrent vma expansions.
2480 				 */
2481 				spin_lock(&mm->page_table_lock);
2482 				if (vma->vm_flags & VM_LOCKED)
2483 					mm->locked_vm += grow;
2484 				vm_stat_account(mm, vma->vm_flags, grow);
2485 				anon_vma_interval_tree_pre_update_vma(vma);
2486 				vma->vm_start = address;
2487 				vma->vm_pgoff -= grow;
2488 				anon_vma_interval_tree_post_update_vma(vma);
2489 				vma_gap_update(vma);
2490 				spin_unlock(&mm->page_table_lock);
2491 
2492 				perf_event_mmap(vma);
2493 			}
2494 		}
2495 	}
2496 	anon_vma_unlock_write(vma->anon_vma);
2497 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2498 	validate_mm(mm);
2499 	return error;
2500 }
2501 
2502 /* enforced gap between the expanding stack and other mappings. */
2503 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2504 
2505 static int __init cmdline_parse_stack_guard_gap(char *p)
2506 {
2507 	unsigned long val;
2508 	char *endptr;
2509 
2510 	val = simple_strtoul(p, &endptr, 10);
2511 	if (!*endptr)
2512 		stack_guard_gap = val << PAGE_SHIFT;
2513 
2514 	return 0;
2515 }
2516 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2517 
2518 #ifdef CONFIG_STACK_GROWSUP
2519 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2520 {
2521 	return expand_upwards(vma, address);
2522 }
2523 
2524 struct vm_area_struct *
2525 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2526 {
2527 	struct vm_area_struct *vma, *prev;
2528 
2529 	addr &= PAGE_MASK;
2530 	vma = find_vma_prev(mm, addr, &prev);
2531 	if (vma && (vma->vm_start <= addr))
2532 		return vma;
2533 	/* don't alter vm_end if the coredump is running */
2534 	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2535 		return NULL;
2536 	if (prev->vm_flags & VM_LOCKED)
2537 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2538 	return prev;
2539 }
2540 #else
2541 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2542 {
2543 	return expand_downwards(vma, address);
2544 }
2545 
2546 struct vm_area_struct *
2547 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2548 {
2549 	struct vm_area_struct *vma;
2550 	unsigned long start;
2551 
2552 	addr &= PAGE_MASK;
2553 	vma = find_vma(mm, addr);
2554 	if (!vma)
2555 		return NULL;
2556 	if (vma->vm_start <= addr)
2557 		return vma;
2558 	if (!(vma->vm_flags & VM_GROWSDOWN))
2559 		return NULL;
2560 	/* don't alter vm_start if the coredump is running */
2561 	if (!mmget_still_valid(mm))
2562 		return NULL;
2563 	start = vma->vm_start;
2564 	if (expand_stack(vma, addr))
2565 		return NULL;
2566 	if (vma->vm_flags & VM_LOCKED)
2567 		populate_vma_page_range(vma, addr, start, NULL);
2568 	return vma;
2569 }
2570 #endif
2571 
2572 EXPORT_SYMBOL_GPL(find_extend_vma);
2573 
2574 /*
2575  * Ok - we have the memory areas we should free on the vma list,
2576  * so release them, and do the vma updates.
2577  *
2578  * Called with the mm semaphore held.
2579  */
2580 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2581 {
2582 	unsigned long nr_accounted = 0;
2583 
2584 	/* Update high watermark before we lower total_vm */
2585 	update_hiwater_vm(mm);
2586 	do {
2587 		long nrpages = vma_pages(vma);
2588 
2589 		if (vma->vm_flags & VM_ACCOUNT)
2590 			nr_accounted += nrpages;
2591 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2592 		vma = remove_vma(vma);
2593 	} while (vma);
2594 	vm_unacct_memory(nr_accounted);
2595 	validate_mm(mm);
2596 }
2597 
2598 /*
2599  * Get rid of page table information in the indicated region.
2600  *
2601  * Called with the mm semaphore held.
2602  */
2603 static void unmap_region(struct mm_struct *mm,
2604 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2605 		unsigned long start, unsigned long end)
2606 {
2607 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2608 	struct mmu_gather tlb;
2609 
2610 	lru_add_drain();
2611 	tlb_gather_mmu(&tlb, mm, start, end);
2612 	update_hiwater_rss(mm);
2613 	unmap_vmas(&tlb, vma, start, end);
2614 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2615 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2616 	tlb_finish_mmu(&tlb, start, end);
2617 }
2618 
2619 /*
2620  * Create a list of vma's touched by the unmap, removing them from the mm's
2621  * vma list as we go..
2622  */
2623 static void
2624 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2625 	struct vm_area_struct *prev, unsigned long end)
2626 {
2627 	struct vm_area_struct **insertion_point;
2628 	struct vm_area_struct *tail_vma = NULL;
2629 
2630 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2631 	vma->vm_prev = NULL;
2632 	do {
2633 		vma_rb_erase(vma, &mm->mm_rb);
2634 		mm->map_count--;
2635 		tail_vma = vma;
2636 		vma = vma->vm_next;
2637 	} while (vma && vma->vm_start < end);
2638 	*insertion_point = vma;
2639 	if (vma) {
2640 		vma->vm_prev = prev;
2641 		vma_gap_update(vma);
2642 	} else
2643 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2644 	tail_vma->vm_next = NULL;
2645 
2646 	/* Kill the cache */
2647 	vmacache_invalidate(mm);
2648 }
2649 
2650 /*
2651  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2652  * has already been checked or doesn't make sense to fail.
2653  */
2654 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2655 		unsigned long addr, int new_below)
2656 {
2657 	struct vm_area_struct *new;
2658 	int err;
2659 
2660 	if (vma->vm_ops && vma->vm_ops->split) {
2661 		err = vma->vm_ops->split(vma, addr);
2662 		if (err)
2663 			return err;
2664 	}
2665 
2666 	new = vm_area_dup(vma);
2667 	if (!new)
2668 		return -ENOMEM;
2669 
2670 	if (new_below)
2671 		new->vm_end = addr;
2672 	else {
2673 		new->vm_start = addr;
2674 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2675 	}
2676 
2677 	err = vma_dup_policy(vma, new);
2678 	if (err)
2679 		goto out_free_vma;
2680 
2681 	err = anon_vma_clone(new, vma);
2682 	if (err)
2683 		goto out_free_mpol;
2684 
2685 	if (new->vm_file)
2686 		get_file(new->vm_file);
2687 
2688 	if (new->vm_ops && new->vm_ops->open)
2689 		new->vm_ops->open(new);
2690 
2691 	if (new_below)
2692 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2693 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2694 	else
2695 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2696 
2697 	/* Success. */
2698 	if (!err)
2699 		return 0;
2700 
2701 	/* Clean everything up if vma_adjust failed. */
2702 	if (new->vm_ops && new->vm_ops->close)
2703 		new->vm_ops->close(new);
2704 	if (new->vm_file)
2705 		fput(new->vm_file);
2706 	unlink_anon_vmas(new);
2707  out_free_mpol:
2708 	mpol_put(vma_policy(new));
2709  out_free_vma:
2710 	vm_area_free(new);
2711 	return err;
2712 }
2713 
2714 /*
2715  * Split a vma into two pieces at address 'addr', a new vma is allocated
2716  * either for the first part or the tail.
2717  */
2718 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2719 	      unsigned long addr, int new_below)
2720 {
2721 	if (mm->map_count >= sysctl_max_map_count)
2722 		return -ENOMEM;
2723 
2724 	return __split_vma(mm, vma, addr, new_below);
2725 }
2726 
2727 /* Munmap is split into 2 main parts -- this part which finds
2728  * what needs doing, and the areas themselves, which do the
2729  * work.  This now handles partial unmappings.
2730  * Jeremy Fitzhardinge <jeremy@goop.org>
2731  */
2732 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2733 		struct list_head *uf, bool downgrade)
2734 {
2735 	unsigned long end;
2736 	struct vm_area_struct *vma, *prev, *last;
2737 
2738 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2739 		return -EINVAL;
2740 
2741 	len = PAGE_ALIGN(len);
2742 	end = start + len;
2743 	if (len == 0)
2744 		return -EINVAL;
2745 
2746 	/*
2747 	 * arch_unmap() might do unmaps itself.  It must be called
2748 	 * and finish any rbtree manipulation before this code
2749 	 * runs and also starts to manipulate the rbtree.
2750 	 */
2751 	arch_unmap(mm, start, end);
2752 
2753 	/* Find the first overlapping VMA */
2754 	vma = find_vma(mm, start);
2755 	if (!vma)
2756 		return 0;
2757 	prev = vma->vm_prev;
2758 	/* we have  start < vma->vm_end  */
2759 
2760 	/* if it doesn't overlap, we have nothing.. */
2761 	if (vma->vm_start >= end)
2762 		return 0;
2763 
2764 	/*
2765 	 * If we need to split any vma, do it now to save pain later.
2766 	 *
2767 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2768 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2769 	 * places tmp vma above, and higher split_vma places tmp vma below.
2770 	 */
2771 	if (start > vma->vm_start) {
2772 		int error;
2773 
2774 		/*
2775 		 * Make sure that map_count on return from munmap() will
2776 		 * not exceed its limit; but let map_count go just above
2777 		 * its limit temporarily, to help free resources as expected.
2778 		 */
2779 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2780 			return -ENOMEM;
2781 
2782 		error = __split_vma(mm, vma, start, 0);
2783 		if (error)
2784 			return error;
2785 		prev = vma;
2786 	}
2787 
2788 	/* Does it split the last one? */
2789 	last = find_vma(mm, end);
2790 	if (last && end > last->vm_start) {
2791 		int error = __split_vma(mm, last, end, 1);
2792 		if (error)
2793 			return error;
2794 	}
2795 	vma = prev ? prev->vm_next : mm->mmap;
2796 
2797 	if (unlikely(uf)) {
2798 		/*
2799 		 * If userfaultfd_unmap_prep returns an error the vmas
2800 		 * will remain splitted, but userland will get a
2801 		 * highly unexpected error anyway. This is no
2802 		 * different than the case where the first of the two
2803 		 * __split_vma fails, but we don't undo the first
2804 		 * split, despite we could. This is unlikely enough
2805 		 * failure that it's not worth optimizing it for.
2806 		 */
2807 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2808 		if (error)
2809 			return error;
2810 	}
2811 
2812 	/*
2813 	 * unlock any mlock()ed ranges before detaching vmas
2814 	 */
2815 	if (mm->locked_vm) {
2816 		struct vm_area_struct *tmp = vma;
2817 		while (tmp && tmp->vm_start < end) {
2818 			if (tmp->vm_flags & VM_LOCKED) {
2819 				mm->locked_vm -= vma_pages(tmp);
2820 				munlock_vma_pages_all(tmp);
2821 			}
2822 
2823 			tmp = tmp->vm_next;
2824 		}
2825 	}
2826 
2827 	/* Detach vmas from rbtree */
2828 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2829 
2830 	if (downgrade)
2831 		mmap_write_downgrade(mm);
2832 
2833 	unmap_region(mm, vma, prev, start, end);
2834 
2835 	/* Fix up all other VM information */
2836 	remove_vma_list(mm, vma);
2837 
2838 	return downgrade ? 1 : 0;
2839 }
2840 
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842 	      struct list_head *uf)
2843 {
2844 	return __do_munmap(mm, start, len, uf, false);
2845 }
2846 
2847 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2848 {
2849 	int ret;
2850 	struct mm_struct *mm = current->mm;
2851 	LIST_HEAD(uf);
2852 
2853 	if (mmap_write_lock_killable(mm))
2854 		return -EINTR;
2855 
2856 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2857 	/*
2858 	 * Returning 1 indicates mmap_lock is downgraded.
2859 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2860 	 * it to 0 before return.
2861 	 */
2862 	if (ret == 1) {
2863 		mmap_read_unlock(mm);
2864 		ret = 0;
2865 	} else
2866 		mmap_write_unlock(mm);
2867 
2868 	userfaultfd_unmap_complete(mm, &uf);
2869 	return ret;
2870 }
2871 
2872 int vm_munmap(unsigned long start, size_t len)
2873 {
2874 	return __vm_munmap(start, len, false);
2875 }
2876 EXPORT_SYMBOL(vm_munmap);
2877 
2878 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2879 {
2880 	addr = untagged_addr(addr);
2881 	profile_munmap(addr);
2882 	return __vm_munmap(addr, len, true);
2883 }
2884 
2885 
2886 /*
2887  * Emulation of deprecated remap_file_pages() syscall.
2888  */
2889 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2890 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2891 {
2892 
2893 	struct mm_struct *mm = current->mm;
2894 	struct vm_area_struct *vma;
2895 	unsigned long populate = 0;
2896 	unsigned long ret = -EINVAL;
2897 	struct file *file;
2898 
2899 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2900 		     current->comm, current->pid);
2901 
2902 	if (prot)
2903 		return ret;
2904 	start = start & PAGE_MASK;
2905 	size = size & PAGE_MASK;
2906 
2907 	if (start + size <= start)
2908 		return ret;
2909 
2910 	/* Does pgoff wrap? */
2911 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2912 		return ret;
2913 
2914 	if (mmap_write_lock_killable(mm))
2915 		return -EINTR;
2916 
2917 	vma = find_vma(mm, start);
2918 
2919 	if (!vma || !(vma->vm_flags & VM_SHARED))
2920 		goto out;
2921 
2922 	if (start < vma->vm_start)
2923 		goto out;
2924 
2925 	if (start + size > vma->vm_end) {
2926 		struct vm_area_struct *next;
2927 
2928 		for (next = vma->vm_next; next; next = next->vm_next) {
2929 			/* hole between vmas ? */
2930 			if (next->vm_start != next->vm_prev->vm_end)
2931 				goto out;
2932 
2933 			if (next->vm_file != vma->vm_file)
2934 				goto out;
2935 
2936 			if (next->vm_flags != vma->vm_flags)
2937 				goto out;
2938 
2939 			if (start + size <= next->vm_end)
2940 				break;
2941 		}
2942 
2943 		if (!next)
2944 			goto out;
2945 	}
2946 
2947 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2948 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2949 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2950 
2951 	flags &= MAP_NONBLOCK;
2952 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2953 	if (vma->vm_flags & VM_LOCKED) {
2954 		struct vm_area_struct *tmp;
2955 		flags |= MAP_LOCKED;
2956 
2957 		/* drop PG_Mlocked flag for over-mapped range */
2958 		for (tmp = vma; tmp->vm_start >= start + size;
2959 				tmp = tmp->vm_next) {
2960 			/*
2961 			 * Split pmd and munlock page on the border
2962 			 * of the range.
2963 			 */
2964 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2965 
2966 			munlock_vma_pages_range(tmp,
2967 					max(tmp->vm_start, start),
2968 					min(tmp->vm_end, start + size));
2969 		}
2970 	}
2971 
2972 	file = get_file(vma->vm_file);
2973 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2974 			prot, flags, pgoff, &populate, NULL);
2975 	fput(file);
2976 out:
2977 	mmap_write_unlock(mm);
2978 	if (populate)
2979 		mm_populate(ret, populate);
2980 	if (!IS_ERR_VALUE(ret))
2981 		ret = 0;
2982 	return ret;
2983 }
2984 
2985 /*
2986  *  this is really a simplified "do_mmap".  it only handles
2987  *  anonymous maps.  eventually we may be able to do some
2988  *  brk-specific accounting here.
2989  */
2990 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2991 {
2992 	struct mm_struct *mm = current->mm;
2993 	struct vm_area_struct *vma, *prev;
2994 	struct rb_node **rb_link, *rb_parent;
2995 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2996 	int error;
2997 	unsigned long mapped_addr;
2998 
2999 	/* Until we need other flags, refuse anything except VM_EXEC. */
3000 	if ((flags & (~VM_EXEC)) != 0)
3001 		return -EINVAL;
3002 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3003 
3004 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3005 	if (IS_ERR_VALUE(mapped_addr))
3006 		return mapped_addr;
3007 
3008 	error = mlock_future_check(mm, mm->def_flags, len);
3009 	if (error)
3010 		return error;
3011 
3012 	/*
3013 	 * Clear old maps.  this also does some error checking for us
3014 	 */
3015 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3016 			      &rb_parent)) {
3017 		if (do_munmap(mm, addr, len, uf))
3018 			return -ENOMEM;
3019 	}
3020 
3021 	/* Check against address space limits *after* clearing old maps... */
3022 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3023 		return -ENOMEM;
3024 
3025 	if (mm->map_count > sysctl_max_map_count)
3026 		return -ENOMEM;
3027 
3028 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3029 		return -ENOMEM;
3030 
3031 	/* Can we just expand an old private anonymous mapping? */
3032 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3033 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3034 	if (vma)
3035 		goto out;
3036 
3037 	/*
3038 	 * create a vma struct for an anonymous mapping
3039 	 */
3040 	vma = vm_area_alloc(mm);
3041 	if (!vma) {
3042 		vm_unacct_memory(len >> PAGE_SHIFT);
3043 		return -ENOMEM;
3044 	}
3045 
3046 	vma_set_anonymous(vma);
3047 	vma->vm_start = addr;
3048 	vma->vm_end = addr + len;
3049 	vma->vm_pgoff = pgoff;
3050 	vma->vm_flags = flags;
3051 	vma->vm_page_prot = vm_get_page_prot(flags);
3052 	vma_link(mm, vma, prev, rb_link, rb_parent);
3053 out:
3054 	perf_event_mmap(vma);
3055 	mm->total_vm += len >> PAGE_SHIFT;
3056 	mm->data_vm += len >> PAGE_SHIFT;
3057 	if (flags & VM_LOCKED)
3058 		mm->locked_vm += (len >> PAGE_SHIFT);
3059 	vma->vm_flags |= VM_SOFTDIRTY;
3060 	return 0;
3061 }
3062 
3063 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3064 {
3065 	struct mm_struct *mm = current->mm;
3066 	unsigned long len;
3067 	int ret;
3068 	bool populate;
3069 	LIST_HEAD(uf);
3070 
3071 	len = PAGE_ALIGN(request);
3072 	if (len < request)
3073 		return -ENOMEM;
3074 	if (!len)
3075 		return 0;
3076 
3077 	if (mmap_write_lock_killable(mm))
3078 		return -EINTR;
3079 
3080 	ret = do_brk_flags(addr, len, flags, &uf);
3081 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 	mmap_write_unlock(mm);
3083 	userfaultfd_unmap_complete(mm, &uf);
3084 	if (populate && !ret)
3085 		mm_populate(addr, len);
3086 	return ret;
3087 }
3088 EXPORT_SYMBOL(vm_brk_flags);
3089 
3090 int vm_brk(unsigned long addr, unsigned long len)
3091 {
3092 	return vm_brk_flags(addr, len, 0);
3093 }
3094 EXPORT_SYMBOL(vm_brk);
3095 
3096 /* Release all mmaps. */
3097 void exit_mmap(struct mm_struct *mm)
3098 {
3099 	struct mmu_gather tlb;
3100 	struct vm_area_struct *vma;
3101 	unsigned long nr_accounted = 0;
3102 
3103 	/* mm's last user has gone, and its about to be pulled down */
3104 	mmu_notifier_release(mm);
3105 
3106 	if (unlikely(mm_is_oom_victim(mm))) {
3107 		/*
3108 		 * Manually reap the mm to free as much memory as possible.
3109 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3110 		 * this mm from further consideration.  Taking mm->mmap_lock for
3111 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3112 		 * reaper will not run on this mm again after mmap_lock is
3113 		 * dropped.
3114 		 *
3115 		 * Nothing can be holding mm->mmap_lock here and the above call
3116 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3117 		 * __oom_reap_task_mm() will not block.
3118 		 *
3119 		 * This needs to be done before calling munlock_vma_pages_all(),
3120 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3121 		 * reliably test it.
3122 		 */
3123 		(void)__oom_reap_task_mm(mm);
3124 
3125 		set_bit(MMF_OOM_SKIP, &mm->flags);
3126 		mmap_write_lock(mm);
3127 		mmap_write_unlock(mm);
3128 	}
3129 
3130 	if (mm->locked_vm) {
3131 		vma = mm->mmap;
3132 		while (vma) {
3133 			if (vma->vm_flags & VM_LOCKED)
3134 				munlock_vma_pages_all(vma);
3135 			vma = vma->vm_next;
3136 		}
3137 	}
3138 
3139 	arch_exit_mmap(mm);
3140 
3141 	vma = mm->mmap;
3142 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3143 		return;
3144 
3145 	lru_add_drain();
3146 	flush_cache_mm(mm);
3147 	tlb_gather_mmu(&tlb, mm, 0, -1);
3148 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3149 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3150 	unmap_vmas(&tlb, vma, 0, -1);
3151 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3152 	tlb_finish_mmu(&tlb, 0, -1);
3153 
3154 	/*
3155 	 * Walk the list again, actually closing and freeing it,
3156 	 * with preemption enabled, without holding any MM locks.
3157 	 */
3158 	while (vma) {
3159 		if (vma->vm_flags & VM_ACCOUNT)
3160 			nr_accounted += vma_pages(vma);
3161 		vma = remove_vma(vma);
3162 	}
3163 	vm_unacct_memory(nr_accounted);
3164 }
3165 
3166 /* Insert vm structure into process list sorted by address
3167  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3168  * then i_mmap_rwsem is taken here.
3169  */
3170 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3171 {
3172 	struct vm_area_struct *prev;
3173 	struct rb_node **rb_link, *rb_parent;
3174 
3175 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3176 			   &prev, &rb_link, &rb_parent))
3177 		return -ENOMEM;
3178 	if ((vma->vm_flags & VM_ACCOUNT) &&
3179 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3180 		return -ENOMEM;
3181 
3182 	/*
3183 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3184 	 * until its first write fault, when page's anon_vma and index
3185 	 * are set.  But now set the vm_pgoff it will almost certainly
3186 	 * end up with (unless mremap moves it elsewhere before that
3187 	 * first wfault), so /proc/pid/maps tells a consistent story.
3188 	 *
3189 	 * By setting it to reflect the virtual start address of the
3190 	 * vma, merges and splits can happen in a seamless way, just
3191 	 * using the existing file pgoff checks and manipulations.
3192 	 * Similarly in do_mmap_pgoff and in do_brk.
3193 	 */
3194 	if (vma_is_anonymous(vma)) {
3195 		BUG_ON(vma->anon_vma);
3196 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3197 	}
3198 
3199 	vma_link(mm, vma, prev, rb_link, rb_parent);
3200 	return 0;
3201 }
3202 
3203 /*
3204  * Copy the vma structure to a new location in the same mm,
3205  * prior to moving page table entries, to effect an mremap move.
3206  */
3207 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3208 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3209 	bool *need_rmap_locks)
3210 {
3211 	struct vm_area_struct *vma = *vmap;
3212 	unsigned long vma_start = vma->vm_start;
3213 	struct mm_struct *mm = vma->vm_mm;
3214 	struct vm_area_struct *new_vma, *prev;
3215 	struct rb_node **rb_link, *rb_parent;
3216 	bool faulted_in_anon_vma = true;
3217 
3218 	/*
3219 	 * If anonymous vma has not yet been faulted, update new pgoff
3220 	 * to match new location, to increase its chance of merging.
3221 	 */
3222 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3223 		pgoff = addr >> PAGE_SHIFT;
3224 		faulted_in_anon_vma = false;
3225 	}
3226 
3227 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3228 		return NULL;	/* should never get here */
3229 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3230 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3231 			    vma->vm_userfaultfd_ctx);
3232 	if (new_vma) {
3233 		/*
3234 		 * Source vma may have been merged into new_vma
3235 		 */
3236 		if (unlikely(vma_start >= new_vma->vm_start &&
3237 			     vma_start < new_vma->vm_end)) {
3238 			/*
3239 			 * The only way we can get a vma_merge with
3240 			 * self during an mremap is if the vma hasn't
3241 			 * been faulted in yet and we were allowed to
3242 			 * reset the dst vma->vm_pgoff to the
3243 			 * destination address of the mremap to allow
3244 			 * the merge to happen. mremap must change the
3245 			 * vm_pgoff linearity between src and dst vmas
3246 			 * (in turn preventing a vma_merge) to be
3247 			 * safe. It is only safe to keep the vm_pgoff
3248 			 * linear if there are no pages mapped yet.
3249 			 */
3250 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3251 			*vmap = vma = new_vma;
3252 		}
3253 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3254 	} else {
3255 		new_vma = vm_area_dup(vma);
3256 		if (!new_vma)
3257 			goto out;
3258 		new_vma->vm_start = addr;
3259 		new_vma->vm_end = addr + len;
3260 		new_vma->vm_pgoff = pgoff;
3261 		if (vma_dup_policy(vma, new_vma))
3262 			goto out_free_vma;
3263 		if (anon_vma_clone(new_vma, vma))
3264 			goto out_free_mempol;
3265 		if (new_vma->vm_file)
3266 			get_file(new_vma->vm_file);
3267 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3268 			new_vma->vm_ops->open(new_vma);
3269 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3270 		*need_rmap_locks = false;
3271 	}
3272 	return new_vma;
3273 
3274 out_free_mempol:
3275 	mpol_put(vma_policy(new_vma));
3276 out_free_vma:
3277 	vm_area_free(new_vma);
3278 out:
3279 	return NULL;
3280 }
3281 
3282 /*
3283  * Return true if the calling process may expand its vm space by the passed
3284  * number of pages
3285  */
3286 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3287 {
3288 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3289 		return false;
3290 
3291 	if (is_data_mapping(flags) &&
3292 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3293 		/* Workaround for Valgrind */
3294 		if (rlimit(RLIMIT_DATA) == 0 &&
3295 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3296 			return true;
3297 
3298 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3299 			     current->comm, current->pid,
3300 			     (mm->data_vm + npages) << PAGE_SHIFT,
3301 			     rlimit(RLIMIT_DATA),
3302 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3303 
3304 		if (!ignore_rlimit_data)
3305 			return false;
3306 	}
3307 
3308 	return true;
3309 }
3310 
3311 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3312 {
3313 	mm->total_vm += npages;
3314 
3315 	if (is_exec_mapping(flags))
3316 		mm->exec_vm += npages;
3317 	else if (is_stack_mapping(flags))
3318 		mm->stack_vm += npages;
3319 	else if (is_data_mapping(flags))
3320 		mm->data_vm += npages;
3321 }
3322 
3323 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3324 
3325 /*
3326  * Having a close hook prevents vma merging regardless of flags.
3327  */
3328 static void special_mapping_close(struct vm_area_struct *vma)
3329 {
3330 }
3331 
3332 static const char *special_mapping_name(struct vm_area_struct *vma)
3333 {
3334 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3335 }
3336 
3337 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3338 {
3339 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3340 
3341 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3342 		return -EFAULT;
3343 
3344 	if (sm->mremap)
3345 		return sm->mremap(sm, new_vma);
3346 
3347 	return 0;
3348 }
3349 
3350 static const struct vm_operations_struct special_mapping_vmops = {
3351 	.close = special_mapping_close,
3352 	.fault = special_mapping_fault,
3353 	.mremap = special_mapping_mremap,
3354 	.name = special_mapping_name,
3355 	/* vDSO code relies that VVAR can't be accessed remotely */
3356 	.access = NULL,
3357 };
3358 
3359 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3360 	.close = special_mapping_close,
3361 	.fault = special_mapping_fault,
3362 };
3363 
3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3365 {
3366 	struct vm_area_struct *vma = vmf->vma;
3367 	pgoff_t pgoff;
3368 	struct page **pages;
3369 
3370 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3371 		pages = vma->vm_private_data;
3372 	} else {
3373 		struct vm_special_mapping *sm = vma->vm_private_data;
3374 
3375 		if (sm->fault)
3376 			return sm->fault(sm, vmf->vma, vmf);
3377 
3378 		pages = sm->pages;
3379 	}
3380 
3381 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3382 		pgoff--;
3383 
3384 	if (*pages) {
3385 		struct page *page = *pages;
3386 		get_page(page);
3387 		vmf->page = page;
3388 		return 0;
3389 	}
3390 
3391 	return VM_FAULT_SIGBUS;
3392 }
3393 
3394 static struct vm_area_struct *__install_special_mapping(
3395 	struct mm_struct *mm,
3396 	unsigned long addr, unsigned long len,
3397 	unsigned long vm_flags, void *priv,
3398 	const struct vm_operations_struct *ops)
3399 {
3400 	int ret;
3401 	struct vm_area_struct *vma;
3402 
3403 	vma = vm_area_alloc(mm);
3404 	if (unlikely(vma == NULL))
3405 		return ERR_PTR(-ENOMEM);
3406 
3407 	vma->vm_start = addr;
3408 	vma->vm_end = addr + len;
3409 
3410 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3411 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3412 
3413 	vma->vm_ops = ops;
3414 	vma->vm_private_data = priv;
3415 
3416 	ret = insert_vm_struct(mm, vma);
3417 	if (ret)
3418 		goto out;
3419 
3420 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3421 
3422 	perf_event_mmap(vma);
3423 
3424 	return vma;
3425 
3426 out:
3427 	vm_area_free(vma);
3428 	return ERR_PTR(ret);
3429 }
3430 
3431 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3432 	const struct vm_special_mapping *sm)
3433 {
3434 	return vma->vm_private_data == sm &&
3435 		(vma->vm_ops == &special_mapping_vmops ||
3436 		 vma->vm_ops == &legacy_special_mapping_vmops);
3437 }
3438 
3439 /*
3440  * Called with mm->mmap_lock held for writing.
3441  * Insert a new vma covering the given region, with the given flags.
3442  * Its pages are supplied by the given array of struct page *.
3443  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3444  * The region past the last page supplied will always produce SIGBUS.
3445  * The array pointer and the pages it points to are assumed to stay alive
3446  * for as long as this mapping might exist.
3447  */
3448 struct vm_area_struct *_install_special_mapping(
3449 	struct mm_struct *mm,
3450 	unsigned long addr, unsigned long len,
3451 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3452 {
3453 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3454 					&special_mapping_vmops);
3455 }
3456 
3457 int install_special_mapping(struct mm_struct *mm,
3458 			    unsigned long addr, unsigned long len,
3459 			    unsigned long vm_flags, struct page **pages)
3460 {
3461 	struct vm_area_struct *vma = __install_special_mapping(
3462 		mm, addr, len, vm_flags, (void *)pages,
3463 		&legacy_special_mapping_vmops);
3464 
3465 	return PTR_ERR_OR_ZERO(vma);
3466 }
3467 
3468 static DEFINE_MUTEX(mm_all_locks_mutex);
3469 
3470 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3471 {
3472 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3473 		/*
3474 		 * The LSB of head.next can't change from under us
3475 		 * because we hold the mm_all_locks_mutex.
3476 		 */
3477 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3478 		/*
3479 		 * We can safely modify head.next after taking the
3480 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3481 		 * the same anon_vma we won't take it again.
3482 		 *
3483 		 * No need of atomic instructions here, head.next
3484 		 * can't change from under us thanks to the
3485 		 * anon_vma->root->rwsem.
3486 		 */
3487 		if (__test_and_set_bit(0, (unsigned long *)
3488 				       &anon_vma->root->rb_root.rb_root.rb_node))
3489 			BUG();
3490 	}
3491 }
3492 
3493 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3494 {
3495 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3496 		/*
3497 		 * AS_MM_ALL_LOCKS can't change from under us because
3498 		 * we hold the mm_all_locks_mutex.
3499 		 *
3500 		 * Operations on ->flags have to be atomic because
3501 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3502 		 * mm_all_locks_mutex, there may be other cpus
3503 		 * changing other bitflags in parallel to us.
3504 		 */
3505 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3506 			BUG();
3507 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3508 	}
3509 }
3510 
3511 /*
3512  * This operation locks against the VM for all pte/vma/mm related
3513  * operations that could ever happen on a certain mm. This includes
3514  * vmtruncate, try_to_unmap, and all page faults.
3515  *
3516  * The caller must take the mmap_lock in write mode before calling
3517  * mm_take_all_locks(). The caller isn't allowed to release the
3518  * mmap_lock until mm_drop_all_locks() returns.
3519  *
3520  * mmap_lock in write mode is required in order to block all operations
3521  * that could modify pagetables and free pages without need of
3522  * altering the vma layout. It's also needed in write mode to avoid new
3523  * anon_vmas to be associated with existing vmas.
3524  *
3525  * A single task can't take more than one mm_take_all_locks() in a row
3526  * or it would deadlock.
3527  *
3528  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3529  * mapping->flags avoid to take the same lock twice, if more than one
3530  * vma in this mm is backed by the same anon_vma or address_space.
3531  *
3532  * We take locks in following order, accordingly to comment at beginning
3533  * of mm/rmap.c:
3534  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3535  *     hugetlb mapping);
3536  *   - all i_mmap_rwsem locks;
3537  *   - all anon_vma->rwseml
3538  *
3539  * We can take all locks within these types randomly because the VM code
3540  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3541  * mm_all_locks_mutex.
3542  *
3543  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3544  * that may have to take thousand of locks.
3545  *
3546  * mm_take_all_locks() can fail if it's interrupted by signals.
3547  */
3548 int mm_take_all_locks(struct mm_struct *mm)
3549 {
3550 	struct vm_area_struct *vma;
3551 	struct anon_vma_chain *avc;
3552 
3553 	BUG_ON(mmap_read_trylock(mm));
3554 
3555 	mutex_lock(&mm_all_locks_mutex);
3556 
3557 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3558 		if (signal_pending(current))
3559 			goto out_unlock;
3560 		if (vma->vm_file && vma->vm_file->f_mapping &&
3561 				is_vm_hugetlb_page(vma))
3562 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3563 	}
3564 
3565 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566 		if (signal_pending(current))
3567 			goto out_unlock;
3568 		if (vma->vm_file && vma->vm_file->f_mapping &&
3569 				!is_vm_hugetlb_page(vma))
3570 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3571 	}
3572 
3573 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3574 		if (signal_pending(current))
3575 			goto out_unlock;
3576 		if (vma->anon_vma)
3577 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3578 				vm_lock_anon_vma(mm, avc->anon_vma);
3579 	}
3580 
3581 	return 0;
3582 
3583 out_unlock:
3584 	mm_drop_all_locks(mm);
3585 	return -EINTR;
3586 }
3587 
3588 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3589 {
3590 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3591 		/*
3592 		 * The LSB of head.next can't change to 0 from under
3593 		 * us because we hold the mm_all_locks_mutex.
3594 		 *
3595 		 * We must however clear the bitflag before unlocking
3596 		 * the vma so the users using the anon_vma->rb_root will
3597 		 * never see our bitflag.
3598 		 *
3599 		 * No need of atomic instructions here, head.next
3600 		 * can't change from under us until we release the
3601 		 * anon_vma->root->rwsem.
3602 		 */
3603 		if (!__test_and_clear_bit(0, (unsigned long *)
3604 					  &anon_vma->root->rb_root.rb_root.rb_node))
3605 			BUG();
3606 		anon_vma_unlock_write(anon_vma);
3607 	}
3608 }
3609 
3610 static void vm_unlock_mapping(struct address_space *mapping)
3611 {
3612 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3613 		/*
3614 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3615 		 * because we hold the mm_all_locks_mutex.
3616 		 */
3617 		i_mmap_unlock_write(mapping);
3618 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3619 					&mapping->flags))
3620 			BUG();
3621 	}
3622 }
3623 
3624 /*
3625  * The mmap_lock cannot be released by the caller until
3626  * mm_drop_all_locks() returns.
3627  */
3628 void mm_drop_all_locks(struct mm_struct *mm)
3629 {
3630 	struct vm_area_struct *vma;
3631 	struct anon_vma_chain *avc;
3632 
3633 	BUG_ON(mmap_read_trylock(mm));
3634 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3635 
3636 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3637 		if (vma->anon_vma)
3638 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3639 				vm_unlock_anon_vma(avc->anon_vma);
3640 		if (vma->vm_file && vma->vm_file->f_mapping)
3641 			vm_unlock_mapping(vma->vm_file->f_mapping);
3642 	}
3643 
3644 	mutex_unlock(&mm_all_locks_mutex);
3645 }
3646 
3647 /*
3648  * initialise the percpu counter for VM
3649  */
3650 void __init mmap_init(void)
3651 {
3652 	int ret;
3653 
3654 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3655 	VM_BUG_ON(ret);
3656 }
3657 
3658 /*
3659  * Initialise sysctl_user_reserve_kbytes.
3660  *
3661  * This is intended to prevent a user from starting a single memory hogging
3662  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3663  * mode.
3664  *
3665  * The default value is min(3% of free memory, 128MB)
3666  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3667  */
3668 static int init_user_reserve(void)
3669 {
3670 	unsigned long free_kbytes;
3671 
3672 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3673 
3674 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3675 	return 0;
3676 }
3677 subsys_initcall(init_user_reserve);
3678 
3679 /*
3680  * Initialise sysctl_admin_reserve_kbytes.
3681  *
3682  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3683  * to log in and kill a memory hogging process.
3684  *
3685  * Systems with more than 256MB will reserve 8MB, enough to recover
3686  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3687  * only reserve 3% of free pages by default.
3688  */
3689 static int init_admin_reserve(void)
3690 {
3691 	unsigned long free_kbytes;
3692 
3693 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3694 
3695 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3696 	return 0;
3697 }
3698 subsys_initcall(init_admin_reserve);
3699 
3700 /*
3701  * Reinititalise user and admin reserves if memory is added or removed.
3702  *
3703  * The default user reserve max is 128MB, and the default max for the
3704  * admin reserve is 8MB. These are usually, but not always, enough to
3705  * enable recovery from a memory hogging process using login/sshd, a shell,
3706  * and tools like top. It may make sense to increase or even disable the
3707  * reserve depending on the existence of swap or variations in the recovery
3708  * tools. So, the admin may have changed them.
3709  *
3710  * If memory is added and the reserves have been eliminated or increased above
3711  * the default max, then we'll trust the admin.
3712  *
3713  * If memory is removed and there isn't enough free memory, then we
3714  * need to reset the reserves.
3715  *
3716  * Otherwise keep the reserve set by the admin.
3717  */
3718 static int reserve_mem_notifier(struct notifier_block *nb,
3719 			     unsigned long action, void *data)
3720 {
3721 	unsigned long tmp, free_kbytes;
3722 
3723 	switch (action) {
3724 	case MEM_ONLINE:
3725 		/* Default max is 128MB. Leave alone if modified by operator. */
3726 		tmp = sysctl_user_reserve_kbytes;
3727 		if (0 < tmp && tmp < (1UL << 17))
3728 			init_user_reserve();
3729 
3730 		/* Default max is 8MB.  Leave alone if modified by operator. */
3731 		tmp = sysctl_admin_reserve_kbytes;
3732 		if (0 < tmp && tmp < (1UL << 13))
3733 			init_admin_reserve();
3734 
3735 		break;
3736 	case MEM_OFFLINE:
3737 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3738 
3739 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3740 			init_user_reserve();
3741 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3742 				sysctl_user_reserve_kbytes);
3743 		}
3744 
3745 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3746 			init_admin_reserve();
3747 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3748 				sysctl_admin_reserve_kbytes);
3749 		}
3750 		break;
3751 	default:
3752 		break;
3753 	}
3754 	return NOTIFY_OK;
3755 }
3756 
3757 static struct notifier_block reserve_mem_nb = {
3758 	.notifier_call = reserve_mem_notifier,
3759 };
3760 
3761 static int __meminit init_reserve_notifier(void)
3762 {
3763 	if (register_hotmemory_notifier(&reserve_mem_nb))
3764 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3765 
3766 	return 0;
3767 }
3768 subsys_initcall(init_reserve_notifier);
3769