xref: /openbmc/linux/mm/mmap.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_DENYWRITE)
152 		allow_write_access(file);
153 	if (vma->vm_flags & VM_SHARED)
154 		mapping_unmap_writable(mapping);
155 
156 	flush_dcache_mmap_lock(mapping);
157 	vma_interval_tree_remove(vma, &mapping->i_mmap);
158 	flush_dcache_mmap_unlock(mapping);
159 }
160 
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167 	struct file *file = vma->vm_file;
168 
169 	if (file) {
170 		struct address_space *mapping = file->f_mapping;
171 		i_mmap_lock_write(mapping);
172 		__remove_shared_vm_struct(vma, file, mapping);
173 		i_mmap_unlock_write(mapping);
174 	}
175 }
176 
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182 	struct vm_area_struct *next = vma->vm_next;
183 
184 	might_sleep();
185 	if (vma->vm_ops && vma->vm_ops->close)
186 		vma->vm_ops->close(vma);
187 	if (vma->vm_file)
188 		fput(vma->vm_file);
189 	mpol_put(vma_policy(vma));
190 	vm_area_free(vma);
191 	return next;
192 }
193 
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 		struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 	unsigned long newbrk, oldbrk, origbrk;
199 	struct mm_struct *mm = current->mm;
200 	struct vm_area_struct *next;
201 	unsigned long min_brk;
202 	bool populate;
203 	bool downgraded = false;
204 	LIST_HEAD(uf);
205 
206 	if (mmap_write_lock_killable(mm))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_lock to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_lock so update it
253 		 * before downgrading mmap_lock. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		mmap_read_unlock(mm);
281 	else
282 		mmap_write_unlock(mm);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	mmap_write_unlock(mm);
290 	return origbrk;
291 }
292 
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 	unsigned long gap, prev_end;
296 
297 	/*
298 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 	 * allow two stack_guard_gaps between them here, and when choosing
300 	 * an unmapped area; whereas when expanding we only require one.
301 	 * That's a little inconsistent, but keeps the code here simpler.
302 	 */
303 	gap = vm_start_gap(vma);
304 	if (vma->vm_prev) {
305 		prev_end = vm_end_gap(vma->vm_prev);
306 		if (gap > prev_end)
307 			gap -= prev_end;
308 		else
309 			gap = 0;
310 	}
311 	return gap;
312 }
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 	unsigned long max = vma_compute_gap(vma), subtree_gap;
318 	if (vma->vm_rb.rb_left) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	if (vma->vm_rb.rb_right) {
325 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 		if (subtree_gap > max)
328 			max = subtree_gap;
329 	}
330 	return max;
331 }
332 
333 static int browse_rb(struct mm_struct *mm)
334 {
335 	struct rb_root *root = &mm->mm_rb;
336 	int i = 0, j, bug = 0;
337 	struct rb_node *nd, *pn = NULL;
338 	unsigned long prev = 0, pend = 0;
339 
340 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 		struct vm_area_struct *vma;
342 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 		if (vma->vm_start < prev) {
344 			pr_emerg("vm_start %lx < prev %lx\n",
345 				  vma->vm_start, prev);
346 			bug = 1;
347 		}
348 		if (vma->vm_start < pend) {
349 			pr_emerg("vm_start %lx < pend %lx\n",
350 				  vma->vm_start, pend);
351 			bug = 1;
352 		}
353 		if (vma->vm_start > vma->vm_end) {
354 			pr_emerg("vm_start %lx > vm_end %lx\n",
355 				  vma->vm_start, vma->vm_end);
356 			bug = 1;
357 		}
358 		spin_lock(&mm->page_table_lock);
359 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 			pr_emerg("free gap %lx, correct %lx\n",
361 			       vma->rb_subtree_gap,
362 			       vma_compute_subtree_gap(vma));
363 			bug = 1;
364 		}
365 		spin_unlock(&mm->page_table_lock);
366 		i++;
367 		pn = nd;
368 		prev = vma->vm_start;
369 		pend = vma->vm_end;
370 	}
371 	j = 0;
372 	for (nd = pn; nd; nd = rb_prev(nd))
373 		j++;
374 	if (i != j) {
375 		pr_emerg("backwards %d, forwards %d\n", j, i);
376 		bug = 1;
377 	}
378 	return bug ? -1 : i;
379 }
380 
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 	struct rb_node *nd;
384 
385 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 		struct vm_area_struct *vma;
387 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 		VM_BUG_ON_VMA(vma != ignore &&
389 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 			vma);
391 	}
392 }
393 
394 static void validate_mm(struct mm_struct *mm)
395 {
396 	int bug = 0;
397 	int i = 0;
398 	unsigned long highest_address = 0;
399 	struct vm_area_struct *vma = mm->mmap;
400 
401 	while (vma) {
402 		struct anon_vma *anon_vma = vma->anon_vma;
403 		struct anon_vma_chain *avc;
404 
405 		if (anon_vma) {
406 			anon_vma_lock_read(anon_vma);
407 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 				anon_vma_interval_tree_verify(avc);
409 			anon_vma_unlock_read(anon_vma);
410 		}
411 
412 		highest_address = vm_end_gap(vma);
413 		vma = vma->vm_next;
414 		i++;
415 	}
416 	if (i != mm->map_count) {
417 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 		bug = 1;
419 	}
420 	if (highest_address != mm->highest_vm_end) {
421 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 			  mm->highest_vm_end, highest_address);
423 		bug = 1;
424 	}
425 	i = browse_rb(mm);
426 	if (i != mm->map_count) {
427 		if (i != -1)
428 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 			 struct vm_area_struct, vm_rb,
440 			 unsigned long, rb_subtree_gap, vma_compute_gap)
441 
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 	/*
450 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 	 * a callback function that does exactly what we want.
452 	 */
453 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455 
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 				 struct rb_root *root)
458 {
459 	/* All rb_subtree_gap values must be consistent prior to insertion */
460 	validate_mm_rb(root, NULL);
461 
462 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 	/*
468 	 * Note rb_erase_augmented is a fairly large inline function,
469 	 * so make sure we instantiate it only once with our desired
470 	 * augmented rbtree callbacks.
471 	 */
472 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 						struct rb_root *root,
477 						struct vm_area_struct *ignore)
478 {
479 	/*
480 	 * All rb_subtree_gap values must be consistent prior to erase,
481 	 * with the possible exception of
482 	 *
483 	 * a. the "next" vma being erased if next->vm_start was reduced in
484 	 *    __vma_adjust() -> __vma_unlink()
485 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 	 *    vma_rb_erase()
487 	 */
488 	validate_mm_rb(root, ignore);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 					 struct rb_root *root)
495 {
496 	vma_rb_erase_ignore(vma, root, vma);
497 }
498 
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 	struct anon_vma_chain *avc;
517 
518 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521 
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 	struct anon_vma_chain *avc;
526 
527 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530 
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 		unsigned long end, struct vm_area_struct **pprev,
533 		struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536 
537 	__rb_link = &mm->mm_rb.rb_node;
538 	rb_prev = __rb_parent = NULL;
539 
540 	while (*__rb_link) {
541 		struct vm_area_struct *vma_tmp;
542 
543 		__rb_parent = *__rb_link;
544 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545 
546 		if (vma_tmp->vm_end > addr) {
547 			/* Fail if an existing vma overlaps the area */
548 			if (vma_tmp->vm_start < end)
549 				return -ENOMEM;
550 			__rb_link = &__rb_parent->rb_left;
551 		} else {
552 			rb_prev = __rb_parent;
553 			__rb_link = &__rb_parent->rb_right;
554 		}
555 	}
556 
557 	*pprev = NULL;
558 	if (rb_prev)
559 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 	*rb_link = __rb_link;
561 	*rb_parent = __rb_parent;
562 	return 0;
563 }
564 
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 					 struct vm_area_struct *vma)
576 {
577 	if (!vma)
578 		return mm->mmap;
579 
580 	return vma->vm_next;
581 }
582 
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 		 struct vm_area_struct **pprev, struct rb_node ***link,
600 		 struct rb_node **parent, struct list_head *uf)
601 {
602 
603 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 		if (do_munmap(mm, start, len, uf))
605 			return -ENOMEM;
606 
607 	return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 		unsigned long addr, unsigned long end)
611 {
612 	unsigned long nr_pages = 0;
613 	struct vm_area_struct *vma;
614 
615 	/* Find first overlapping mapping */
616 	vma = find_vma_intersection(mm, addr, end);
617 	if (!vma)
618 		return 0;
619 
620 	nr_pages = (min(end, vma->vm_end) -
621 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
622 
623 	/* Iterate over the rest of the overlaps */
624 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 		unsigned long overlap_len;
626 
627 		if (vma->vm_start > end)
628 			break;
629 
630 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 		nr_pages += overlap_len >> PAGE_SHIFT;
632 	}
633 
634 	return nr_pages;
635 }
636 
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 		struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 	/* Update tracking information for the gap following the new vma. */
641 	if (vma->vm_next)
642 		vma_gap_update(vma->vm_next);
643 	else
644 		mm->highest_vm_end = vm_end_gap(vma);
645 
646 	/*
647 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 	 * correct insertion point for that vma. As a result, we could not
649 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 	 * So, we first insert the vma with a zero rb_subtree_gap value
651 	 * (to be consistent with what we did on the way down), and then
652 	 * immediately update the gap to the correct value. Finally we
653 	 * rebalance the rbtree after all augmented values have been set.
654 	 */
655 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 	vma->rb_subtree_gap = 0;
657 	vma_gap_update(vma);
658 	vma_rb_insert(vma, &mm->mm_rb);
659 }
660 
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 	struct file *file;
664 
665 	file = vma->vm_file;
666 	if (file) {
667 		struct address_space *mapping = file->f_mapping;
668 
669 		if (vma->vm_flags & VM_DENYWRITE)
670 			put_write_access(file_inode(file));
671 		if (vma->vm_flags & VM_SHARED)
672 			mapping_allow_writable(mapping);
673 
674 		flush_dcache_mmap_lock(mapping);
675 		vma_interval_tree_insert(vma, &mapping->i_mmap);
676 		flush_dcache_mmap_unlock(mapping);
677 	}
678 }
679 
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 	struct vm_area_struct *prev, struct rb_node **rb_link,
683 	struct rb_node *rb_parent)
684 {
685 	__vma_link_list(mm, vma, prev);
686 	__vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688 
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 			struct vm_area_struct *prev, struct rb_node **rb_link,
691 			struct rb_node *rb_parent)
692 {
693 	struct address_space *mapping = NULL;
694 
695 	if (vma->vm_file) {
696 		mapping = vma->vm_file->f_mapping;
697 		i_mmap_lock_write(mapping);
698 	}
699 
700 	__vma_link(mm, vma, prev, rb_link, rb_parent);
701 	__vma_link_file(vma);
702 
703 	if (mapping)
704 		i_mmap_unlock_write(mapping);
705 
706 	mm->map_count++;
707 	validate_mm(mm);
708 }
709 
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 	struct vm_area_struct *prev;
717 	struct rb_node **rb_link, *rb_parent;
718 
719 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 			   &prev, &rb_link, &rb_parent))
721 		BUG();
722 	__vma_link(mm, vma, prev, rb_link, rb_parent);
723 	mm->map_count++;
724 }
725 
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 						struct vm_area_struct *vma,
728 						struct vm_area_struct *ignore)
729 {
730 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 	__vma_unlink_list(mm, vma);
732 	/* Kill the cache */
733 	vmacache_invalidate(mm);
734 }
735 
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 	struct vm_area_struct *expand)
746 {
747 	struct mm_struct *mm = vma->vm_mm;
748 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 	struct address_space *mapping = NULL;
750 	struct rb_root_cached *root = NULL;
751 	struct anon_vma *anon_vma = NULL;
752 	struct file *file = vma->vm_file;
753 	bool start_changed = false, end_changed = false;
754 	long adjust_next = 0;
755 	int remove_next = 0;
756 
757 	if (next && !insert) {
758 		struct vm_area_struct *exporter = NULL, *importer = NULL;
759 
760 		if (end >= next->vm_end) {
761 			/*
762 			 * vma expands, overlapping all the next, and
763 			 * perhaps the one after too (mprotect case 6).
764 			 * The only other cases that gets here are
765 			 * case 1, case 7 and case 8.
766 			 */
767 			if (next == expand) {
768 				/*
769 				 * The only case where we don't expand "vma"
770 				 * and we expand "next" instead is case 8.
771 				 */
772 				VM_WARN_ON(end != next->vm_end);
773 				/*
774 				 * remove_next == 3 means we're
775 				 * removing "vma" and that to do so we
776 				 * swapped "vma" and "next".
777 				 */
778 				remove_next = 3;
779 				VM_WARN_ON(file != next->vm_file);
780 				swap(vma, next);
781 			} else {
782 				VM_WARN_ON(expand != vma);
783 				/*
784 				 * case 1, 6, 7, remove_next == 2 is case 6,
785 				 * remove_next == 1 is case 1 or 7.
786 				 */
787 				remove_next = 1 + (end > next->vm_end);
788 				VM_WARN_ON(remove_next == 2 &&
789 					   end != next->vm_next->vm_end);
790 				/* trim end to next, for case 6 first pass */
791 				end = next->vm_end;
792 			}
793 
794 			exporter = next;
795 			importer = vma;
796 
797 			/*
798 			 * If next doesn't have anon_vma, import from vma after
799 			 * next, if the vma overlaps with it.
800 			 */
801 			if (remove_next == 2 && !next->anon_vma)
802 				exporter = next->vm_next;
803 
804 		} else if (end > next->vm_start) {
805 			/*
806 			 * vma expands, overlapping part of the next:
807 			 * mprotect case 5 shifting the boundary up.
808 			 */
809 			adjust_next = (end - next->vm_start);
810 			exporter = next;
811 			importer = vma;
812 			VM_WARN_ON(expand != importer);
813 		} else if (end < vma->vm_end) {
814 			/*
815 			 * vma shrinks, and !insert tells it's not
816 			 * split_vma inserting another: so it must be
817 			 * mprotect case 4 shifting the boundary down.
818 			 */
819 			adjust_next = -(vma->vm_end - end);
820 			exporter = vma;
821 			importer = next;
822 			VM_WARN_ON(expand != importer);
823 		}
824 
825 		/*
826 		 * Easily overlooked: when mprotect shifts the boundary,
827 		 * make sure the expanding vma has anon_vma set if the
828 		 * shrinking vma had, to cover any anon pages imported.
829 		 */
830 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 			int error;
832 
833 			importer->anon_vma = exporter->anon_vma;
834 			error = anon_vma_clone(importer, exporter);
835 			if (error)
836 				return error;
837 		}
838 	}
839 again:
840 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841 
842 	if (file) {
843 		mapping = file->f_mapping;
844 		root = &mapping->i_mmap;
845 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846 
847 		if (adjust_next)
848 			uprobe_munmap(next, next->vm_start, next->vm_end);
849 
850 		i_mmap_lock_write(mapping);
851 		if (insert) {
852 			/*
853 			 * Put into interval tree now, so instantiated pages
854 			 * are visible to arm/parisc __flush_dcache_page
855 			 * throughout; but we cannot insert into address
856 			 * space until vma start or end is updated.
857 			 */
858 			__vma_link_file(insert);
859 		}
860 	}
861 
862 	anon_vma = vma->anon_vma;
863 	if (!anon_vma && adjust_next)
864 		anon_vma = next->anon_vma;
865 	if (anon_vma) {
866 		VM_WARN_ON(adjust_next && next->anon_vma &&
867 			   anon_vma != next->anon_vma);
868 		anon_vma_lock_write(anon_vma);
869 		anon_vma_interval_tree_pre_update_vma(vma);
870 		if (adjust_next)
871 			anon_vma_interval_tree_pre_update_vma(next);
872 	}
873 
874 	if (file) {
875 		flush_dcache_mmap_lock(mapping);
876 		vma_interval_tree_remove(vma, root);
877 		if (adjust_next)
878 			vma_interval_tree_remove(next, root);
879 	}
880 
881 	if (start != vma->vm_start) {
882 		vma->vm_start = start;
883 		start_changed = true;
884 	}
885 	if (end != vma->vm_end) {
886 		vma->vm_end = end;
887 		end_changed = true;
888 	}
889 	vma->vm_pgoff = pgoff;
890 	if (adjust_next) {
891 		next->vm_start += adjust_next;
892 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 	}
894 
895 	if (file) {
896 		if (adjust_next)
897 			vma_interval_tree_insert(next, root);
898 		vma_interval_tree_insert(vma, root);
899 		flush_dcache_mmap_unlock(mapping);
900 	}
901 
902 	if (remove_next) {
903 		/*
904 		 * vma_merge has merged next into vma, and needs
905 		 * us to remove next before dropping the locks.
906 		 */
907 		if (remove_next != 3)
908 			__vma_unlink(mm, next, next);
909 		else
910 			/*
911 			 * vma is not before next if they've been
912 			 * swapped.
913 			 *
914 			 * pre-swap() next->vm_start was reduced so
915 			 * tell validate_mm_rb to ignore pre-swap()
916 			 * "next" (which is stored in post-swap()
917 			 * "vma").
918 			 */
919 			__vma_unlink(mm, next, vma);
920 		if (file)
921 			__remove_shared_vm_struct(next, file, mapping);
922 	} else if (insert) {
923 		/*
924 		 * split_vma has split insert from vma, and needs
925 		 * us to insert it before dropping the locks
926 		 * (it may either follow vma or precede it).
927 		 */
928 		__insert_vm_struct(mm, insert);
929 	} else {
930 		if (start_changed)
931 			vma_gap_update(vma);
932 		if (end_changed) {
933 			if (!next)
934 				mm->highest_vm_end = vm_end_gap(vma);
935 			else if (!adjust_next)
936 				vma_gap_update(next);
937 		}
938 	}
939 
940 	if (anon_vma) {
941 		anon_vma_interval_tree_post_update_vma(vma);
942 		if (adjust_next)
943 			anon_vma_interval_tree_post_update_vma(next);
944 		anon_vma_unlock_write(anon_vma);
945 	}
946 
947 	if (file) {
948 		i_mmap_unlock_write(mapping);
949 		uprobe_mmap(vma);
950 
951 		if (adjust_next)
952 			uprobe_mmap(next);
953 	}
954 
955 	if (remove_next) {
956 		if (file) {
957 			uprobe_munmap(next, next->vm_start, next->vm_end);
958 			fput(file);
959 		}
960 		if (next->anon_vma)
961 			anon_vma_merge(vma, next);
962 		mm->map_count--;
963 		mpol_put(vma_policy(next));
964 		vm_area_free(next);
965 		/*
966 		 * In mprotect's case 6 (see comments on vma_merge),
967 		 * we must remove another next too. It would clutter
968 		 * up the code too much to do both in one go.
969 		 */
970 		if (remove_next != 3) {
971 			/*
972 			 * If "next" was removed and vma->vm_end was
973 			 * expanded (up) over it, in turn
974 			 * "next->vm_prev->vm_end" changed and the
975 			 * "vma->vm_next" gap must be updated.
976 			 */
977 			next = vma->vm_next;
978 		} else {
979 			/*
980 			 * For the scope of the comment "next" and
981 			 * "vma" considered pre-swap(): if "vma" was
982 			 * removed, next->vm_start was expanded (down)
983 			 * over it and the "next" gap must be updated.
984 			 * Because of the swap() the post-swap() "vma"
985 			 * actually points to pre-swap() "next"
986 			 * (post-swap() "next" as opposed is now a
987 			 * dangling pointer).
988 			 */
989 			next = vma;
990 		}
991 		if (remove_next == 2) {
992 			remove_next = 1;
993 			end = next->vm_end;
994 			goto again;
995 		}
996 		else if (next)
997 			vma_gap_update(next);
998 		else {
999 			/*
1000 			 * If remove_next == 2 we obviously can't
1001 			 * reach this path.
1002 			 *
1003 			 * If remove_next == 3 we can't reach this
1004 			 * path because pre-swap() next is always not
1005 			 * NULL. pre-swap() "next" is not being
1006 			 * removed and its next->vm_end is not altered
1007 			 * (and furthermore "end" already matches
1008 			 * next->vm_end in remove_next == 3).
1009 			 *
1010 			 * We reach this only in the remove_next == 1
1011 			 * case if the "next" vma that was removed was
1012 			 * the highest vma of the mm. However in such
1013 			 * case next->vm_end == "end" and the extended
1014 			 * "vma" has vma->vm_end == next->vm_end so
1015 			 * mm->highest_vm_end doesn't need any update
1016 			 * in remove_next == 1 case.
1017 			 */
1018 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 		}
1020 	}
1021 	if (insert && file)
1022 		uprobe_mmap(insert);
1023 
1024 	validate_mm(mm);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 				struct file *file, unsigned long vm_flags,
1035 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 	/*
1038 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039 	 * match the flags but dirty bit -- the caller should mark
1040 	 * merged VMA as dirty. If dirty bit won't be excluded from
1041 	 * comparison, we increase pressure on the memory system forcing
1042 	 * the kernel to generate new VMAs when old one could be
1043 	 * extended instead.
1044 	 */
1045 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046 		return 0;
1047 	if (vma->vm_file != file)
1048 		return 0;
1049 	if (vma->vm_ops && vma->vm_ops->close)
1050 		return 0;
1051 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057 					struct anon_vma *anon_vma2,
1058 					struct vm_area_struct *vma)
1059 {
1060 	/*
1061 	 * The list_is_singular() test is to avoid merging VMA cloned from
1062 	 * parents. This can improve scalability caused by anon_vma lock.
1063 	 */
1064 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065 		list_is_singular(&vma->anon_vma_chain)))
1066 		return 1;
1067 	return anon_vma1 == anon_vma2;
1068 }
1069 
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * in front of (at a lower virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  *
1077  * We don't check here for the merged mmap wrapping around the end of pagecache
1078  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079  * wrap, nor mmaps which cover the final page at index -1UL.
1080  */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083 		     struct anon_vma *anon_vma, struct file *file,
1084 		     pgoff_t vm_pgoff,
1085 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 		if (vma->vm_pgoff == vm_pgoff)
1090 			return 1;
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 		    struct anon_vma *anon_vma, struct file *file,
1105 		    pgoff_t vm_pgoff,
1106 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110 		pgoff_t vm_pglen;
1111 		vm_pglen = vma_pages(vma);
1112 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113 			return 1;
1114 	}
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120  * whether that can be merged with its predecessor or its successor.
1121  * Or both (it neatly fills a hole).
1122  *
1123  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124  * certain not to be mapped by the time vma_merge is called; but when
1125  * called for mprotect, it is certain to be already mapped (either at
1126  * an offset within prev, or at the start of next), and the flags of
1127  * this area are about to be changed to vm_flags - and the no-change
1128  * case has already been eliminated.
1129  *
1130  * The following mprotect cases have to be considered, where AAAA is
1131  * the area passed down from mprotect_fixup, never extending beyond one
1132  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133  *
1134  *     AAAA             AAAA                   AAAA
1135  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136  *    cannot merge    might become       might become
1137  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138  *    mmap, brk or    case 4 below       case 5 below
1139  *    mremap move:
1140  *                        AAAA               AAAA
1141  *                    PPPP    NNNN       PPPPNNNNXXXX
1142  *                    might become       might become
1143  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146  *
1147  * It is important for case 8 that the vma NNNN overlapping the
1148  * region AAAA is never going to extended over XXXX. Instead XXXX must
1149  * be extended in region AAAA and NNNN must be removed. This way in
1150  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151  * rmap_locks, the properties of the merged vma will be already
1152  * correct for the whole merged range. Some of those properties like
1153  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154  * be correct for the whole merged range immediately after the
1155  * rmap_locks are released. Otherwise if XXXX would be removed and
1156  * NNNN would be extended over the XXXX range, remove_migration_ptes
1157  * or other rmap walkers (if working on addresses beyond the "end"
1158  * parameter) may establish ptes with the wrong permissions of NNNN
1159  * instead of the right permissions of XXXX.
1160  */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162 			struct vm_area_struct *prev, unsigned long addr,
1163 			unsigned long end, unsigned long vm_flags,
1164 			struct anon_vma *anon_vma, struct file *file,
1165 			pgoff_t pgoff, struct mempolicy *policy,
1166 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169 	struct vm_area_struct *area, *next;
1170 	int err;
1171 
1172 	/*
1173 	 * We later require that vma->vm_flags == vm_flags,
1174 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175 	 */
1176 	if (vm_flags & VM_SPECIAL)
1177 		return NULL;
1178 
1179 	next = vma_next(mm, prev);
1180 	area = next;
1181 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1182 		next = next->vm_next;
1183 
1184 	/* verify some invariant that must be enforced by the caller */
1185 	VM_WARN_ON(prev && addr <= prev->vm_start);
1186 	VM_WARN_ON(area && end > area->vm_end);
1187 	VM_WARN_ON(addr >= end);
1188 
1189 	/*
1190 	 * Can it merge with the predecessor?
1191 	 */
1192 	if (prev && prev->vm_end == addr &&
1193 			mpol_equal(vma_policy(prev), policy) &&
1194 			can_vma_merge_after(prev, vm_flags,
1195 					    anon_vma, file, pgoff,
1196 					    vm_userfaultfd_ctx)) {
1197 		/*
1198 		 * OK, it can.  Can we now merge in the successor as well?
1199 		 */
1200 		if (next && end == next->vm_start &&
1201 				mpol_equal(policy, vma_policy(next)) &&
1202 				can_vma_merge_before(next, vm_flags,
1203 						     anon_vma, file,
1204 						     pgoff+pglen,
1205 						     vm_userfaultfd_ctx) &&
1206 				is_mergeable_anon_vma(prev->anon_vma,
1207 						      next->anon_vma, NULL)) {
1208 							/* cases 1, 6 */
1209 			err = __vma_adjust(prev, prev->vm_start,
1210 					 next->vm_end, prev->vm_pgoff, NULL,
1211 					 prev);
1212 		} else					/* cases 2, 5, 7 */
1213 			err = __vma_adjust(prev, prev->vm_start,
1214 					 end, prev->vm_pgoff, NULL, prev);
1215 		if (err)
1216 			return NULL;
1217 		khugepaged_enter_vma_merge(prev, vm_flags);
1218 		return prev;
1219 	}
1220 
1221 	/*
1222 	 * Can this new request be merged in front of next?
1223 	 */
1224 	if (next && end == next->vm_start &&
1225 			mpol_equal(policy, vma_policy(next)) &&
1226 			can_vma_merge_before(next, vm_flags,
1227 					     anon_vma, file, pgoff+pglen,
1228 					     vm_userfaultfd_ctx)) {
1229 		if (prev && addr < prev->vm_end)	/* case 4 */
1230 			err = __vma_adjust(prev, prev->vm_start,
1231 					 addr, prev->vm_pgoff, NULL, next);
1232 		else {					/* cases 3, 8 */
1233 			err = __vma_adjust(area, addr, next->vm_end,
1234 					 next->vm_pgoff - pglen, NULL, next);
1235 			/*
1236 			 * In case 3 area is already equal to next and
1237 			 * this is a noop, but in case 8 "area" has
1238 			 * been removed and next was expanded over it.
1239 			 */
1240 			area = next;
1241 		}
1242 		if (err)
1243 			return NULL;
1244 		khugepaged_enter_vma_merge(area, vm_flags);
1245 		return area;
1246 	}
1247 
1248 	return NULL;
1249 }
1250 
1251 /*
1252  * Rough compatibility check to quickly see if it's even worth looking
1253  * at sharing an anon_vma.
1254  *
1255  * They need to have the same vm_file, and the flags can only differ
1256  * in things that mprotect may change.
1257  *
1258  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259  * we can merge the two vma's. For example, we refuse to merge a vma if
1260  * there is a vm_ops->close() function, because that indicates that the
1261  * driver is doing some kind of reference counting. But that doesn't
1262  * really matter for the anon_vma sharing case.
1263  */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266 	return a->vm_end == b->vm_start &&
1267 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1268 		a->vm_file == b->vm_file &&
1269 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272 
1273 /*
1274  * Do some basic sanity checking to see if we can re-use the anon_vma
1275  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276  * the same as 'old', the other will be the new one that is trying
1277  * to share the anon_vma.
1278  *
1279  * NOTE! This runs with mm_sem held for reading, so it is possible that
1280  * the anon_vma of 'old' is concurrently in the process of being set up
1281  * by another page fault trying to merge _that_. But that's ok: if it
1282  * is being set up, that automatically means that it will be a singleton
1283  * acceptable for merging, so we can do all of this optimistically. But
1284  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285  *
1286  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288  * is to return an anon_vma that is "complex" due to having gone through
1289  * a fork).
1290  *
1291  * We also make sure that the two vma's are compatible (adjacent,
1292  * and with the same memory policies). That's all stable, even with just
1293  * a read lock on the mm_sem.
1294  */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297 	if (anon_vma_compatible(a, b)) {
1298 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299 
1300 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301 			return anon_vma;
1302 	}
1303 	return NULL;
1304 }
1305 
1306 /*
1307  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308  * neighbouring vmas for a suitable anon_vma, before it goes off
1309  * to allocate a new anon_vma.  It checks because a repetitive
1310  * sequence of mprotects and faults may otherwise lead to distinct
1311  * anon_vmas being allocated, preventing vma merge in subsequent
1312  * mprotect.
1313  */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 	struct anon_vma *anon_vma = NULL;
1317 
1318 	/* Try next first. */
1319 	if (vma->vm_next) {
1320 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 		if (anon_vma)
1322 			return anon_vma;
1323 	}
1324 
1325 	/* Try prev next. */
1326 	if (vma->vm_prev)
1327 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328 
1329 	/*
1330 	 * We might reach here with anon_vma == NULL if we can't find
1331 	 * any reusable anon_vma.
1332 	 * There's no absolute need to look only at touching neighbours:
1333 	 * we could search further afield for "compatible" anon_vmas.
1334 	 * But it would probably just be a waste of time searching,
1335 	 * or lead to too many vmas hanging off the same anon_vma.
1336 	 * We're trying to allow mprotect remerging later on,
1337 	 * not trying to minimize memory used for anon_vmas.
1338 	 */
1339 	return anon_vma;
1340 }
1341 
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 	hint &= PAGE_MASK;
1349 	if (((void *)hint != NULL) &&
1350 	    (hint < mmap_min_addr))
1351 		return PAGE_ALIGN(mmap_min_addr);
1352 	return hint;
1353 }
1354 
1355 static inline int mlock_future_check(struct mm_struct *mm,
1356 				     unsigned long flags,
1357 				     unsigned long len)
1358 {
1359 	unsigned long locked, lock_limit;
1360 
1361 	/*  mlock MCL_FUTURE? */
1362 	if (flags & VM_LOCKED) {
1363 		locked = len >> PAGE_SHIFT;
1364 		locked += mm->locked_vm;
1365 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1366 		lock_limit >>= PAGE_SHIFT;
1367 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368 			return -EAGAIN;
1369 	}
1370 	return 0;
1371 }
1372 
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375 	if (S_ISREG(inode->i_mode))
1376 		return MAX_LFS_FILESIZE;
1377 
1378 	if (S_ISBLK(inode->i_mode))
1379 		return MAX_LFS_FILESIZE;
1380 
1381 	if (S_ISSOCK(inode->i_mode))
1382 		return MAX_LFS_FILESIZE;
1383 
1384 	/* Special "we do even unsigned file positions" case */
1385 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386 		return 0;
1387 
1388 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389 	return ULONG_MAX;
1390 }
1391 
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393 				unsigned long pgoff, unsigned long len)
1394 {
1395 	u64 maxsize = file_mmap_size_max(file, inode);
1396 
1397 	if (maxsize && len > maxsize)
1398 		return false;
1399 	maxsize -= len;
1400 	if (pgoff > maxsize >> PAGE_SHIFT)
1401 		return false;
1402 	return true;
1403 }
1404 
1405 /*
1406  * The caller must write-lock current->mm->mmap_lock.
1407  */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 			unsigned long len, unsigned long prot,
1410 			unsigned long flags, unsigned long pgoff,
1411 			unsigned long *populate, struct list_head *uf)
1412 {
1413 	struct mm_struct *mm = current->mm;
1414 	vm_flags_t vm_flags;
1415 	int pkey = 0;
1416 
1417 	*populate = 0;
1418 
1419 	if (!len)
1420 		return -EINVAL;
1421 
1422 	/*
1423 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1424 	 *
1425 	 * (the exception is when the underlying filesystem is noexec
1426 	 *  mounted, in which case we dont add PROT_EXEC.)
1427 	 */
1428 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 		if (!(file && path_noexec(&file->f_path)))
1430 			prot |= PROT_EXEC;
1431 
1432 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 	if (flags & MAP_FIXED_NOREPLACE)
1434 		flags |= MAP_FIXED;
1435 
1436 	if (!(flags & MAP_FIXED))
1437 		addr = round_hint_to_min(addr);
1438 
1439 	/* Careful about overflows.. */
1440 	len = PAGE_ALIGN(len);
1441 	if (!len)
1442 		return -ENOMEM;
1443 
1444 	/* offset overflow? */
1445 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446 		return -EOVERFLOW;
1447 
1448 	/* Too many mappings? */
1449 	if (mm->map_count > sysctl_max_map_count)
1450 		return -ENOMEM;
1451 
1452 	/* Obtain the address to map to. we verify (or select) it and ensure
1453 	 * that it represents a valid section of the address space.
1454 	 */
1455 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456 	if (IS_ERR_VALUE(addr))
1457 		return addr;
1458 
1459 	if (flags & MAP_FIXED_NOREPLACE) {
1460 		struct vm_area_struct *vma = find_vma(mm, addr);
1461 
1462 		if (vma && vma->vm_start < addr + len)
1463 			return -EEXIST;
1464 	}
1465 
1466 	if (prot == PROT_EXEC) {
1467 		pkey = execute_only_pkey(mm);
1468 		if (pkey < 0)
1469 			pkey = 0;
1470 	}
1471 
1472 	/* Do simple checking here so the lower-level routines won't have
1473 	 * to. we assume access permissions have been handled by the open
1474 	 * of the memory object, so we don't do any here.
1475 	 */
1476 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1477 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1478 
1479 	if (flags & MAP_LOCKED)
1480 		if (!can_do_mlock())
1481 			return -EPERM;
1482 
1483 	if (mlock_future_check(mm, vm_flags, len))
1484 		return -EAGAIN;
1485 
1486 	if (file) {
1487 		struct inode *inode = file_inode(file);
1488 		unsigned long flags_mask;
1489 
1490 		if (!file_mmap_ok(file, inode, pgoff, len))
1491 			return -EOVERFLOW;
1492 
1493 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1494 
1495 		switch (flags & MAP_TYPE) {
1496 		case MAP_SHARED:
1497 			/*
1498 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1499 			 * flags. E.g. MAP_SYNC is dangerous to use with
1500 			 * MAP_SHARED as you don't know which consistency model
1501 			 * you will get. We silently ignore unsupported flags
1502 			 * with MAP_SHARED to preserve backward compatibility.
1503 			 */
1504 			flags &= LEGACY_MAP_MASK;
1505 			fallthrough;
1506 		case MAP_SHARED_VALIDATE:
1507 			if (flags & ~flags_mask)
1508 				return -EOPNOTSUPP;
1509 			if (prot & PROT_WRITE) {
1510 				if (!(file->f_mode & FMODE_WRITE))
1511 					return -EACCES;
1512 				if (IS_SWAPFILE(file->f_mapping->host))
1513 					return -ETXTBSY;
1514 			}
1515 
1516 			/*
1517 			 * Make sure we don't allow writing to an append-only
1518 			 * file..
1519 			 */
1520 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1521 				return -EACCES;
1522 
1523 			/*
1524 			 * Make sure there are no mandatory locks on the file.
1525 			 */
1526 			if (locks_verify_locked(file))
1527 				return -EAGAIN;
1528 
1529 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 			if (!(file->f_mode & FMODE_WRITE))
1531 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532 			fallthrough;
1533 		case MAP_PRIVATE:
1534 			if (!(file->f_mode & FMODE_READ))
1535 				return -EACCES;
1536 			if (path_noexec(&file->f_path)) {
1537 				if (vm_flags & VM_EXEC)
1538 					return -EPERM;
1539 				vm_flags &= ~VM_MAYEXEC;
1540 			}
1541 
1542 			if (!file->f_op->mmap)
1543 				return -ENODEV;
1544 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 				return -EINVAL;
1546 			break;
1547 
1548 		default:
1549 			return -EINVAL;
1550 		}
1551 	} else {
1552 		switch (flags & MAP_TYPE) {
1553 		case MAP_SHARED:
1554 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555 				return -EINVAL;
1556 			/*
1557 			 * Ignore pgoff.
1558 			 */
1559 			pgoff = 0;
1560 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1561 			break;
1562 		case MAP_PRIVATE:
1563 			/*
1564 			 * Set pgoff according to addr for anon_vma.
1565 			 */
1566 			pgoff = addr >> PAGE_SHIFT;
1567 			break;
1568 		default:
1569 			return -EINVAL;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Set 'VM_NORESERVE' if we should not account for the
1575 	 * memory use of this mapping.
1576 	 */
1577 	if (flags & MAP_NORESERVE) {
1578 		/* We honor MAP_NORESERVE if allowed to overcommit */
1579 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 			vm_flags |= VM_NORESERVE;
1581 
1582 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 		if (file && is_file_hugepages(file))
1584 			vm_flags |= VM_NORESERVE;
1585 	}
1586 
1587 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 	if (!IS_ERR_VALUE(addr) &&
1589 	    ((vm_flags & VM_LOCKED) ||
1590 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591 		*populate = len;
1592 	return addr;
1593 }
1594 
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 			      unsigned long prot, unsigned long flags,
1597 			      unsigned long fd, unsigned long pgoff)
1598 {
1599 	struct file *file = NULL;
1600 	unsigned long retval;
1601 
1602 	if (!(flags & MAP_ANONYMOUS)) {
1603 		audit_mmap_fd(fd, flags);
1604 		file = fget(fd);
1605 		if (!file)
1606 			return -EBADF;
1607 		if (is_file_hugepages(file)) {
1608 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 		} else if (unlikely(flags & MAP_HUGETLB)) {
1610 			retval = -EINVAL;
1611 			goto out_fput;
1612 		}
1613 	} else if (flags & MAP_HUGETLB) {
1614 		struct user_struct *user = NULL;
1615 		struct hstate *hs;
1616 
1617 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1618 		if (!hs)
1619 			return -EINVAL;
1620 
1621 		len = ALIGN(len, huge_page_size(hs));
1622 		/*
1623 		 * VM_NORESERVE is used because the reservations will be
1624 		 * taken when vm_ops->mmap() is called
1625 		 * A dummy user value is used because we are not locking
1626 		 * memory so no accounting is necessary
1627 		 */
1628 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1629 				VM_NORESERVE,
1630 				&user, HUGETLB_ANONHUGE_INODE,
1631 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1632 		if (IS_ERR(file))
1633 			return PTR_ERR(file);
1634 	}
1635 
1636 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1637 
1638 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1639 out_fput:
1640 	if (file)
1641 		fput(file);
1642 	return retval;
1643 }
1644 
1645 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1646 		unsigned long, prot, unsigned long, flags,
1647 		unsigned long, fd, unsigned long, pgoff)
1648 {
1649 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1650 }
1651 
1652 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1653 struct mmap_arg_struct {
1654 	unsigned long addr;
1655 	unsigned long len;
1656 	unsigned long prot;
1657 	unsigned long flags;
1658 	unsigned long fd;
1659 	unsigned long offset;
1660 };
1661 
1662 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1663 {
1664 	struct mmap_arg_struct a;
1665 
1666 	if (copy_from_user(&a, arg, sizeof(a)))
1667 		return -EFAULT;
1668 	if (offset_in_page(a.offset))
1669 		return -EINVAL;
1670 
1671 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1672 			       a.offset >> PAGE_SHIFT);
1673 }
1674 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1675 
1676 /*
1677  * Some shared mappings will want the pages marked read-only
1678  * to track write events. If so, we'll downgrade vm_page_prot
1679  * to the private version (using protection_map[] without the
1680  * VM_SHARED bit).
1681  */
1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1683 {
1684 	vm_flags_t vm_flags = vma->vm_flags;
1685 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1686 
1687 	/* If it was private or non-writable, the write bit is already clear */
1688 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1689 		return 0;
1690 
1691 	/* The backer wishes to know when pages are first written to? */
1692 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1693 		return 1;
1694 
1695 	/* The open routine did something to the protections that pgprot_modify
1696 	 * won't preserve? */
1697 	if (pgprot_val(vm_page_prot) !=
1698 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1699 		return 0;
1700 
1701 	/* Do we need to track softdirty? */
1702 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1703 		return 1;
1704 
1705 	/* Specialty mapping? */
1706 	if (vm_flags & VM_PFNMAP)
1707 		return 0;
1708 
1709 	/* Can the mapping track the dirty pages? */
1710 	return vma->vm_file && vma->vm_file->f_mapping &&
1711 		mapping_can_writeback(vma->vm_file->f_mapping);
1712 }
1713 
1714 /*
1715  * We account for memory if it's a private writeable mapping,
1716  * not hugepages and VM_NORESERVE wasn't set.
1717  */
1718 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1719 {
1720 	/*
1721 	 * hugetlb has its own accounting separate from the core VM
1722 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1723 	 */
1724 	if (file && is_file_hugepages(file))
1725 		return 0;
1726 
1727 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1728 }
1729 
1730 unsigned long mmap_region(struct file *file, unsigned long addr,
1731 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1732 		struct list_head *uf)
1733 {
1734 	struct mm_struct *mm = current->mm;
1735 	struct vm_area_struct *vma, *prev, *merge;
1736 	int error;
1737 	struct rb_node **rb_link, *rb_parent;
1738 	unsigned long charged = 0;
1739 
1740 	/* Check against address space limit. */
1741 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1742 		unsigned long nr_pages;
1743 
1744 		/*
1745 		 * MAP_FIXED may remove pages of mappings that intersects with
1746 		 * requested mapping. Account for the pages it would unmap.
1747 		 */
1748 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1749 
1750 		if (!may_expand_vm(mm, vm_flags,
1751 					(len >> PAGE_SHIFT) - nr_pages))
1752 			return -ENOMEM;
1753 	}
1754 
1755 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1756 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1757 		return -ENOMEM;
1758 	/*
1759 	 * Private writable mapping: check memory availability
1760 	 */
1761 	if (accountable_mapping(file, vm_flags)) {
1762 		charged = len >> PAGE_SHIFT;
1763 		if (security_vm_enough_memory_mm(mm, charged))
1764 			return -ENOMEM;
1765 		vm_flags |= VM_ACCOUNT;
1766 	}
1767 
1768 	/*
1769 	 * Can we just expand an old mapping?
1770 	 */
1771 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1772 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1773 	if (vma)
1774 		goto out;
1775 
1776 	/*
1777 	 * Determine the object being mapped and call the appropriate
1778 	 * specific mapper. the address has already been validated, but
1779 	 * not unmapped, but the maps are removed from the list.
1780 	 */
1781 	vma = vm_area_alloc(mm);
1782 	if (!vma) {
1783 		error = -ENOMEM;
1784 		goto unacct_error;
1785 	}
1786 
1787 	vma->vm_start = addr;
1788 	vma->vm_end = addr + len;
1789 	vma->vm_flags = vm_flags;
1790 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1791 	vma->vm_pgoff = pgoff;
1792 
1793 	if (file) {
1794 		if (vm_flags & VM_DENYWRITE) {
1795 			error = deny_write_access(file);
1796 			if (error)
1797 				goto free_vma;
1798 		}
1799 		if (vm_flags & VM_SHARED) {
1800 			error = mapping_map_writable(file->f_mapping);
1801 			if (error)
1802 				goto allow_write_and_free_vma;
1803 		}
1804 
1805 		/* ->mmap() can change vma->vm_file, but must guarantee that
1806 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1807 		 * and map writably if VM_SHARED is set. This usually means the
1808 		 * new file must not have been exposed to user-space, yet.
1809 		 */
1810 		vma->vm_file = get_file(file);
1811 		error = call_mmap(file, vma);
1812 		if (error)
1813 			goto unmap_and_free_vma;
1814 
1815 		/* Can addr have changed??
1816 		 *
1817 		 * Answer: Yes, several device drivers can do it in their
1818 		 *         f_op->mmap method. -DaveM
1819 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1820 		 *      be updated for vma_link()
1821 		 */
1822 		WARN_ON_ONCE(addr != vma->vm_start);
1823 
1824 		addr = vma->vm_start;
1825 
1826 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1827 		 * as we may succeed this time.
1828 		 */
1829 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1830 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1831 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1832 			if (merge) {
1833 				/* ->mmap() can change vma->vm_file and fput the original file. So
1834 				 * fput the vma->vm_file here or we would add an extra fput for file
1835 				 * and cause general protection fault ultimately.
1836 				 */
1837 				fput(vma->vm_file);
1838 				vm_area_free(vma);
1839 				vma = merge;
1840 				/* Update vm_flags to pick up the change. */
1841 				vm_flags = vma->vm_flags;
1842 				goto unmap_writable;
1843 			}
1844 		}
1845 
1846 		vm_flags = vma->vm_flags;
1847 	} else if (vm_flags & VM_SHARED) {
1848 		error = shmem_zero_setup(vma);
1849 		if (error)
1850 			goto free_vma;
1851 	} else {
1852 		vma_set_anonymous(vma);
1853 	}
1854 
1855 	/* Allow architectures to sanity-check the vm_flags */
1856 	if (!arch_validate_flags(vma->vm_flags)) {
1857 		error = -EINVAL;
1858 		if (file)
1859 			goto unmap_and_free_vma;
1860 		else
1861 			goto free_vma;
1862 	}
1863 
1864 	vma_link(mm, vma, prev, rb_link, rb_parent);
1865 	/* Once vma denies write, undo our temporary denial count */
1866 	if (file) {
1867 unmap_writable:
1868 		if (vm_flags & VM_SHARED)
1869 			mapping_unmap_writable(file->f_mapping);
1870 		if (vm_flags & VM_DENYWRITE)
1871 			allow_write_access(file);
1872 	}
1873 	file = vma->vm_file;
1874 out:
1875 	perf_event_mmap(vma);
1876 
1877 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1878 	if (vm_flags & VM_LOCKED) {
1879 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1880 					is_vm_hugetlb_page(vma) ||
1881 					vma == get_gate_vma(current->mm))
1882 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1883 		else
1884 			mm->locked_vm += (len >> PAGE_SHIFT);
1885 	}
1886 
1887 	if (file)
1888 		uprobe_mmap(vma);
1889 
1890 	/*
1891 	 * New (or expanded) vma always get soft dirty status.
1892 	 * Otherwise user-space soft-dirty page tracker won't
1893 	 * be able to distinguish situation when vma area unmapped,
1894 	 * then new mapped in-place (which must be aimed as
1895 	 * a completely new data area).
1896 	 */
1897 	vma->vm_flags |= VM_SOFTDIRTY;
1898 
1899 	vma_set_page_prot(vma);
1900 
1901 	return addr;
1902 
1903 unmap_and_free_vma:
1904 	fput(vma->vm_file);
1905 	vma->vm_file = NULL;
1906 
1907 	/* Undo any partial mapping done by a device driver. */
1908 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1909 	charged = 0;
1910 	if (vm_flags & VM_SHARED)
1911 		mapping_unmap_writable(file->f_mapping);
1912 allow_write_and_free_vma:
1913 	if (vm_flags & VM_DENYWRITE)
1914 		allow_write_access(file);
1915 free_vma:
1916 	vm_area_free(vma);
1917 unacct_error:
1918 	if (charged)
1919 		vm_unacct_memory(charged);
1920 	return error;
1921 }
1922 
1923 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1924 {
1925 	/*
1926 	 * We implement the search by looking for an rbtree node that
1927 	 * immediately follows a suitable gap. That is,
1928 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1929 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1930 	 * - gap_end - gap_start >= length
1931 	 */
1932 
1933 	struct mm_struct *mm = current->mm;
1934 	struct vm_area_struct *vma;
1935 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1936 
1937 	/* Adjust search length to account for worst case alignment overhead */
1938 	length = info->length + info->align_mask;
1939 	if (length < info->length)
1940 		return -ENOMEM;
1941 
1942 	/* Adjust search limits by the desired length */
1943 	if (info->high_limit < length)
1944 		return -ENOMEM;
1945 	high_limit = info->high_limit - length;
1946 
1947 	if (info->low_limit > high_limit)
1948 		return -ENOMEM;
1949 	low_limit = info->low_limit + length;
1950 
1951 	/* Check if rbtree root looks promising */
1952 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1953 		goto check_highest;
1954 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1955 	if (vma->rb_subtree_gap < length)
1956 		goto check_highest;
1957 
1958 	while (true) {
1959 		/* Visit left subtree if it looks promising */
1960 		gap_end = vm_start_gap(vma);
1961 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1962 			struct vm_area_struct *left =
1963 				rb_entry(vma->vm_rb.rb_left,
1964 					 struct vm_area_struct, vm_rb);
1965 			if (left->rb_subtree_gap >= length) {
1966 				vma = left;
1967 				continue;
1968 			}
1969 		}
1970 
1971 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1972 check_current:
1973 		/* Check if current node has a suitable gap */
1974 		if (gap_start > high_limit)
1975 			return -ENOMEM;
1976 		if (gap_end >= low_limit &&
1977 		    gap_end > gap_start && gap_end - gap_start >= length)
1978 			goto found;
1979 
1980 		/* Visit right subtree if it looks promising */
1981 		if (vma->vm_rb.rb_right) {
1982 			struct vm_area_struct *right =
1983 				rb_entry(vma->vm_rb.rb_right,
1984 					 struct vm_area_struct, vm_rb);
1985 			if (right->rb_subtree_gap >= length) {
1986 				vma = right;
1987 				continue;
1988 			}
1989 		}
1990 
1991 		/* Go back up the rbtree to find next candidate node */
1992 		while (true) {
1993 			struct rb_node *prev = &vma->vm_rb;
1994 			if (!rb_parent(prev))
1995 				goto check_highest;
1996 			vma = rb_entry(rb_parent(prev),
1997 				       struct vm_area_struct, vm_rb);
1998 			if (prev == vma->vm_rb.rb_left) {
1999 				gap_start = vm_end_gap(vma->vm_prev);
2000 				gap_end = vm_start_gap(vma);
2001 				goto check_current;
2002 			}
2003 		}
2004 	}
2005 
2006 check_highest:
2007 	/* Check highest gap, which does not precede any rbtree node */
2008 	gap_start = mm->highest_vm_end;
2009 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2010 	if (gap_start > high_limit)
2011 		return -ENOMEM;
2012 
2013 found:
2014 	/* We found a suitable gap. Clip it with the original low_limit. */
2015 	if (gap_start < info->low_limit)
2016 		gap_start = info->low_limit;
2017 
2018 	/* Adjust gap address to the desired alignment */
2019 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2020 
2021 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2022 	VM_BUG_ON(gap_start + info->length > gap_end);
2023 	return gap_start;
2024 }
2025 
2026 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2027 {
2028 	struct mm_struct *mm = current->mm;
2029 	struct vm_area_struct *vma;
2030 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2031 
2032 	/* Adjust search length to account for worst case alignment overhead */
2033 	length = info->length + info->align_mask;
2034 	if (length < info->length)
2035 		return -ENOMEM;
2036 
2037 	/*
2038 	 * Adjust search limits by the desired length.
2039 	 * See implementation comment at top of unmapped_area().
2040 	 */
2041 	gap_end = info->high_limit;
2042 	if (gap_end < length)
2043 		return -ENOMEM;
2044 	high_limit = gap_end - length;
2045 
2046 	if (info->low_limit > high_limit)
2047 		return -ENOMEM;
2048 	low_limit = info->low_limit + length;
2049 
2050 	/* Check highest gap, which does not precede any rbtree node */
2051 	gap_start = mm->highest_vm_end;
2052 	if (gap_start <= high_limit)
2053 		goto found_highest;
2054 
2055 	/* Check if rbtree root looks promising */
2056 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2057 		return -ENOMEM;
2058 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2059 	if (vma->rb_subtree_gap < length)
2060 		return -ENOMEM;
2061 
2062 	while (true) {
2063 		/* Visit right subtree if it looks promising */
2064 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2065 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2066 			struct vm_area_struct *right =
2067 				rb_entry(vma->vm_rb.rb_right,
2068 					 struct vm_area_struct, vm_rb);
2069 			if (right->rb_subtree_gap >= length) {
2070 				vma = right;
2071 				continue;
2072 			}
2073 		}
2074 
2075 check_current:
2076 		/* Check if current node has a suitable gap */
2077 		gap_end = vm_start_gap(vma);
2078 		if (gap_end < low_limit)
2079 			return -ENOMEM;
2080 		if (gap_start <= high_limit &&
2081 		    gap_end > gap_start && gap_end - gap_start >= length)
2082 			goto found;
2083 
2084 		/* Visit left subtree if it looks promising */
2085 		if (vma->vm_rb.rb_left) {
2086 			struct vm_area_struct *left =
2087 				rb_entry(vma->vm_rb.rb_left,
2088 					 struct vm_area_struct, vm_rb);
2089 			if (left->rb_subtree_gap >= length) {
2090 				vma = left;
2091 				continue;
2092 			}
2093 		}
2094 
2095 		/* Go back up the rbtree to find next candidate node */
2096 		while (true) {
2097 			struct rb_node *prev = &vma->vm_rb;
2098 			if (!rb_parent(prev))
2099 				return -ENOMEM;
2100 			vma = rb_entry(rb_parent(prev),
2101 				       struct vm_area_struct, vm_rb);
2102 			if (prev == vma->vm_rb.rb_right) {
2103 				gap_start = vma->vm_prev ?
2104 					vm_end_gap(vma->vm_prev) : 0;
2105 				goto check_current;
2106 			}
2107 		}
2108 	}
2109 
2110 found:
2111 	/* We found a suitable gap. Clip it with the original high_limit. */
2112 	if (gap_end > info->high_limit)
2113 		gap_end = info->high_limit;
2114 
2115 found_highest:
2116 	/* Compute highest gap address at the desired alignment */
2117 	gap_end -= info->length;
2118 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2119 
2120 	VM_BUG_ON(gap_end < info->low_limit);
2121 	VM_BUG_ON(gap_end < gap_start);
2122 	return gap_end;
2123 }
2124 
2125 /*
2126  * Search for an unmapped address range.
2127  *
2128  * We are looking for a range that:
2129  * - does not intersect with any VMA;
2130  * - is contained within the [low_limit, high_limit) interval;
2131  * - is at least the desired size.
2132  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2133  */
2134 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2135 {
2136 	unsigned long addr;
2137 
2138 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2139 		addr = unmapped_area_topdown(info);
2140 	else
2141 		addr = unmapped_area(info);
2142 
2143 	trace_vm_unmapped_area(addr, info);
2144 	return addr;
2145 }
2146 
2147 #ifndef arch_get_mmap_end
2148 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2149 #endif
2150 
2151 #ifndef arch_get_mmap_base
2152 #define arch_get_mmap_base(addr, base) (base)
2153 #endif
2154 
2155 /* Get an address range which is currently unmapped.
2156  * For shmat() with addr=0.
2157  *
2158  * Ugly calling convention alert:
2159  * Return value with the low bits set means error value,
2160  * ie
2161  *	if (ret & ~PAGE_MASK)
2162  *		error = ret;
2163  *
2164  * This function "knows" that -ENOMEM has the bits set.
2165  */
2166 #ifndef HAVE_ARCH_UNMAPPED_AREA
2167 unsigned long
2168 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2169 		unsigned long len, unsigned long pgoff, unsigned long flags)
2170 {
2171 	struct mm_struct *mm = current->mm;
2172 	struct vm_area_struct *vma, *prev;
2173 	struct vm_unmapped_area_info info;
2174 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2175 
2176 	if (len > mmap_end - mmap_min_addr)
2177 		return -ENOMEM;
2178 
2179 	if (flags & MAP_FIXED)
2180 		return addr;
2181 
2182 	if (addr) {
2183 		addr = PAGE_ALIGN(addr);
2184 		vma = find_vma_prev(mm, addr, &prev);
2185 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2186 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2187 		    (!prev || addr >= vm_end_gap(prev)))
2188 			return addr;
2189 	}
2190 
2191 	info.flags = 0;
2192 	info.length = len;
2193 	info.low_limit = mm->mmap_base;
2194 	info.high_limit = mmap_end;
2195 	info.align_mask = 0;
2196 	info.align_offset = 0;
2197 	return vm_unmapped_area(&info);
2198 }
2199 #endif
2200 
2201 /*
2202  * This mmap-allocator allocates new areas top-down from below the
2203  * stack's low limit (the base):
2204  */
2205 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2206 unsigned long
2207 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2208 			  unsigned long len, unsigned long pgoff,
2209 			  unsigned long flags)
2210 {
2211 	struct vm_area_struct *vma, *prev;
2212 	struct mm_struct *mm = current->mm;
2213 	struct vm_unmapped_area_info info;
2214 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2215 
2216 	/* requested length too big for entire address space */
2217 	if (len > mmap_end - mmap_min_addr)
2218 		return -ENOMEM;
2219 
2220 	if (flags & MAP_FIXED)
2221 		return addr;
2222 
2223 	/* requesting a specific address */
2224 	if (addr) {
2225 		addr = PAGE_ALIGN(addr);
2226 		vma = find_vma_prev(mm, addr, &prev);
2227 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2228 				(!vma || addr + len <= vm_start_gap(vma)) &&
2229 				(!prev || addr >= vm_end_gap(prev)))
2230 			return addr;
2231 	}
2232 
2233 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2234 	info.length = len;
2235 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2236 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2237 	info.align_mask = 0;
2238 	info.align_offset = 0;
2239 	addr = vm_unmapped_area(&info);
2240 
2241 	/*
2242 	 * A failed mmap() very likely causes application failure,
2243 	 * so fall back to the bottom-up function here. This scenario
2244 	 * can happen with large stack limits and large mmap()
2245 	 * allocations.
2246 	 */
2247 	if (offset_in_page(addr)) {
2248 		VM_BUG_ON(addr != -ENOMEM);
2249 		info.flags = 0;
2250 		info.low_limit = TASK_UNMAPPED_BASE;
2251 		info.high_limit = mmap_end;
2252 		addr = vm_unmapped_area(&info);
2253 	}
2254 
2255 	return addr;
2256 }
2257 #endif
2258 
2259 unsigned long
2260 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2261 		unsigned long pgoff, unsigned long flags)
2262 {
2263 	unsigned long (*get_area)(struct file *, unsigned long,
2264 				  unsigned long, unsigned long, unsigned long);
2265 
2266 	unsigned long error = arch_mmap_check(addr, len, flags);
2267 	if (error)
2268 		return error;
2269 
2270 	/* Careful about overflows.. */
2271 	if (len > TASK_SIZE)
2272 		return -ENOMEM;
2273 
2274 	get_area = current->mm->get_unmapped_area;
2275 	if (file) {
2276 		if (file->f_op->get_unmapped_area)
2277 			get_area = file->f_op->get_unmapped_area;
2278 	} else if (flags & MAP_SHARED) {
2279 		/*
2280 		 * mmap_region() will call shmem_zero_setup() to create a file,
2281 		 * so use shmem's get_unmapped_area in case it can be huge.
2282 		 * do_mmap() will clear pgoff, so match alignment.
2283 		 */
2284 		pgoff = 0;
2285 		get_area = shmem_get_unmapped_area;
2286 	}
2287 
2288 	addr = get_area(file, addr, len, pgoff, flags);
2289 	if (IS_ERR_VALUE(addr))
2290 		return addr;
2291 
2292 	if (addr > TASK_SIZE - len)
2293 		return -ENOMEM;
2294 	if (offset_in_page(addr))
2295 		return -EINVAL;
2296 
2297 	error = security_mmap_addr(addr);
2298 	return error ? error : addr;
2299 }
2300 
2301 EXPORT_SYMBOL(get_unmapped_area);
2302 
2303 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2304 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2305 {
2306 	struct rb_node *rb_node;
2307 	struct vm_area_struct *vma;
2308 
2309 	/* Check the cache first. */
2310 	vma = vmacache_find(mm, addr);
2311 	if (likely(vma))
2312 		return vma;
2313 
2314 	rb_node = mm->mm_rb.rb_node;
2315 
2316 	while (rb_node) {
2317 		struct vm_area_struct *tmp;
2318 
2319 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2320 
2321 		if (tmp->vm_end > addr) {
2322 			vma = tmp;
2323 			if (tmp->vm_start <= addr)
2324 				break;
2325 			rb_node = rb_node->rb_left;
2326 		} else
2327 			rb_node = rb_node->rb_right;
2328 	}
2329 
2330 	if (vma)
2331 		vmacache_update(addr, vma);
2332 	return vma;
2333 }
2334 
2335 EXPORT_SYMBOL(find_vma);
2336 
2337 /*
2338  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2339  */
2340 struct vm_area_struct *
2341 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2342 			struct vm_area_struct **pprev)
2343 {
2344 	struct vm_area_struct *vma;
2345 
2346 	vma = find_vma(mm, addr);
2347 	if (vma) {
2348 		*pprev = vma->vm_prev;
2349 	} else {
2350 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2351 
2352 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2353 	}
2354 	return vma;
2355 }
2356 
2357 /*
2358  * Verify that the stack growth is acceptable and
2359  * update accounting. This is shared with both the
2360  * grow-up and grow-down cases.
2361  */
2362 static int acct_stack_growth(struct vm_area_struct *vma,
2363 			     unsigned long size, unsigned long grow)
2364 {
2365 	struct mm_struct *mm = vma->vm_mm;
2366 	unsigned long new_start;
2367 
2368 	/* address space limit tests */
2369 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2370 		return -ENOMEM;
2371 
2372 	/* Stack limit test */
2373 	if (size > rlimit(RLIMIT_STACK))
2374 		return -ENOMEM;
2375 
2376 	/* mlock limit tests */
2377 	if (vma->vm_flags & VM_LOCKED) {
2378 		unsigned long locked;
2379 		unsigned long limit;
2380 		locked = mm->locked_vm + grow;
2381 		limit = rlimit(RLIMIT_MEMLOCK);
2382 		limit >>= PAGE_SHIFT;
2383 		if (locked > limit && !capable(CAP_IPC_LOCK))
2384 			return -ENOMEM;
2385 	}
2386 
2387 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2388 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2389 			vma->vm_end - size;
2390 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2391 		return -EFAULT;
2392 
2393 	/*
2394 	 * Overcommit..  This must be the final test, as it will
2395 	 * update security statistics.
2396 	 */
2397 	if (security_vm_enough_memory_mm(mm, grow))
2398 		return -ENOMEM;
2399 
2400 	return 0;
2401 }
2402 
2403 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2404 /*
2405  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2406  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2407  */
2408 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2409 {
2410 	struct mm_struct *mm = vma->vm_mm;
2411 	struct vm_area_struct *next;
2412 	unsigned long gap_addr;
2413 	int error = 0;
2414 
2415 	if (!(vma->vm_flags & VM_GROWSUP))
2416 		return -EFAULT;
2417 
2418 	/* Guard against exceeding limits of the address space. */
2419 	address &= PAGE_MASK;
2420 	if (address >= (TASK_SIZE & PAGE_MASK))
2421 		return -ENOMEM;
2422 	address += PAGE_SIZE;
2423 
2424 	/* Enforce stack_guard_gap */
2425 	gap_addr = address + stack_guard_gap;
2426 
2427 	/* Guard against overflow */
2428 	if (gap_addr < address || gap_addr > TASK_SIZE)
2429 		gap_addr = TASK_SIZE;
2430 
2431 	next = vma->vm_next;
2432 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2433 		if (!(next->vm_flags & VM_GROWSUP))
2434 			return -ENOMEM;
2435 		/* Check that both stack segments have the same anon_vma? */
2436 	}
2437 
2438 	/* We must make sure the anon_vma is allocated. */
2439 	if (unlikely(anon_vma_prepare(vma)))
2440 		return -ENOMEM;
2441 
2442 	/*
2443 	 * vma->vm_start/vm_end cannot change under us because the caller
2444 	 * is required to hold the mmap_lock in read mode.  We need the
2445 	 * anon_vma lock to serialize against concurrent expand_stacks.
2446 	 */
2447 	anon_vma_lock_write(vma->anon_vma);
2448 
2449 	/* Somebody else might have raced and expanded it already */
2450 	if (address > vma->vm_end) {
2451 		unsigned long size, grow;
2452 
2453 		size = address - vma->vm_start;
2454 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2455 
2456 		error = -ENOMEM;
2457 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2458 			error = acct_stack_growth(vma, size, grow);
2459 			if (!error) {
2460 				/*
2461 				 * vma_gap_update() doesn't support concurrent
2462 				 * updates, but we only hold a shared mmap_lock
2463 				 * lock here, so we need to protect against
2464 				 * concurrent vma expansions.
2465 				 * anon_vma_lock_write() doesn't help here, as
2466 				 * we don't guarantee that all growable vmas
2467 				 * in a mm share the same root anon vma.
2468 				 * So, we reuse mm->page_table_lock to guard
2469 				 * against concurrent vma expansions.
2470 				 */
2471 				spin_lock(&mm->page_table_lock);
2472 				if (vma->vm_flags & VM_LOCKED)
2473 					mm->locked_vm += grow;
2474 				vm_stat_account(mm, vma->vm_flags, grow);
2475 				anon_vma_interval_tree_pre_update_vma(vma);
2476 				vma->vm_end = address;
2477 				anon_vma_interval_tree_post_update_vma(vma);
2478 				if (vma->vm_next)
2479 					vma_gap_update(vma->vm_next);
2480 				else
2481 					mm->highest_vm_end = vm_end_gap(vma);
2482 				spin_unlock(&mm->page_table_lock);
2483 
2484 				perf_event_mmap(vma);
2485 			}
2486 		}
2487 	}
2488 	anon_vma_unlock_write(vma->anon_vma);
2489 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2490 	validate_mm(mm);
2491 	return error;
2492 }
2493 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2494 
2495 /*
2496  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2497  */
2498 int expand_downwards(struct vm_area_struct *vma,
2499 				   unsigned long address)
2500 {
2501 	struct mm_struct *mm = vma->vm_mm;
2502 	struct vm_area_struct *prev;
2503 	int error = 0;
2504 
2505 	address &= PAGE_MASK;
2506 	if (address < mmap_min_addr)
2507 		return -EPERM;
2508 
2509 	/* Enforce stack_guard_gap */
2510 	prev = vma->vm_prev;
2511 	/* Check that both stack segments have the same anon_vma? */
2512 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2513 			vma_is_accessible(prev)) {
2514 		if (address - prev->vm_end < stack_guard_gap)
2515 			return -ENOMEM;
2516 	}
2517 
2518 	/* We must make sure the anon_vma is allocated. */
2519 	if (unlikely(anon_vma_prepare(vma)))
2520 		return -ENOMEM;
2521 
2522 	/*
2523 	 * vma->vm_start/vm_end cannot change under us because the caller
2524 	 * is required to hold the mmap_lock in read mode.  We need the
2525 	 * anon_vma lock to serialize against concurrent expand_stacks.
2526 	 */
2527 	anon_vma_lock_write(vma->anon_vma);
2528 
2529 	/* Somebody else might have raced and expanded it already */
2530 	if (address < vma->vm_start) {
2531 		unsigned long size, grow;
2532 
2533 		size = vma->vm_end - address;
2534 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2535 
2536 		error = -ENOMEM;
2537 		if (grow <= vma->vm_pgoff) {
2538 			error = acct_stack_growth(vma, size, grow);
2539 			if (!error) {
2540 				/*
2541 				 * vma_gap_update() doesn't support concurrent
2542 				 * updates, but we only hold a shared mmap_lock
2543 				 * lock here, so we need to protect against
2544 				 * concurrent vma expansions.
2545 				 * anon_vma_lock_write() doesn't help here, as
2546 				 * we don't guarantee that all growable vmas
2547 				 * in a mm share the same root anon vma.
2548 				 * So, we reuse mm->page_table_lock to guard
2549 				 * against concurrent vma expansions.
2550 				 */
2551 				spin_lock(&mm->page_table_lock);
2552 				if (vma->vm_flags & VM_LOCKED)
2553 					mm->locked_vm += grow;
2554 				vm_stat_account(mm, vma->vm_flags, grow);
2555 				anon_vma_interval_tree_pre_update_vma(vma);
2556 				vma->vm_start = address;
2557 				vma->vm_pgoff -= grow;
2558 				anon_vma_interval_tree_post_update_vma(vma);
2559 				vma_gap_update(vma);
2560 				spin_unlock(&mm->page_table_lock);
2561 
2562 				perf_event_mmap(vma);
2563 			}
2564 		}
2565 	}
2566 	anon_vma_unlock_write(vma->anon_vma);
2567 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2568 	validate_mm(mm);
2569 	return error;
2570 }
2571 
2572 /* enforced gap between the expanding stack and other mappings. */
2573 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2574 
2575 static int __init cmdline_parse_stack_guard_gap(char *p)
2576 {
2577 	unsigned long val;
2578 	char *endptr;
2579 
2580 	val = simple_strtoul(p, &endptr, 10);
2581 	if (!*endptr)
2582 		stack_guard_gap = val << PAGE_SHIFT;
2583 
2584 	return 0;
2585 }
2586 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2587 
2588 #ifdef CONFIG_STACK_GROWSUP
2589 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2590 {
2591 	return expand_upwards(vma, address);
2592 }
2593 
2594 struct vm_area_struct *
2595 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2596 {
2597 	struct vm_area_struct *vma, *prev;
2598 
2599 	addr &= PAGE_MASK;
2600 	vma = find_vma_prev(mm, addr, &prev);
2601 	if (vma && (vma->vm_start <= addr))
2602 		return vma;
2603 	/* don't alter vm_end if the coredump is running */
2604 	if (!prev || expand_stack(prev, addr))
2605 		return NULL;
2606 	if (prev->vm_flags & VM_LOCKED)
2607 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2608 	return prev;
2609 }
2610 #else
2611 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2612 {
2613 	return expand_downwards(vma, address);
2614 }
2615 
2616 struct vm_area_struct *
2617 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2618 {
2619 	struct vm_area_struct *vma;
2620 	unsigned long start;
2621 
2622 	addr &= PAGE_MASK;
2623 	vma = find_vma(mm, addr);
2624 	if (!vma)
2625 		return NULL;
2626 	if (vma->vm_start <= addr)
2627 		return vma;
2628 	if (!(vma->vm_flags & VM_GROWSDOWN))
2629 		return NULL;
2630 	start = vma->vm_start;
2631 	if (expand_stack(vma, addr))
2632 		return NULL;
2633 	if (vma->vm_flags & VM_LOCKED)
2634 		populate_vma_page_range(vma, addr, start, NULL);
2635 	return vma;
2636 }
2637 #endif
2638 
2639 EXPORT_SYMBOL_GPL(find_extend_vma);
2640 
2641 /*
2642  * Ok - we have the memory areas we should free on the vma list,
2643  * so release them, and do the vma updates.
2644  *
2645  * Called with the mm semaphore held.
2646  */
2647 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2648 {
2649 	unsigned long nr_accounted = 0;
2650 
2651 	/* Update high watermark before we lower total_vm */
2652 	update_hiwater_vm(mm);
2653 	do {
2654 		long nrpages = vma_pages(vma);
2655 
2656 		if (vma->vm_flags & VM_ACCOUNT)
2657 			nr_accounted += nrpages;
2658 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2659 		vma = remove_vma(vma);
2660 	} while (vma);
2661 	vm_unacct_memory(nr_accounted);
2662 	validate_mm(mm);
2663 }
2664 
2665 /*
2666  * Get rid of page table information in the indicated region.
2667  *
2668  * Called with the mm semaphore held.
2669  */
2670 static void unmap_region(struct mm_struct *mm,
2671 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2672 		unsigned long start, unsigned long end)
2673 {
2674 	struct vm_area_struct *next = vma_next(mm, prev);
2675 	struct mmu_gather tlb;
2676 
2677 	lru_add_drain();
2678 	tlb_gather_mmu(&tlb, mm);
2679 	update_hiwater_rss(mm);
2680 	unmap_vmas(&tlb, vma, start, end);
2681 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2682 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2683 	tlb_finish_mmu(&tlb);
2684 }
2685 
2686 /*
2687  * Create a list of vma's touched by the unmap, removing them from the mm's
2688  * vma list as we go..
2689  */
2690 static bool
2691 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2692 	struct vm_area_struct *prev, unsigned long end)
2693 {
2694 	struct vm_area_struct **insertion_point;
2695 	struct vm_area_struct *tail_vma = NULL;
2696 
2697 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2698 	vma->vm_prev = NULL;
2699 	do {
2700 		vma_rb_erase(vma, &mm->mm_rb);
2701 		mm->map_count--;
2702 		tail_vma = vma;
2703 		vma = vma->vm_next;
2704 	} while (vma && vma->vm_start < end);
2705 	*insertion_point = vma;
2706 	if (vma) {
2707 		vma->vm_prev = prev;
2708 		vma_gap_update(vma);
2709 	} else
2710 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2711 	tail_vma->vm_next = NULL;
2712 
2713 	/* Kill the cache */
2714 	vmacache_invalidate(mm);
2715 
2716 	/*
2717 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2718 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2719 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2720 	 */
2721 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2722 		return false;
2723 	if (prev && (prev->vm_flags & VM_GROWSUP))
2724 		return false;
2725 	return true;
2726 }
2727 
2728 /*
2729  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2730  * has already been checked or doesn't make sense to fail.
2731  */
2732 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2733 		unsigned long addr, int new_below)
2734 {
2735 	struct vm_area_struct *new;
2736 	int err;
2737 
2738 	if (vma->vm_ops && vma->vm_ops->may_split) {
2739 		err = vma->vm_ops->may_split(vma, addr);
2740 		if (err)
2741 			return err;
2742 	}
2743 
2744 	new = vm_area_dup(vma);
2745 	if (!new)
2746 		return -ENOMEM;
2747 
2748 	if (new_below)
2749 		new->vm_end = addr;
2750 	else {
2751 		new->vm_start = addr;
2752 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2753 	}
2754 
2755 	err = vma_dup_policy(vma, new);
2756 	if (err)
2757 		goto out_free_vma;
2758 
2759 	err = anon_vma_clone(new, vma);
2760 	if (err)
2761 		goto out_free_mpol;
2762 
2763 	if (new->vm_file)
2764 		get_file(new->vm_file);
2765 
2766 	if (new->vm_ops && new->vm_ops->open)
2767 		new->vm_ops->open(new);
2768 
2769 	if (new_below)
2770 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2771 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2772 	else
2773 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2774 
2775 	/* Success. */
2776 	if (!err)
2777 		return 0;
2778 
2779 	/* Clean everything up if vma_adjust failed. */
2780 	if (new->vm_ops && new->vm_ops->close)
2781 		new->vm_ops->close(new);
2782 	if (new->vm_file)
2783 		fput(new->vm_file);
2784 	unlink_anon_vmas(new);
2785  out_free_mpol:
2786 	mpol_put(vma_policy(new));
2787  out_free_vma:
2788 	vm_area_free(new);
2789 	return err;
2790 }
2791 
2792 /*
2793  * Split a vma into two pieces at address 'addr', a new vma is allocated
2794  * either for the first part or the tail.
2795  */
2796 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2797 	      unsigned long addr, int new_below)
2798 {
2799 	if (mm->map_count >= sysctl_max_map_count)
2800 		return -ENOMEM;
2801 
2802 	return __split_vma(mm, vma, addr, new_below);
2803 }
2804 
2805 /* Munmap is split into 2 main parts -- this part which finds
2806  * what needs doing, and the areas themselves, which do the
2807  * work.  This now handles partial unmappings.
2808  * Jeremy Fitzhardinge <jeremy@goop.org>
2809  */
2810 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2811 		struct list_head *uf, bool downgrade)
2812 {
2813 	unsigned long end;
2814 	struct vm_area_struct *vma, *prev, *last;
2815 
2816 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2817 		return -EINVAL;
2818 
2819 	len = PAGE_ALIGN(len);
2820 	end = start + len;
2821 	if (len == 0)
2822 		return -EINVAL;
2823 
2824 	/*
2825 	 * arch_unmap() might do unmaps itself.  It must be called
2826 	 * and finish any rbtree manipulation before this code
2827 	 * runs and also starts to manipulate the rbtree.
2828 	 */
2829 	arch_unmap(mm, start, end);
2830 
2831 	/* Find the first overlapping VMA */
2832 	vma = find_vma(mm, start);
2833 	if (!vma)
2834 		return 0;
2835 	prev = vma->vm_prev;
2836 	/* we have  start < vma->vm_end  */
2837 
2838 	/* if it doesn't overlap, we have nothing.. */
2839 	if (vma->vm_start >= end)
2840 		return 0;
2841 
2842 	/*
2843 	 * If we need to split any vma, do it now to save pain later.
2844 	 *
2845 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2846 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2847 	 * places tmp vma above, and higher split_vma places tmp vma below.
2848 	 */
2849 	if (start > vma->vm_start) {
2850 		int error;
2851 
2852 		/*
2853 		 * Make sure that map_count on return from munmap() will
2854 		 * not exceed its limit; but let map_count go just above
2855 		 * its limit temporarily, to help free resources as expected.
2856 		 */
2857 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2858 			return -ENOMEM;
2859 
2860 		error = __split_vma(mm, vma, start, 0);
2861 		if (error)
2862 			return error;
2863 		prev = vma;
2864 	}
2865 
2866 	/* Does it split the last one? */
2867 	last = find_vma(mm, end);
2868 	if (last && end > last->vm_start) {
2869 		int error = __split_vma(mm, last, end, 1);
2870 		if (error)
2871 			return error;
2872 	}
2873 	vma = vma_next(mm, prev);
2874 
2875 	if (unlikely(uf)) {
2876 		/*
2877 		 * If userfaultfd_unmap_prep returns an error the vmas
2878 		 * will remain split, but userland will get a
2879 		 * highly unexpected error anyway. This is no
2880 		 * different than the case where the first of the two
2881 		 * __split_vma fails, but we don't undo the first
2882 		 * split, despite we could. This is unlikely enough
2883 		 * failure that it's not worth optimizing it for.
2884 		 */
2885 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2886 		if (error)
2887 			return error;
2888 	}
2889 
2890 	/*
2891 	 * unlock any mlock()ed ranges before detaching vmas
2892 	 */
2893 	if (mm->locked_vm) {
2894 		struct vm_area_struct *tmp = vma;
2895 		while (tmp && tmp->vm_start < end) {
2896 			if (tmp->vm_flags & VM_LOCKED) {
2897 				mm->locked_vm -= vma_pages(tmp);
2898 				munlock_vma_pages_all(tmp);
2899 			}
2900 
2901 			tmp = tmp->vm_next;
2902 		}
2903 	}
2904 
2905 	/* Detach vmas from rbtree */
2906 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2907 		downgrade = false;
2908 
2909 	if (downgrade)
2910 		mmap_write_downgrade(mm);
2911 
2912 	unmap_region(mm, vma, prev, start, end);
2913 
2914 	/* Fix up all other VM information */
2915 	remove_vma_list(mm, vma);
2916 
2917 	return downgrade ? 1 : 0;
2918 }
2919 
2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2921 	      struct list_head *uf)
2922 {
2923 	return __do_munmap(mm, start, len, uf, false);
2924 }
2925 
2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2927 {
2928 	int ret;
2929 	struct mm_struct *mm = current->mm;
2930 	LIST_HEAD(uf);
2931 
2932 	if (mmap_write_lock_killable(mm))
2933 		return -EINTR;
2934 
2935 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2936 	/*
2937 	 * Returning 1 indicates mmap_lock is downgraded.
2938 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2939 	 * it to 0 before return.
2940 	 */
2941 	if (ret == 1) {
2942 		mmap_read_unlock(mm);
2943 		ret = 0;
2944 	} else
2945 		mmap_write_unlock(mm);
2946 
2947 	userfaultfd_unmap_complete(mm, &uf);
2948 	return ret;
2949 }
2950 
2951 int vm_munmap(unsigned long start, size_t len)
2952 {
2953 	return __vm_munmap(start, len, false);
2954 }
2955 EXPORT_SYMBOL(vm_munmap);
2956 
2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2958 {
2959 	addr = untagged_addr(addr);
2960 	profile_munmap(addr);
2961 	return __vm_munmap(addr, len, true);
2962 }
2963 
2964 
2965 /*
2966  * Emulation of deprecated remap_file_pages() syscall.
2967  */
2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2969 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2970 {
2971 
2972 	struct mm_struct *mm = current->mm;
2973 	struct vm_area_struct *vma;
2974 	unsigned long populate = 0;
2975 	unsigned long ret = -EINVAL;
2976 	struct file *file;
2977 
2978 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2979 		     current->comm, current->pid);
2980 
2981 	if (prot)
2982 		return ret;
2983 	start = start & PAGE_MASK;
2984 	size = size & PAGE_MASK;
2985 
2986 	if (start + size <= start)
2987 		return ret;
2988 
2989 	/* Does pgoff wrap? */
2990 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2991 		return ret;
2992 
2993 	if (mmap_write_lock_killable(mm))
2994 		return -EINTR;
2995 
2996 	vma = find_vma(mm, start);
2997 
2998 	if (!vma || !(vma->vm_flags & VM_SHARED))
2999 		goto out;
3000 
3001 	if (start < vma->vm_start)
3002 		goto out;
3003 
3004 	if (start + size > vma->vm_end) {
3005 		struct vm_area_struct *next;
3006 
3007 		for (next = vma->vm_next; next; next = next->vm_next) {
3008 			/* hole between vmas ? */
3009 			if (next->vm_start != next->vm_prev->vm_end)
3010 				goto out;
3011 
3012 			if (next->vm_file != vma->vm_file)
3013 				goto out;
3014 
3015 			if (next->vm_flags != vma->vm_flags)
3016 				goto out;
3017 
3018 			if (start + size <= next->vm_end)
3019 				break;
3020 		}
3021 
3022 		if (!next)
3023 			goto out;
3024 	}
3025 
3026 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3027 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3028 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3029 
3030 	flags &= MAP_NONBLOCK;
3031 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3032 	if (vma->vm_flags & VM_LOCKED)
3033 		flags |= MAP_LOCKED;
3034 
3035 	file = get_file(vma->vm_file);
3036 	ret = do_mmap(vma->vm_file, start, size,
3037 			prot, flags, pgoff, &populate, NULL);
3038 	fput(file);
3039 out:
3040 	mmap_write_unlock(mm);
3041 	if (populate)
3042 		mm_populate(ret, populate);
3043 	if (!IS_ERR_VALUE(ret))
3044 		ret = 0;
3045 	return ret;
3046 }
3047 
3048 /*
3049  *  this is really a simplified "do_mmap".  it only handles
3050  *  anonymous maps.  eventually we may be able to do some
3051  *  brk-specific accounting here.
3052  */
3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3054 {
3055 	struct mm_struct *mm = current->mm;
3056 	struct vm_area_struct *vma, *prev;
3057 	struct rb_node **rb_link, *rb_parent;
3058 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3059 	int error;
3060 	unsigned long mapped_addr;
3061 
3062 	/* Until we need other flags, refuse anything except VM_EXEC. */
3063 	if ((flags & (~VM_EXEC)) != 0)
3064 		return -EINVAL;
3065 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066 
3067 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3068 	if (IS_ERR_VALUE(mapped_addr))
3069 		return mapped_addr;
3070 
3071 	error = mlock_future_check(mm, mm->def_flags, len);
3072 	if (error)
3073 		return error;
3074 
3075 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3076 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3077 		return -ENOMEM;
3078 
3079 	/* Check against address space limits *after* clearing old maps... */
3080 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081 		return -ENOMEM;
3082 
3083 	if (mm->map_count > sysctl_max_map_count)
3084 		return -ENOMEM;
3085 
3086 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087 		return -ENOMEM;
3088 
3089 	/* Can we just expand an old private anonymous mapping? */
3090 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3091 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3092 	if (vma)
3093 		goto out;
3094 
3095 	/*
3096 	 * create a vma struct for an anonymous mapping
3097 	 */
3098 	vma = vm_area_alloc(mm);
3099 	if (!vma) {
3100 		vm_unacct_memory(len >> PAGE_SHIFT);
3101 		return -ENOMEM;
3102 	}
3103 
3104 	vma_set_anonymous(vma);
3105 	vma->vm_start = addr;
3106 	vma->vm_end = addr + len;
3107 	vma->vm_pgoff = pgoff;
3108 	vma->vm_flags = flags;
3109 	vma->vm_page_prot = vm_get_page_prot(flags);
3110 	vma_link(mm, vma, prev, rb_link, rb_parent);
3111 out:
3112 	perf_event_mmap(vma);
3113 	mm->total_vm += len >> PAGE_SHIFT;
3114 	mm->data_vm += len >> PAGE_SHIFT;
3115 	if (flags & VM_LOCKED)
3116 		mm->locked_vm += (len >> PAGE_SHIFT);
3117 	vma->vm_flags |= VM_SOFTDIRTY;
3118 	return 0;
3119 }
3120 
3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3122 {
3123 	struct mm_struct *mm = current->mm;
3124 	unsigned long len;
3125 	int ret;
3126 	bool populate;
3127 	LIST_HEAD(uf);
3128 
3129 	len = PAGE_ALIGN(request);
3130 	if (len < request)
3131 		return -ENOMEM;
3132 	if (!len)
3133 		return 0;
3134 
3135 	if (mmap_write_lock_killable(mm))
3136 		return -EINTR;
3137 
3138 	ret = do_brk_flags(addr, len, flags, &uf);
3139 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3140 	mmap_write_unlock(mm);
3141 	userfaultfd_unmap_complete(mm, &uf);
3142 	if (populate && !ret)
3143 		mm_populate(addr, len);
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL(vm_brk_flags);
3147 
3148 int vm_brk(unsigned long addr, unsigned long len)
3149 {
3150 	return vm_brk_flags(addr, len, 0);
3151 }
3152 EXPORT_SYMBOL(vm_brk);
3153 
3154 /* Release all mmaps. */
3155 void exit_mmap(struct mm_struct *mm)
3156 {
3157 	struct mmu_gather tlb;
3158 	struct vm_area_struct *vma;
3159 	unsigned long nr_accounted = 0;
3160 
3161 	/* mm's last user has gone, and its about to be pulled down */
3162 	mmu_notifier_release(mm);
3163 
3164 	if (unlikely(mm_is_oom_victim(mm))) {
3165 		/*
3166 		 * Manually reap the mm to free as much memory as possible.
3167 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3168 		 * this mm from further consideration.  Taking mm->mmap_lock for
3169 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3170 		 * reaper will not run on this mm again after mmap_lock is
3171 		 * dropped.
3172 		 *
3173 		 * Nothing can be holding mm->mmap_lock here and the above call
3174 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3175 		 * __oom_reap_task_mm() will not block.
3176 		 *
3177 		 * This needs to be done before calling munlock_vma_pages_all(),
3178 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3179 		 * reliably test it.
3180 		 */
3181 		(void)__oom_reap_task_mm(mm);
3182 
3183 		set_bit(MMF_OOM_SKIP, &mm->flags);
3184 		mmap_write_lock(mm);
3185 		mmap_write_unlock(mm);
3186 	}
3187 
3188 	if (mm->locked_vm) {
3189 		vma = mm->mmap;
3190 		while (vma) {
3191 			if (vma->vm_flags & VM_LOCKED)
3192 				munlock_vma_pages_all(vma);
3193 			vma = vma->vm_next;
3194 		}
3195 	}
3196 
3197 	arch_exit_mmap(mm);
3198 
3199 	vma = mm->mmap;
3200 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3201 		return;
3202 
3203 	lru_add_drain();
3204 	flush_cache_mm(mm);
3205 	tlb_gather_mmu_fullmm(&tlb, mm);
3206 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3207 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3208 	unmap_vmas(&tlb, vma, 0, -1);
3209 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3210 	tlb_finish_mmu(&tlb);
3211 
3212 	/*
3213 	 * Walk the list again, actually closing and freeing it,
3214 	 * with preemption enabled, without holding any MM locks.
3215 	 */
3216 	while (vma) {
3217 		if (vma->vm_flags & VM_ACCOUNT)
3218 			nr_accounted += vma_pages(vma);
3219 		vma = remove_vma(vma);
3220 		cond_resched();
3221 	}
3222 	vm_unacct_memory(nr_accounted);
3223 }
3224 
3225 /* Insert vm structure into process list sorted by address
3226  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3227  * then i_mmap_rwsem is taken here.
3228  */
3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231 	struct vm_area_struct *prev;
3232 	struct rb_node **rb_link, *rb_parent;
3233 
3234 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3235 			   &prev, &rb_link, &rb_parent))
3236 		return -ENOMEM;
3237 	if ((vma->vm_flags & VM_ACCOUNT) &&
3238 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3239 		return -ENOMEM;
3240 
3241 	/*
3242 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3243 	 * until its first write fault, when page's anon_vma and index
3244 	 * are set.  But now set the vm_pgoff it will almost certainly
3245 	 * end up with (unless mremap moves it elsewhere before that
3246 	 * first wfault), so /proc/pid/maps tells a consistent story.
3247 	 *
3248 	 * By setting it to reflect the virtual start address of the
3249 	 * vma, merges and splits can happen in a seamless way, just
3250 	 * using the existing file pgoff checks and manipulations.
3251 	 * Similarly in do_mmap and in do_brk_flags.
3252 	 */
3253 	if (vma_is_anonymous(vma)) {
3254 		BUG_ON(vma->anon_vma);
3255 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256 	}
3257 
3258 	vma_link(mm, vma, prev, rb_link, rb_parent);
3259 	return 0;
3260 }
3261 
3262 /*
3263  * Copy the vma structure to a new location in the same mm,
3264  * prior to moving page table entries, to effect an mremap move.
3265  */
3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3267 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3268 	bool *need_rmap_locks)
3269 {
3270 	struct vm_area_struct *vma = *vmap;
3271 	unsigned long vma_start = vma->vm_start;
3272 	struct mm_struct *mm = vma->vm_mm;
3273 	struct vm_area_struct *new_vma, *prev;
3274 	struct rb_node **rb_link, *rb_parent;
3275 	bool faulted_in_anon_vma = true;
3276 
3277 	/*
3278 	 * If anonymous vma has not yet been faulted, update new pgoff
3279 	 * to match new location, to increase its chance of merging.
3280 	 */
3281 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3282 		pgoff = addr >> PAGE_SHIFT;
3283 		faulted_in_anon_vma = false;
3284 	}
3285 
3286 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3287 		return NULL;	/* should never get here */
3288 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3289 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3290 			    vma->vm_userfaultfd_ctx);
3291 	if (new_vma) {
3292 		/*
3293 		 * Source vma may have been merged into new_vma
3294 		 */
3295 		if (unlikely(vma_start >= new_vma->vm_start &&
3296 			     vma_start < new_vma->vm_end)) {
3297 			/*
3298 			 * The only way we can get a vma_merge with
3299 			 * self during an mremap is if the vma hasn't
3300 			 * been faulted in yet and we were allowed to
3301 			 * reset the dst vma->vm_pgoff to the
3302 			 * destination address of the mremap to allow
3303 			 * the merge to happen. mremap must change the
3304 			 * vm_pgoff linearity between src and dst vmas
3305 			 * (in turn preventing a vma_merge) to be
3306 			 * safe. It is only safe to keep the vm_pgoff
3307 			 * linear if there are no pages mapped yet.
3308 			 */
3309 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3310 			*vmap = vma = new_vma;
3311 		}
3312 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3313 	} else {
3314 		new_vma = vm_area_dup(vma);
3315 		if (!new_vma)
3316 			goto out;
3317 		new_vma->vm_start = addr;
3318 		new_vma->vm_end = addr + len;
3319 		new_vma->vm_pgoff = pgoff;
3320 		if (vma_dup_policy(vma, new_vma))
3321 			goto out_free_vma;
3322 		if (anon_vma_clone(new_vma, vma))
3323 			goto out_free_mempol;
3324 		if (new_vma->vm_file)
3325 			get_file(new_vma->vm_file);
3326 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3327 			new_vma->vm_ops->open(new_vma);
3328 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3329 		*need_rmap_locks = false;
3330 	}
3331 	return new_vma;
3332 
3333 out_free_mempol:
3334 	mpol_put(vma_policy(new_vma));
3335 out_free_vma:
3336 	vm_area_free(new_vma);
3337 out:
3338 	return NULL;
3339 }
3340 
3341 /*
3342  * Return true if the calling process may expand its vm space by the passed
3343  * number of pages
3344  */
3345 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3346 {
3347 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3348 		return false;
3349 
3350 	if (is_data_mapping(flags) &&
3351 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3352 		/* Workaround for Valgrind */
3353 		if (rlimit(RLIMIT_DATA) == 0 &&
3354 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3355 			return true;
3356 
3357 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3358 			     current->comm, current->pid,
3359 			     (mm->data_vm + npages) << PAGE_SHIFT,
3360 			     rlimit(RLIMIT_DATA),
3361 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3362 
3363 		if (!ignore_rlimit_data)
3364 			return false;
3365 	}
3366 
3367 	return true;
3368 }
3369 
3370 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3371 {
3372 	mm->total_vm += npages;
3373 
3374 	if (is_exec_mapping(flags))
3375 		mm->exec_vm += npages;
3376 	else if (is_stack_mapping(flags))
3377 		mm->stack_vm += npages;
3378 	else if (is_data_mapping(flags))
3379 		mm->data_vm += npages;
3380 }
3381 
3382 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3383 
3384 /*
3385  * Having a close hook prevents vma merging regardless of flags.
3386  */
3387 static void special_mapping_close(struct vm_area_struct *vma)
3388 {
3389 }
3390 
3391 static const char *special_mapping_name(struct vm_area_struct *vma)
3392 {
3393 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3394 }
3395 
3396 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3397 {
3398 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3399 
3400 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3401 		return -EFAULT;
3402 
3403 	if (sm->mremap)
3404 		return sm->mremap(sm, new_vma);
3405 
3406 	return 0;
3407 }
3408 
3409 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3410 {
3411 	/*
3412 	 * Forbid splitting special mappings - kernel has expectations over
3413 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3414 	 * the size of vma should stay the same over the special mapping's
3415 	 * lifetime.
3416 	 */
3417 	return -EINVAL;
3418 }
3419 
3420 static const struct vm_operations_struct special_mapping_vmops = {
3421 	.close = special_mapping_close,
3422 	.fault = special_mapping_fault,
3423 	.mremap = special_mapping_mremap,
3424 	.name = special_mapping_name,
3425 	/* vDSO code relies that VVAR can't be accessed remotely */
3426 	.access = NULL,
3427 	.may_split = special_mapping_split,
3428 };
3429 
3430 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3431 	.close = special_mapping_close,
3432 	.fault = special_mapping_fault,
3433 };
3434 
3435 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3436 {
3437 	struct vm_area_struct *vma = vmf->vma;
3438 	pgoff_t pgoff;
3439 	struct page **pages;
3440 
3441 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3442 		pages = vma->vm_private_data;
3443 	} else {
3444 		struct vm_special_mapping *sm = vma->vm_private_data;
3445 
3446 		if (sm->fault)
3447 			return sm->fault(sm, vmf->vma, vmf);
3448 
3449 		pages = sm->pages;
3450 	}
3451 
3452 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3453 		pgoff--;
3454 
3455 	if (*pages) {
3456 		struct page *page = *pages;
3457 		get_page(page);
3458 		vmf->page = page;
3459 		return 0;
3460 	}
3461 
3462 	return VM_FAULT_SIGBUS;
3463 }
3464 
3465 static struct vm_area_struct *__install_special_mapping(
3466 	struct mm_struct *mm,
3467 	unsigned long addr, unsigned long len,
3468 	unsigned long vm_flags, void *priv,
3469 	const struct vm_operations_struct *ops)
3470 {
3471 	int ret;
3472 	struct vm_area_struct *vma;
3473 
3474 	vma = vm_area_alloc(mm);
3475 	if (unlikely(vma == NULL))
3476 		return ERR_PTR(-ENOMEM);
3477 
3478 	vma->vm_start = addr;
3479 	vma->vm_end = addr + len;
3480 
3481 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3482 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3483 
3484 	vma->vm_ops = ops;
3485 	vma->vm_private_data = priv;
3486 
3487 	ret = insert_vm_struct(mm, vma);
3488 	if (ret)
3489 		goto out;
3490 
3491 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3492 
3493 	perf_event_mmap(vma);
3494 
3495 	return vma;
3496 
3497 out:
3498 	vm_area_free(vma);
3499 	return ERR_PTR(ret);
3500 }
3501 
3502 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3503 	const struct vm_special_mapping *sm)
3504 {
3505 	return vma->vm_private_data == sm &&
3506 		(vma->vm_ops == &special_mapping_vmops ||
3507 		 vma->vm_ops == &legacy_special_mapping_vmops);
3508 }
3509 
3510 /*
3511  * Called with mm->mmap_lock held for writing.
3512  * Insert a new vma covering the given region, with the given flags.
3513  * Its pages are supplied by the given array of struct page *.
3514  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3515  * The region past the last page supplied will always produce SIGBUS.
3516  * The array pointer and the pages it points to are assumed to stay alive
3517  * for as long as this mapping might exist.
3518  */
3519 struct vm_area_struct *_install_special_mapping(
3520 	struct mm_struct *mm,
3521 	unsigned long addr, unsigned long len,
3522 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3523 {
3524 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3525 					&special_mapping_vmops);
3526 }
3527 
3528 int install_special_mapping(struct mm_struct *mm,
3529 			    unsigned long addr, unsigned long len,
3530 			    unsigned long vm_flags, struct page **pages)
3531 {
3532 	struct vm_area_struct *vma = __install_special_mapping(
3533 		mm, addr, len, vm_flags, (void *)pages,
3534 		&legacy_special_mapping_vmops);
3535 
3536 	return PTR_ERR_OR_ZERO(vma);
3537 }
3538 
3539 static DEFINE_MUTEX(mm_all_locks_mutex);
3540 
3541 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3542 {
3543 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3544 		/*
3545 		 * The LSB of head.next can't change from under us
3546 		 * because we hold the mm_all_locks_mutex.
3547 		 */
3548 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3549 		/*
3550 		 * We can safely modify head.next after taking the
3551 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3552 		 * the same anon_vma we won't take it again.
3553 		 *
3554 		 * No need of atomic instructions here, head.next
3555 		 * can't change from under us thanks to the
3556 		 * anon_vma->root->rwsem.
3557 		 */
3558 		if (__test_and_set_bit(0, (unsigned long *)
3559 				       &anon_vma->root->rb_root.rb_root.rb_node))
3560 			BUG();
3561 	}
3562 }
3563 
3564 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3565 {
3566 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3567 		/*
3568 		 * AS_MM_ALL_LOCKS can't change from under us because
3569 		 * we hold the mm_all_locks_mutex.
3570 		 *
3571 		 * Operations on ->flags have to be atomic because
3572 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3573 		 * mm_all_locks_mutex, there may be other cpus
3574 		 * changing other bitflags in parallel to us.
3575 		 */
3576 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3577 			BUG();
3578 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3579 	}
3580 }
3581 
3582 /*
3583  * This operation locks against the VM for all pte/vma/mm related
3584  * operations that could ever happen on a certain mm. This includes
3585  * vmtruncate, try_to_unmap, and all page faults.
3586  *
3587  * The caller must take the mmap_lock in write mode before calling
3588  * mm_take_all_locks(). The caller isn't allowed to release the
3589  * mmap_lock until mm_drop_all_locks() returns.
3590  *
3591  * mmap_lock in write mode is required in order to block all operations
3592  * that could modify pagetables and free pages without need of
3593  * altering the vma layout. It's also needed in write mode to avoid new
3594  * anon_vmas to be associated with existing vmas.
3595  *
3596  * A single task can't take more than one mm_take_all_locks() in a row
3597  * or it would deadlock.
3598  *
3599  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3600  * mapping->flags avoid to take the same lock twice, if more than one
3601  * vma in this mm is backed by the same anon_vma or address_space.
3602  *
3603  * We take locks in following order, accordingly to comment at beginning
3604  * of mm/rmap.c:
3605  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3606  *     hugetlb mapping);
3607  *   - all i_mmap_rwsem locks;
3608  *   - all anon_vma->rwseml
3609  *
3610  * We can take all locks within these types randomly because the VM code
3611  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3612  * mm_all_locks_mutex.
3613  *
3614  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3615  * that may have to take thousand of locks.
3616  *
3617  * mm_take_all_locks() can fail if it's interrupted by signals.
3618  */
3619 int mm_take_all_locks(struct mm_struct *mm)
3620 {
3621 	struct vm_area_struct *vma;
3622 	struct anon_vma_chain *avc;
3623 
3624 	BUG_ON(mmap_read_trylock(mm));
3625 
3626 	mutex_lock(&mm_all_locks_mutex);
3627 
3628 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3629 		if (signal_pending(current))
3630 			goto out_unlock;
3631 		if (vma->vm_file && vma->vm_file->f_mapping &&
3632 				is_vm_hugetlb_page(vma))
3633 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3634 	}
3635 
3636 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3637 		if (signal_pending(current))
3638 			goto out_unlock;
3639 		if (vma->vm_file && vma->vm_file->f_mapping &&
3640 				!is_vm_hugetlb_page(vma))
3641 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3642 	}
3643 
3644 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3645 		if (signal_pending(current))
3646 			goto out_unlock;
3647 		if (vma->anon_vma)
3648 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3649 				vm_lock_anon_vma(mm, avc->anon_vma);
3650 	}
3651 
3652 	return 0;
3653 
3654 out_unlock:
3655 	mm_drop_all_locks(mm);
3656 	return -EINTR;
3657 }
3658 
3659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3660 {
3661 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3662 		/*
3663 		 * The LSB of head.next can't change to 0 from under
3664 		 * us because we hold the mm_all_locks_mutex.
3665 		 *
3666 		 * We must however clear the bitflag before unlocking
3667 		 * the vma so the users using the anon_vma->rb_root will
3668 		 * never see our bitflag.
3669 		 *
3670 		 * No need of atomic instructions here, head.next
3671 		 * can't change from under us until we release the
3672 		 * anon_vma->root->rwsem.
3673 		 */
3674 		if (!__test_and_clear_bit(0, (unsigned long *)
3675 					  &anon_vma->root->rb_root.rb_root.rb_node))
3676 			BUG();
3677 		anon_vma_unlock_write(anon_vma);
3678 	}
3679 }
3680 
3681 static void vm_unlock_mapping(struct address_space *mapping)
3682 {
3683 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3684 		/*
3685 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3686 		 * because we hold the mm_all_locks_mutex.
3687 		 */
3688 		i_mmap_unlock_write(mapping);
3689 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3690 					&mapping->flags))
3691 			BUG();
3692 	}
3693 }
3694 
3695 /*
3696  * The mmap_lock cannot be released by the caller until
3697  * mm_drop_all_locks() returns.
3698  */
3699 void mm_drop_all_locks(struct mm_struct *mm)
3700 {
3701 	struct vm_area_struct *vma;
3702 	struct anon_vma_chain *avc;
3703 
3704 	BUG_ON(mmap_read_trylock(mm));
3705 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3706 
3707 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3708 		if (vma->anon_vma)
3709 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3710 				vm_unlock_anon_vma(avc->anon_vma);
3711 		if (vma->vm_file && vma->vm_file->f_mapping)
3712 			vm_unlock_mapping(vma->vm_file->f_mapping);
3713 	}
3714 
3715 	mutex_unlock(&mm_all_locks_mutex);
3716 }
3717 
3718 /*
3719  * initialise the percpu counter for VM
3720  */
3721 void __init mmap_init(void)
3722 {
3723 	int ret;
3724 
3725 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3726 	VM_BUG_ON(ret);
3727 }
3728 
3729 /*
3730  * Initialise sysctl_user_reserve_kbytes.
3731  *
3732  * This is intended to prevent a user from starting a single memory hogging
3733  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3734  * mode.
3735  *
3736  * The default value is min(3% of free memory, 128MB)
3737  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3738  */
3739 static int init_user_reserve(void)
3740 {
3741 	unsigned long free_kbytes;
3742 
3743 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3744 
3745 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3746 	return 0;
3747 }
3748 subsys_initcall(init_user_reserve);
3749 
3750 /*
3751  * Initialise sysctl_admin_reserve_kbytes.
3752  *
3753  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3754  * to log in and kill a memory hogging process.
3755  *
3756  * Systems with more than 256MB will reserve 8MB, enough to recover
3757  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3758  * only reserve 3% of free pages by default.
3759  */
3760 static int init_admin_reserve(void)
3761 {
3762 	unsigned long free_kbytes;
3763 
3764 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3765 
3766 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3767 	return 0;
3768 }
3769 subsys_initcall(init_admin_reserve);
3770 
3771 /*
3772  * Reinititalise user and admin reserves if memory is added or removed.
3773  *
3774  * The default user reserve max is 128MB, and the default max for the
3775  * admin reserve is 8MB. These are usually, but not always, enough to
3776  * enable recovery from a memory hogging process using login/sshd, a shell,
3777  * and tools like top. It may make sense to increase or even disable the
3778  * reserve depending on the existence of swap or variations in the recovery
3779  * tools. So, the admin may have changed them.
3780  *
3781  * If memory is added and the reserves have been eliminated or increased above
3782  * the default max, then we'll trust the admin.
3783  *
3784  * If memory is removed and there isn't enough free memory, then we
3785  * need to reset the reserves.
3786  *
3787  * Otherwise keep the reserve set by the admin.
3788  */
3789 static int reserve_mem_notifier(struct notifier_block *nb,
3790 			     unsigned long action, void *data)
3791 {
3792 	unsigned long tmp, free_kbytes;
3793 
3794 	switch (action) {
3795 	case MEM_ONLINE:
3796 		/* Default max is 128MB. Leave alone if modified by operator. */
3797 		tmp = sysctl_user_reserve_kbytes;
3798 		if (0 < tmp && tmp < (1UL << 17))
3799 			init_user_reserve();
3800 
3801 		/* Default max is 8MB.  Leave alone if modified by operator. */
3802 		tmp = sysctl_admin_reserve_kbytes;
3803 		if (0 < tmp && tmp < (1UL << 13))
3804 			init_admin_reserve();
3805 
3806 		break;
3807 	case MEM_OFFLINE:
3808 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3809 
3810 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3811 			init_user_reserve();
3812 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3813 				sysctl_user_reserve_kbytes);
3814 		}
3815 
3816 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3817 			init_admin_reserve();
3818 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3819 				sysctl_admin_reserve_kbytes);
3820 		}
3821 		break;
3822 	default:
3823 		break;
3824 	}
3825 	return NOTIFY_OK;
3826 }
3827 
3828 static struct notifier_block reserve_mem_nb = {
3829 	.notifier_call = reserve_mem_notifier,
3830 };
3831 
3832 static int __meminit init_reserve_notifier(void)
3833 {
3834 	if (register_hotmemory_notifier(&reserve_mem_nb))
3835 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3836 
3837 	return 0;
3838 }
3839 subsys_initcall(init_reserve_notifier);
3840