xref: /openbmc/linux/mm/mmap.c (revision 26b32974)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 			unsigned long start, unsigned long end, gfp_t gfp)
159 {
160 	vmi->mas.index = start;
161 	vmi->mas.last = end - 1;
162 	mas_store_gfp(&vmi->mas, NULL, gfp);
163 	if (unlikely(mas_is_err(&vmi->mas)))
164 		return -ENOMEM;
165 
166 	return 0;
167 }
168 
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179 	unsigned long mapped_addr;
180 
181 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 	if (IS_ERR_VALUE(mapped_addr))
183 		return mapped_addr;
184 
185 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
186 		? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 		unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long newbrk, oldbrk, origbrk;
193 	struct mm_struct *mm = current->mm;
194 	struct vm_area_struct *brkvma, *next = NULL;
195 	unsigned long min_brk;
196 	bool populate;
197 	bool downgraded = false;
198 	LIST_HEAD(uf);
199 	struct vma_iterator vmi;
200 
201 	if (mmap_write_lock_killable(mm))
202 		return -EINTR;
203 
204 	origbrk = mm->brk;
205 
206 #ifdef CONFIG_COMPAT_BRK
207 	/*
208 	 * CONFIG_COMPAT_BRK can still be overridden by setting
209 	 * randomize_va_space to 2, which will still cause mm->start_brk
210 	 * to be arbitrarily shifted
211 	 */
212 	if (current->brk_randomized)
213 		min_brk = mm->start_brk;
214 	else
215 		min_brk = mm->end_data;
216 #else
217 	min_brk = mm->start_brk;
218 #endif
219 	if (brk < min_brk)
220 		goto out;
221 
222 	/*
223 	 * Check against rlimit here. If this check is done later after the test
224 	 * of oldbrk with newbrk then it can escape the test and let the data
225 	 * segment grow beyond its set limit the in case where the limit is
226 	 * not page aligned -Ram Gupta
227 	 */
228 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 			      mm->end_data, mm->start_data))
230 		goto out;
231 
232 	newbrk = PAGE_ALIGN(brk);
233 	oldbrk = PAGE_ALIGN(mm->brk);
234 	if (oldbrk == newbrk) {
235 		mm->brk = brk;
236 		goto success;
237 	}
238 
239 	/*
240 	 * Always allow shrinking brk.
241 	 * do_vma_munmap() may downgrade mmap_lock to read.
242 	 */
243 	if (brk <= mm->brk) {
244 		int ret;
245 
246 		/* Search one past newbrk */
247 		vma_iter_init(&vmi, mm, newbrk);
248 		brkvma = vma_find(&vmi, oldbrk);
249 		if (!brkvma || brkvma->vm_start >= oldbrk)
250 			goto out; /* mapping intersects with an existing non-brk vma. */
251 		/*
252 		 * mm->brk must be protected by write mmap_lock.
253 		 * do_vma_munmap() may downgrade the lock,  so update it
254 		 * before calling do_vma_munmap().
255 		 */
256 		mm->brk = brk;
257 		ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
258 		if (ret == 1)  {
259 			downgraded = true;
260 			goto success;
261 		} else if (!ret)
262 			goto success;
263 
264 		mm->brk = origbrk;
265 		goto out;
266 	}
267 
268 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
269 		goto out;
270 
271 	/*
272 	 * Only check if the next VMA is within the stack_guard_gap of the
273 	 * expansion area
274 	 */
275 	vma_iter_init(&vmi, mm, oldbrk);
276 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
277 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
278 		goto out;
279 
280 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
281 	/* Ok, looks good - let it rip. */
282 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
283 		goto out;
284 
285 	mm->brk = brk;
286 
287 success:
288 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
289 	if (downgraded)
290 		mmap_read_unlock(mm);
291 	else
292 		mmap_write_unlock(mm);
293 	userfaultfd_unmap_complete(mm, &uf);
294 	if (populate)
295 		mm_populate(oldbrk, newbrk - oldbrk);
296 	return brk;
297 
298 out:
299 	mmap_write_unlock(mm);
300 	return origbrk;
301 }
302 
303 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
304 static void validate_mm(struct mm_struct *mm)
305 {
306 	int bug = 0;
307 	int i = 0;
308 	struct vm_area_struct *vma;
309 	VMA_ITERATOR(vmi, mm, 0);
310 
311 	mt_validate(&mm->mm_mt);
312 	for_each_vma(vmi, vma) {
313 #ifdef CONFIG_DEBUG_VM_RB
314 		struct anon_vma *anon_vma = vma->anon_vma;
315 		struct anon_vma_chain *avc;
316 #endif
317 		unsigned long vmi_start, vmi_end;
318 		bool warn = 0;
319 
320 		vmi_start = vma_iter_addr(&vmi);
321 		vmi_end = vma_iter_end(&vmi);
322 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
323 			warn = 1;
324 
325 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
326 			warn = 1;
327 
328 		if (warn) {
329 			pr_emerg("issue in %s\n", current->comm);
330 			dump_stack();
331 			dump_vma(vma);
332 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
333 				 vmi_start, vmi_end - 1);
334 			vma_iter_dump_tree(&vmi);
335 		}
336 
337 #ifdef CONFIG_DEBUG_VM_RB
338 		if (anon_vma) {
339 			anon_vma_lock_read(anon_vma);
340 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
341 				anon_vma_interval_tree_verify(avc);
342 			anon_vma_unlock_read(anon_vma);
343 		}
344 #endif
345 		i++;
346 	}
347 	if (i != mm->map_count) {
348 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
349 		bug = 1;
350 	}
351 	VM_BUG_ON_MM(bug, mm);
352 }
353 
354 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
355 #define validate_mm(mm) do { } while (0)
356 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
357 
358 /*
359  * vma has some anon_vma assigned, and is already inserted on that
360  * anon_vma's interval trees.
361  *
362  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
363  * vma must be removed from the anon_vma's interval trees using
364  * anon_vma_interval_tree_pre_update_vma().
365  *
366  * After the update, the vma will be reinserted using
367  * anon_vma_interval_tree_post_update_vma().
368  *
369  * The entire update must be protected by exclusive mmap_lock and by
370  * the root anon_vma's mutex.
371  */
372 static inline void
373 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc;
376 
377 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
378 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
379 }
380 
381 static inline void
382 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
383 {
384 	struct anon_vma_chain *avc;
385 
386 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
387 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
388 }
389 
390 static unsigned long count_vma_pages_range(struct mm_struct *mm,
391 		unsigned long addr, unsigned long end)
392 {
393 	VMA_ITERATOR(vmi, mm, addr);
394 	struct vm_area_struct *vma;
395 	unsigned long nr_pages = 0;
396 
397 	for_each_vma_range(vmi, vma, end) {
398 		unsigned long vm_start = max(addr, vma->vm_start);
399 		unsigned long vm_end = min(end, vma->vm_end);
400 
401 		nr_pages += PHYS_PFN(vm_end - vm_start);
402 	}
403 
404 	return nr_pages;
405 }
406 
407 static void __vma_link_file(struct vm_area_struct *vma,
408 			    struct address_space *mapping)
409 {
410 	if (vma->vm_flags & VM_SHARED)
411 		mapping_allow_writable(mapping);
412 
413 	flush_dcache_mmap_lock(mapping);
414 	vma_interval_tree_insert(vma, &mapping->i_mmap);
415 	flush_dcache_mmap_unlock(mapping);
416 }
417 
418 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
419 {
420 	VMA_ITERATOR(vmi, mm, 0);
421 	struct address_space *mapping = NULL;
422 
423 	if (vma_iter_prealloc(&vmi))
424 		return -ENOMEM;
425 
426 	if (vma->vm_file) {
427 		mapping = vma->vm_file->f_mapping;
428 		i_mmap_lock_write(mapping);
429 	}
430 
431 	vma_iter_store(&vmi, vma);
432 
433 	if (mapping) {
434 		__vma_link_file(vma, mapping);
435 		i_mmap_unlock_write(mapping);
436 	}
437 
438 	mm->map_count++;
439 	validate_mm(mm);
440 	return 0;
441 }
442 
443 /*
444  * init_multi_vma_prep() - Initializer for struct vma_prepare
445  * @vp: The vma_prepare struct
446  * @vma: The vma that will be altered once locked
447  * @next: The next vma if it is to be adjusted
448  * @remove: The first vma to be removed
449  * @remove2: The second vma to be removed
450  */
451 static inline void init_multi_vma_prep(struct vma_prepare *vp,
452 		struct vm_area_struct *vma, struct vm_area_struct *next,
453 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
454 {
455 	memset(vp, 0, sizeof(struct vma_prepare));
456 	vp->vma = vma;
457 	vp->anon_vma = vma->anon_vma;
458 	vp->remove = remove;
459 	vp->remove2 = remove2;
460 	vp->adj_next = next;
461 	if (!vp->anon_vma && next)
462 		vp->anon_vma = next->anon_vma;
463 
464 	vp->file = vma->vm_file;
465 	if (vp->file)
466 		vp->mapping = vma->vm_file->f_mapping;
467 
468 }
469 
470 /*
471  * init_vma_prep() - Initializer wrapper for vma_prepare struct
472  * @vp: The vma_prepare struct
473  * @vma: The vma that will be altered once locked
474  */
475 static inline void init_vma_prep(struct vma_prepare *vp,
476 				 struct vm_area_struct *vma)
477 {
478 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
479 }
480 
481 
482 /*
483  * vma_prepare() - Helper function for handling locking VMAs prior to altering
484  * @vp: The initialized vma_prepare struct
485  */
486 static inline void vma_prepare(struct vma_prepare *vp)
487 {
488 	vma_start_write(vp->vma);
489 	if (vp->adj_next)
490 		vma_start_write(vp->adj_next);
491 	/* vp->insert is always a newly created VMA, no need for locking */
492 	if (vp->remove)
493 		vma_start_write(vp->remove);
494 	if (vp->remove2)
495 		vma_start_write(vp->remove2);
496 
497 	if (vp->file) {
498 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
499 
500 		if (vp->adj_next)
501 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
502 				      vp->adj_next->vm_end);
503 
504 		i_mmap_lock_write(vp->mapping);
505 		if (vp->insert && vp->insert->vm_file) {
506 			/*
507 			 * Put into interval tree now, so instantiated pages
508 			 * are visible to arm/parisc __flush_dcache_page
509 			 * throughout; but we cannot insert into address
510 			 * space until vma start or end is updated.
511 			 */
512 			__vma_link_file(vp->insert,
513 					vp->insert->vm_file->f_mapping);
514 		}
515 	}
516 
517 	if (vp->anon_vma) {
518 		anon_vma_lock_write(vp->anon_vma);
519 		anon_vma_interval_tree_pre_update_vma(vp->vma);
520 		if (vp->adj_next)
521 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
522 	}
523 
524 	if (vp->file) {
525 		flush_dcache_mmap_lock(vp->mapping);
526 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
527 		if (vp->adj_next)
528 			vma_interval_tree_remove(vp->adj_next,
529 						 &vp->mapping->i_mmap);
530 	}
531 
532 }
533 
534 /*
535  * vma_complete- Helper function for handling the unlocking after altering VMAs,
536  * or for inserting a VMA.
537  *
538  * @vp: The vma_prepare struct
539  * @vmi: The vma iterator
540  * @mm: The mm_struct
541  */
542 static inline void vma_complete(struct vma_prepare *vp,
543 				struct vma_iterator *vmi, struct mm_struct *mm)
544 {
545 	if (vp->file) {
546 		if (vp->adj_next)
547 			vma_interval_tree_insert(vp->adj_next,
548 						 &vp->mapping->i_mmap);
549 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
550 		flush_dcache_mmap_unlock(vp->mapping);
551 	}
552 
553 	if (vp->remove && vp->file) {
554 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
555 		if (vp->remove2)
556 			__remove_shared_vm_struct(vp->remove2, vp->file,
557 						  vp->mapping);
558 	} else if (vp->insert) {
559 		/*
560 		 * split_vma has split insert from vma, and needs
561 		 * us to insert it before dropping the locks
562 		 * (it may either follow vma or precede it).
563 		 */
564 		vma_iter_store(vmi, vp->insert);
565 		mm->map_count++;
566 	}
567 
568 	if (vp->anon_vma) {
569 		anon_vma_interval_tree_post_update_vma(vp->vma);
570 		if (vp->adj_next)
571 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
572 		anon_vma_unlock_write(vp->anon_vma);
573 	}
574 
575 	if (vp->file) {
576 		i_mmap_unlock_write(vp->mapping);
577 		uprobe_mmap(vp->vma);
578 
579 		if (vp->adj_next)
580 			uprobe_mmap(vp->adj_next);
581 	}
582 
583 	if (vp->remove) {
584 again:
585 		vma_mark_detached(vp->remove, true);
586 		if (vp->file) {
587 			uprobe_munmap(vp->remove, vp->remove->vm_start,
588 				      vp->remove->vm_end);
589 			fput(vp->file);
590 		}
591 		if (vp->remove->anon_vma)
592 			anon_vma_merge(vp->vma, vp->remove);
593 		mm->map_count--;
594 		mpol_put(vma_policy(vp->remove));
595 		if (!vp->remove2)
596 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
597 		vm_area_free(vp->remove);
598 
599 		/*
600 		 * In mprotect's case 6 (see comments on vma_merge),
601 		 * we are removing both mid and next vmas
602 		 */
603 		if (vp->remove2) {
604 			vp->remove = vp->remove2;
605 			vp->remove2 = NULL;
606 			goto again;
607 		}
608 	}
609 	if (vp->insert && vp->file)
610 		uprobe_mmap(vp->insert);
611 }
612 
613 /*
614  * dup_anon_vma() - Helper function to duplicate anon_vma
615  * @dst: The destination VMA
616  * @src: The source VMA
617  *
618  * Returns: 0 on success.
619  */
620 static inline int dup_anon_vma(struct vm_area_struct *dst,
621 			       struct vm_area_struct *src)
622 {
623 	/*
624 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
625 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
626 	 * anon pages imported.
627 	 */
628 	if (src->anon_vma && !dst->anon_vma) {
629 		dst->anon_vma = src->anon_vma;
630 		return anon_vma_clone(dst, src);
631 	}
632 
633 	return 0;
634 }
635 
636 /*
637  * vma_expand - Expand an existing VMA
638  *
639  * @vmi: The vma iterator
640  * @vma: The vma to expand
641  * @start: The start of the vma
642  * @end: The exclusive end of the vma
643  * @pgoff: The page offset of vma
644  * @next: The current of next vma.
645  *
646  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
647  * expand over @next if it's different from @vma and @end == @next->vm_end.
648  * Checking if the @vma can expand and merge with @next needs to be handled by
649  * the caller.
650  *
651  * Returns: 0 on success
652  */
653 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
654 	       unsigned long start, unsigned long end, pgoff_t pgoff,
655 	       struct vm_area_struct *next)
656 {
657 	bool remove_next = false;
658 	struct vma_prepare vp;
659 
660 	if (next && (vma != next) && (end == next->vm_end)) {
661 		int ret;
662 
663 		remove_next = true;
664 		ret = dup_anon_vma(vma, next);
665 		if (ret)
666 			return ret;
667 	}
668 
669 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
670 	/* Not merging but overwriting any part of next is not handled. */
671 	VM_WARN_ON(next && !vp.remove &&
672 		  next != vma && end > next->vm_start);
673 	/* Only handles expanding */
674 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
675 
676 	if (vma_iter_prealloc(vmi))
677 		goto nomem;
678 
679 	vma_prepare(&vp);
680 	vma_adjust_trans_huge(vma, start, end, 0);
681 	/* VMA iterator points to previous, so set to start if necessary */
682 	if (vma_iter_addr(vmi) != start)
683 		vma_iter_set(vmi, start);
684 
685 	vma->vm_start = start;
686 	vma->vm_end = end;
687 	vma->vm_pgoff = pgoff;
688 	/* Note: mas must be pointing to the expanding VMA */
689 	vma_iter_store(vmi, vma);
690 
691 	vma_complete(&vp, vmi, vma->vm_mm);
692 	validate_mm(vma->vm_mm);
693 	return 0;
694 
695 nomem:
696 	return -ENOMEM;
697 }
698 
699 /*
700  * vma_shrink() - Reduce an existing VMAs memory area
701  * @vmi: The vma iterator
702  * @vma: The VMA to modify
703  * @start: The new start
704  * @end: The new end
705  *
706  * Returns: 0 on success, -ENOMEM otherwise
707  */
708 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
709 	       unsigned long start, unsigned long end, pgoff_t pgoff)
710 {
711 	struct vma_prepare vp;
712 
713 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
714 
715 	if (vma_iter_prealloc(vmi))
716 		return -ENOMEM;
717 
718 	init_vma_prep(&vp, vma);
719 	vma_prepare(&vp);
720 	vma_adjust_trans_huge(vma, start, end, 0);
721 
722 	if (vma->vm_start < start)
723 		vma_iter_clear(vmi, vma->vm_start, start);
724 
725 	if (vma->vm_end > end)
726 		vma_iter_clear(vmi, end, vma->vm_end);
727 
728 	vma->vm_start = start;
729 	vma->vm_end = end;
730 	vma->vm_pgoff = pgoff;
731 	vma_complete(&vp, vmi, vma->vm_mm);
732 	validate_mm(vma->vm_mm);
733 	return 0;
734 }
735 
736 /*
737  * If the vma has a ->close operation then the driver probably needs to release
738  * per-vma resources, so we don't attempt to merge those if the caller indicates
739  * the current vma may be removed as part of the merge.
740  */
741 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
742 		struct file *file, unsigned long vm_flags,
743 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
744 		struct anon_vma_name *anon_name, bool may_remove_vma)
745 {
746 	/*
747 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
748 	 * match the flags but dirty bit -- the caller should mark
749 	 * merged VMA as dirty. If dirty bit won't be excluded from
750 	 * comparison, we increase pressure on the memory system forcing
751 	 * the kernel to generate new VMAs when old one could be
752 	 * extended instead.
753 	 */
754 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
755 		return false;
756 	if (vma->vm_file != file)
757 		return false;
758 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
759 		return false;
760 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
761 		return false;
762 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
763 		return false;
764 	return true;
765 }
766 
767 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
768 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
769 {
770 	/*
771 	 * The list_is_singular() test is to avoid merging VMA cloned from
772 	 * parents. This can improve scalability caused by anon_vma lock.
773 	 */
774 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
775 		list_is_singular(&vma->anon_vma_chain)))
776 		return true;
777 	return anon_vma1 == anon_vma2;
778 }
779 
780 /*
781  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
782  * in front of (at a lower virtual address and file offset than) the vma.
783  *
784  * We cannot merge two vmas if they have differently assigned (non-NULL)
785  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
786  *
787  * We don't check here for the merged mmap wrapping around the end of pagecache
788  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
789  * wrap, nor mmaps which cover the final page at index -1UL.
790  *
791  * We assume the vma may be removed as part of the merge.
792  */
793 static bool
794 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
795 		struct anon_vma *anon_vma, struct file *file,
796 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
797 		struct anon_vma_name *anon_name)
798 {
799 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
800 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
801 		if (vma->vm_pgoff == vm_pgoff)
802 			return true;
803 	}
804 	return false;
805 }
806 
807 /*
808  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
809  * beyond (at a higher virtual address and file offset than) the vma.
810  *
811  * We cannot merge two vmas if they have differently assigned (non-NULL)
812  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
813  *
814  * We assume that vma is not removed as part of the merge.
815  */
816 static bool
817 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
818 		struct anon_vma *anon_vma, struct file *file,
819 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
820 		struct anon_vma_name *anon_name)
821 {
822 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
823 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
824 		pgoff_t vm_pglen;
825 		vm_pglen = vma_pages(vma);
826 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
827 			return true;
828 	}
829 	return false;
830 }
831 
832 /*
833  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
834  * figure out whether that can be merged with its predecessor or its
835  * successor.  Or both (it neatly fills a hole).
836  *
837  * In most cases - when called for mmap, brk or mremap - [addr,end) is
838  * certain not to be mapped by the time vma_merge is called; but when
839  * called for mprotect, it is certain to be already mapped (either at
840  * an offset within prev, or at the start of next), and the flags of
841  * this area are about to be changed to vm_flags - and the no-change
842  * case has already been eliminated.
843  *
844  * The following mprotect cases have to be considered, where **** is
845  * the area passed down from mprotect_fixup, never extending beyond one
846  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
847  * at the same address as **** and is of the same or larger span, and
848  * NNNN the next vma after ****:
849  *
850  *     ****             ****                   ****
851  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
852  *    cannot merge    might become       might become
853  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
854  *    mmap, brk or    case 4 below       case 5 below
855  *    mremap move:
856  *                        ****               ****
857  *                    PPPP    NNNN       PPPPCCCCNNNN
858  *                    might become       might become
859  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
860  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
861  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
862  *
863  * It is important for case 8 that the vma CCCC overlapping the
864  * region **** is never going to extended over NNNN. Instead NNNN must
865  * be extended in region **** and CCCC must be removed. This way in
866  * all cases where vma_merge succeeds, the moment vma_merge drops the
867  * rmap_locks, the properties of the merged vma will be already
868  * correct for the whole merged range. Some of those properties like
869  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
870  * be correct for the whole merged range immediately after the
871  * rmap_locks are released. Otherwise if NNNN would be removed and
872  * CCCC would be extended over the NNNN range, remove_migration_ptes
873  * or other rmap walkers (if working on addresses beyond the "end"
874  * parameter) may establish ptes with the wrong permissions of CCCC
875  * instead of the right permissions of NNNN.
876  *
877  * In the code below:
878  * PPPP is represented by *prev
879  * CCCC is represented by *curr or not represented at all (NULL)
880  * NNNN is represented by *next or not represented at all (NULL)
881  * **** is not represented - it will be merged and the vma containing the
882  *      area is returned, or the function will return NULL
883  */
884 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
885 			struct vm_area_struct *prev, unsigned long addr,
886 			unsigned long end, unsigned long vm_flags,
887 			struct anon_vma *anon_vma, struct file *file,
888 			pgoff_t pgoff, struct mempolicy *policy,
889 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
890 			struct anon_vma_name *anon_name)
891 {
892 	struct vm_area_struct *curr, *next, *res;
893 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
894 	struct vma_prepare vp;
895 	pgoff_t vma_pgoff;
896 	int err = 0;
897 	bool merge_prev = false;
898 	bool merge_next = false;
899 	bool vma_expanded = false;
900 	unsigned long vma_start = addr;
901 	unsigned long vma_end = end;
902 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
903 	long adj_start = 0;
904 
905 	validate_mm(mm);
906 	/*
907 	 * We later require that vma->vm_flags == vm_flags,
908 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
909 	 */
910 	if (vm_flags & VM_SPECIAL)
911 		return NULL;
912 
913 	/* Does the input range span an existing VMA? (cases 5 - 8) */
914 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
915 
916 	if (!curr ||			/* cases 1 - 4 */
917 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
918 		next = vma_lookup(mm, end);
919 	else
920 		next = NULL;		/* case 5 */
921 
922 	if (prev) {
923 		vma_start = prev->vm_start;
924 		vma_pgoff = prev->vm_pgoff;
925 
926 		/* Can we merge the predecessor? */
927 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
928 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
929 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
930 			merge_prev = true;
931 			vma_prev(vmi);
932 		}
933 	}
934 
935 	/* Can we merge the successor? */
936 	if (next && mpol_equal(policy, vma_policy(next)) &&
937 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
938 				 vm_userfaultfd_ctx, anon_name)) {
939 		merge_next = true;
940 	}
941 
942 	/* Verify some invariant that must be enforced by the caller. */
943 	VM_WARN_ON(prev && addr <= prev->vm_start);
944 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
945 	VM_WARN_ON(addr >= end);
946 
947 	if (!merge_prev && !merge_next)
948 		return NULL; /* Not mergeable. */
949 
950 	res = vma = prev;
951 	remove = remove2 = adjust = NULL;
952 
953 	/* Can we merge both the predecessor and the successor? */
954 	if (merge_prev && merge_next &&
955 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
956 		remove = next;				/* case 1 */
957 		vma_end = next->vm_end;
958 		err = dup_anon_vma(prev, next);
959 		if (curr) {				/* case 6 */
960 			remove = curr;
961 			remove2 = next;
962 			if (!next->anon_vma)
963 				err = dup_anon_vma(prev, curr);
964 		}
965 	} else if (merge_prev) {			/* case 2 */
966 		if (curr) {
967 			err = dup_anon_vma(prev, curr);
968 			if (end == curr->vm_end) {	/* case 7 */
969 				remove = curr;
970 			} else {			/* case 5 */
971 				adjust = curr;
972 				adj_start = (end - curr->vm_start);
973 			}
974 		}
975 	} else { /* merge_next */
976 		res = next;
977 		if (prev && addr < prev->vm_end) {	/* case 4 */
978 			vma_end = addr;
979 			adjust = next;
980 			adj_start = -(prev->vm_end - addr);
981 			err = dup_anon_vma(next, prev);
982 		} else {
983 			/*
984 			 * Note that cases 3 and 8 are the ONLY ones where prev
985 			 * is permitted to be (but is not necessarily) NULL.
986 			 */
987 			vma = next;			/* case 3 */
988 			vma_start = addr;
989 			vma_end = next->vm_end;
990 			vma_pgoff = next->vm_pgoff - pglen;
991 			if (curr) {			/* case 8 */
992 				vma_pgoff = curr->vm_pgoff;
993 				remove = curr;
994 				err = dup_anon_vma(next, curr);
995 			}
996 		}
997 	}
998 
999 	/* Error in anon_vma clone. */
1000 	if (err)
1001 		return NULL;
1002 
1003 	if (vma_iter_prealloc(vmi))
1004 		return NULL;
1005 
1006 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1007 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1008 		   vp.anon_vma != adjust->anon_vma);
1009 
1010 	vma_prepare(&vp);
1011 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1012 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1013 		vma_expanded = true;
1014 
1015 	vma->vm_start = vma_start;
1016 	vma->vm_end = vma_end;
1017 	vma->vm_pgoff = vma_pgoff;
1018 
1019 	if (vma_expanded)
1020 		vma_iter_store(vmi, vma);
1021 
1022 	if (adj_start) {
1023 		adjust->vm_start += adj_start;
1024 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1025 		if (adj_start < 0) {
1026 			WARN_ON(vma_expanded);
1027 			vma_iter_store(vmi, next);
1028 		}
1029 	}
1030 
1031 	vma_complete(&vp, vmi, mm);
1032 	vma_iter_free(vmi);
1033 	validate_mm(mm);
1034 	khugepaged_enter_vma(res, vm_flags);
1035 
1036 	return res;
1037 }
1038 
1039 /*
1040  * Rough compatibility check to quickly see if it's even worth looking
1041  * at sharing an anon_vma.
1042  *
1043  * They need to have the same vm_file, and the flags can only differ
1044  * in things that mprotect may change.
1045  *
1046  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1047  * we can merge the two vma's. For example, we refuse to merge a vma if
1048  * there is a vm_ops->close() function, because that indicates that the
1049  * driver is doing some kind of reference counting. But that doesn't
1050  * really matter for the anon_vma sharing case.
1051  */
1052 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1053 {
1054 	return a->vm_end == b->vm_start &&
1055 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1056 		a->vm_file == b->vm_file &&
1057 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1058 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1059 }
1060 
1061 /*
1062  * Do some basic sanity checking to see if we can re-use the anon_vma
1063  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1064  * the same as 'old', the other will be the new one that is trying
1065  * to share the anon_vma.
1066  *
1067  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1068  * the anon_vma of 'old' is concurrently in the process of being set up
1069  * by another page fault trying to merge _that_. But that's ok: if it
1070  * is being set up, that automatically means that it will be a singleton
1071  * acceptable for merging, so we can do all of this optimistically. But
1072  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1073  *
1074  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1075  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1076  * is to return an anon_vma that is "complex" due to having gone through
1077  * a fork).
1078  *
1079  * We also make sure that the two vma's are compatible (adjacent,
1080  * and with the same memory policies). That's all stable, even with just
1081  * a read lock on the mmap_lock.
1082  */
1083 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1084 {
1085 	if (anon_vma_compatible(a, b)) {
1086 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1087 
1088 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1089 			return anon_vma;
1090 	}
1091 	return NULL;
1092 }
1093 
1094 /*
1095  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1096  * neighbouring vmas for a suitable anon_vma, before it goes off
1097  * to allocate a new anon_vma.  It checks because a repetitive
1098  * sequence of mprotects and faults may otherwise lead to distinct
1099  * anon_vmas being allocated, preventing vma merge in subsequent
1100  * mprotect.
1101  */
1102 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1103 {
1104 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1105 	struct anon_vma *anon_vma = NULL;
1106 	struct vm_area_struct *prev, *next;
1107 
1108 	/* Try next first. */
1109 	next = mas_walk(&mas);
1110 	if (next) {
1111 		anon_vma = reusable_anon_vma(next, vma, next);
1112 		if (anon_vma)
1113 			return anon_vma;
1114 	}
1115 
1116 	prev = mas_prev(&mas, 0);
1117 	VM_BUG_ON_VMA(prev != vma, vma);
1118 	prev = mas_prev(&mas, 0);
1119 	/* Try prev next. */
1120 	if (prev)
1121 		anon_vma = reusable_anon_vma(prev, prev, vma);
1122 
1123 	/*
1124 	 * We might reach here with anon_vma == NULL if we can't find
1125 	 * any reusable anon_vma.
1126 	 * There's no absolute need to look only at touching neighbours:
1127 	 * we could search further afield for "compatible" anon_vmas.
1128 	 * But it would probably just be a waste of time searching,
1129 	 * or lead to too many vmas hanging off the same anon_vma.
1130 	 * We're trying to allow mprotect remerging later on,
1131 	 * not trying to minimize memory used for anon_vmas.
1132 	 */
1133 	return anon_vma;
1134 }
1135 
1136 /*
1137  * If a hint addr is less than mmap_min_addr change hint to be as
1138  * low as possible but still greater than mmap_min_addr
1139  */
1140 static inline unsigned long round_hint_to_min(unsigned long hint)
1141 {
1142 	hint &= PAGE_MASK;
1143 	if (((void *)hint != NULL) &&
1144 	    (hint < mmap_min_addr))
1145 		return PAGE_ALIGN(mmap_min_addr);
1146 	return hint;
1147 }
1148 
1149 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1150 			unsigned long bytes)
1151 {
1152 	unsigned long locked_pages, limit_pages;
1153 
1154 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1155 		return true;
1156 
1157 	locked_pages = bytes >> PAGE_SHIFT;
1158 	locked_pages += mm->locked_vm;
1159 
1160 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1161 	limit_pages >>= PAGE_SHIFT;
1162 
1163 	return locked_pages <= limit_pages;
1164 }
1165 
1166 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1167 {
1168 	if (S_ISREG(inode->i_mode))
1169 		return MAX_LFS_FILESIZE;
1170 
1171 	if (S_ISBLK(inode->i_mode))
1172 		return MAX_LFS_FILESIZE;
1173 
1174 	if (S_ISSOCK(inode->i_mode))
1175 		return MAX_LFS_FILESIZE;
1176 
1177 	/* Special "we do even unsigned file positions" case */
1178 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1179 		return 0;
1180 
1181 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1182 	return ULONG_MAX;
1183 }
1184 
1185 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1186 				unsigned long pgoff, unsigned long len)
1187 {
1188 	u64 maxsize = file_mmap_size_max(file, inode);
1189 
1190 	if (maxsize && len > maxsize)
1191 		return false;
1192 	maxsize -= len;
1193 	if (pgoff > maxsize >> PAGE_SHIFT)
1194 		return false;
1195 	return true;
1196 }
1197 
1198 /*
1199  * The caller must write-lock current->mm->mmap_lock.
1200  */
1201 unsigned long do_mmap(struct file *file, unsigned long addr,
1202 			unsigned long len, unsigned long prot,
1203 			unsigned long flags, unsigned long pgoff,
1204 			unsigned long *populate, struct list_head *uf)
1205 {
1206 	struct mm_struct *mm = current->mm;
1207 	vm_flags_t vm_flags;
1208 	int pkey = 0;
1209 
1210 	validate_mm(mm);
1211 	*populate = 0;
1212 
1213 	if (!len)
1214 		return -EINVAL;
1215 
1216 	/*
1217 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1218 	 *
1219 	 * (the exception is when the underlying filesystem is noexec
1220 	 *  mounted, in which case we dont add PROT_EXEC.)
1221 	 */
1222 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1223 		if (!(file && path_noexec(&file->f_path)))
1224 			prot |= PROT_EXEC;
1225 
1226 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1227 	if (flags & MAP_FIXED_NOREPLACE)
1228 		flags |= MAP_FIXED;
1229 
1230 	if (!(flags & MAP_FIXED))
1231 		addr = round_hint_to_min(addr);
1232 
1233 	/* Careful about overflows.. */
1234 	len = PAGE_ALIGN(len);
1235 	if (!len)
1236 		return -ENOMEM;
1237 
1238 	/* offset overflow? */
1239 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1240 		return -EOVERFLOW;
1241 
1242 	/* Too many mappings? */
1243 	if (mm->map_count > sysctl_max_map_count)
1244 		return -ENOMEM;
1245 
1246 	/* Obtain the address to map to. we verify (or select) it and ensure
1247 	 * that it represents a valid section of the address space.
1248 	 */
1249 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1250 	if (IS_ERR_VALUE(addr))
1251 		return addr;
1252 
1253 	if (flags & MAP_FIXED_NOREPLACE) {
1254 		if (find_vma_intersection(mm, addr, addr + len))
1255 			return -EEXIST;
1256 	}
1257 
1258 	if (prot == PROT_EXEC) {
1259 		pkey = execute_only_pkey(mm);
1260 		if (pkey < 0)
1261 			pkey = 0;
1262 	}
1263 
1264 	/* Do simple checking here so the lower-level routines won't have
1265 	 * to. we assume access permissions have been handled by the open
1266 	 * of the memory object, so we don't do any here.
1267 	 */
1268 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270 
1271 	if (flags & MAP_LOCKED)
1272 		if (!can_do_mlock())
1273 			return -EPERM;
1274 
1275 	if (!mlock_future_ok(mm, vm_flags, len))
1276 		return -EAGAIN;
1277 
1278 	if (file) {
1279 		struct inode *inode = file_inode(file);
1280 		unsigned long flags_mask;
1281 
1282 		if (!file_mmap_ok(file, inode, pgoff, len))
1283 			return -EOVERFLOW;
1284 
1285 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1286 
1287 		switch (flags & MAP_TYPE) {
1288 		case MAP_SHARED:
1289 			/*
1290 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1291 			 * flags. E.g. MAP_SYNC is dangerous to use with
1292 			 * MAP_SHARED as you don't know which consistency model
1293 			 * you will get. We silently ignore unsupported flags
1294 			 * with MAP_SHARED to preserve backward compatibility.
1295 			 */
1296 			flags &= LEGACY_MAP_MASK;
1297 			fallthrough;
1298 		case MAP_SHARED_VALIDATE:
1299 			if (flags & ~flags_mask)
1300 				return -EOPNOTSUPP;
1301 			if (prot & PROT_WRITE) {
1302 				if (!(file->f_mode & FMODE_WRITE))
1303 					return -EACCES;
1304 				if (IS_SWAPFILE(file->f_mapping->host))
1305 					return -ETXTBSY;
1306 			}
1307 
1308 			/*
1309 			 * Make sure we don't allow writing to an append-only
1310 			 * file..
1311 			 */
1312 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1313 				return -EACCES;
1314 
1315 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1316 			if (!(file->f_mode & FMODE_WRITE))
1317 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1318 			fallthrough;
1319 		case MAP_PRIVATE:
1320 			if (!(file->f_mode & FMODE_READ))
1321 				return -EACCES;
1322 			if (path_noexec(&file->f_path)) {
1323 				if (vm_flags & VM_EXEC)
1324 					return -EPERM;
1325 				vm_flags &= ~VM_MAYEXEC;
1326 			}
1327 
1328 			if (!file->f_op->mmap)
1329 				return -ENODEV;
1330 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331 				return -EINVAL;
1332 			break;
1333 
1334 		default:
1335 			return -EINVAL;
1336 		}
1337 	} else {
1338 		switch (flags & MAP_TYPE) {
1339 		case MAP_SHARED:
1340 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1341 				return -EINVAL;
1342 			/*
1343 			 * Ignore pgoff.
1344 			 */
1345 			pgoff = 0;
1346 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1347 			break;
1348 		case MAP_PRIVATE:
1349 			/*
1350 			 * Set pgoff according to addr for anon_vma.
1351 			 */
1352 			pgoff = addr >> PAGE_SHIFT;
1353 			break;
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * Set 'VM_NORESERVE' if we should not account for the
1361 	 * memory use of this mapping.
1362 	 */
1363 	if (flags & MAP_NORESERVE) {
1364 		/* We honor MAP_NORESERVE if allowed to overcommit */
1365 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366 			vm_flags |= VM_NORESERVE;
1367 
1368 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369 		if (file && is_file_hugepages(file))
1370 			vm_flags |= VM_NORESERVE;
1371 	}
1372 
1373 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1374 	if (!IS_ERR_VALUE(addr) &&
1375 	    ((vm_flags & VM_LOCKED) ||
1376 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1377 		*populate = len;
1378 	return addr;
1379 }
1380 
1381 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1382 			      unsigned long prot, unsigned long flags,
1383 			      unsigned long fd, unsigned long pgoff)
1384 {
1385 	struct file *file = NULL;
1386 	unsigned long retval;
1387 
1388 	if (!(flags & MAP_ANONYMOUS)) {
1389 		audit_mmap_fd(fd, flags);
1390 		file = fget(fd);
1391 		if (!file)
1392 			return -EBADF;
1393 		if (is_file_hugepages(file)) {
1394 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1395 		} else if (unlikely(flags & MAP_HUGETLB)) {
1396 			retval = -EINVAL;
1397 			goto out_fput;
1398 		}
1399 	} else if (flags & MAP_HUGETLB) {
1400 		struct hstate *hs;
1401 
1402 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1403 		if (!hs)
1404 			return -EINVAL;
1405 
1406 		len = ALIGN(len, huge_page_size(hs));
1407 		/*
1408 		 * VM_NORESERVE is used because the reservations will be
1409 		 * taken when vm_ops->mmap() is called
1410 		 */
1411 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1412 				VM_NORESERVE,
1413 				HUGETLB_ANONHUGE_INODE,
1414 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415 		if (IS_ERR(file))
1416 			return PTR_ERR(file);
1417 	}
1418 
1419 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1420 out_fput:
1421 	if (file)
1422 		fput(file);
1423 	return retval;
1424 }
1425 
1426 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1427 		unsigned long, prot, unsigned long, flags,
1428 		unsigned long, fd, unsigned long, pgoff)
1429 {
1430 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1431 }
1432 
1433 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1434 struct mmap_arg_struct {
1435 	unsigned long addr;
1436 	unsigned long len;
1437 	unsigned long prot;
1438 	unsigned long flags;
1439 	unsigned long fd;
1440 	unsigned long offset;
1441 };
1442 
1443 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1444 {
1445 	struct mmap_arg_struct a;
1446 
1447 	if (copy_from_user(&a, arg, sizeof(a)))
1448 		return -EFAULT;
1449 	if (offset_in_page(a.offset))
1450 		return -EINVAL;
1451 
1452 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1453 			       a.offset >> PAGE_SHIFT);
1454 }
1455 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1456 
1457 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1458 {
1459 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1460 }
1461 
1462 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1463 {
1464 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1465 		(VM_WRITE | VM_SHARED);
1466 }
1467 
1468 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1469 {
1470 	/* No managed pages to writeback. */
1471 	if (vma->vm_flags & VM_PFNMAP)
1472 		return false;
1473 
1474 	return vma->vm_file && vma->vm_file->f_mapping &&
1475 		mapping_can_writeback(vma->vm_file->f_mapping);
1476 }
1477 
1478 /*
1479  * Does this VMA require the underlying folios to have their dirty state
1480  * tracked?
1481  */
1482 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1483 {
1484 	/* Only shared, writable VMAs require dirty tracking. */
1485 	if (!vma_is_shared_writable(vma))
1486 		return false;
1487 
1488 	/* Does the filesystem need to be notified? */
1489 	if (vm_ops_needs_writenotify(vma->vm_ops))
1490 		return true;
1491 
1492 	/*
1493 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1494 	 * can writeback, dirty tracking is still required.
1495 	 */
1496 	return vma_fs_can_writeback(vma);
1497 }
1498 
1499 /*
1500  * Some shared mappings will want the pages marked read-only
1501  * to track write events. If so, we'll downgrade vm_page_prot
1502  * to the private version (using protection_map[] without the
1503  * VM_SHARED bit).
1504  */
1505 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1506 {
1507 	/* If it was private or non-writable, the write bit is already clear */
1508 	if (!vma_is_shared_writable(vma))
1509 		return 0;
1510 
1511 	/* The backer wishes to know when pages are first written to? */
1512 	if (vm_ops_needs_writenotify(vma->vm_ops))
1513 		return 1;
1514 
1515 	/* The open routine did something to the protections that pgprot_modify
1516 	 * won't preserve? */
1517 	if (pgprot_val(vm_page_prot) !=
1518 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1519 		return 0;
1520 
1521 	/*
1522 	 * Do we need to track softdirty? hugetlb does not support softdirty
1523 	 * tracking yet.
1524 	 */
1525 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1526 		return 1;
1527 
1528 	/* Do we need write faults for uffd-wp tracking? */
1529 	if (userfaultfd_wp(vma))
1530 		return 1;
1531 
1532 	/* Can the mapping track the dirty pages? */
1533 	return vma_fs_can_writeback(vma);
1534 }
1535 
1536 /*
1537  * We account for memory if it's a private writeable mapping,
1538  * not hugepages and VM_NORESERVE wasn't set.
1539  */
1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1541 {
1542 	/*
1543 	 * hugetlb has its own accounting separate from the core VM
1544 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1545 	 */
1546 	if (file && is_file_hugepages(file))
1547 		return 0;
1548 
1549 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1550 }
1551 
1552 /**
1553  * unmapped_area() - Find an area between the low_limit and the high_limit with
1554  * the correct alignment and offset, all from @info. Note: current->mm is used
1555  * for the search.
1556  *
1557  * @info: The unmapped area information including the range [low_limit -
1558  * high_limit), the alignment offset and mask.
1559  *
1560  * Return: A memory address or -ENOMEM.
1561  */
1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1563 {
1564 	unsigned long length, gap;
1565 	unsigned long low_limit, high_limit;
1566 	struct vm_area_struct *tmp;
1567 
1568 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1569 
1570 	/* Adjust search length to account for worst case alignment overhead */
1571 	length = info->length + info->align_mask;
1572 	if (length < info->length)
1573 		return -ENOMEM;
1574 
1575 	low_limit = info->low_limit;
1576 	if (low_limit < mmap_min_addr)
1577 		low_limit = mmap_min_addr;
1578 	high_limit = info->high_limit;
1579 retry:
1580 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1581 		return -ENOMEM;
1582 
1583 	gap = mas.index;
1584 	gap += (info->align_offset - gap) & info->align_mask;
1585 	tmp = mas_next(&mas, ULONG_MAX);
1586 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1587 		if (vm_start_gap(tmp) < gap + length - 1) {
1588 			low_limit = tmp->vm_end;
1589 			mas_reset(&mas);
1590 			goto retry;
1591 		}
1592 	} else {
1593 		tmp = mas_prev(&mas, 0);
1594 		if (tmp && vm_end_gap(tmp) > gap) {
1595 			low_limit = vm_end_gap(tmp);
1596 			mas_reset(&mas);
1597 			goto retry;
1598 		}
1599 	}
1600 
1601 	return gap;
1602 }
1603 
1604 /**
1605  * unmapped_area_topdown() - Find an area between the low_limit and the
1606  * high_limit with the correct alignment and offset at the highest available
1607  * address, all from @info. Note: current->mm is used for the search.
1608  *
1609  * @info: The unmapped area information including the range [low_limit -
1610  * high_limit), the alignment offset and mask.
1611  *
1612  * Return: A memory address or -ENOMEM.
1613  */
1614 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1615 {
1616 	unsigned long length, gap, gap_end;
1617 	unsigned long low_limit, high_limit;
1618 	struct vm_area_struct *tmp;
1619 
1620 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1621 	/* Adjust search length to account for worst case alignment overhead */
1622 	length = info->length + info->align_mask;
1623 	if (length < info->length)
1624 		return -ENOMEM;
1625 
1626 	low_limit = info->low_limit;
1627 	if (low_limit < mmap_min_addr)
1628 		low_limit = mmap_min_addr;
1629 	high_limit = info->high_limit;
1630 retry:
1631 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1632 		return -ENOMEM;
1633 
1634 	gap = mas.last + 1 - info->length;
1635 	gap -= (gap - info->align_offset) & info->align_mask;
1636 	gap_end = mas.last;
1637 	tmp = mas_next(&mas, ULONG_MAX);
1638 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1639 		if (vm_start_gap(tmp) <= gap_end) {
1640 			high_limit = vm_start_gap(tmp);
1641 			mas_reset(&mas);
1642 			goto retry;
1643 		}
1644 	} else {
1645 		tmp = mas_prev(&mas, 0);
1646 		if (tmp && vm_end_gap(tmp) > gap) {
1647 			high_limit = tmp->vm_start;
1648 			mas_reset(&mas);
1649 			goto retry;
1650 		}
1651 	}
1652 
1653 	return gap;
1654 }
1655 
1656 /*
1657  * Search for an unmapped address range.
1658  *
1659  * We are looking for a range that:
1660  * - does not intersect with any VMA;
1661  * - is contained within the [low_limit, high_limit) interval;
1662  * - is at least the desired size.
1663  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1664  */
1665 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1666 {
1667 	unsigned long addr;
1668 
1669 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1670 		addr = unmapped_area_topdown(info);
1671 	else
1672 		addr = unmapped_area(info);
1673 
1674 	trace_vm_unmapped_area(addr, info);
1675 	return addr;
1676 }
1677 
1678 /* Get an address range which is currently unmapped.
1679  * For shmat() with addr=0.
1680  *
1681  * Ugly calling convention alert:
1682  * Return value with the low bits set means error value,
1683  * ie
1684  *	if (ret & ~PAGE_MASK)
1685  *		error = ret;
1686  *
1687  * This function "knows" that -ENOMEM has the bits set.
1688  */
1689 unsigned long
1690 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1691 			  unsigned long len, unsigned long pgoff,
1692 			  unsigned long flags)
1693 {
1694 	struct mm_struct *mm = current->mm;
1695 	struct vm_area_struct *vma, *prev;
1696 	struct vm_unmapped_area_info info;
1697 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1698 
1699 	if (len > mmap_end - mmap_min_addr)
1700 		return -ENOMEM;
1701 
1702 	if (flags & MAP_FIXED)
1703 		return addr;
1704 
1705 	if (addr) {
1706 		addr = PAGE_ALIGN(addr);
1707 		vma = find_vma_prev(mm, addr, &prev);
1708 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1709 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1710 		    (!prev || addr >= vm_end_gap(prev)))
1711 			return addr;
1712 	}
1713 
1714 	info.flags = 0;
1715 	info.length = len;
1716 	info.low_limit = mm->mmap_base;
1717 	info.high_limit = mmap_end;
1718 	info.align_mask = 0;
1719 	info.align_offset = 0;
1720 	return vm_unmapped_area(&info);
1721 }
1722 
1723 #ifndef HAVE_ARCH_UNMAPPED_AREA
1724 unsigned long
1725 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1726 		       unsigned long len, unsigned long pgoff,
1727 		       unsigned long flags)
1728 {
1729 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1730 }
1731 #endif
1732 
1733 /*
1734  * This mmap-allocator allocates new areas top-down from below the
1735  * stack's low limit (the base):
1736  */
1737 unsigned long
1738 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1739 				  unsigned long len, unsigned long pgoff,
1740 				  unsigned long flags)
1741 {
1742 	struct vm_area_struct *vma, *prev;
1743 	struct mm_struct *mm = current->mm;
1744 	struct vm_unmapped_area_info info;
1745 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1746 
1747 	/* requested length too big for entire address space */
1748 	if (len > mmap_end - mmap_min_addr)
1749 		return -ENOMEM;
1750 
1751 	if (flags & MAP_FIXED)
1752 		return addr;
1753 
1754 	/* requesting a specific address */
1755 	if (addr) {
1756 		addr = PAGE_ALIGN(addr);
1757 		vma = find_vma_prev(mm, addr, &prev);
1758 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1759 				(!vma || addr + len <= vm_start_gap(vma)) &&
1760 				(!prev || addr >= vm_end_gap(prev)))
1761 			return addr;
1762 	}
1763 
1764 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1765 	info.length = len;
1766 	info.low_limit = PAGE_SIZE;
1767 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1768 	info.align_mask = 0;
1769 	info.align_offset = 0;
1770 	addr = vm_unmapped_area(&info);
1771 
1772 	/*
1773 	 * A failed mmap() very likely causes application failure,
1774 	 * so fall back to the bottom-up function here. This scenario
1775 	 * can happen with large stack limits and large mmap()
1776 	 * allocations.
1777 	 */
1778 	if (offset_in_page(addr)) {
1779 		VM_BUG_ON(addr != -ENOMEM);
1780 		info.flags = 0;
1781 		info.low_limit = TASK_UNMAPPED_BASE;
1782 		info.high_limit = mmap_end;
1783 		addr = vm_unmapped_area(&info);
1784 	}
1785 
1786 	return addr;
1787 }
1788 
1789 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1790 unsigned long
1791 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1792 			       unsigned long len, unsigned long pgoff,
1793 			       unsigned long flags)
1794 {
1795 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1796 }
1797 #endif
1798 
1799 unsigned long
1800 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1801 		unsigned long pgoff, unsigned long flags)
1802 {
1803 	unsigned long (*get_area)(struct file *, unsigned long,
1804 				  unsigned long, unsigned long, unsigned long);
1805 
1806 	unsigned long error = arch_mmap_check(addr, len, flags);
1807 	if (error)
1808 		return error;
1809 
1810 	/* Careful about overflows.. */
1811 	if (len > TASK_SIZE)
1812 		return -ENOMEM;
1813 
1814 	get_area = current->mm->get_unmapped_area;
1815 	if (file) {
1816 		if (file->f_op->get_unmapped_area)
1817 			get_area = file->f_op->get_unmapped_area;
1818 	} else if (flags & MAP_SHARED) {
1819 		/*
1820 		 * mmap_region() will call shmem_zero_setup() to create a file,
1821 		 * so use shmem's get_unmapped_area in case it can be huge.
1822 		 * do_mmap() will clear pgoff, so match alignment.
1823 		 */
1824 		pgoff = 0;
1825 		get_area = shmem_get_unmapped_area;
1826 	}
1827 
1828 	addr = get_area(file, addr, len, pgoff, flags);
1829 	if (IS_ERR_VALUE(addr))
1830 		return addr;
1831 
1832 	if (addr > TASK_SIZE - len)
1833 		return -ENOMEM;
1834 	if (offset_in_page(addr))
1835 		return -EINVAL;
1836 
1837 	error = security_mmap_addr(addr);
1838 	return error ? error : addr;
1839 }
1840 
1841 EXPORT_SYMBOL(get_unmapped_area);
1842 
1843 /**
1844  * find_vma_intersection() - Look up the first VMA which intersects the interval
1845  * @mm: The process address space.
1846  * @start_addr: The inclusive start user address.
1847  * @end_addr: The exclusive end user address.
1848  *
1849  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1850  * start_addr < end_addr.
1851  */
1852 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1853 					     unsigned long start_addr,
1854 					     unsigned long end_addr)
1855 {
1856 	unsigned long index = start_addr;
1857 
1858 	mmap_assert_locked(mm);
1859 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1860 }
1861 EXPORT_SYMBOL(find_vma_intersection);
1862 
1863 /**
1864  * find_vma() - Find the VMA for a given address, or the next VMA.
1865  * @mm: The mm_struct to check
1866  * @addr: The address
1867  *
1868  * Returns: The VMA associated with addr, or the next VMA.
1869  * May return %NULL in the case of no VMA at addr or above.
1870  */
1871 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1872 {
1873 	unsigned long index = addr;
1874 
1875 	mmap_assert_locked(mm);
1876 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1877 }
1878 EXPORT_SYMBOL(find_vma);
1879 
1880 /**
1881  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1882  * set %pprev to the previous VMA, if any.
1883  * @mm: The mm_struct to check
1884  * @addr: The address
1885  * @pprev: The pointer to set to the previous VMA
1886  *
1887  * Note that RCU lock is missing here since the external mmap_lock() is used
1888  * instead.
1889  *
1890  * Returns: The VMA associated with @addr, or the next vma.
1891  * May return %NULL in the case of no vma at addr or above.
1892  */
1893 struct vm_area_struct *
1894 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1895 			struct vm_area_struct **pprev)
1896 {
1897 	struct vm_area_struct *vma;
1898 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1899 
1900 	vma = mas_walk(&mas);
1901 	*pprev = mas_prev(&mas, 0);
1902 	if (!vma)
1903 		vma = mas_next(&mas, ULONG_MAX);
1904 	return vma;
1905 }
1906 
1907 /*
1908  * Verify that the stack growth is acceptable and
1909  * update accounting. This is shared with both the
1910  * grow-up and grow-down cases.
1911  */
1912 static int acct_stack_growth(struct vm_area_struct *vma,
1913 			     unsigned long size, unsigned long grow)
1914 {
1915 	struct mm_struct *mm = vma->vm_mm;
1916 	unsigned long new_start;
1917 
1918 	/* address space limit tests */
1919 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1920 		return -ENOMEM;
1921 
1922 	/* Stack limit test */
1923 	if (size > rlimit(RLIMIT_STACK))
1924 		return -ENOMEM;
1925 
1926 	/* mlock limit tests */
1927 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1928 		return -ENOMEM;
1929 
1930 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1931 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1932 			vma->vm_end - size;
1933 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1934 		return -EFAULT;
1935 
1936 	/*
1937 	 * Overcommit..  This must be the final test, as it will
1938 	 * update security statistics.
1939 	 */
1940 	if (security_vm_enough_memory_mm(mm, grow))
1941 		return -ENOMEM;
1942 
1943 	return 0;
1944 }
1945 
1946 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1947 /*
1948  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1949  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1950  */
1951 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1952 {
1953 	struct mm_struct *mm = vma->vm_mm;
1954 	struct vm_area_struct *next;
1955 	unsigned long gap_addr;
1956 	int error = 0;
1957 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1958 
1959 	if (!(vma->vm_flags & VM_GROWSUP))
1960 		return -EFAULT;
1961 
1962 	/* Guard against exceeding limits of the address space. */
1963 	address &= PAGE_MASK;
1964 	if (address >= (TASK_SIZE & PAGE_MASK))
1965 		return -ENOMEM;
1966 	address += PAGE_SIZE;
1967 
1968 	/* Enforce stack_guard_gap */
1969 	gap_addr = address + stack_guard_gap;
1970 
1971 	/* Guard against overflow */
1972 	if (gap_addr < address || gap_addr > TASK_SIZE)
1973 		gap_addr = TASK_SIZE;
1974 
1975 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1976 	if (next && vma_is_accessible(next)) {
1977 		if (!(next->vm_flags & VM_GROWSUP))
1978 			return -ENOMEM;
1979 		/* Check that both stack segments have the same anon_vma? */
1980 	}
1981 
1982 	if (mas_preallocate(&mas, GFP_KERNEL))
1983 		return -ENOMEM;
1984 
1985 	/* We must make sure the anon_vma is allocated. */
1986 	if (unlikely(anon_vma_prepare(vma))) {
1987 		mas_destroy(&mas);
1988 		return -ENOMEM;
1989 	}
1990 
1991 	/*
1992 	 * vma->vm_start/vm_end cannot change under us because the caller
1993 	 * is required to hold the mmap_lock in read mode.  We need the
1994 	 * anon_vma lock to serialize against concurrent expand_stacks.
1995 	 */
1996 	anon_vma_lock_write(vma->anon_vma);
1997 
1998 	/* Somebody else might have raced and expanded it already */
1999 	if (address > vma->vm_end) {
2000 		unsigned long size, grow;
2001 
2002 		size = address - vma->vm_start;
2003 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2004 
2005 		error = -ENOMEM;
2006 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2007 			error = acct_stack_growth(vma, size, grow);
2008 			if (!error) {
2009 				/*
2010 				 * We only hold a shared mmap_lock lock here, so
2011 				 * we need to protect against concurrent vma
2012 				 * expansions.  anon_vma_lock_write() doesn't
2013 				 * help here, as we don't guarantee that all
2014 				 * growable vmas in a mm share the same root
2015 				 * anon vma.  So, we reuse mm->page_table_lock
2016 				 * to guard against concurrent vma expansions.
2017 				 */
2018 				spin_lock(&mm->page_table_lock);
2019 				if (vma->vm_flags & VM_LOCKED)
2020 					mm->locked_vm += grow;
2021 				vm_stat_account(mm, vma->vm_flags, grow);
2022 				anon_vma_interval_tree_pre_update_vma(vma);
2023 				vma->vm_end = address;
2024 				/* Overwrite old entry in mtree. */
2025 				mas_set_range(&mas, vma->vm_start, address - 1);
2026 				mas_store_prealloc(&mas, vma);
2027 				anon_vma_interval_tree_post_update_vma(vma);
2028 				spin_unlock(&mm->page_table_lock);
2029 
2030 				perf_event_mmap(vma);
2031 			}
2032 		}
2033 	}
2034 	anon_vma_unlock_write(vma->anon_vma);
2035 	khugepaged_enter_vma(vma, vma->vm_flags);
2036 	mas_destroy(&mas);
2037 	return error;
2038 }
2039 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2040 
2041 /*
2042  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2043  */
2044 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2045 {
2046 	struct mm_struct *mm = vma->vm_mm;
2047 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2048 	struct vm_area_struct *prev;
2049 	int error = 0;
2050 
2051 	address &= PAGE_MASK;
2052 	if (address < mmap_min_addr)
2053 		return -EPERM;
2054 
2055 	/* Enforce stack_guard_gap */
2056 	prev = mas_prev(&mas, 0);
2057 	/* Check that both stack segments have the same anon_vma? */
2058 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2059 			vma_is_accessible(prev)) {
2060 		if (address - prev->vm_end < stack_guard_gap)
2061 			return -ENOMEM;
2062 	}
2063 
2064 	if (mas_preallocate(&mas, GFP_KERNEL))
2065 		return -ENOMEM;
2066 
2067 	/* We must make sure the anon_vma is allocated. */
2068 	if (unlikely(anon_vma_prepare(vma))) {
2069 		mas_destroy(&mas);
2070 		return -ENOMEM;
2071 	}
2072 
2073 	/*
2074 	 * vma->vm_start/vm_end cannot change under us because the caller
2075 	 * is required to hold the mmap_lock in read mode.  We need the
2076 	 * anon_vma lock to serialize against concurrent expand_stacks.
2077 	 */
2078 	anon_vma_lock_write(vma->anon_vma);
2079 
2080 	/* Somebody else might have raced and expanded it already */
2081 	if (address < vma->vm_start) {
2082 		unsigned long size, grow;
2083 
2084 		size = vma->vm_end - address;
2085 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2086 
2087 		error = -ENOMEM;
2088 		if (grow <= vma->vm_pgoff) {
2089 			error = acct_stack_growth(vma, size, grow);
2090 			if (!error) {
2091 				/*
2092 				 * We only hold a shared mmap_lock lock here, so
2093 				 * we need to protect against concurrent vma
2094 				 * expansions.  anon_vma_lock_write() doesn't
2095 				 * help here, as we don't guarantee that all
2096 				 * growable vmas in a mm share the same root
2097 				 * anon vma.  So, we reuse mm->page_table_lock
2098 				 * to guard against concurrent vma expansions.
2099 				 */
2100 				spin_lock(&mm->page_table_lock);
2101 				if (vma->vm_flags & VM_LOCKED)
2102 					mm->locked_vm += grow;
2103 				vm_stat_account(mm, vma->vm_flags, grow);
2104 				anon_vma_interval_tree_pre_update_vma(vma);
2105 				vma->vm_start = address;
2106 				vma->vm_pgoff -= grow;
2107 				/* Overwrite old entry in mtree. */
2108 				mas_set_range(&mas, address, vma->vm_end - 1);
2109 				mas_store_prealloc(&mas, vma);
2110 				anon_vma_interval_tree_post_update_vma(vma);
2111 				spin_unlock(&mm->page_table_lock);
2112 
2113 				perf_event_mmap(vma);
2114 			}
2115 		}
2116 	}
2117 	anon_vma_unlock_write(vma->anon_vma);
2118 	khugepaged_enter_vma(vma, vma->vm_flags);
2119 	mas_destroy(&mas);
2120 	return error;
2121 }
2122 
2123 /* enforced gap between the expanding stack and other mappings. */
2124 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2125 
2126 static int __init cmdline_parse_stack_guard_gap(char *p)
2127 {
2128 	unsigned long val;
2129 	char *endptr;
2130 
2131 	val = simple_strtoul(p, &endptr, 10);
2132 	if (!*endptr)
2133 		stack_guard_gap = val << PAGE_SHIFT;
2134 
2135 	return 1;
2136 }
2137 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2138 
2139 #ifdef CONFIG_STACK_GROWSUP
2140 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2141 {
2142 	return expand_upwards(vma, address);
2143 }
2144 
2145 struct vm_area_struct *
2146 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2147 {
2148 	struct vm_area_struct *vma, *prev;
2149 
2150 	addr &= PAGE_MASK;
2151 	vma = find_vma_prev(mm, addr, &prev);
2152 	if (vma && (vma->vm_start <= addr))
2153 		return vma;
2154 	if (!prev || expand_stack(prev, addr))
2155 		return NULL;
2156 	if (prev->vm_flags & VM_LOCKED)
2157 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2158 	return prev;
2159 }
2160 #else
2161 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2162 {
2163 	return expand_downwards(vma, address);
2164 }
2165 
2166 struct vm_area_struct *
2167 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2168 {
2169 	struct vm_area_struct *vma;
2170 	unsigned long start;
2171 
2172 	addr &= PAGE_MASK;
2173 	vma = find_vma(mm, addr);
2174 	if (!vma)
2175 		return NULL;
2176 	if (vma->vm_start <= addr)
2177 		return vma;
2178 	if (!(vma->vm_flags & VM_GROWSDOWN))
2179 		return NULL;
2180 	start = vma->vm_start;
2181 	if (expand_stack(vma, addr))
2182 		return NULL;
2183 	if (vma->vm_flags & VM_LOCKED)
2184 		populate_vma_page_range(vma, addr, start, NULL);
2185 	return vma;
2186 }
2187 #endif
2188 
2189 EXPORT_SYMBOL_GPL(find_extend_vma);
2190 
2191 /*
2192  * Ok - we have the memory areas we should free on a maple tree so release them,
2193  * and do the vma updates.
2194  *
2195  * Called with the mm semaphore held.
2196  */
2197 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2198 {
2199 	unsigned long nr_accounted = 0;
2200 	struct vm_area_struct *vma;
2201 
2202 	/* Update high watermark before we lower total_vm */
2203 	update_hiwater_vm(mm);
2204 	mas_for_each(mas, vma, ULONG_MAX) {
2205 		long nrpages = vma_pages(vma);
2206 
2207 		if (vma->vm_flags & VM_ACCOUNT)
2208 			nr_accounted += nrpages;
2209 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2210 		remove_vma(vma, false);
2211 	}
2212 	vm_unacct_memory(nr_accounted);
2213 	validate_mm(mm);
2214 }
2215 
2216 /*
2217  * Get rid of page table information in the indicated region.
2218  *
2219  * Called with the mm semaphore held.
2220  */
2221 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2222 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2223 		struct vm_area_struct *next,
2224 		unsigned long start, unsigned long end, bool mm_wr_locked)
2225 {
2226 	struct mmu_gather tlb;
2227 
2228 	lru_add_drain();
2229 	tlb_gather_mmu(&tlb, mm);
2230 	update_hiwater_rss(mm);
2231 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2232 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2233 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2234 				 mm_wr_locked);
2235 	tlb_finish_mmu(&tlb);
2236 }
2237 
2238 /*
2239  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2240  * has already been checked or doesn't make sense to fail.
2241  * VMA Iterator will point to the end VMA.
2242  */
2243 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2244 		unsigned long addr, int new_below)
2245 {
2246 	struct vma_prepare vp;
2247 	struct vm_area_struct *new;
2248 	int err;
2249 
2250 	validate_mm(vma->vm_mm);
2251 
2252 	WARN_ON(vma->vm_start >= addr);
2253 	WARN_ON(vma->vm_end <= addr);
2254 
2255 	if (vma->vm_ops && vma->vm_ops->may_split) {
2256 		err = vma->vm_ops->may_split(vma, addr);
2257 		if (err)
2258 			return err;
2259 	}
2260 
2261 	new = vm_area_dup(vma);
2262 	if (!new)
2263 		return -ENOMEM;
2264 
2265 	err = -ENOMEM;
2266 	if (vma_iter_prealloc(vmi))
2267 		goto out_free_vma;
2268 
2269 	if (new_below) {
2270 		new->vm_end = addr;
2271 	} else {
2272 		new->vm_start = addr;
2273 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2274 	}
2275 
2276 	err = vma_dup_policy(vma, new);
2277 	if (err)
2278 		goto out_free_vmi;
2279 
2280 	err = anon_vma_clone(new, vma);
2281 	if (err)
2282 		goto out_free_mpol;
2283 
2284 	if (new->vm_file)
2285 		get_file(new->vm_file);
2286 
2287 	if (new->vm_ops && new->vm_ops->open)
2288 		new->vm_ops->open(new);
2289 
2290 	init_vma_prep(&vp, vma);
2291 	vp.insert = new;
2292 	vma_prepare(&vp);
2293 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2294 
2295 	if (new_below) {
2296 		vma->vm_start = addr;
2297 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2298 	} else {
2299 		vma->vm_end = addr;
2300 	}
2301 
2302 	/* vma_complete stores the new vma */
2303 	vma_complete(&vp, vmi, vma->vm_mm);
2304 
2305 	/* Success. */
2306 	if (new_below)
2307 		vma_next(vmi);
2308 	validate_mm(vma->vm_mm);
2309 	return 0;
2310 
2311 out_free_mpol:
2312 	mpol_put(vma_policy(new));
2313 out_free_vmi:
2314 	vma_iter_free(vmi);
2315 out_free_vma:
2316 	vm_area_free(new);
2317 	validate_mm(vma->vm_mm);
2318 	return err;
2319 }
2320 
2321 /*
2322  * Split a vma into two pieces at address 'addr', a new vma is allocated
2323  * either for the first part or the tail.
2324  */
2325 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326 	      unsigned long addr, int new_below)
2327 {
2328 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2329 		return -ENOMEM;
2330 
2331 	return __split_vma(vmi, vma, addr, new_below);
2332 }
2333 
2334 /*
2335  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2336  * @vmi: The vma iterator
2337  * @vma: The starting vm_area_struct
2338  * @mm: The mm_struct
2339  * @start: The aligned start address to munmap.
2340  * @end: The aligned end address to munmap.
2341  * @uf: The userfaultfd list_head
2342  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2343  *
2344  * If @downgrade is true, check return code for potential release of the lock.
2345  */
2346 static int
2347 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2348 		    struct mm_struct *mm, unsigned long start,
2349 		    unsigned long end, struct list_head *uf, bool downgrade)
2350 {
2351 	struct vm_area_struct *prev, *next = NULL;
2352 	struct maple_tree mt_detach;
2353 	int count = 0;
2354 	int error = -ENOMEM;
2355 	unsigned long locked_vm = 0;
2356 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2357 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2358 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2359 
2360 	/*
2361 	 * If we need to split any vma, do it now to save pain later.
2362 	 *
2363 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2364 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2365 	 * places tmp vma above, and higher split_vma places tmp vma below.
2366 	 */
2367 
2368 	/* Does it split the first one? */
2369 	if (start > vma->vm_start) {
2370 
2371 		/*
2372 		 * Make sure that map_count on return from munmap() will
2373 		 * not exceed its limit; but let map_count go just above
2374 		 * its limit temporarily, to help free resources as expected.
2375 		 */
2376 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2377 			goto map_count_exceeded;
2378 
2379 		error = __split_vma(vmi, vma, start, 0);
2380 		if (error)
2381 			goto start_split_failed;
2382 
2383 		vma = vma_iter_load(vmi);
2384 	}
2385 
2386 	prev = vma_prev(vmi);
2387 	if (unlikely((!prev)))
2388 		vma_iter_set(vmi, start);
2389 
2390 	/*
2391 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2392 	 * it is always overwritten.
2393 	 */
2394 	for_each_vma_range(*vmi, next, end) {
2395 		/* Does it split the end? */
2396 		if (next->vm_end > end) {
2397 			error = __split_vma(vmi, next, end, 0);
2398 			if (error)
2399 				goto end_split_failed;
2400 		}
2401 		vma_start_write(next);
2402 		mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2403 		if (mas_store_gfp(&mas_detach, next, GFP_KERNEL))
2404 			goto munmap_gather_failed;
2405 		vma_mark_detached(next, true);
2406 		if (next->vm_flags & VM_LOCKED)
2407 			locked_vm += vma_pages(next);
2408 
2409 		count++;
2410 		if (unlikely(uf)) {
2411 			/*
2412 			 * If userfaultfd_unmap_prep returns an error the vmas
2413 			 * will remain split, but userland will get a
2414 			 * highly unexpected error anyway. This is no
2415 			 * different than the case where the first of the two
2416 			 * __split_vma fails, but we don't undo the first
2417 			 * split, despite we could. This is unlikely enough
2418 			 * failure that it's not worth optimizing it for.
2419 			 */
2420 			error = userfaultfd_unmap_prep(next, start, end, uf);
2421 
2422 			if (error)
2423 				goto userfaultfd_error;
2424 		}
2425 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2426 		BUG_ON(next->vm_start < start);
2427 		BUG_ON(next->vm_start > end);
2428 #endif
2429 	}
2430 
2431 	if (vma_iter_end(vmi) > end)
2432 		next = vma_iter_load(vmi);
2433 
2434 	if (!next)
2435 		next = vma_next(vmi);
2436 
2437 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2438 	/* Make sure no VMAs are about to be lost. */
2439 	{
2440 		MA_STATE(test, &mt_detach, start, end - 1);
2441 		struct vm_area_struct *vma_mas, *vma_test;
2442 		int test_count = 0;
2443 
2444 		vma_iter_set(vmi, start);
2445 		rcu_read_lock();
2446 		vma_test = mas_find(&test, end - 1);
2447 		for_each_vma_range(*vmi, vma_mas, end) {
2448 			BUG_ON(vma_mas != vma_test);
2449 			test_count++;
2450 			vma_test = mas_next(&test, end - 1);
2451 		}
2452 		rcu_read_unlock();
2453 		BUG_ON(count != test_count);
2454 	}
2455 #endif
2456 	/* Point of no return */
2457 	error = -ENOMEM;
2458 	vma_iter_set(vmi, start);
2459 	if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2460 		goto clear_tree_failed;
2461 
2462 	mm->locked_vm -= locked_vm;
2463 	mm->map_count -= count;
2464 	/*
2465 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2466 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2467 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2468 	 */
2469 	if (downgrade) {
2470 		if (next && (next->vm_flags & VM_GROWSDOWN))
2471 			downgrade = false;
2472 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2473 			downgrade = false;
2474 		else
2475 			mmap_write_downgrade(mm);
2476 	}
2477 
2478 	/*
2479 	 * We can free page tables without write-locking mmap_lock because VMAs
2480 	 * were isolated before we downgraded mmap_lock.
2481 	 */
2482 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2483 	/* Statistics and freeing VMAs */
2484 	mas_set(&mas_detach, start);
2485 	remove_mt(mm, &mas_detach);
2486 	__mt_destroy(&mt_detach);
2487 
2488 
2489 	validate_mm(mm);
2490 	return downgrade ? 1 : 0;
2491 
2492 clear_tree_failed:
2493 userfaultfd_error:
2494 munmap_gather_failed:
2495 end_split_failed:
2496 	mas_set(&mas_detach, 0);
2497 	mas_for_each(&mas_detach, next, end)
2498 		vma_mark_detached(next, false);
2499 
2500 	__mt_destroy(&mt_detach);
2501 start_split_failed:
2502 map_count_exceeded:
2503 	return error;
2504 }
2505 
2506 /*
2507  * do_vmi_munmap() - munmap a given range.
2508  * @vmi: The vma iterator
2509  * @mm: The mm_struct
2510  * @start: The start address to munmap
2511  * @len: The length of the range to munmap
2512  * @uf: The userfaultfd list_head
2513  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2514  * mmap_lock
2515  *
2516  * This function takes a @mas that is either pointing to the previous VMA or set
2517  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2518  * aligned and any arch_unmap work will be preformed.
2519  *
2520  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2521  */
2522 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2523 		  unsigned long start, size_t len, struct list_head *uf,
2524 		  bool downgrade)
2525 {
2526 	unsigned long end;
2527 	struct vm_area_struct *vma;
2528 
2529 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2530 		return -EINVAL;
2531 
2532 	end = start + PAGE_ALIGN(len);
2533 	if (end == start)
2534 		return -EINVAL;
2535 
2536 	 /* arch_unmap() might do unmaps itself.  */
2537 	arch_unmap(mm, start, end);
2538 
2539 	/* Find the first overlapping VMA */
2540 	vma = vma_find(vmi, end);
2541 	if (!vma)
2542 		return 0;
2543 
2544 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2545 }
2546 
2547 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2548  * @mm: The mm_struct
2549  * @start: The start address to munmap
2550  * @len: The length to be munmapped.
2551  * @uf: The userfaultfd list_head
2552  */
2553 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2554 	      struct list_head *uf)
2555 {
2556 	VMA_ITERATOR(vmi, mm, start);
2557 
2558 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2559 }
2560 
2561 unsigned long mmap_region(struct file *file, unsigned long addr,
2562 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2563 		struct list_head *uf)
2564 {
2565 	struct mm_struct *mm = current->mm;
2566 	struct vm_area_struct *vma = NULL;
2567 	struct vm_area_struct *next, *prev, *merge;
2568 	pgoff_t pglen = len >> PAGE_SHIFT;
2569 	unsigned long charged = 0;
2570 	unsigned long end = addr + len;
2571 	unsigned long merge_start = addr, merge_end = end;
2572 	pgoff_t vm_pgoff;
2573 	int error;
2574 	VMA_ITERATOR(vmi, mm, addr);
2575 
2576 	/* Check against address space limit. */
2577 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2578 		unsigned long nr_pages;
2579 
2580 		/*
2581 		 * MAP_FIXED may remove pages of mappings that intersects with
2582 		 * requested mapping. Account for the pages it would unmap.
2583 		 */
2584 		nr_pages = count_vma_pages_range(mm, addr, end);
2585 
2586 		if (!may_expand_vm(mm, vm_flags,
2587 					(len >> PAGE_SHIFT) - nr_pages))
2588 			return -ENOMEM;
2589 	}
2590 
2591 	/* Unmap any existing mapping in the area */
2592 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2593 		return -ENOMEM;
2594 
2595 	/*
2596 	 * Private writable mapping: check memory availability
2597 	 */
2598 	if (accountable_mapping(file, vm_flags)) {
2599 		charged = len >> PAGE_SHIFT;
2600 		if (security_vm_enough_memory_mm(mm, charged))
2601 			return -ENOMEM;
2602 		vm_flags |= VM_ACCOUNT;
2603 	}
2604 
2605 	next = vma_next(&vmi);
2606 	prev = vma_prev(&vmi);
2607 	if (vm_flags & VM_SPECIAL)
2608 		goto cannot_expand;
2609 
2610 	/* Attempt to expand an old mapping */
2611 	/* Check next */
2612 	if (next && next->vm_start == end && !vma_policy(next) &&
2613 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2614 				 NULL_VM_UFFD_CTX, NULL)) {
2615 		merge_end = next->vm_end;
2616 		vma = next;
2617 		vm_pgoff = next->vm_pgoff - pglen;
2618 	}
2619 
2620 	/* Check prev */
2621 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2622 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2623 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2624 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2625 				       NULL_VM_UFFD_CTX, NULL))) {
2626 		merge_start = prev->vm_start;
2627 		vma = prev;
2628 		vm_pgoff = prev->vm_pgoff;
2629 	}
2630 
2631 
2632 	/* Actually expand, if possible */
2633 	if (vma &&
2634 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2635 		khugepaged_enter_vma(vma, vm_flags);
2636 		goto expanded;
2637 	}
2638 
2639 cannot_expand:
2640 	if (prev)
2641 		vma_iter_next_range(&vmi);
2642 
2643 	/*
2644 	 * Determine the object being mapped and call the appropriate
2645 	 * specific mapper. the address has already been validated, but
2646 	 * not unmapped, but the maps are removed from the list.
2647 	 */
2648 	vma = vm_area_alloc(mm);
2649 	if (!vma) {
2650 		error = -ENOMEM;
2651 		goto unacct_error;
2652 	}
2653 
2654 	vma_iter_set(&vmi, addr);
2655 	vma->vm_start = addr;
2656 	vma->vm_end = end;
2657 	vm_flags_init(vma, vm_flags);
2658 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2659 	vma->vm_pgoff = pgoff;
2660 
2661 	if (file) {
2662 		if (vm_flags & VM_SHARED) {
2663 			error = mapping_map_writable(file->f_mapping);
2664 			if (error)
2665 				goto free_vma;
2666 		}
2667 
2668 		vma->vm_file = get_file(file);
2669 		error = call_mmap(file, vma);
2670 		if (error)
2671 			goto unmap_and_free_vma;
2672 
2673 		/*
2674 		 * Expansion is handled above, merging is handled below.
2675 		 * Drivers should not alter the address of the VMA.
2676 		 */
2677 		error = -EINVAL;
2678 		if (WARN_ON((addr != vma->vm_start)))
2679 			goto close_and_free_vma;
2680 
2681 		vma_iter_set(&vmi, addr);
2682 		/*
2683 		 * If vm_flags changed after call_mmap(), we should try merge
2684 		 * vma again as we may succeed this time.
2685 		 */
2686 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2687 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2688 				    vma->vm_end, vma->vm_flags, NULL,
2689 				    vma->vm_file, vma->vm_pgoff, NULL,
2690 				    NULL_VM_UFFD_CTX, NULL);
2691 			if (merge) {
2692 				/*
2693 				 * ->mmap() can change vma->vm_file and fput
2694 				 * the original file. So fput the vma->vm_file
2695 				 * here or we would add an extra fput for file
2696 				 * and cause general protection fault
2697 				 * ultimately.
2698 				 */
2699 				fput(vma->vm_file);
2700 				vm_area_free(vma);
2701 				vma = merge;
2702 				/* Update vm_flags to pick up the change. */
2703 				vm_flags = vma->vm_flags;
2704 				goto unmap_writable;
2705 			}
2706 		}
2707 
2708 		vm_flags = vma->vm_flags;
2709 	} else if (vm_flags & VM_SHARED) {
2710 		error = shmem_zero_setup(vma);
2711 		if (error)
2712 			goto free_vma;
2713 	} else {
2714 		vma_set_anonymous(vma);
2715 	}
2716 
2717 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2718 		error = -EACCES;
2719 		goto close_and_free_vma;
2720 	}
2721 
2722 	/* Allow architectures to sanity-check the vm_flags */
2723 	error = -EINVAL;
2724 	if (!arch_validate_flags(vma->vm_flags))
2725 		goto close_and_free_vma;
2726 
2727 	error = -ENOMEM;
2728 	if (vma_iter_prealloc(&vmi))
2729 		goto close_and_free_vma;
2730 
2731 	if (vma->vm_file)
2732 		i_mmap_lock_write(vma->vm_file->f_mapping);
2733 
2734 	vma_iter_store(&vmi, vma);
2735 	mm->map_count++;
2736 	if (vma->vm_file) {
2737 		if (vma->vm_flags & VM_SHARED)
2738 			mapping_allow_writable(vma->vm_file->f_mapping);
2739 
2740 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2741 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2742 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2743 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2744 	}
2745 
2746 	/*
2747 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2748 	 * call covers the non-merge case.
2749 	 */
2750 	khugepaged_enter_vma(vma, vma->vm_flags);
2751 
2752 	/* Once vma denies write, undo our temporary denial count */
2753 unmap_writable:
2754 	if (file && vm_flags & VM_SHARED)
2755 		mapping_unmap_writable(file->f_mapping);
2756 	file = vma->vm_file;
2757 	ksm_add_vma(vma);
2758 expanded:
2759 	perf_event_mmap(vma);
2760 
2761 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2762 	if (vm_flags & VM_LOCKED) {
2763 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2764 					is_vm_hugetlb_page(vma) ||
2765 					vma == get_gate_vma(current->mm))
2766 			vm_flags_clear(vma, VM_LOCKED_MASK);
2767 		else
2768 			mm->locked_vm += (len >> PAGE_SHIFT);
2769 	}
2770 
2771 	if (file)
2772 		uprobe_mmap(vma);
2773 
2774 	/*
2775 	 * New (or expanded) vma always get soft dirty status.
2776 	 * Otherwise user-space soft-dirty page tracker won't
2777 	 * be able to distinguish situation when vma area unmapped,
2778 	 * then new mapped in-place (which must be aimed as
2779 	 * a completely new data area).
2780 	 */
2781 	vm_flags_set(vma, VM_SOFTDIRTY);
2782 
2783 	vma_set_page_prot(vma);
2784 
2785 	validate_mm(mm);
2786 	return addr;
2787 
2788 close_and_free_vma:
2789 	if (file && vma->vm_ops && vma->vm_ops->close)
2790 		vma->vm_ops->close(vma);
2791 
2792 	if (file || vma->vm_file) {
2793 unmap_and_free_vma:
2794 		fput(vma->vm_file);
2795 		vma->vm_file = NULL;
2796 
2797 		/* Undo any partial mapping done by a device driver. */
2798 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2799 			     vma->vm_end, true);
2800 	}
2801 	if (file && (vm_flags & VM_SHARED))
2802 		mapping_unmap_writable(file->f_mapping);
2803 free_vma:
2804 	vm_area_free(vma);
2805 unacct_error:
2806 	if (charged)
2807 		vm_unacct_memory(charged);
2808 	validate_mm(mm);
2809 	return error;
2810 }
2811 
2812 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2813 {
2814 	int ret;
2815 	struct mm_struct *mm = current->mm;
2816 	LIST_HEAD(uf);
2817 	VMA_ITERATOR(vmi, mm, start);
2818 
2819 	if (mmap_write_lock_killable(mm))
2820 		return -EINTR;
2821 
2822 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2823 	/*
2824 	 * Returning 1 indicates mmap_lock is downgraded.
2825 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2826 	 * it to 0 before return.
2827 	 */
2828 	if (ret == 1) {
2829 		mmap_read_unlock(mm);
2830 		ret = 0;
2831 	} else
2832 		mmap_write_unlock(mm);
2833 
2834 	userfaultfd_unmap_complete(mm, &uf);
2835 	return ret;
2836 }
2837 
2838 int vm_munmap(unsigned long start, size_t len)
2839 {
2840 	return __vm_munmap(start, len, false);
2841 }
2842 EXPORT_SYMBOL(vm_munmap);
2843 
2844 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2845 {
2846 	addr = untagged_addr(addr);
2847 	return __vm_munmap(addr, len, true);
2848 }
2849 
2850 
2851 /*
2852  * Emulation of deprecated remap_file_pages() syscall.
2853  */
2854 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2855 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2856 {
2857 
2858 	struct mm_struct *mm = current->mm;
2859 	struct vm_area_struct *vma;
2860 	unsigned long populate = 0;
2861 	unsigned long ret = -EINVAL;
2862 	struct file *file;
2863 
2864 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2865 		     current->comm, current->pid);
2866 
2867 	if (prot)
2868 		return ret;
2869 	start = start & PAGE_MASK;
2870 	size = size & PAGE_MASK;
2871 
2872 	if (start + size <= start)
2873 		return ret;
2874 
2875 	/* Does pgoff wrap? */
2876 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2877 		return ret;
2878 
2879 	if (mmap_write_lock_killable(mm))
2880 		return -EINTR;
2881 
2882 	vma = vma_lookup(mm, start);
2883 
2884 	if (!vma || !(vma->vm_flags & VM_SHARED))
2885 		goto out;
2886 
2887 	if (start + size > vma->vm_end) {
2888 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2889 		struct vm_area_struct *next, *prev = vma;
2890 
2891 		for_each_vma_range(vmi, next, start + size) {
2892 			/* hole between vmas ? */
2893 			if (next->vm_start != prev->vm_end)
2894 				goto out;
2895 
2896 			if (next->vm_file != vma->vm_file)
2897 				goto out;
2898 
2899 			if (next->vm_flags != vma->vm_flags)
2900 				goto out;
2901 
2902 			if (start + size <= next->vm_end)
2903 				break;
2904 
2905 			prev = next;
2906 		}
2907 
2908 		if (!next)
2909 			goto out;
2910 	}
2911 
2912 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2913 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2914 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2915 
2916 	flags &= MAP_NONBLOCK;
2917 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2918 	if (vma->vm_flags & VM_LOCKED)
2919 		flags |= MAP_LOCKED;
2920 
2921 	file = get_file(vma->vm_file);
2922 	ret = do_mmap(vma->vm_file, start, size,
2923 			prot, flags, pgoff, &populate, NULL);
2924 	fput(file);
2925 out:
2926 	mmap_write_unlock(mm);
2927 	if (populate)
2928 		mm_populate(ret, populate);
2929 	if (!IS_ERR_VALUE(ret))
2930 		ret = 0;
2931 	return ret;
2932 }
2933 
2934 /*
2935  * do_vma_munmap() - Unmap a full or partial vma.
2936  * @vmi: The vma iterator pointing at the vma
2937  * @vma: The first vma to be munmapped
2938  * @start: the start of the address to unmap
2939  * @end: The end of the address to unmap
2940  * @uf: The userfaultfd list_head
2941  * @downgrade: Attempt to downgrade or not
2942  *
2943  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2944  * unmaps a VMA mapping when the vma iterator is already in position.
2945  * Does not handle alignment.
2946  */
2947 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2948 		  unsigned long start, unsigned long end,
2949 		  struct list_head *uf, bool downgrade)
2950 {
2951 	struct mm_struct *mm = vma->vm_mm;
2952 	int ret;
2953 
2954 	arch_unmap(mm, start, end);
2955 	ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2956 	validate_mm(mm);
2957 	return ret;
2958 }
2959 
2960 /*
2961  * do_brk_flags() - Increase the brk vma if the flags match.
2962  * @vmi: The vma iterator
2963  * @addr: The start address
2964  * @len: The length of the increase
2965  * @vma: The vma,
2966  * @flags: The VMA Flags
2967  *
2968  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2969  * do not match then create a new anonymous VMA.  Eventually we may be able to
2970  * do some brk-specific accounting here.
2971  */
2972 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2973 		unsigned long addr, unsigned long len, unsigned long flags)
2974 {
2975 	struct mm_struct *mm = current->mm;
2976 	struct vma_prepare vp;
2977 
2978 	validate_mm(mm);
2979 	/*
2980 	 * Check against address space limits by the changed size
2981 	 * Note: This happens *after* clearing old mappings in some code paths.
2982 	 */
2983 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2984 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2985 		return -ENOMEM;
2986 
2987 	if (mm->map_count > sysctl_max_map_count)
2988 		return -ENOMEM;
2989 
2990 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2991 		return -ENOMEM;
2992 
2993 	/*
2994 	 * Expand the existing vma if possible; Note that singular lists do not
2995 	 * occur after forking, so the expand will only happen on new VMAs.
2996 	 */
2997 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2998 	    can_vma_merge_after(vma, flags, NULL, NULL,
2999 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3000 		if (vma_iter_prealloc(vmi))
3001 			goto unacct_fail;
3002 
3003 		init_vma_prep(&vp, vma);
3004 		vma_prepare(&vp);
3005 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3006 		vma->vm_end = addr + len;
3007 		vm_flags_set(vma, VM_SOFTDIRTY);
3008 		vma_iter_store(vmi, vma);
3009 
3010 		vma_complete(&vp, vmi, mm);
3011 		khugepaged_enter_vma(vma, flags);
3012 		goto out;
3013 	}
3014 
3015 	/* create a vma struct for an anonymous mapping */
3016 	vma = vm_area_alloc(mm);
3017 	if (!vma)
3018 		goto unacct_fail;
3019 
3020 	vma_set_anonymous(vma);
3021 	vma->vm_start = addr;
3022 	vma->vm_end = addr + len;
3023 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3024 	vm_flags_init(vma, flags);
3025 	vma->vm_page_prot = vm_get_page_prot(flags);
3026 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3027 		goto mas_store_fail;
3028 
3029 	mm->map_count++;
3030 	ksm_add_vma(vma);
3031 out:
3032 	perf_event_mmap(vma);
3033 	mm->total_vm += len >> PAGE_SHIFT;
3034 	mm->data_vm += len >> PAGE_SHIFT;
3035 	if (flags & VM_LOCKED)
3036 		mm->locked_vm += (len >> PAGE_SHIFT);
3037 	vm_flags_set(vma, VM_SOFTDIRTY);
3038 	validate_mm(mm);
3039 	return 0;
3040 
3041 mas_store_fail:
3042 	vm_area_free(vma);
3043 unacct_fail:
3044 	vm_unacct_memory(len >> PAGE_SHIFT);
3045 	return -ENOMEM;
3046 }
3047 
3048 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3049 {
3050 	struct mm_struct *mm = current->mm;
3051 	struct vm_area_struct *vma = NULL;
3052 	unsigned long len;
3053 	int ret;
3054 	bool populate;
3055 	LIST_HEAD(uf);
3056 	VMA_ITERATOR(vmi, mm, addr);
3057 
3058 	len = PAGE_ALIGN(request);
3059 	if (len < request)
3060 		return -ENOMEM;
3061 	if (!len)
3062 		return 0;
3063 
3064 	if (mmap_write_lock_killable(mm))
3065 		return -EINTR;
3066 
3067 	/* Until we need other flags, refuse anything except VM_EXEC. */
3068 	if ((flags & (~VM_EXEC)) != 0)
3069 		return -EINVAL;
3070 
3071 	ret = check_brk_limits(addr, len);
3072 	if (ret)
3073 		goto limits_failed;
3074 
3075 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3076 	if (ret)
3077 		goto munmap_failed;
3078 
3079 	vma = vma_prev(&vmi);
3080 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3081 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 	mmap_write_unlock(mm);
3083 	userfaultfd_unmap_complete(mm, &uf);
3084 	if (populate && !ret)
3085 		mm_populate(addr, len);
3086 	return ret;
3087 
3088 munmap_failed:
3089 limits_failed:
3090 	mmap_write_unlock(mm);
3091 	return ret;
3092 }
3093 EXPORT_SYMBOL(vm_brk_flags);
3094 
3095 int vm_brk(unsigned long addr, unsigned long len)
3096 {
3097 	return vm_brk_flags(addr, len, 0);
3098 }
3099 EXPORT_SYMBOL(vm_brk);
3100 
3101 /* Release all mmaps. */
3102 void exit_mmap(struct mm_struct *mm)
3103 {
3104 	struct mmu_gather tlb;
3105 	struct vm_area_struct *vma;
3106 	unsigned long nr_accounted = 0;
3107 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3108 	int count = 0;
3109 
3110 	/* mm's last user has gone, and its about to be pulled down */
3111 	mmu_notifier_release(mm);
3112 
3113 	mmap_read_lock(mm);
3114 	arch_exit_mmap(mm);
3115 
3116 	vma = mas_find(&mas, ULONG_MAX);
3117 	if (!vma) {
3118 		/* Can happen if dup_mmap() received an OOM */
3119 		mmap_read_unlock(mm);
3120 		return;
3121 	}
3122 
3123 	lru_add_drain();
3124 	flush_cache_mm(mm);
3125 	tlb_gather_mmu_fullmm(&tlb, mm);
3126 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3127 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3128 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3129 	mmap_read_unlock(mm);
3130 
3131 	/*
3132 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3133 	 * because the memory has been already freed.
3134 	 */
3135 	set_bit(MMF_OOM_SKIP, &mm->flags);
3136 	mmap_write_lock(mm);
3137 	mt_clear_in_rcu(&mm->mm_mt);
3138 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3139 		      USER_PGTABLES_CEILING, true);
3140 	tlb_finish_mmu(&tlb);
3141 
3142 	/*
3143 	 * Walk the list again, actually closing and freeing it, with preemption
3144 	 * enabled, without holding any MM locks besides the unreachable
3145 	 * mmap_write_lock.
3146 	 */
3147 	do {
3148 		if (vma->vm_flags & VM_ACCOUNT)
3149 			nr_accounted += vma_pages(vma);
3150 		remove_vma(vma, true);
3151 		count++;
3152 		cond_resched();
3153 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3154 
3155 	BUG_ON(count != mm->map_count);
3156 
3157 	trace_exit_mmap(mm);
3158 	__mt_destroy(&mm->mm_mt);
3159 	mmap_write_unlock(mm);
3160 	vm_unacct_memory(nr_accounted);
3161 }
3162 
3163 /* Insert vm structure into process list sorted by address
3164  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3165  * then i_mmap_rwsem is taken here.
3166  */
3167 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3168 {
3169 	unsigned long charged = vma_pages(vma);
3170 
3171 
3172 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3173 		return -ENOMEM;
3174 
3175 	if ((vma->vm_flags & VM_ACCOUNT) &&
3176 	     security_vm_enough_memory_mm(mm, charged))
3177 		return -ENOMEM;
3178 
3179 	/*
3180 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3181 	 * until its first write fault, when page's anon_vma and index
3182 	 * are set.  But now set the vm_pgoff it will almost certainly
3183 	 * end up with (unless mremap moves it elsewhere before that
3184 	 * first wfault), so /proc/pid/maps tells a consistent story.
3185 	 *
3186 	 * By setting it to reflect the virtual start address of the
3187 	 * vma, merges and splits can happen in a seamless way, just
3188 	 * using the existing file pgoff checks and manipulations.
3189 	 * Similarly in do_mmap and in do_brk_flags.
3190 	 */
3191 	if (vma_is_anonymous(vma)) {
3192 		BUG_ON(vma->anon_vma);
3193 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3194 	}
3195 
3196 	if (vma_link(mm, vma)) {
3197 		vm_unacct_memory(charged);
3198 		return -ENOMEM;
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 /*
3205  * Copy the vma structure to a new location in the same mm,
3206  * prior to moving page table entries, to effect an mremap move.
3207  */
3208 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3209 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3210 	bool *need_rmap_locks)
3211 {
3212 	struct vm_area_struct *vma = *vmap;
3213 	unsigned long vma_start = vma->vm_start;
3214 	struct mm_struct *mm = vma->vm_mm;
3215 	struct vm_area_struct *new_vma, *prev;
3216 	bool faulted_in_anon_vma = true;
3217 	VMA_ITERATOR(vmi, mm, addr);
3218 
3219 	validate_mm(mm);
3220 	/*
3221 	 * If anonymous vma has not yet been faulted, update new pgoff
3222 	 * to match new location, to increase its chance of merging.
3223 	 */
3224 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3225 		pgoff = addr >> PAGE_SHIFT;
3226 		faulted_in_anon_vma = false;
3227 	}
3228 
3229 	new_vma = find_vma_prev(mm, addr, &prev);
3230 	if (new_vma && new_vma->vm_start < addr + len)
3231 		return NULL;	/* should never get here */
3232 
3233 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3234 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3235 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3236 	if (new_vma) {
3237 		/*
3238 		 * Source vma may have been merged into new_vma
3239 		 */
3240 		if (unlikely(vma_start >= new_vma->vm_start &&
3241 			     vma_start < new_vma->vm_end)) {
3242 			/*
3243 			 * The only way we can get a vma_merge with
3244 			 * self during an mremap is if the vma hasn't
3245 			 * been faulted in yet and we were allowed to
3246 			 * reset the dst vma->vm_pgoff to the
3247 			 * destination address of the mremap to allow
3248 			 * the merge to happen. mremap must change the
3249 			 * vm_pgoff linearity between src and dst vmas
3250 			 * (in turn preventing a vma_merge) to be
3251 			 * safe. It is only safe to keep the vm_pgoff
3252 			 * linear if there are no pages mapped yet.
3253 			 */
3254 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3255 			*vmap = vma = new_vma;
3256 		}
3257 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3258 	} else {
3259 		new_vma = vm_area_dup(vma);
3260 		if (!new_vma)
3261 			goto out;
3262 		new_vma->vm_start = addr;
3263 		new_vma->vm_end = addr + len;
3264 		new_vma->vm_pgoff = pgoff;
3265 		if (vma_dup_policy(vma, new_vma))
3266 			goto out_free_vma;
3267 		if (anon_vma_clone(new_vma, vma))
3268 			goto out_free_mempol;
3269 		if (new_vma->vm_file)
3270 			get_file(new_vma->vm_file);
3271 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3272 			new_vma->vm_ops->open(new_vma);
3273 		vma_start_write(new_vma);
3274 		if (vma_link(mm, new_vma))
3275 			goto out_vma_link;
3276 		*need_rmap_locks = false;
3277 	}
3278 	validate_mm(mm);
3279 	return new_vma;
3280 
3281 out_vma_link:
3282 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3283 		new_vma->vm_ops->close(new_vma);
3284 
3285 	if (new_vma->vm_file)
3286 		fput(new_vma->vm_file);
3287 
3288 	unlink_anon_vmas(new_vma);
3289 out_free_mempol:
3290 	mpol_put(vma_policy(new_vma));
3291 out_free_vma:
3292 	vm_area_free(new_vma);
3293 out:
3294 	validate_mm(mm);
3295 	return NULL;
3296 }
3297 
3298 /*
3299  * Return true if the calling process may expand its vm space by the passed
3300  * number of pages
3301  */
3302 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3303 {
3304 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3305 		return false;
3306 
3307 	if (is_data_mapping(flags) &&
3308 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3309 		/* Workaround for Valgrind */
3310 		if (rlimit(RLIMIT_DATA) == 0 &&
3311 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3312 			return true;
3313 
3314 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3315 			     current->comm, current->pid,
3316 			     (mm->data_vm + npages) << PAGE_SHIFT,
3317 			     rlimit(RLIMIT_DATA),
3318 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3319 
3320 		if (!ignore_rlimit_data)
3321 			return false;
3322 	}
3323 
3324 	return true;
3325 }
3326 
3327 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3328 {
3329 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3330 
3331 	if (is_exec_mapping(flags))
3332 		mm->exec_vm += npages;
3333 	else if (is_stack_mapping(flags))
3334 		mm->stack_vm += npages;
3335 	else if (is_data_mapping(flags))
3336 		mm->data_vm += npages;
3337 }
3338 
3339 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3340 
3341 /*
3342  * Having a close hook prevents vma merging regardless of flags.
3343  */
3344 static void special_mapping_close(struct vm_area_struct *vma)
3345 {
3346 }
3347 
3348 static const char *special_mapping_name(struct vm_area_struct *vma)
3349 {
3350 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3351 }
3352 
3353 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3354 {
3355 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3356 
3357 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3358 		return -EFAULT;
3359 
3360 	if (sm->mremap)
3361 		return sm->mremap(sm, new_vma);
3362 
3363 	return 0;
3364 }
3365 
3366 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3367 {
3368 	/*
3369 	 * Forbid splitting special mappings - kernel has expectations over
3370 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3371 	 * the size of vma should stay the same over the special mapping's
3372 	 * lifetime.
3373 	 */
3374 	return -EINVAL;
3375 }
3376 
3377 static const struct vm_operations_struct special_mapping_vmops = {
3378 	.close = special_mapping_close,
3379 	.fault = special_mapping_fault,
3380 	.mremap = special_mapping_mremap,
3381 	.name = special_mapping_name,
3382 	/* vDSO code relies that VVAR can't be accessed remotely */
3383 	.access = NULL,
3384 	.may_split = special_mapping_split,
3385 };
3386 
3387 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3388 	.close = special_mapping_close,
3389 	.fault = special_mapping_fault,
3390 };
3391 
3392 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3393 {
3394 	struct vm_area_struct *vma = vmf->vma;
3395 	pgoff_t pgoff;
3396 	struct page **pages;
3397 
3398 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3399 		pages = vma->vm_private_data;
3400 	} else {
3401 		struct vm_special_mapping *sm = vma->vm_private_data;
3402 
3403 		if (sm->fault)
3404 			return sm->fault(sm, vmf->vma, vmf);
3405 
3406 		pages = sm->pages;
3407 	}
3408 
3409 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3410 		pgoff--;
3411 
3412 	if (*pages) {
3413 		struct page *page = *pages;
3414 		get_page(page);
3415 		vmf->page = page;
3416 		return 0;
3417 	}
3418 
3419 	return VM_FAULT_SIGBUS;
3420 }
3421 
3422 static struct vm_area_struct *__install_special_mapping(
3423 	struct mm_struct *mm,
3424 	unsigned long addr, unsigned long len,
3425 	unsigned long vm_flags, void *priv,
3426 	const struct vm_operations_struct *ops)
3427 {
3428 	int ret;
3429 	struct vm_area_struct *vma;
3430 
3431 	validate_mm(mm);
3432 	vma = vm_area_alloc(mm);
3433 	if (unlikely(vma == NULL))
3434 		return ERR_PTR(-ENOMEM);
3435 
3436 	vma->vm_start = addr;
3437 	vma->vm_end = addr + len;
3438 
3439 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3440 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3441 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3442 
3443 	vma->vm_ops = ops;
3444 	vma->vm_private_data = priv;
3445 
3446 	ret = insert_vm_struct(mm, vma);
3447 	if (ret)
3448 		goto out;
3449 
3450 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3451 
3452 	perf_event_mmap(vma);
3453 
3454 	validate_mm(mm);
3455 	return vma;
3456 
3457 out:
3458 	vm_area_free(vma);
3459 	validate_mm(mm);
3460 	return ERR_PTR(ret);
3461 }
3462 
3463 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3464 	const struct vm_special_mapping *sm)
3465 {
3466 	return vma->vm_private_data == sm &&
3467 		(vma->vm_ops == &special_mapping_vmops ||
3468 		 vma->vm_ops == &legacy_special_mapping_vmops);
3469 }
3470 
3471 /*
3472  * Called with mm->mmap_lock held for writing.
3473  * Insert a new vma covering the given region, with the given flags.
3474  * Its pages are supplied by the given array of struct page *.
3475  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3476  * The region past the last page supplied will always produce SIGBUS.
3477  * The array pointer and the pages it points to are assumed to stay alive
3478  * for as long as this mapping might exist.
3479  */
3480 struct vm_area_struct *_install_special_mapping(
3481 	struct mm_struct *mm,
3482 	unsigned long addr, unsigned long len,
3483 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3484 {
3485 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3486 					&special_mapping_vmops);
3487 }
3488 
3489 int install_special_mapping(struct mm_struct *mm,
3490 			    unsigned long addr, unsigned long len,
3491 			    unsigned long vm_flags, struct page **pages)
3492 {
3493 	struct vm_area_struct *vma = __install_special_mapping(
3494 		mm, addr, len, vm_flags, (void *)pages,
3495 		&legacy_special_mapping_vmops);
3496 
3497 	return PTR_ERR_OR_ZERO(vma);
3498 }
3499 
3500 static DEFINE_MUTEX(mm_all_locks_mutex);
3501 
3502 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3503 {
3504 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3505 		/*
3506 		 * The LSB of head.next can't change from under us
3507 		 * because we hold the mm_all_locks_mutex.
3508 		 */
3509 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3510 		/*
3511 		 * We can safely modify head.next after taking the
3512 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3513 		 * the same anon_vma we won't take it again.
3514 		 *
3515 		 * No need of atomic instructions here, head.next
3516 		 * can't change from under us thanks to the
3517 		 * anon_vma->root->rwsem.
3518 		 */
3519 		if (__test_and_set_bit(0, (unsigned long *)
3520 				       &anon_vma->root->rb_root.rb_root.rb_node))
3521 			BUG();
3522 	}
3523 }
3524 
3525 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3526 {
3527 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3528 		/*
3529 		 * AS_MM_ALL_LOCKS can't change from under us because
3530 		 * we hold the mm_all_locks_mutex.
3531 		 *
3532 		 * Operations on ->flags have to be atomic because
3533 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3534 		 * mm_all_locks_mutex, there may be other cpus
3535 		 * changing other bitflags in parallel to us.
3536 		 */
3537 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3538 			BUG();
3539 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3540 	}
3541 }
3542 
3543 /*
3544  * This operation locks against the VM for all pte/vma/mm related
3545  * operations that could ever happen on a certain mm. This includes
3546  * vmtruncate, try_to_unmap, and all page faults.
3547  *
3548  * The caller must take the mmap_lock in write mode before calling
3549  * mm_take_all_locks(). The caller isn't allowed to release the
3550  * mmap_lock until mm_drop_all_locks() returns.
3551  *
3552  * mmap_lock in write mode is required in order to block all operations
3553  * that could modify pagetables and free pages without need of
3554  * altering the vma layout. It's also needed in write mode to avoid new
3555  * anon_vmas to be associated with existing vmas.
3556  *
3557  * A single task can't take more than one mm_take_all_locks() in a row
3558  * or it would deadlock.
3559  *
3560  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3561  * mapping->flags avoid to take the same lock twice, if more than one
3562  * vma in this mm is backed by the same anon_vma or address_space.
3563  *
3564  * We take locks in following order, accordingly to comment at beginning
3565  * of mm/rmap.c:
3566  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3567  *     hugetlb mapping);
3568  *   - all vmas marked locked
3569  *   - all i_mmap_rwsem locks;
3570  *   - all anon_vma->rwseml
3571  *
3572  * We can take all locks within these types randomly because the VM code
3573  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3574  * mm_all_locks_mutex.
3575  *
3576  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3577  * that may have to take thousand of locks.
3578  *
3579  * mm_take_all_locks() can fail if it's interrupted by signals.
3580  */
3581 int mm_take_all_locks(struct mm_struct *mm)
3582 {
3583 	struct vm_area_struct *vma;
3584 	struct anon_vma_chain *avc;
3585 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3586 
3587 	mmap_assert_write_locked(mm);
3588 
3589 	mutex_lock(&mm_all_locks_mutex);
3590 
3591 	mas_for_each(&mas, vma, ULONG_MAX) {
3592 		if (signal_pending(current))
3593 			goto out_unlock;
3594 		vma_start_write(vma);
3595 	}
3596 
3597 	mas_set(&mas, 0);
3598 	mas_for_each(&mas, vma, ULONG_MAX) {
3599 		if (signal_pending(current))
3600 			goto out_unlock;
3601 		if (vma->vm_file && vma->vm_file->f_mapping &&
3602 				is_vm_hugetlb_page(vma))
3603 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3604 	}
3605 
3606 	mas_set(&mas, 0);
3607 	mas_for_each(&mas, vma, ULONG_MAX) {
3608 		if (signal_pending(current))
3609 			goto out_unlock;
3610 		if (vma->vm_file && vma->vm_file->f_mapping &&
3611 				!is_vm_hugetlb_page(vma))
3612 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3613 	}
3614 
3615 	mas_set(&mas, 0);
3616 	mas_for_each(&mas, vma, ULONG_MAX) {
3617 		if (signal_pending(current))
3618 			goto out_unlock;
3619 		if (vma->anon_vma)
3620 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3621 				vm_lock_anon_vma(mm, avc->anon_vma);
3622 	}
3623 
3624 	return 0;
3625 
3626 out_unlock:
3627 	mm_drop_all_locks(mm);
3628 	return -EINTR;
3629 }
3630 
3631 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3632 {
3633 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3634 		/*
3635 		 * The LSB of head.next can't change to 0 from under
3636 		 * us because we hold the mm_all_locks_mutex.
3637 		 *
3638 		 * We must however clear the bitflag before unlocking
3639 		 * the vma so the users using the anon_vma->rb_root will
3640 		 * never see our bitflag.
3641 		 *
3642 		 * No need of atomic instructions here, head.next
3643 		 * can't change from under us until we release the
3644 		 * anon_vma->root->rwsem.
3645 		 */
3646 		if (!__test_and_clear_bit(0, (unsigned long *)
3647 					  &anon_vma->root->rb_root.rb_root.rb_node))
3648 			BUG();
3649 		anon_vma_unlock_write(anon_vma);
3650 	}
3651 }
3652 
3653 static void vm_unlock_mapping(struct address_space *mapping)
3654 {
3655 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3656 		/*
3657 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3658 		 * because we hold the mm_all_locks_mutex.
3659 		 */
3660 		i_mmap_unlock_write(mapping);
3661 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3662 					&mapping->flags))
3663 			BUG();
3664 	}
3665 }
3666 
3667 /*
3668  * The mmap_lock cannot be released by the caller until
3669  * mm_drop_all_locks() returns.
3670  */
3671 void mm_drop_all_locks(struct mm_struct *mm)
3672 {
3673 	struct vm_area_struct *vma;
3674 	struct anon_vma_chain *avc;
3675 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3676 
3677 	mmap_assert_write_locked(mm);
3678 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3679 
3680 	mas_for_each(&mas, vma, ULONG_MAX) {
3681 		if (vma->anon_vma)
3682 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3683 				vm_unlock_anon_vma(avc->anon_vma);
3684 		if (vma->vm_file && vma->vm_file->f_mapping)
3685 			vm_unlock_mapping(vma->vm_file->f_mapping);
3686 	}
3687 	vma_end_write_all(mm);
3688 
3689 	mutex_unlock(&mm_all_locks_mutex);
3690 }
3691 
3692 /*
3693  * initialise the percpu counter for VM
3694  */
3695 void __init mmap_init(void)
3696 {
3697 	int ret;
3698 
3699 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3700 	VM_BUG_ON(ret);
3701 }
3702 
3703 /*
3704  * Initialise sysctl_user_reserve_kbytes.
3705  *
3706  * This is intended to prevent a user from starting a single memory hogging
3707  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3708  * mode.
3709  *
3710  * The default value is min(3% of free memory, 128MB)
3711  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3712  */
3713 static int init_user_reserve(void)
3714 {
3715 	unsigned long free_kbytes;
3716 
3717 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3718 
3719 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3720 	return 0;
3721 }
3722 subsys_initcall(init_user_reserve);
3723 
3724 /*
3725  * Initialise sysctl_admin_reserve_kbytes.
3726  *
3727  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3728  * to log in and kill a memory hogging process.
3729  *
3730  * Systems with more than 256MB will reserve 8MB, enough to recover
3731  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3732  * only reserve 3% of free pages by default.
3733  */
3734 static int init_admin_reserve(void)
3735 {
3736 	unsigned long free_kbytes;
3737 
3738 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3739 
3740 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3741 	return 0;
3742 }
3743 subsys_initcall(init_admin_reserve);
3744 
3745 /*
3746  * Reinititalise user and admin reserves if memory is added or removed.
3747  *
3748  * The default user reserve max is 128MB, and the default max for the
3749  * admin reserve is 8MB. These are usually, but not always, enough to
3750  * enable recovery from a memory hogging process using login/sshd, a shell,
3751  * and tools like top. It may make sense to increase or even disable the
3752  * reserve depending on the existence of swap or variations in the recovery
3753  * tools. So, the admin may have changed them.
3754  *
3755  * If memory is added and the reserves have been eliminated or increased above
3756  * the default max, then we'll trust the admin.
3757  *
3758  * If memory is removed and there isn't enough free memory, then we
3759  * need to reset the reserves.
3760  *
3761  * Otherwise keep the reserve set by the admin.
3762  */
3763 static int reserve_mem_notifier(struct notifier_block *nb,
3764 			     unsigned long action, void *data)
3765 {
3766 	unsigned long tmp, free_kbytes;
3767 
3768 	switch (action) {
3769 	case MEM_ONLINE:
3770 		/* Default max is 128MB. Leave alone if modified by operator. */
3771 		tmp = sysctl_user_reserve_kbytes;
3772 		if (0 < tmp && tmp < (1UL << 17))
3773 			init_user_reserve();
3774 
3775 		/* Default max is 8MB.  Leave alone if modified by operator. */
3776 		tmp = sysctl_admin_reserve_kbytes;
3777 		if (0 < tmp && tmp < (1UL << 13))
3778 			init_admin_reserve();
3779 
3780 		break;
3781 	case MEM_OFFLINE:
3782 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3783 
3784 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3785 			init_user_reserve();
3786 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3787 				sysctl_user_reserve_kbytes);
3788 		}
3789 
3790 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3791 			init_admin_reserve();
3792 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3793 				sysctl_admin_reserve_kbytes);
3794 		}
3795 		break;
3796 	default:
3797 		break;
3798 	}
3799 	return NOTIFY_OK;
3800 }
3801 
3802 static int __meminit init_reserve_notifier(void)
3803 {
3804 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3805 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3806 
3807 	return 0;
3808 }
3809 subsys_initcall(init_reserve_notifier);
3810