1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/cacheflush.h> 50 #include <asm/tlb.h> 51 #include <asm/mmu_context.h> 52 53 #include "internal.h" 54 55 #ifndef arch_mmap_check 56 #define arch_mmap_check(addr, len, flags) (0) 57 #endif 58 59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 63 #endif 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 68 #endif 69 70 static bool ignore_rlimit_data; 71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 72 73 static void unmap_region(struct mm_struct *mm, 74 struct vm_area_struct *vma, struct vm_area_struct *prev, 75 unsigned long start, unsigned long end); 76 77 /* description of effects of mapping type and prot in current implementation. 78 * this is due to the limited x86 page protection hardware. The expected 79 * behavior is in parens: 80 * 81 * map_type prot 82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 84 * w: (no) no w: (no) no w: (yes) yes w: (no) no 85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 86 * 87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 88 * w: (no) no w: (no) no w: (copy) copy w: (no) no 89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 90 * 91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 92 * MAP_PRIVATE: 93 * r: (no) no 94 * w: (no) no 95 * x: (yes) yes 96 */ 97 pgprot_t protection_map[16] = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 pgprot_t vm_get_page_prot(unsigned long vm_flags) 103 { 104 return __pgprot(pgprot_val(protection_map[vm_flags & 105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 106 pgprot_val(arch_vm_get_page_prot(vm_flags))); 107 } 108 EXPORT_SYMBOL(vm_get_page_prot); 109 110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 111 { 112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 113 } 114 115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 116 void vma_set_page_prot(struct vm_area_struct *vma) 117 { 118 unsigned long vm_flags = vma->vm_flags; 119 pgprot_t vm_page_prot; 120 121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 122 if (vma_wants_writenotify(vma, vm_page_prot)) { 123 vm_flags &= ~VM_SHARED; 124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 125 } 126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 128 } 129 130 /* 131 * Requires inode->i_mapping->i_mmap_rwsem 132 */ 133 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 134 struct file *file, struct address_space *mapping) 135 { 136 if (vma->vm_flags & VM_DENYWRITE) 137 atomic_inc(&file_inode(file)->i_writecount); 138 if (vma->vm_flags & VM_SHARED) 139 mapping_unmap_writable(mapping); 140 141 flush_dcache_mmap_lock(mapping); 142 vma_interval_tree_remove(vma, &mapping->i_mmap); 143 flush_dcache_mmap_unlock(mapping); 144 } 145 146 /* 147 * Unlink a file-based vm structure from its interval tree, to hide 148 * vma from rmap and vmtruncate before freeing its page tables. 149 */ 150 void unlink_file_vma(struct vm_area_struct *vma) 151 { 152 struct file *file = vma->vm_file; 153 154 if (file) { 155 struct address_space *mapping = file->f_mapping; 156 i_mmap_lock_write(mapping); 157 __remove_shared_vm_struct(vma, file, mapping); 158 i_mmap_unlock_write(mapping); 159 } 160 } 161 162 /* 163 * Close a vm structure and free it, returning the next. 164 */ 165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 166 { 167 struct vm_area_struct *next = vma->vm_next; 168 169 might_sleep(); 170 if (vma->vm_ops && vma->vm_ops->close) 171 vma->vm_ops->close(vma); 172 if (vma->vm_file) 173 fput(vma->vm_file); 174 mpol_put(vma_policy(vma)); 175 kmem_cache_free(vm_area_cachep, vma); 176 return next; 177 } 178 179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf); 180 181 SYSCALL_DEFINE1(brk, unsigned long, brk) 182 { 183 unsigned long retval; 184 unsigned long newbrk, oldbrk; 185 struct mm_struct *mm = current->mm; 186 unsigned long min_brk; 187 bool populate; 188 LIST_HEAD(uf); 189 190 if (down_write_killable(&mm->mmap_sem)) 191 return -EINTR; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) 222 goto set_brk; 223 224 /* Always allow shrinking brk. */ 225 if (brk <= mm->brk) { 226 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf)) 227 goto set_brk; 228 goto out; 229 } 230 231 /* Check against existing mmap mappings. */ 232 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 233 goto out; 234 235 /* Ok, looks good - let it rip. */ 236 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0) 237 goto out; 238 239 set_brk: 240 mm->brk = brk; 241 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 242 up_write(&mm->mmap_sem); 243 userfaultfd_unmap_complete(mm, &uf); 244 if (populate) 245 mm_populate(oldbrk, newbrk - oldbrk); 246 return brk; 247 248 out: 249 retval = mm->brk; 250 up_write(&mm->mmap_sem); 251 return retval; 252 } 253 254 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 255 { 256 unsigned long max, subtree_gap; 257 max = vma->vm_start; 258 if (vma->vm_prev) 259 max -= vma->vm_prev->vm_end; 260 if (vma->vm_rb.rb_left) { 261 subtree_gap = rb_entry(vma->vm_rb.rb_left, 262 struct vm_area_struct, vm_rb)->rb_subtree_gap; 263 if (subtree_gap > max) 264 max = subtree_gap; 265 } 266 if (vma->vm_rb.rb_right) { 267 subtree_gap = rb_entry(vma->vm_rb.rb_right, 268 struct vm_area_struct, vm_rb)->rb_subtree_gap; 269 if (subtree_gap > max) 270 max = subtree_gap; 271 } 272 return max; 273 } 274 275 #ifdef CONFIG_DEBUG_VM_RB 276 static int browse_rb(struct mm_struct *mm) 277 { 278 struct rb_root *root = &mm->mm_rb; 279 int i = 0, j, bug = 0; 280 struct rb_node *nd, *pn = NULL; 281 unsigned long prev = 0, pend = 0; 282 283 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 284 struct vm_area_struct *vma; 285 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 286 if (vma->vm_start < prev) { 287 pr_emerg("vm_start %lx < prev %lx\n", 288 vma->vm_start, prev); 289 bug = 1; 290 } 291 if (vma->vm_start < pend) { 292 pr_emerg("vm_start %lx < pend %lx\n", 293 vma->vm_start, pend); 294 bug = 1; 295 } 296 if (vma->vm_start > vma->vm_end) { 297 pr_emerg("vm_start %lx > vm_end %lx\n", 298 vma->vm_start, vma->vm_end); 299 bug = 1; 300 } 301 spin_lock(&mm->page_table_lock); 302 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 303 pr_emerg("free gap %lx, correct %lx\n", 304 vma->rb_subtree_gap, 305 vma_compute_subtree_gap(vma)); 306 bug = 1; 307 } 308 spin_unlock(&mm->page_table_lock); 309 i++; 310 pn = nd; 311 prev = vma->vm_start; 312 pend = vma->vm_end; 313 } 314 j = 0; 315 for (nd = pn; nd; nd = rb_prev(nd)) 316 j++; 317 if (i != j) { 318 pr_emerg("backwards %d, forwards %d\n", j, i); 319 bug = 1; 320 } 321 return bug ? -1 : i; 322 } 323 324 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 325 { 326 struct rb_node *nd; 327 328 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 329 struct vm_area_struct *vma; 330 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 331 VM_BUG_ON_VMA(vma != ignore && 332 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 333 vma); 334 } 335 } 336 337 static void validate_mm(struct mm_struct *mm) 338 { 339 int bug = 0; 340 int i = 0; 341 unsigned long highest_address = 0; 342 struct vm_area_struct *vma = mm->mmap; 343 344 while (vma) { 345 struct anon_vma *anon_vma = vma->anon_vma; 346 struct anon_vma_chain *avc; 347 348 if (anon_vma) { 349 anon_vma_lock_read(anon_vma); 350 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 351 anon_vma_interval_tree_verify(avc); 352 anon_vma_unlock_read(anon_vma); 353 } 354 355 highest_address = vma->vm_end; 356 vma = vma->vm_next; 357 i++; 358 } 359 if (i != mm->map_count) { 360 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 361 bug = 1; 362 } 363 if (highest_address != mm->highest_vm_end) { 364 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 365 mm->highest_vm_end, highest_address); 366 bug = 1; 367 } 368 i = browse_rb(mm); 369 if (i != mm->map_count) { 370 if (i != -1) 371 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 372 bug = 1; 373 } 374 VM_BUG_ON_MM(bug, mm); 375 } 376 #else 377 #define validate_mm_rb(root, ignore) do { } while (0) 378 #define validate_mm(mm) do { } while (0) 379 #endif 380 381 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 382 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 383 384 /* 385 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 386 * vma->vm_prev->vm_end values changed, without modifying the vma's position 387 * in the rbtree. 388 */ 389 static void vma_gap_update(struct vm_area_struct *vma) 390 { 391 /* 392 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 393 * function that does exacltly what we want. 394 */ 395 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 396 } 397 398 static inline void vma_rb_insert(struct vm_area_struct *vma, 399 struct rb_root *root) 400 { 401 /* All rb_subtree_gap values must be consistent prior to insertion */ 402 validate_mm_rb(root, NULL); 403 404 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 405 } 406 407 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 408 { 409 /* 410 * Note rb_erase_augmented is a fairly large inline function, 411 * so make sure we instantiate it only once with our desired 412 * augmented rbtree callbacks. 413 */ 414 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 415 } 416 417 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 418 struct rb_root *root, 419 struct vm_area_struct *ignore) 420 { 421 /* 422 * All rb_subtree_gap values must be consistent prior to erase, 423 * with the possible exception of the "next" vma being erased if 424 * next->vm_start was reduced. 425 */ 426 validate_mm_rb(root, ignore); 427 428 __vma_rb_erase(vma, root); 429 } 430 431 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 432 struct rb_root *root) 433 { 434 /* 435 * All rb_subtree_gap values must be consistent prior to erase, 436 * with the possible exception of the vma being erased. 437 */ 438 validate_mm_rb(root, vma); 439 440 __vma_rb_erase(vma, root); 441 } 442 443 /* 444 * vma has some anon_vma assigned, and is already inserted on that 445 * anon_vma's interval trees. 446 * 447 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 448 * vma must be removed from the anon_vma's interval trees using 449 * anon_vma_interval_tree_pre_update_vma(). 450 * 451 * After the update, the vma will be reinserted using 452 * anon_vma_interval_tree_post_update_vma(). 453 * 454 * The entire update must be protected by exclusive mmap_sem and by 455 * the root anon_vma's mutex. 456 */ 457 static inline void 458 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 459 { 460 struct anon_vma_chain *avc; 461 462 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 463 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 464 } 465 466 static inline void 467 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 468 { 469 struct anon_vma_chain *avc; 470 471 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 472 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 473 } 474 475 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 476 unsigned long end, struct vm_area_struct **pprev, 477 struct rb_node ***rb_link, struct rb_node **rb_parent) 478 { 479 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 480 481 __rb_link = &mm->mm_rb.rb_node; 482 rb_prev = __rb_parent = NULL; 483 484 while (*__rb_link) { 485 struct vm_area_struct *vma_tmp; 486 487 __rb_parent = *__rb_link; 488 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 489 490 if (vma_tmp->vm_end > addr) { 491 /* Fail if an existing vma overlaps the area */ 492 if (vma_tmp->vm_start < end) 493 return -ENOMEM; 494 __rb_link = &__rb_parent->rb_left; 495 } else { 496 rb_prev = __rb_parent; 497 __rb_link = &__rb_parent->rb_right; 498 } 499 } 500 501 *pprev = NULL; 502 if (rb_prev) 503 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 504 *rb_link = __rb_link; 505 *rb_parent = __rb_parent; 506 return 0; 507 } 508 509 static unsigned long count_vma_pages_range(struct mm_struct *mm, 510 unsigned long addr, unsigned long end) 511 { 512 unsigned long nr_pages = 0; 513 struct vm_area_struct *vma; 514 515 /* Find first overlaping mapping */ 516 vma = find_vma_intersection(mm, addr, end); 517 if (!vma) 518 return 0; 519 520 nr_pages = (min(end, vma->vm_end) - 521 max(addr, vma->vm_start)) >> PAGE_SHIFT; 522 523 /* Iterate over the rest of the overlaps */ 524 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 525 unsigned long overlap_len; 526 527 if (vma->vm_start > end) 528 break; 529 530 overlap_len = min(end, vma->vm_end) - vma->vm_start; 531 nr_pages += overlap_len >> PAGE_SHIFT; 532 } 533 534 return nr_pages; 535 } 536 537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 538 struct rb_node **rb_link, struct rb_node *rb_parent) 539 { 540 /* Update tracking information for the gap following the new vma. */ 541 if (vma->vm_next) 542 vma_gap_update(vma->vm_next); 543 else 544 mm->highest_vm_end = vma->vm_end; 545 546 /* 547 * vma->vm_prev wasn't known when we followed the rbtree to find the 548 * correct insertion point for that vma. As a result, we could not 549 * update the vma vm_rb parents rb_subtree_gap values on the way down. 550 * So, we first insert the vma with a zero rb_subtree_gap value 551 * (to be consistent with what we did on the way down), and then 552 * immediately update the gap to the correct value. Finally we 553 * rebalance the rbtree after all augmented values have been set. 554 */ 555 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 556 vma->rb_subtree_gap = 0; 557 vma_gap_update(vma); 558 vma_rb_insert(vma, &mm->mm_rb); 559 } 560 561 static void __vma_link_file(struct vm_area_struct *vma) 562 { 563 struct file *file; 564 565 file = vma->vm_file; 566 if (file) { 567 struct address_space *mapping = file->f_mapping; 568 569 if (vma->vm_flags & VM_DENYWRITE) 570 atomic_dec(&file_inode(file)->i_writecount); 571 if (vma->vm_flags & VM_SHARED) 572 atomic_inc(&mapping->i_mmap_writable); 573 574 flush_dcache_mmap_lock(mapping); 575 vma_interval_tree_insert(vma, &mapping->i_mmap); 576 flush_dcache_mmap_unlock(mapping); 577 } 578 } 579 580 static void 581 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 582 struct vm_area_struct *prev, struct rb_node **rb_link, 583 struct rb_node *rb_parent) 584 { 585 __vma_link_list(mm, vma, prev, rb_parent); 586 __vma_link_rb(mm, vma, rb_link, rb_parent); 587 } 588 589 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 590 struct vm_area_struct *prev, struct rb_node **rb_link, 591 struct rb_node *rb_parent) 592 { 593 struct address_space *mapping = NULL; 594 595 if (vma->vm_file) { 596 mapping = vma->vm_file->f_mapping; 597 i_mmap_lock_write(mapping); 598 } 599 600 __vma_link(mm, vma, prev, rb_link, rb_parent); 601 __vma_link_file(vma); 602 603 if (mapping) 604 i_mmap_unlock_write(mapping); 605 606 mm->map_count++; 607 validate_mm(mm); 608 } 609 610 /* 611 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 612 * mm's list and rbtree. It has already been inserted into the interval tree. 613 */ 614 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 615 { 616 struct vm_area_struct *prev; 617 struct rb_node **rb_link, *rb_parent; 618 619 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 620 &prev, &rb_link, &rb_parent)) 621 BUG(); 622 __vma_link(mm, vma, prev, rb_link, rb_parent); 623 mm->map_count++; 624 } 625 626 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 627 struct vm_area_struct *vma, 628 struct vm_area_struct *prev, 629 bool has_prev, 630 struct vm_area_struct *ignore) 631 { 632 struct vm_area_struct *next; 633 634 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 635 next = vma->vm_next; 636 if (has_prev) 637 prev->vm_next = next; 638 else { 639 prev = vma->vm_prev; 640 if (prev) 641 prev->vm_next = next; 642 else 643 mm->mmap = next; 644 } 645 if (next) 646 next->vm_prev = prev; 647 648 /* Kill the cache */ 649 vmacache_invalidate(mm); 650 } 651 652 static inline void __vma_unlink_prev(struct mm_struct *mm, 653 struct vm_area_struct *vma, 654 struct vm_area_struct *prev) 655 { 656 __vma_unlink_common(mm, vma, prev, true, vma); 657 } 658 659 /* 660 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 661 * is already present in an i_mmap tree without adjusting the tree. 662 * The following helper function should be used when such adjustments 663 * are necessary. The "insert" vma (if any) is to be inserted 664 * before we drop the necessary locks. 665 */ 666 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 667 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 668 struct vm_area_struct *expand) 669 { 670 struct mm_struct *mm = vma->vm_mm; 671 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 672 struct address_space *mapping = NULL; 673 struct rb_root *root = NULL; 674 struct anon_vma *anon_vma = NULL; 675 struct file *file = vma->vm_file; 676 bool start_changed = false, end_changed = false; 677 long adjust_next = 0; 678 int remove_next = 0; 679 680 if (next && !insert) { 681 struct vm_area_struct *exporter = NULL, *importer = NULL; 682 683 if (end >= next->vm_end) { 684 /* 685 * vma expands, overlapping all the next, and 686 * perhaps the one after too (mprotect case 6). 687 * The only other cases that gets here are 688 * case 1, case 7 and case 8. 689 */ 690 if (next == expand) { 691 /* 692 * The only case where we don't expand "vma" 693 * and we expand "next" instead is case 8. 694 */ 695 VM_WARN_ON(end != next->vm_end); 696 /* 697 * remove_next == 3 means we're 698 * removing "vma" and that to do so we 699 * swapped "vma" and "next". 700 */ 701 remove_next = 3; 702 VM_WARN_ON(file != next->vm_file); 703 swap(vma, next); 704 } else { 705 VM_WARN_ON(expand != vma); 706 /* 707 * case 1, 6, 7, remove_next == 2 is case 6, 708 * remove_next == 1 is case 1 or 7. 709 */ 710 remove_next = 1 + (end > next->vm_end); 711 VM_WARN_ON(remove_next == 2 && 712 end != next->vm_next->vm_end); 713 VM_WARN_ON(remove_next == 1 && 714 end != next->vm_end); 715 /* trim end to next, for case 6 first pass */ 716 end = next->vm_end; 717 } 718 719 exporter = next; 720 importer = vma; 721 722 /* 723 * If next doesn't have anon_vma, import from vma after 724 * next, if the vma overlaps with it. 725 */ 726 if (remove_next == 2 && !next->anon_vma) 727 exporter = next->vm_next; 728 729 } else if (end > next->vm_start) { 730 /* 731 * vma expands, overlapping part of the next: 732 * mprotect case 5 shifting the boundary up. 733 */ 734 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 735 exporter = next; 736 importer = vma; 737 VM_WARN_ON(expand != importer); 738 } else if (end < vma->vm_end) { 739 /* 740 * vma shrinks, and !insert tells it's not 741 * split_vma inserting another: so it must be 742 * mprotect case 4 shifting the boundary down. 743 */ 744 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 745 exporter = vma; 746 importer = next; 747 VM_WARN_ON(expand != importer); 748 } 749 750 /* 751 * Easily overlooked: when mprotect shifts the boundary, 752 * make sure the expanding vma has anon_vma set if the 753 * shrinking vma had, to cover any anon pages imported. 754 */ 755 if (exporter && exporter->anon_vma && !importer->anon_vma) { 756 int error; 757 758 importer->anon_vma = exporter->anon_vma; 759 error = anon_vma_clone(importer, exporter); 760 if (error) 761 return error; 762 } 763 } 764 again: 765 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 766 767 if (file) { 768 mapping = file->f_mapping; 769 root = &mapping->i_mmap; 770 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 771 772 if (adjust_next) 773 uprobe_munmap(next, next->vm_start, next->vm_end); 774 775 i_mmap_lock_write(mapping); 776 if (insert) { 777 /* 778 * Put into interval tree now, so instantiated pages 779 * are visible to arm/parisc __flush_dcache_page 780 * throughout; but we cannot insert into address 781 * space until vma start or end is updated. 782 */ 783 __vma_link_file(insert); 784 } 785 } 786 787 anon_vma = vma->anon_vma; 788 if (!anon_vma && adjust_next) 789 anon_vma = next->anon_vma; 790 if (anon_vma) { 791 VM_WARN_ON(adjust_next && next->anon_vma && 792 anon_vma != next->anon_vma); 793 anon_vma_lock_write(anon_vma); 794 anon_vma_interval_tree_pre_update_vma(vma); 795 if (adjust_next) 796 anon_vma_interval_tree_pre_update_vma(next); 797 } 798 799 if (root) { 800 flush_dcache_mmap_lock(mapping); 801 vma_interval_tree_remove(vma, root); 802 if (adjust_next) 803 vma_interval_tree_remove(next, root); 804 } 805 806 if (start != vma->vm_start) { 807 vma->vm_start = start; 808 start_changed = true; 809 } 810 if (end != vma->vm_end) { 811 vma->vm_end = end; 812 end_changed = true; 813 } 814 vma->vm_pgoff = pgoff; 815 if (adjust_next) { 816 next->vm_start += adjust_next << PAGE_SHIFT; 817 next->vm_pgoff += adjust_next; 818 } 819 820 if (root) { 821 if (adjust_next) 822 vma_interval_tree_insert(next, root); 823 vma_interval_tree_insert(vma, root); 824 flush_dcache_mmap_unlock(mapping); 825 } 826 827 if (remove_next) { 828 /* 829 * vma_merge has merged next into vma, and needs 830 * us to remove next before dropping the locks. 831 */ 832 if (remove_next != 3) 833 __vma_unlink_prev(mm, next, vma); 834 else 835 /* 836 * vma is not before next if they've been 837 * swapped. 838 * 839 * pre-swap() next->vm_start was reduced so 840 * tell validate_mm_rb to ignore pre-swap() 841 * "next" (which is stored in post-swap() 842 * "vma"). 843 */ 844 __vma_unlink_common(mm, next, NULL, false, vma); 845 if (file) 846 __remove_shared_vm_struct(next, file, mapping); 847 } else if (insert) { 848 /* 849 * split_vma has split insert from vma, and needs 850 * us to insert it before dropping the locks 851 * (it may either follow vma or precede it). 852 */ 853 __insert_vm_struct(mm, insert); 854 } else { 855 if (start_changed) 856 vma_gap_update(vma); 857 if (end_changed) { 858 if (!next) 859 mm->highest_vm_end = end; 860 else if (!adjust_next) 861 vma_gap_update(next); 862 } 863 } 864 865 if (anon_vma) { 866 anon_vma_interval_tree_post_update_vma(vma); 867 if (adjust_next) 868 anon_vma_interval_tree_post_update_vma(next); 869 anon_vma_unlock_write(anon_vma); 870 } 871 if (mapping) 872 i_mmap_unlock_write(mapping); 873 874 if (root) { 875 uprobe_mmap(vma); 876 877 if (adjust_next) 878 uprobe_mmap(next); 879 } 880 881 if (remove_next) { 882 if (file) { 883 uprobe_munmap(next, next->vm_start, next->vm_end); 884 fput(file); 885 } 886 if (next->anon_vma) 887 anon_vma_merge(vma, next); 888 mm->map_count--; 889 mpol_put(vma_policy(next)); 890 kmem_cache_free(vm_area_cachep, next); 891 /* 892 * In mprotect's case 6 (see comments on vma_merge), 893 * we must remove another next too. It would clutter 894 * up the code too much to do both in one go. 895 */ 896 if (remove_next != 3) { 897 /* 898 * If "next" was removed and vma->vm_end was 899 * expanded (up) over it, in turn 900 * "next->vm_prev->vm_end" changed and the 901 * "vma->vm_next" gap must be updated. 902 */ 903 next = vma->vm_next; 904 } else { 905 /* 906 * For the scope of the comment "next" and 907 * "vma" considered pre-swap(): if "vma" was 908 * removed, next->vm_start was expanded (down) 909 * over it and the "next" gap must be updated. 910 * Because of the swap() the post-swap() "vma" 911 * actually points to pre-swap() "next" 912 * (post-swap() "next" as opposed is now a 913 * dangling pointer). 914 */ 915 next = vma; 916 } 917 if (remove_next == 2) { 918 remove_next = 1; 919 end = next->vm_end; 920 goto again; 921 } 922 else if (next) 923 vma_gap_update(next); 924 else { 925 /* 926 * If remove_next == 2 we obviously can't 927 * reach this path. 928 * 929 * If remove_next == 3 we can't reach this 930 * path because pre-swap() next is always not 931 * NULL. pre-swap() "next" is not being 932 * removed and its next->vm_end is not altered 933 * (and furthermore "end" already matches 934 * next->vm_end in remove_next == 3). 935 * 936 * We reach this only in the remove_next == 1 937 * case if the "next" vma that was removed was 938 * the highest vma of the mm. However in such 939 * case next->vm_end == "end" and the extended 940 * "vma" has vma->vm_end == next->vm_end so 941 * mm->highest_vm_end doesn't need any update 942 * in remove_next == 1 case. 943 */ 944 VM_WARN_ON(mm->highest_vm_end != end); 945 } 946 } 947 if (insert && file) 948 uprobe_mmap(insert); 949 950 validate_mm(mm); 951 952 return 0; 953 } 954 955 /* 956 * If the vma has a ->close operation then the driver probably needs to release 957 * per-vma resources, so we don't attempt to merge those. 958 */ 959 static inline int is_mergeable_vma(struct vm_area_struct *vma, 960 struct file *file, unsigned long vm_flags, 961 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 962 { 963 /* 964 * VM_SOFTDIRTY should not prevent from VMA merging, if we 965 * match the flags but dirty bit -- the caller should mark 966 * merged VMA as dirty. If dirty bit won't be excluded from 967 * comparison, we increase pressue on the memory system forcing 968 * the kernel to generate new VMAs when old one could be 969 * extended instead. 970 */ 971 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 972 return 0; 973 if (vma->vm_file != file) 974 return 0; 975 if (vma->vm_ops && vma->vm_ops->close) 976 return 0; 977 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 978 return 0; 979 return 1; 980 } 981 982 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 983 struct anon_vma *anon_vma2, 984 struct vm_area_struct *vma) 985 { 986 /* 987 * The list_is_singular() test is to avoid merging VMA cloned from 988 * parents. This can improve scalability caused by anon_vma lock. 989 */ 990 if ((!anon_vma1 || !anon_vma2) && (!vma || 991 list_is_singular(&vma->anon_vma_chain))) 992 return 1; 993 return anon_vma1 == anon_vma2; 994 } 995 996 /* 997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 998 * in front of (at a lower virtual address and file offset than) the vma. 999 * 1000 * We cannot merge two vmas if they have differently assigned (non-NULL) 1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1002 * 1003 * We don't check here for the merged mmap wrapping around the end of pagecache 1004 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1005 * wrap, nor mmaps which cover the final page at index -1UL. 1006 */ 1007 static int 1008 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1009 struct anon_vma *anon_vma, struct file *file, 1010 pgoff_t vm_pgoff, 1011 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1012 { 1013 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1014 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1015 if (vma->vm_pgoff == vm_pgoff) 1016 return 1; 1017 } 1018 return 0; 1019 } 1020 1021 /* 1022 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1023 * beyond (at a higher virtual address and file offset than) the vma. 1024 * 1025 * We cannot merge two vmas if they have differently assigned (non-NULL) 1026 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1027 */ 1028 static int 1029 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1030 struct anon_vma *anon_vma, struct file *file, 1031 pgoff_t vm_pgoff, 1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1033 { 1034 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1035 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1036 pgoff_t vm_pglen; 1037 vm_pglen = vma_pages(vma); 1038 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1039 return 1; 1040 } 1041 return 0; 1042 } 1043 1044 /* 1045 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1046 * whether that can be merged with its predecessor or its successor. 1047 * Or both (it neatly fills a hole). 1048 * 1049 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1050 * certain not to be mapped by the time vma_merge is called; but when 1051 * called for mprotect, it is certain to be already mapped (either at 1052 * an offset within prev, or at the start of next), and the flags of 1053 * this area are about to be changed to vm_flags - and the no-change 1054 * case has already been eliminated. 1055 * 1056 * The following mprotect cases have to be considered, where AAAA is 1057 * the area passed down from mprotect_fixup, never extending beyond one 1058 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1059 * 1060 * AAAA AAAA AAAA AAAA 1061 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1062 * cannot merge might become might become might become 1063 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1064 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1065 * mremap move: PPPPXXXXXXXX 8 1066 * AAAA 1067 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1068 * might become case 1 below case 2 below case 3 below 1069 * 1070 * It is important for case 8 that the the vma NNNN overlapping the 1071 * region AAAA is never going to extended over XXXX. Instead XXXX must 1072 * be extended in region AAAA and NNNN must be removed. This way in 1073 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1074 * rmap_locks, the properties of the merged vma will be already 1075 * correct for the whole merged range. Some of those properties like 1076 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1077 * be correct for the whole merged range immediately after the 1078 * rmap_locks are released. Otherwise if XXXX would be removed and 1079 * NNNN would be extended over the XXXX range, remove_migration_ptes 1080 * or other rmap walkers (if working on addresses beyond the "end" 1081 * parameter) may establish ptes with the wrong permissions of NNNN 1082 * instead of the right permissions of XXXX. 1083 */ 1084 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1085 struct vm_area_struct *prev, unsigned long addr, 1086 unsigned long end, unsigned long vm_flags, 1087 struct anon_vma *anon_vma, struct file *file, 1088 pgoff_t pgoff, struct mempolicy *policy, 1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1090 { 1091 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1092 struct vm_area_struct *area, *next; 1093 int err; 1094 1095 /* 1096 * We later require that vma->vm_flags == vm_flags, 1097 * so this tests vma->vm_flags & VM_SPECIAL, too. 1098 */ 1099 if (vm_flags & VM_SPECIAL) 1100 return NULL; 1101 1102 if (prev) 1103 next = prev->vm_next; 1104 else 1105 next = mm->mmap; 1106 area = next; 1107 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1108 next = next->vm_next; 1109 1110 /* verify some invariant that must be enforced by the caller */ 1111 VM_WARN_ON(prev && addr <= prev->vm_start); 1112 VM_WARN_ON(area && end > area->vm_end); 1113 VM_WARN_ON(addr >= end); 1114 1115 /* 1116 * Can it merge with the predecessor? 1117 */ 1118 if (prev && prev->vm_end == addr && 1119 mpol_equal(vma_policy(prev), policy) && 1120 can_vma_merge_after(prev, vm_flags, 1121 anon_vma, file, pgoff, 1122 vm_userfaultfd_ctx)) { 1123 /* 1124 * OK, it can. Can we now merge in the successor as well? 1125 */ 1126 if (next && end == next->vm_start && 1127 mpol_equal(policy, vma_policy(next)) && 1128 can_vma_merge_before(next, vm_flags, 1129 anon_vma, file, 1130 pgoff+pglen, 1131 vm_userfaultfd_ctx) && 1132 is_mergeable_anon_vma(prev->anon_vma, 1133 next->anon_vma, NULL)) { 1134 /* cases 1, 6 */ 1135 err = __vma_adjust(prev, prev->vm_start, 1136 next->vm_end, prev->vm_pgoff, NULL, 1137 prev); 1138 } else /* cases 2, 5, 7 */ 1139 err = __vma_adjust(prev, prev->vm_start, 1140 end, prev->vm_pgoff, NULL, prev); 1141 if (err) 1142 return NULL; 1143 khugepaged_enter_vma_merge(prev, vm_flags); 1144 return prev; 1145 } 1146 1147 /* 1148 * Can this new request be merged in front of next? 1149 */ 1150 if (next && end == next->vm_start && 1151 mpol_equal(policy, vma_policy(next)) && 1152 can_vma_merge_before(next, vm_flags, 1153 anon_vma, file, pgoff+pglen, 1154 vm_userfaultfd_ctx)) { 1155 if (prev && addr < prev->vm_end) /* case 4 */ 1156 err = __vma_adjust(prev, prev->vm_start, 1157 addr, prev->vm_pgoff, NULL, next); 1158 else { /* cases 3, 8 */ 1159 err = __vma_adjust(area, addr, next->vm_end, 1160 next->vm_pgoff - pglen, NULL, next); 1161 /* 1162 * In case 3 area is already equal to next and 1163 * this is a noop, but in case 8 "area" has 1164 * been removed and next was expanded over it. 1165 */ 1166 area = next; 1167 } 1168 if (err) 1169 return NULL; 1170 khugepaged_enter_vma_merge(area, vm_flags); 1171 return area; 1172 } 1173 1174 return NULL; 1175 } 1176 1177 /* 1178 * Rough compatbility check to quickly see if it's even worth looking 1179 * at sharing an anon_vma. 1180 * 1181 * They need to have the same vm_file, and the flags can only differ 1182 * in things that mprotect may change. 1183 * 1184 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1185 * we can merge the two vma's. For example, we refuse to merge a vma if 1186 * there is a vm_ops->close() function, because that indicates that the 1187 * driver is doing some kind of reference counting. But that doesn't 1188 * really matter for the anon_vma sharing case. 1189 */ 1190 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1191 { 1192 return a->vm_end == b->vm_start && 1193 mpol_equal(vma_policy(a), vma_policy(b)) && 1194 a->vm_file == b->vm_file && 1195 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1196 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1197 } 1198 1199 /* 1200 * Do some basic sanity checking to see if we can re-use the anon_vma 1201 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1202 * the same as 'old', the other will be the new one that is trying 1203 * to share the anon_vma. 1204 * 1205 * NOTE! This runs with mm_sem held for reading, so it is possible that 1206 * the anon_vma of 'old' is concurrently in the process of being set up 1207 * by another page fault trying to merge _that_. But that's ok: if it 1208 * is being set up, that automatically means that it will be a singleton 1209 * acceptable for merging, so we can do all of this optimistically. But 1210 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1211 * 1212 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1213 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1214 * is to return an anon_vma that is "complex" due to having gone through 1215 * a fork). 1216 * 1217 * We also make sure that the two vma's are compatible (adjacent, 1218 * and with the same memory policies). That's all stable, even with just 1219 * a read lock on the mm_sem. 1220 */ 1221 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1222 { 1223 if (anon_vma_compatible(a, b)) { 1224 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1225 1226 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1227 return anon_vma; 1228 } 1229 return NULL; 1230 } 1231 1232 /* 1233 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1234 * neighbouring vmas for a suitable anon_vma, before it goes off 1235 * to allocate a new anon_vma. It checks because a repetitive 1236 * sequence of mprotects and faults may otherwise lead to distinct 1237 * anon_vmas being allocated, preventing vma merge in subsequent 1238 * mprotect. 1239 */ 1240 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1241 { 1242 struct anon_vma *anon_vma; 1243 struct vm_area_struct *near; 1244 1245 near = vma->vm_next; 1246 if (!near) 1247 goto try_prev; 1248 1249 anon_vma = reusable_anon_vma(near, vma, near); 1250 if (anon_vma) 1251 return anon_vma; 1252 try_prev: 1253 near = vma->vm_prev; 1254 if (!near) 1255 goto none; 1256 1257 anon_vma = reusable_anon_vma(near, near, vma); 1258 if (anon_vma) 1259 return anon_vma; 1260 none: 1261 /* 1262 * There's no absolute need to look only at touching neighbours: 1263 * we could search further afield for "compatible" anon_vmas. 1264 * But it would probably just be a waste of time searching, 1265 * or lead to too many vmas hanging off the same anon_vma. 1266 * We're trying to allow mprotect remerging later on, 1267 * not trying to minimize memory used for anon_vmas. 1268 */ 1269 return NULL; 1270 } 1271 1272 /* 1273 * If a hint addr is less than mmap_min_addr change hint to be as 1274 * low as possible but still greater than mmap_min_addr 1275 */ 1276 static inline unsigned long round_hint_to_min(unsigned long hint) 1277 { 1278 hint &= PAGE_MASK; 1279 if (((void *)hint != NULL) && 1280 (hint < mmap_min_addr)) 1281 return PAGE_ALIGN(mmap_min_addr); 1282 return hint; 1283 } 1284 1285 static inline int mlock_future_check(struct mm_struct *mm, 1286 unsigned long flags, 1287 unsigned long len) 1288 { 1289 unsigned long locked, lock_limit; 1290 1291 /* mlock MCL_FUTURE? */ 1292 if (flags & VM_LOCKED) { 1293 locked = len >> PAGE_SHIFT; 1294 locked += mm->locked_vm; 1295 lock_limit = rlimit(RLIMIT_MEMLOCK); 1296 lock_limit >>= PAGE_SHIFT; 1297 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1298 return -EAGAIN; 1299 } 1300 return 0; 1301 } 1302 1303 /* 1304 * The caller must hold down_write(¤t->mm->mmap_sem). 1305 */ 1306 unsigned long do_mmap(struct file *file, unsigned long addr, 1307 unsigned long len, unsigned long prot, 1308 unsigned long flags, vm_flags_t vm_flags, 1309 unsigned long pgoff, unsigned long *populate, 1310 struct list_head *uf) 1311 { 1312 struct mm_struct *mm = current->mm; 1313 int pkey = 0; 1314 1315 *populate = 0; 1316 1317 if (!len) 1318 return -EINVAL; 1319 1320 /* 1321 * Does the application expect PROT_READ to imply PROT_EXEC? 1322 * 1323 * (the exception is when the underlying filesystem is noexec 1324 * mounted, in which case we dont add PROT_EXEC.) 1325 */ 1326 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1327 if (!(file && path_noexec(&file->f_path))) 1328 prot |= PROT_EXEC; 1329 1330 if (!(flags & MAP_FIXED)) 1331 addr = round_hint_to_min(addr); 1332 1333 /* Careful about overflows.. */ 1334 len = PAGE_ALIGN(len); 1335 if (!len) 1336 return -ENOMEM; 1337 1338 /* offset overflow? */ 1339 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1340 return -EOVERFLOW; 1341 1342 /* Too many mappings? */ 1343 if (mm->map_count > sysctl_max_map_count) 1344 return -ENOMEM; 1345 1346 /* Obtain the address to map to. we verify (or select) it and ensure 1347 * that it represents a valid section of the address space. 1348 */ 1349 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1350 if (offset_in_page(addr)) 1351 return addr; 1352 1353 if (prot == PROT_EXEC) { 1354 pkey = execute_only_pkey(mm); 1355 if (pkey < 0) 1356 pkey = 0; 1357 } 1358 1359 /* Do simple checking here so the lower-level routines won't have 1360 * to. we assume access permissions have been handled by the open 1361 * of the memory object, so we don't do any here. 1362 */ 1363 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1364 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1365 1366 if (flags & MAP_LOCKED) 1367 if (!can_do_mlock()) 1368 return -EPERM; 1369 1370 if (mlock_future_check(mm, vm_flags, len)) 1371 return -EAGAIN; 1372 1373 if (file) { 1374 struct inode *inode = file_inode(file); 1375 1376 switch (flags & MAP_TYPE) { 1377 case MAP_SHARED: 1378 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1379 return -EACCES; 1380 1381 /* 1382 * Make sure we don't allow writing to an append-only 1383 * file.. 1384 */ 1385 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1386 return -EACCES; 1387 1388 /* 1389 * Make sure there are no mandatory locks on the file. 1390 */ 1391 if (locks_verify_locked(file)) 1392 return -EAGAIN; 1393 1394 vm_flags |= VM_SHARED | VM_MAYSHARE; 1395 if (!(file->f_mode & FMODE_WRITE)) 1396 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1397 1398 /* fall through */ 1399 case MAP_PRIVATE: 1400 if (!(file->f_mode & FMODE_READ)) 1401 return -EACCES; 1402 if (path_noexec(&file->f_path)) { 1403 if (vm_flags & VM_EXEC) 1404 return -EPERM; 1405 vm_flags &= ~VM_MAYEXEC; 1406 } 1407 1408 if (!file->f_op->mmap) 1409 return -ENODEV; 1410 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1411 return -EINVAL; 1412 break; 1413 1414 default: 1415 return -EINVAL; 1416 } 1417 } else { 1418 switch (flags & MAP_TYPE) { 1419 case MAP_SHARED: 1420 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1421 return -EINVAL; 1422 /* 1423 * Ignore pgoff. 1424 */ 1425 pgoff = 0; 1426 vm_flags |= VM_SHARED | VM_MAYSHARE; 1427 break; 1428 case MAP_PRIVATE: 1429 /* 1430 * Set pgoff according to addr for anon_vma. 1431 */ 1432 pgoff = addr >> PAGE_SHIFT; 1433 break; 1434 default: 1435 return -EINVAL; 1436 } 1437 } 1438 1439 /* 1440 * Set 'VM_NORESERVE' if we should not account for the 1441 * memory use of this mapping. 1442 */ 1443 if (flags & MAP_NORESERVE) { 1444 /* We honor MAP_NORESERVE if allowed to overcommit */ 1445 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1446 vm_flags |= VM_NORESERVE; 1447 1448 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1449 if (file && is_file_hugepages(file)) 1450 vm_flags |= VM_NORESERVE; 1451 } 1452 1453 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1454 if (!IS_ERR_VALUE(addr) && 1455 ((vm_flags & VM_LOCKED) || 1456 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1457 *populate = len; 1458 return addr; 1459 } 1460 1461 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1462 unsigned long, prot, unsigned long, flags, 1463 unsigned long, fd, unsigned long, pgoff) 1464 { 1465 struct file *file = NULL; 1466 unsigned long retval; 1467 1468 if (!(flags & MAP_ANONYMOUS)) { 1469 audit_mmap_fd(fd, flags); 1470 file = fget(fd); 1471 if (!file) 1472 return -EBADF; 1473 if (is_file_hugepages(file)) 1474 len = ALIGN(len, huge_page_size(hstate_file(file))); 1475 retval = -EINVAL; 1476 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1477 goto out_fput; 1478 } else if (flags & MAP_HUGETLB) { 1479 struct user_struct *user = NULL; 1480 struct hstate *hs; 1481 1482 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1483 if (!hs) 1484 return -EINVAL; 1485 1486 len = ALIGN(len, huge_page_size(hs)); 1487 /* 1488 * VM_NORESERVE is used because the reservations will be 1489 * taken when vm_ops->mmap() is called 1490 * A dummy user value is used because we are not locking 1491 * memory so no accounting is necessary 1492 */ 1493 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1494 VM_NORESERVE, 1495 &user, HUGETLB_ANONHUGE_INODE, 1496 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1497 if (IS_ERR(file)) 1498 return PTR_ERR(file); 1499 } 1500 1501 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1502 1503 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1504 out_fput: 1505 if (file) 1506 fput(file); 1507 return retval; 1508 } 1509 1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1511 struct mmap_arg_struct { 1512 unsigned long addr; 1513 unsigned long len; 1514 unsigned long prot; 1515 unsigned long flags; 1516 unsigned long fd; 1517 unsigned long offset; 1518 }; 1519 1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1521 { 1522 struct mmap_arg_struct a; 1523 1524 if (copy_from_user(&a, arg, sizeof(a))) 1525 return -EFAULT; 1526 if (offset_in_page(a.offset)) 1527 return -EINVAL; 1528 1529 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1530 a.offset >> PAGE_SHIFT); 1531 } 1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1533 1534 /* 1535 * Some shared mappigns will want the pages marked read-only 1536 * to track write events. If so, we'll downgrade vm_page_prot 1537 * to the private version (using protection_map[] without the 1538 * VM_SHARED bit). 1539 */ 1540 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1541 { 1542 vm_flags_t vm_flags = vma->vm_flags; 1543 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1544 1545 /* If it was private or non-writable, the write bit is already clear */ 1546 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1547 return 0; 1548 1549 /* The backer wishes to know when pages are first written to? */ 1550 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1551 return 1; 1552 1553 /* The open routine did something to the protections that pgprot_modify 1554 * won't preserve? */ 1555 if (pgprot_val(vm_page_prot) != 1556 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1557 return 0; 1558 1559 /* Do we need to track softdirty? */ 1560 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1561 return 1; 1562 1563 /* Specialty mapping? */ 1564 if (vm_flags & VM_PFNMAP) 1565 return 0; 1566 1567 /* Can the mapping track the dirty pages? */ 1568 return vma->vm_file && vma->vm_file->f_mapping && 1569 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1570 } 1571 1572 /* 1573 * We account for memory if it's a private writeable mapping, 1574 * not hugepages and VM_NORESERVE wasn't set. 1575 */ 1576 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1577 { 1578 /* 1579 * hugetlb has its own accounting separate from the core VM 1580 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1581 */ 1582 if (file && is_file_hugepages(file)) 1583 return 0; 1584 1585 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1586 } 1587 1588 unsigned long mmap_region(struct file *file, unsigned long addr, 1589 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1590 struct list_head *uf) 1591 { 1592 struct mm_struct *mm = current->mm; 1593 struct vm_area_struct *vma, *prev; 1594 int error; 1595 struct rb_node **rb_link, *rb_parent; 1596 unsigned long charged = 0; 1597 1598 /* Check against address space limit. */ 1599 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1600 unsigned long nr_pages; 1601 1602 /* 1603 * MAP_FIXED may remove pages of mappings that intersects with 1604 * requested mapping. Account for the pages it would unmap. 1605 */ 1606 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1607 1608 if (!may_expand_vm(mm, vm_flags, 1609 (len >> PAGE_SHIFT) - nr_pages)) 1610 return -ENOMEM; 1611 } 1612 1613 /* Clear old maps */ 1614 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1615 &rb_parent)) { 1616 if (do_munmap(mm, addr, len, uf)) 1617 return -ENOMEM; 1618 } 1619 1620 /* 1621 * Private writable mapping: check memory availability 1622 */ 1623 if (accountable_mapping(file, vm_flags)) { 1624 charged = len >> PAGE_SHIFT; 1625 if (security_vm_enough_memory_mm(mm, charged)) 1626 return -ENOMEM; 1627 vm_flags |= VM_ACCOUNT; 1628 } 1629 1630 /* 1631 * Can we just expand an old mapping? 1632 */ 1633 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1634 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1635 if (vma) 1636 goto out; 1637 1638 /* 1639 * Determine the object being mapped and call the appropriate 1640 * specific mapper. the address has already been validated, but 1641 * not unmapped, but the maps are removed from the list. 1642 */ 1643 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1644 if (!vma) { 1645 error = -ENOMEM; 1646 goto unacct_error; 1647 } 1648 1649 vma->vm_mm = mm; 1650 vma->vm_start = addr; 1651 vma->vm_end = addr + len; 1652 vma->vm_flags = vm_flags; 1653 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1654 vma->vm_pgoff = pgoff; 1655 INIT_LIST_HEAD(&vma->anon_vma_chain); 1656 1657 if (file) { 1658 if (vm_flags & VM_DENYWRITE) { 1659 error = deny_write_access(file); 1660 if (error) 1661 goto free_vma; 1662 } 1663 if (vm_flags & VM_SHARED) { 1664 error = mapping_map_writable(file->f_mapping); 1665 if (error) 1666 goto allow_write_and_free_vma; 1667 } 1668 1669 /* ->mmap() can change vma->vm_file, but must guarantee that 1670 * vma_link() below can deny write-access if VM_DENYWRITE is set 1671 * and map writably if VM_SHARED is set. This usually means the 1672 * new file must not have been exposed to user-space, yet. 1673 */ 1674 vma->vm_file = get_file(file); 1675 error = call_mmap(file, vma); 1676 if (error) 1677 goto unmap_and_free_vma; 1678 1679 /* Can addr have changed?? 1680 * 1681 * Answer: Yes, several device drivers can do it in their 1682 * f_op->mmap method. -DaveM 1683 * Bug: If addr is changed, prev, rb_link, rb_parent should 1684 * be updated for vma_link() 1685 */ 1686 WARN_ON_ONCE(addr != vma->vm_start); 1687 1688 addr = vma->vm_start; 1689 vm_flags = vma->vm_flags; 1690 } else if (vm_flags & VM_SHARED) { 1691 error = shmem_zero_setup(vma); 1692 if (error) 1693 goto free_vma; 1694 } 1695 1696 vma_link(mm, vma, prev, rb_link, rb_parent); 1697 /* Once vma denies write, undo our temporary denial count */ 1698 if (file) { 1699 if (vm_flags & VM_SHARED) 1700 mapping_unmap_writable(file->f_mapping); 1701 if (vm_flags & VM_DENYWRITE) 1702 allow_write_access(file); 1703 } 1704 file = vma->vm_file; 1705 out: 1706 perf_event_mmap(vma); 1707 1708 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1709 if (vm_flags & VM_LOCKED) { 1710 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1711 vma == get_gate_vma(current->mm))) 1712 mm->locked_vm += (len >> PAGE_SHIFT); 1713 else 1714 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1715 } 1716 1717 if (file) 1718 uprobe_mmap(vma); 1719 1720 /* 1721 * New (or expanded) vma always get soft dirty status. 1722 * Otherwise user-space soft-dirty page tracker won't 1723 * be able to distinguish situation when vma area unmapped, 1724 * then new mapped in-place (which must be aimed as 1725 * a completely new data area). 1726 */ 1727 vma->vm_flags |= VM_SOFTDIRTY; 1728 1729 vma_set_page_prot(vma); 1730 1731 return addr; 1732 1733 unmap_and_free_vma: 1734 vma->vm_file = NULL; 1735 fput(file); 1736 1737 /* Undo any partial mapping done by a device driver. */ 1738 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1739 charged = 0; 1740 if (vm_flags & VM_SHARED) 1741 mapping_unmap_writable(file->f_mapping); 1742 allow_write_and_free_vma: 1743 if (vm_flags & VM_DENYWRITE) 1744 allow_write_access(file); 1745 free_vma: 1746 kmem_cache_free(vm_area_cachep, vma); 1747 unacct_error: 1748 if (charged) 1749 vm_unacct_memory(charged); 1750 return error; 1751 } 1752 1753 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1754 { 1755 /* 1756 * We implement the search by looking for an rbtree node that 1757 * immediately follows a suitable gap. That is, 1758 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1759 * - gap_end = vma->vm_start >= info->low_limit + length; 1760 * - gap_end - gap_start >= length 1761 */ 1762 1763 struct mm_struct *mm = current->mm; 1764 struct vm_area_struct *vma; 1765 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1766 1767 /* Adjust search length to account for worst case alignment overhead */ 1768 length = info->length + info->align_mask; 1769 if (length < info->length) 1770 return -ENOMEM; 1771 1772 /* Adjust search limits by the desired length */ 1773 if (info->high_limit < length) 1774 return -ENOMEM; 1775 high_limit = info->high_limit - length; 1776 1777 if (info->low_limit > high_limit) 1778 return -ENOMEM; 1779 low_limit = info->low_limit + length; 1780 1781 /* Check if rbtree root looks promising */ 1782 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1783 goto check_highest; 1784 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1785 if (vma->rb_subtree_gap < length) 1786 goto check_highest; 1787 1788 while (true) { 1789 /* Visit left subtree if it looks promising */ 1790 gap_end = vma->vm_start; 1791 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1792 struct vm_area_struct *left = 1793 rb_entry(vma->vm_rb.rb_left, 1794 struct vm_area_struct, vm_rb); 1795 if (left->rb_subtree_gap >= length) { 1796 vma = left; 1797 continue; 1798 } 1799 } 1800 1801 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1802 check_current: 1803 /* Check if current node has a suitable gap */ 1804 if (gap_start > high_limit) 1805 return -ENOMEM; 1806 if (gap_end >= low_limit && gap_end - gap_start >= length) 1807 goto found; 1808 1809 /* Visit right subtree if it looks promising */ 1810 if (vma->vm_rb.rb_right) { 1811 struct vm_area_struct *right = 1812 rb_entry(vma->vm_rb.rb_right, 1813 struct vm_area_struct, vm_rb); 1814 if (right->rb_subtree_gap >= length) { 1815 vma = right; 1816 continue; 1817 } 1818 } 1819 1820 /* Go back up the rbtree to find next candidate node */ 1821 while (true) { 1822 struct rb_node *prev = &vma->vm_rb; 1823 if (!rb_parent(prev)) 1824 goto check_highest; 1825 vma = rb_entry(rb_parent(prev), 1826 struct vm_area_struct, vm_rb); 1827 if (prev == vma->vm_rb.rb_left) { 1828 gap_start = vma->vm_prev->vm_end; 1829 gap_end = vma->vm_start; 1830 goto check_current; 1831 } 1832 } 1833 } 1834 1835 check_highest: 1836 /* Check highest gap, which does not precede any rbtree node */ 1837 gap_start = mm->highest_vm_end; 1838 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1839 if (gap_start > high_limit) 1840 return -ENOMEM; 1841 1842 found: 1843 /* We found a suitable gap. Clip it with the original low_limit. */ 1844 if (gap_start < info->low_limit) 1845 gap_start = info->low_limit; 1846 1847 /* Adjust gap address to the desired alignment */ 1848 gap_start += (info->align_offset - gap_start) & info->align_mask; 1849 1850 VM_BUG_ON(gap_start + info->length > info->high_limit); 1851 VM_BUG_ON(gap_start + info->length > gap_end); 1852 return gap_start; 1853 } 1854 1855 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1856 { 1857 struct mm_struct *mm = current->mm; 1858 struct vm_area_struct *vma; 1859 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1860 1861 /* Adjust search length to account for worst case alignment overhead */ 1862 length = info->length + info->align_mask; 1863 if (length < info->length) 1864 return -ENOMEM; 1865 1866 /* 1867 * Adjust search limits by the desired length. 1868 * See implementation comment at top of unmapped_area(). 1869 */ 1870 gap_end = info->high_limit; 1871 if (gap_end < length) 1872 return -ENOMEM; 1873 high_limit = gap_end - length; 1874 1875 if (info->low_limit > high_limit) 1876 return -ENOMEM; 1877 low_limit = info->low_limit + length; 1878 1879 /* Check highest gap, which does not precede any rbtree node */ 1880 gap_start = mm->highest_vm_end; 1881 if (gap_start <= high_limit) 1882 goto found_highest; 1883 1884 /* Check if rbtree root looks promising */ 1885 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1886 return -ENOMEM; 1887 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1888 if (vma->rb_subtree_gap < length) 1889 return -ENOMEM; 1890 1891 while (true) { 1892 /* Visit right subtree if it looks promising */ 1893 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1894 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1895 struct vm_area_struct *right = 1896 rb_entry(vma->vm_rb.rb_right, 1897 struct vm_area_struct, vm_rb); 1898 if (right->rb_subtree_gap >= length) { 1899 vma = right; 1900 continue; 1901 } 1902 } 1903 1904 check_current: 1905 /* Check if current node has a suitable gap */ 1906 gap_end = vma->vm_start; 1907 if (gap_end < low_limit) 1908 return -ENOMEM; 1909 if (gap_start <= high_limit && gap_end - gap_start >= length) 1910 goto found; 1911 1912 /* Visit left subtree if it looks promising */ 1913 if (vma->vm_rb.rb_left) { 1914 struct vm_area_struct *left = 1915 rb_entry(vma->vm_rb.rb_left, 1916 struct vm_area_struct, vm_rb); 1917 if (left->rb_subtree_gap >= length) { 1918 vma = left; 1919 continue; 1920 } 1921 } 1922 1923 /* Go back up the rbtree to find next candidate node */ 1924 while (true) { 1925 struct rb_node *prev = &vma->vm_rb; 1926 if (!rb_parent(prev)) 1927 return -ENOMEM; 1928 vma = rb_entry(rb_parent(prev), 1929 struct vm_area_struct, vm_rb); 1930 if (prev == vma->vm_rb.rb_right) { 1931 gap_start = vma->vm_prev ? 1932 vma->vm_prev->vm_end : 0; 1933 goto check_current; 1934 } 1935 } 1936 } 1937 1938 found: 1939 /* We found a suitable gap. Clip it with the original high_limit. */ 1940 if (gap_end > info->high_limit) 1941 gap_end = info->high_limit; 1942 1943 found_highest: 1944 /* Compute highest gap address at the desired alignment */ 1945 gap_end -= info->length; 1946 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1947 1948 VM_BUG_ON(gap_end < info->low_limit); 1949 VM_BUG_ON(gap_end < gap_start); 1950 return gap_end; 1951 } 1952 1953 /* Get an address range which is currently unmapped. 1954 * For shmat() with addr=0. 1955 * 1956 * Ugly calling convention alert: 1957 * Return value with the low bits set means error value, 1958 * ie 1959 * if (ret & ~PAGE_MASK) 1960 * error = ret; 1961 * 1962 * This function "knows" that -ENOMEM has the bits set. 1963 */ 1964 #ifndef HAVE_ARCH_UNMAPPED_AREA 1965 unsigned long 1966 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1967 unsigned long len, unsigned long pgoff, unsigned long flags) 1968 { 1969 struct mm_struct *mm = current->mm; 1970 struct vm_area_struct *vma; 1971 struct vm_unmapped_area_info info; 1972 1973 if (len > TASK_SIZE - mmap_min_addr) 1974 return -ENOMEM; 1975 1976 if (flags & MAP_FIXED) 1977 return addr; 1978 1979 if (addr) { 1980 addr = PAGE_ALIGN(addr); 1981 vma = find_vma(mm, addr); 1982 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1983 (!vma || addr + len <= vma->vm_start)) 1984 return addr; 1985 } 1986 1987 info.flags = 0; 1988 info.length = len; 1989 info.low_limit = mm->mmap_base; 1990 info.high_limit = TASK_SIZE; 1991 info.align_mask = 0; 1992 return vm_unmapped_area(&info); 1993 } 1994 #endif 1995 1996 /* 1997 * This mmap-allocator allocates new areas top-down from below the 1998 * stack's low limit (the base): 1999 */ 2000 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2001 unsigned long 2002 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 2003 const unsigned long len, const unsigned long pgoff, 2004 const unsigned long flags) 2005 { 2006 struct vm_area_struct *vma; 2007 struct mm_struct *mm = current->mm; 2008 unsigned long addr = addr0; 2009 struct vm_unmapped_area_info info; 2010 2011 /* requested length too big for entire address space */ 2012 if (len > TASK_SIZE - mmap_min_addr) 2013 return -ENOMEM; 2014 2015 if (flags & MAP_FIXED) 2016 return addr; 2017 2018 /* requesting a specific address */ 2019 if (addr) { 2020 addr = PAGE_ALIGN(addr); 2021 vma = find_vma(mm, addr); 2022 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2023 (!vma || addr + len <= vma->vm_start)) 2024 return addr; 2025 } 2026 2027 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2028 info.length = len; 2029 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2030 info.high_limit = mm->mmap_base; 2031 info.align_mask = 0; 2032 addr = vm_unmapped_area(&info); 2033 2034 /* 2035 * A failed mmap() very likely causes application failure, 2036 * so fall back to the bottom-up function here. This scenario 2037 * can happen with large stack limits and large mmap() 2038 * allocations. 2039 */ 2040 if (offset_in_page(addr)) { 2041 VM_BUG_ON(addr != -ENOMEM); 2042 info.flags = 0; 2043 info.low_limit = TASK_UNMAPPED_BASE; 2044 info.high_limit = TASK_SIZE; 2045 addr = vm_unmapped_area(&info); 2046 } 2047 2048 return addr; 2049 } 2050 #endif 2051 2052 unsigned long 2053 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2054 unsigned long pgoff, unsigned long flags) 2055 { 2056 unsigned long (*get_area)(struct file *, unsigned long, 2057 unsigned long, unsigned long, unsigned long); 2058 2059 unsigned long error = arch_mmap_check(addr, len, flags); 2060 if (error) 2061 return error; 2062 2063 /* Careful about overflows.. */ 2064 if (len > TASK_SIZE) 2065 return -ENOMEM; 2066 2067 get_area = current->mm->get_unmapped_area; 2068 if (file) { 2069 if (file->f_op->get_unmapped_area) 2070 get_area = file->f_op->get_unmapped_area; 2071 } else if (flags & MAP_SHARED) { 2072 /* 2073 * mmap_region() will call shmem_zero_setup() to create a file, 2074 * so use shmem's get_unmapped_area in case it can be huge. 2075 * do_mmap_pgoff() will clear pgoff, so match alignment. 2076 */ 2077 pgoff = 0; 2078 get_area = shmem_get_unmapped_area; 2079 } 2080 2081 addr = get_area(file, addr, len, pgoff, flags); 2082 if (IS_ERR_VALUE(addr)) 2083 return addr; 2084 2085 if (addr > TASK_SIZE - len) 2086 return -ENOMEM; 2087 if (offset_in_page(addr)) 2088 return -EINVAL; 2089 2090 error = security_mmap_addr(addr); 2091 return error ? error : addr; 2092 } 2093 2094 EXPORT_SYMBOL(get_unmapped_area); 2095 2096 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2097 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2098 { 2099 struct rb_node *rb_node; 2100 struct vm_area_struct *vma; 2101 2102 /* Check the cache first. */ 2103 vma = vmacache_find(mm, addr); 2104 if (likely(vma)) 2105 return vma; 2106 2107 rb_node = mm->mm_rb.rb_node; 2108 2109 while (rb_node) { 2110 struct vm_area_struct *tmp; 2111 2112 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2113 2114 if (tmp->vm_end > addr) { 2115 vma = tmp; 2116 if (tmp->vm_start <= addr) 2117 break; 2118 rb_node = rb_node->rb_left; 2119 } else 2120 rb_node = rb_node->rb_right; 2121 } 2122 2123 if (vma) 2124 vmacache_update(addr, vma); 2125 return vma; 2126 } 2127 2128 EXPORT_SYMBOL(find_vma); 2129 2130 /* 2131 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2132 */ 2133 struct vm_area_struct * 2134 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2135 struct vm_area_struct **pprev) 2136 { 2137 struct vm_area_struct *vma; 2138 2139 vma = find_vma(mm, addr); 2140 if (vma) { 2141 *pprev = vma->vm_prev; 2142 } else { 2143 struct rb_node *rb_node = mm->mm_rb.rb_node; 2144 *pprev = NULL; 2145 while (rb_node) { 2146 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2147 rb_node = rb_node->rb_right; 2148 } 2149 } 2150 return vma; 2151 } 2152 2153 /* 2154 * Verify that the stack growth is acceptable and 2155 * update accounting. This is shared with both the 2156 * grow-up and grow-down cases. 2157 */ 2158 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2159 { 2160 struct mm_struct *mm = vma->vm_mm; 2161 struct rlimit *rlim = current->signal->rlim; 2162 unsigned long new_start, actual_size; 2163 2164 /* address space limit tests */ 2165 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2166 return -ENOMEM; 2167 2168 /* Stack limit test */ 2169 actual_size = size; 2170 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2171 actual_size -= PAGE_SIZE; 2172 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2173 return -ENOMEM; 2174 2175 /* mlock limit tests */ 2176 if (vma->vm_flags & VM_LOCKED) { 2177 unsigned long locked; 2178 unsigned long limit; 2179 locked = mm->locked_vm + grow; 2180 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2181 limit >>= PAGE_SHIFT; 2182 if (locked > limit && !capable(CAP_IPC_LOCK)) 2183 return -ENOMEM; 2184 } 2185 2186 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2187 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2188 vma->vm_end - size; 2189 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2190 return -EFAULT; 2191 2192 /* 2193 * Overcommit.. This must be the final test, as it will 2194 * update security statistics. 2195 */ 2196 if (security_vm_enough_memory_mm(mm, grow)) 2197 return -ENOMEM; 2198 2199 return 0; 2200 } 2201 2202 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2203 /* 2204 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2205 * vma is the last one with address > vma->vm_end. Have to extend vma. 2206 */ 2207 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2208 { 2209 struct mm_struct *mm = vma->vm_mm; 2210 int error = 0; 2211 2212 if (!(vma->vm_flags & VM_GROWSUP)) 2213 return -EFAULT; 2214 2215 /* Guard against wrapping around to address 0. */ 2216 if (address < PAGE_ALIGN(address+4)) 2217 address = PAGE_ALIGN(address+4); 2218 else 2219 return -ENOMEM; 2220 2221 /* We must make sure the anon_vma is allocated. */ 2222 if (unlikely(anon_vma_prepare(vma))) 2223 return -ENOMEM; 2224 2225 /* 2226 * vma->vm_start/vm_end cannot change under us because the caller 2227 * is required to hold the mmap_sem in read mode. We need the 2228 * anon_vma lock to serialize against concurrent expand_stacks. 2229 */ 2230 anon_vma_lock_write(vma->anon_vma); 2231 2232 /* Somebody else might have raced and expanded it already */ 2233 if (address > vma->vm_end) { 2234 unsigned long size, grow; 2235 2236 size = address - vma->vm_start; 2237 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2238 2239 error = -ENOMEM; 2240 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2241 error = acct_stack_growth(vma, size, grow); 2242 if (!error) { 2243 /* 2244 * vma_gap_update() doesn't support concurrent 2245 * updates, but we only hold a shared mmap_sem 2246 * lock here, so we need to protect against 2247 * concurrent vma expansions. 2248 * anon_vma_lock_write() doesn't help here, as 2249 * we don't guarantee that all growable vmas 2250 * in a mm share the same root anon vma. 2251 * So, we reuse mm->page_table_lock to guard 2252 * against concurrent vma expansions. 2253 */ 2254 spin_lock(&mm->page_table_lock); 2255 if (vma->vm_flags & VM_LOCKED) 2256 mm->locked_vm += grow; 2257 vm_stat_account(mm, vma->vm_flags, grow); 2258 anon_vma_interval_tree_pre_update_vma(vma); 2259 vma->vm_end = address; 2260 anon_vma_interval_tree_post_update_vma(vma); 2261 if (vma->vm_next) 2262 vma_gap_update(vma->vm_next); 2263 else 2264 mm->highest_vm_end = address; 2265 spin_unlock(&mm->page_table_lock); 2266 2267 perf_event_mmap(vma); 2268 } 2269 } 2270 } 2271 anon_vma_unlock_write(vma->anon_vma); 2272 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2273 validate_mm(mm); 2274 return error; 2275 } 2276 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2277 2278 /* 2279 * vma is the first one with address < vma->vm_start. Have to extend vma. 2280 */ 2281 int expand_downwards(struct vm_area_struct *vma, 2282 unsigned long address) 2283 { 2284 struct mm_struct *mm = vma->vm_mm; 2285 int error; 2286 2287 address &= PAGE_MASK; 2288 error = security_mmap_addr(address); 2289 if (error) 2290 return error; 2291 2292 /* We must make sure the anon_vma is allocated. */ 2293 if (unlikely(anon_vma_prepare(vma))) 2294 return -ENOMEM; 2295 2296 /* 2297 * vma->vm_start/vm_end cannot change under us because the caller 2298 * is required to hold the mmap_sem in read mode. We need the 2299 * anon_vma lock to serialize against concurrent expand_stacks. 2300 */ 2301 anon_vma_lock_write(vma->anon_vma); 2302 2303 /* Somebody else might have raced and expanded it already */ 2304 if (address < vma->vm_start) { 2305 unsigned long size, grow; 2306 2307 size = vma->vm_end - address; 2308 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2309 2310 error = -ENOMEM; 2311 if (grow <= vma->vm_pgoff) { 2312 error = acct_stack_growth(vma, size, grow); 2313 if (!error) { 2314 /* 2315 * vma_gap_update() doesn't support concurrent 2316 * updates, but we only hold a shared mmap_sem 2317 * lock here, so we need to protect against 2318 * concurrent vma expansions. 2319 * anon_vma_lock_write() doesn't help here, as 2320 * we don't guarantee that all growable vmas 2321 * in a mm share the same root anon vma. 2322 * So, we reuse mm->page_table_lock to guard 2323 * against concurrent vma expansions. 2324 */ 2325 spin_lock(&mm->page_table_lock); 2326 if (vma->vm_flags & VM_LOCKED) 2327 mm->locked_vm += grow; 2328 vm_stat_account(mm, vma->vm_flags, grow); 2329 anon_vma_interval_tree_pre_update_vma(vma); 2330 vma->vm_start = address; 2331 vma->vm_pgoff -= grow; 2332 anon_vma_interval_tree_post_update_vma(vma); 2333 vma_gap_update(vma); 2334 spin_unlock(&mm->page_table_lock); 2335 2336 perf_event_mmap(vma); 2337 } 2338 } 2339 } 2340 anon_vma_unlock_write(vma->anon_vma); 2341 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2342 validate_mm(mm); 2343 return error; 2344 } 2345 2346 /* 2347 * Note how expand_stack() refuses to expand the stack all the way to 2348 * abut the next virtual mapping, *unless* that mapping itself is also 2349 * a stack mapping. We want to leave room for a guard page, after all 2350 * (the guard page itself is not added here, that is done by the 2351 * actual page faulting logic) 2352 * 2353 * This matches the behavior of the guard page logic (see mm/memory.c: 2354 * check_stack_guard_page()), which only allows the guard page to be 2355 * removed under these circumstances. 2356 */ 2357 #ifdef CONFIG_STACK_GROWSUP 2358 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2359 { 2360 struct vm_area_struct *next; 2361 2362 address &= PAGE_MASK; 2363 next = vma->vm_next; 2364 if (next && next->vm_start == address + PAGE_SIZE) { 2365 if (!(next->vm_flags & VM_GROWSUP)) 2366 return -ENOMEM; 2367 } 2368 return expand_upwards(vma, address); 2369 } 2370 2371 struct vm_area_struct * 2372 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2373 { 2374 struct vm_area_struct *vma, *prev; 2375 2376 addr &= PAGE_MASK; 2377 vma = find_vma_prev(mm, addr, &prev); 2378 if (vma && (vma->vm_start <= addr)) 2379 return vma; 2380 if (!prev || expand_stack(prev, addr)) 2381 return NULL; 2382 if (prev->vm_flags & VM_LOCKED) 2383 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2384 return prev; 2385 } 2386 #else 2387 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2388 { 2389 struct vm_area_struct *prev; 2390 2391 address &= PAGE_MASK; 2392 prev = vma->vm_prev; 2393 if (prev && prev->vm_end == address) { 2394 if (!(prev->vm_flags & VM_GROWSDOWN)) 2395 return -ENOMEM; 2396 } 2397 return expand_downwards(vma, address); 2398 } 2399 2400 struct vm_area_struct * 2401 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2402 { 2403 struct vm_area_struct *vma; 2404 unsigned long start; 2405 2406 addr &= PAGE_MASK; 2407 vma = find_vma(mm, addr); 2408 if (!vma) 2409 return NULL; 2410 if (vma->vm_start <= addr) 2411 return vma; 2412 if (!(vma->vm_flags & VM_GROWSDOWN)) 2413 return NULL; 2414 start = vma->vm_start; 2415 if (expand_stack(vma, addr)) 2416 return NULL; 2417 if (vma->vm_flags & VM_LOCKED) 2418 populate_vma_page_range(vma, addr, start, NULL); 2419 return vma; 2420 } 2421 #endif 2422 2423 EXPORT_SYMBOL_GPL(find_extend_vma); 2424 2425 /* 2426 * Ok - we have the memory areas we should free on the vma list, 2427 * so release them, and do the vma updates. 2428 * 2429 * Called with the mm semaphore held. 2430 */ 2431 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2432 { 2433 unsigned long nr_accounted = 0; 2434 2435 /* Update high watermark before we lower total_vm */ 2436 update_hiwater_vm(mm); 2437 do { 2438 long nrpages = vma_pages(vma); 2439 2440 if (vma->vm_flags & VM_ACCOUNT) 2441 nr_accounted += nrpages; 2442 vm_stat_account(mm, vma->vm_flags, -nrpages); 2443 vma = remove_vma(vma); 2444 } while (vma); 2445 vm_unacct_memory(nr_accounted); 2446 validate_mm(mm); 2447 } 2448 2449 /* 2450 * Get rid of page table information in the indicated region. 2451 * 2452 * Called with the mm semaphore held. 2453 */ 2454 static void unmap_region(struct mm_struct *mm, 2455 struct vm_area_struct *vma, struct vm_area_struct *prev, 2456 unsigned long start, unsigned long end) 2457 { 2458 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2459 struct mmu_gather tlb; 2460 2461 lru_add_drain(); 2462 tlb_gather_mmu(&tlb, mm, start, end); 2463 update_hiwater_rss(mm); 2464 unmap_vmas(&tlb, vma, start, end); 2465 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2466 next ? next->vm_start : USER_PGTABLES_CEILING); 2467 tlb_finish_mmu(&tlb, start, end); 2468 } 2469 2470 /* 2471 * Create a list of vma's touched by the unmap, removing them from the mm's 2472 * vma list as we go.. 2473 */ 2474 static void 2475 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2476 struct vm_area_struct *prev, unsigned long end) 2477 { 2478 struct vm_area_struct **insertion_point; 2479 struct vm_area_struct *tail_vma = NULL; 2480 2481 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2482 vma->vm_prev = NULL; 2483 do { 2484 vma_rb_erase(vma, &mm->mm_rb); 2485 mm->map_count--; 2486 tail_vma = vma; 2487 vma = vma->vm_next; 2488 } while (vma && vma->vm_start < end); 2489 *insertion_point = vma; 2490 if (vma) { 2491 vma->vm_prev = prev; 2492 vma_gap_update(vma); 2493 } else 2494 mm->highest_vm_end = prev ? prev->vm_end : 0; 2495 tail_vma->vm_next = NULL; 2496 2497 /* Kill the cache */ 2498 vmacache_invalidate(mm); 2499 } 2500 2501 /* 2502 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2503 * has already been checked or doesn't make sense to fail. 2504 */ 2505 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2506 unsigned long addr, int new_below) 2507 { 2508 struct vm_area_struct *new; 2509 int err; 2510 2511 if (is_vm_hugetlb_page(vma) && (addr & 2512 ~(huge_page_mask(hstate_vma(vma))))) 2513 return -EINVAL; 2514 2515 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2516 if (!new) 2517 return -ENOMEM; 2518 2519 /* most fields are the same, copy all, and then fixup */ 2520 *new = *vma; 2521 2522 INIT_LIST_HEAD(&new->anon_vma_chain); 2523 2524 if (new_below) 2525 new->vm_end = addr; 2526 else { 2527 new->vm_start = addr; 2528 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2529 } 2530 2531 err = vma_dup_policy(vma, new); 2532 if (err) 2533 goto out_free_vma; 2534 2535 err = anon_vma_clone(new, vma); 2536 if (err) 2537 goto out_free_mpol; 2538 2539 if (new->vm_file) 2540 get_file(new->vm_file); 2541 2542 if (new->vm_ops && new->vm_ops->open) 2543 new->vm_ops->open(new); 2544 2545 if (new_below) 2546 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2547 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2548 else 2549 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2550 2551 /* Success. */ 2552 if (!err) 2553 return 0; 2554 2555 /* Clean everything up if vma_adjust failed. */ 2556 if (new->vm_ops && new->vm_ops->close) 2557 new->vm_ops->close(new); 2558 if (new->vm_file) 2559 fput(new->vm_file); 2560 unlink_anon_vmas(new); 2561 out_free_mpol: 2562 mpol_put(vma_policy(new)); 2563 out_free_vma: 2564 kmem_cache_free(vm_area_cachep, new); 2565 return err; 2566 } 2567 2568 /* 2569 * Split a vma into two pieces at address 'addr', a new vma is allocated 2570 * either for the first part or the tail. 2571 */ 2572 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2573 unsigned long addr, int new_below) 2574 { 2575 if (mm->map_count >= sysctl_max_map_count) 2576 return -ENOMEM; 2577 2578 return __split_vma(mm, vma, addr, new_below); 2579 } 2580 2581 /* Munmap is split into 2 main parts -- this part which finds 2582 * what needs doing, and the areas themselves, which do the 2583 * work. This now handles partial unmappings. 2584 * Jeremy Fitzhardinge <jeremy@goop.org> 2585 */ 2586 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2587 struct list_head *uf) 2588 { 2589 unsigned long end; 2590 struct vm_area_struct *vma, *prev, *last; 2591 2592 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2593 return -EINVAL; 2594 2595 len = PAGE_ALIGN(len); 2596 if (len == 0) 2597 return -EINVAL; 2598 2599 /* Find the first overlapping VMA */ 2600 vma = find_vma(mm, start); 2601 if (!vma) 2602 return 0; 2603 prev = vma->vm_prev; 2604 /* we have start < vma->vm_end */ 2605 2606 /* if it doesn't overlap, we have nothing.. */ 2607 end = start + len; 2608 if (vma->vm_start >= end) 2609 return 0; 2610 2611 if (uf) { 2612 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2613 2614 if (error) 2615 return error; 2616 } 2617 2618 /* 2619 * If we need to split any vma, do it now to save pain later. 2620 * 2621 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2622 * unmapped vm_area_struct will remain in use: so lower split_vma 2623 * places tmp vma above, and higher split_vma places tmp vma below. 2624 */ 2625 if (start > vma->vm_start) { 2626 int error; 2627 2628 /* 2629 * Make sure that map_count on return from munmap() will 2630 * not exceed its limit; but let map_count go just above 2631 * its limit temporarily, to help free resources as expected. 2632 */ 2633 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2634 return -ENOMEM; 2635 2636 error = __split_vma(mm, vma, start, 0); 2637 if (error) 2638 return error; 2639 prev = vma; 2640 } 2641 2642 /* Does it split the last one? */ 2643 last = find_vma(mm, end); 2644 if (last && end > last->vm_start) { 2645 int error = __split_vma(mm, last, end, 1); 2646 if (error) 2647 return error; 2648 } 2649 vma = prev ? prev->vm_next : mm->mmap; 2650 2651 /* 2652 * unlock any mlock()ed ranges before detaching vmas 2653 */ 2654 if (mm->locked_vm) { 2655 struct vm_area_struct *tmp = vma; 2656 while (tmp && tmp->vm_start < end) { 2657 if (tmp->vm_flags & VM_LOCKED) { 2658 mm->locked_vm -= vma_pages(tmp); 2659 munlock_vma_pages_all(tmp); 2660 } 2661 tmp = tmp->vm_next; 2662 } 2663 } 2664 2665 /* 2666 * Remove the vma's, and unmap the actual pages 2667 */ 2668 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2669 unmap_region(mm, vma, prev, start, end); 2670 2671 arch_unmap(mm, vma, start, end); 2672 2673 /* Fix up all other VM information */ 2674 remove_vma_list(mm, vma); 2675 2676 return 0; 2677 } 2678 2679 int vm_munmap(unsigned long start, size_t len) 2680 { 2681 int ret; 2682 struct mm_struct *mm = current->mm; 2683 LIST_HEAD(uf); 2684 2685 if (down_write_killable(&mm->mmap_sem)) 2686 return -EINTR; 2687 2688 ret = do_munmap(mm, start, len, &uf); 2689 up_write(&mm->mmap_sem); 2690 userfaultfd_unmap_complete(mm, &uf); 2691 return ret; 2692 } 2693 EXPORT_SYMBOL(vm_munmap); 2694 2695 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2696 { 2697 profile_munmap(addr); 2698 return vm_munmap(addr, len); 2699 } 2700 2701 2702 /* 2703 * Emulation of deprecated remap_file_pages() syscall. 2704 */ 2705 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2706 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2707 { 2708 2709 struct mm_struct *mm = current->mm; 2710 struct vm_area_struct *vma; 2711 unsigned long populate = 0; 2712 unsigned long ret = -EINVAL; 2713 struct file *file; 2714 2715 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2716 current->comm, current->pid); 2717 2718 if (prot) 2719 return ret; 2720 start = start & PAGE_MASK; 2721 size = size & PAGE_MASK; 2722 2723 if (start + size <= start) 2724 return ret; 2725 2726 /* Does pgoff wrap? */ 2727 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2728 return ret; 2729 2730 if (down_write_killable(&mm->mmap_sem)) 2731 return -EINTR; 2732 2733 vma = find_vma(mm, start); 2734 2735 if (!vma || !(vma->vm_flags & VM_SHARED)) 2736 goto out; 2737 2738 if (start < vma->vm_start) 2739 goto out; 2740 2741 if (start + size > vma->vm_end) { 2742 struct vm_area_struct *next; 2743 2744 for (next = vma->vm_next; next; next = next->vm_next) { 2745 /* hole between vmas ? */ 2746 if (next->vm_start != next->vm_prev->vm_end) 2747 goto out; 2748 2749 if (next->vm_file != vma->vm_file) 2750 goto out; 2751 2752 if (next->vm_flags != vma->vm_flags) 2753 goto out; 2754 2755 if (start + size <= next->vm_end) 2756 break; 2757 } 2758 2759 if (!next) 2760 goto out; 2761 } 2762 2763 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2764 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2765 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2766 2767 flags &= MAP_NONBLOCK; 2768 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2769 if (vma->vm_flags & VM_LOCKED) { 2770 struct vm_area_struct *tmp; 2771 flags |= MAP_LOCKED; 2772 2773 /* drop PG_Mlocked flag for over-mapped range */ 2774 for (tmp = vma; tmp->vm_start >= start + size; 2775 tmp = tmp->vm_next) { 2776 /* 2777 * Split pmd and munlock page on the border 2778 * of the range. 2779 */ 2780 vma_adjust_trans_huge(tmp, start, start + size, 0); 2781 2782 munlock_vma_pages_range(tmp, 2783 max(tmp->vm_start, start), 2784 min(tmp->vm_end, start + size)); 2785 } 2786 } 2787 2788 file = get_file(vma->vm_file); 2789 ret = do_mmap_pgoff(vma->vm_file, start, size, 2790 prot, flags, pgoff, &populate, NULL); 2791 fput(file); 2792 out: 2793 up_write(&mm->mmap_sem); 2794 if (populate) 2795 mm_populate(ret, populate); 2796 if (!IS_ERR_VALUE(ret)) 2797 ret = 0; 2798 return ret; 2799 } 2800 2801 static inline void verify_mm_writelocked(struct mm_struct *mm) 2802 { 2803 #ifdef CONFIG_DEBUG_VM 2804 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2805 WARN_ON(1); 2806 up_read(&mm->mmap_sem); 2807 } 2808 #endif 2809 } 2810 2811 /* 2812 * this is really a simplified "do_mmap". it only handles 2813 * anonymous maps. eventually we may be able to do some 2814 * brk-specific accounting here. 2815 */ 2816 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf) 2817 { 2818 struct mm_struct *mm = current->mm; 2819 struct vm_area_struct *vma, *prev; 2820 unsigned long len; 2821 struct rb_node **rb_link, *rb_parent; 2822 pgoff_t pgoff = addr >> PAGE_SHIFT; 2823 int error; 2824 2825 len = PAGE_ALIGN(request); 2826 if (len < request) 2827 return -ENOMEM; 2828 if (!len) 2829 return 0; 2830 2831 /* Until we need other flags, refuse anything except VM_EXEC. */ 2832 if ((flags & (~VM_EXEC)) != 0) 2833 return -EINVAL; 2834 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2835 2836 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2837 if (offset_in_page(error)) 2838 return error; 2839 2840 error = mlock_future_check(mm, mm->def_flags, len); 2841 if (error) 2842 return error; 2843 2844 /* 2845 * mm->mmap_sem is required to protect against another thread 2846 * changing the mappings in case we sleep. 2847 */ 2848 verify_mm_writelocked(mm); 2849 2850 /* 2851 * Clear old maps. this also does some error checking for us 2852 */ 2853 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2854 &rb_parent)) { 2855 if (do_munmap(mm, addr, len, uf)) 2856 return -ENOMEM; 2857 } 2858 2859 /* Check against address space limits *after* clearing old maps... */ 2860 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2861 return -ENOMEM; 2862 2863 if (mm->map_count > sysctl_max_map_count) 2864 return -ENOMEM; 2865 2866 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2867 return -ENOMEM; 2868 2869 /* Can we just expand an old private anonymous mapping? */ 2870 vma = vma_merge(mm, prev, addr, addr + len, flags, 2871 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2872 if (vma) 2873 goto out; 2874 2875 /* 2876 * create a vma struct for an anonymous mapping 2877 */ 2878 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2879 if (!vma) { 2880 vm_unacct_memory(len >> PAGE_SHIFT); 2881 return -ENOMEM; 2882 } 2883 2884 INIT_LIST_HEAD(&vma->anon_vma_chain); 2885 vma->vm_mm = mm; 2886 vma->vm_start = addr; 2887 vma->vm_end = addr + len; 2888 vma->vm_pgoff = pgoff; 2889 vma->vm_flags = flags; 2890 vma->vm_page_prot = vm_get_page_prot(flags); 2891 vma_link(mm, vma, prev, rb_link, rb_parent); 2892 out: 2893 perf_event_mmap(vma); 2894 mm->total_vm += len >> PAGE_SHIFT; 2895 mm->data_vm += len >> PAGE_SHIFT; 2896 if (flags & VM_LOCKED) 2897 mm->locked_vm += (len >> PAGE_SHIFT); 2898 vma->vm_flags |= VM_SOFTDIRTY; 2899 return 0; 2900 } 2901 2902 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf) 2903 { 2904 return do_brk_flags(addr, len, 0, uf); 2905 } 2906 2907 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags) 2908 { 2909 struct mm_struct *mm = current->mm; 2910 int ret; 2911 bool populate; 2912 LIST_HEAD(uf); 2913 2914 if (down_write_killable(&mm->mmap_sem)) 2915 return -EINTR; 2916 2917 ret = do_brk_flags(addr, len, flags, &uf); 2918 populate = ((mm->def_flags & VM_LOCKED) != 0); 2919 up_write(&mm->mmap_sem); 2920 userfaultfd_unmap_complete(mm, &uf); 2921 if (populate && !ret) 2922 mm_populate(addr, len); 2923 return ret; 2924 } 2925 EXPORT_SYMBOL(vm_brk_flags); 2926 2927 int vm_brk(unsigned long addr, unsigned long len) 2928 { 2929 return vm_brk_flags(addr, len, 0); 2930 } 2931 EXPORT_SYMBOL(vm_brk); 2932 2933 /* Release all mmaps. */ 2934 void exit_mmap(struct mm_struct *mm) 2935 { 2936 struct mmu_gather tlb; 2937 struct vm_area_struct *vma; 2938 unsigned long nr_accounted = 0; 2939 2940 /* mm's last user has gone, and its about to be pulled down */ 2941 mmu_notifier_release(mm); 2942 2943 if (mm->locked_vm) { 2944 vma = mm->mmap; 2945 while (vma) { 2946 if (vma->vm_flags & VM_LOCKED) 2947 munlock_vma_pages_all(vma); 2948 vma = vma->vm_next; 2949 } 2950 } 2951 2952 arch_exit_mmap(mm); 2953 2954 vma = mm->mmap; 2955 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2956 return; 2957 2958 lru_add_drain(); 2959 flush_cache_mm(mm); 2960 tlb_gather_mmu(&tlb, mm, 0, -1); 2961 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2962 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2963 unmap_vmas(&tlb, vma, 0, -1); 2964 2965 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2966 tlb_finish_mmu(&tlb, 0, -1); 2967 2968 /* 2969 * Walk the list again, actually closing and freeing it, 2970 * with preemption enabled, without holding any MM locks. 2971 */ 2972 while (vma) { 2973 if (vma->vm_flags & VM_ACCOUNT) 2974 nr_accounted += vma_pages(vma); 2975 vma = remove_vma(vma); 2976 } 2977 vm_unacct_memory(nr_accounted); 2978 } 2979 2980 /* Insert vm structure into process list sorted by address 2981 * and into the inode's i_mmap tree. If vm_file is non-NULL 2982 * then i_mmap_rwsem is taken here. 2983 */ 2984 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2985 { 2986 struct vm_area_struct *prev; 2987 struct rb_node **rb_link, *rb_parent; 2988 2989 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2990 &prev, &rb_link, &rb_parent)) 2991 return -ENOMEM; 2992 if ((vma->vm_flags & VM_ACCOUNT) && 2993 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2994 return -ENOMEM; 2995 2996 /* 2997 * The vm_pgoff of a purely anonymous vma should be irrelevant 2998 * until its first write fault, when page's anon_vma and index 2999 * are set. But now set the vm_pgoff it will almost certainly 3000 * end up with (unless mremap moves it elsewhere before that 3001 * first wfault), so /proc/pid/maps tells a consistent story. 3002 * 3003 * By setting it to reflect the virtual start address of the 3004 * vma, merges and splits can happen in a seamless way, just 3005 * using the existing file pgoff checks and manipulations. 3006 * Similarly in do_mmap_pgoff and in do_brk. 3007 */ 3008 if (vma_is_anonymous(vma)) { 3009 BUG_ON(vma->anon_vma); 3010 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3011 } 3012 3013 vma_link(mm, vma, prev, rb_link, rb_parent); 3014 return 0; 3015 } 3016 3017 /* 3018 * Copy the vma structure to a new location in the same mm, 3019 * prior to moving page table entries, to effect an mremap move. 3020 */ 3021 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3022 unsigned long addr, unsigned long len, pgoff_t pgoff, 3023 bool *need_rmap_locks) 3024 { 3025 struct vm_area_struct *vma = *vmap; 3026 unsigned long vma_start = vma->vm_start; 3027 struct mm_struct *mm = vma->vm_mm; 3028 struct vm_area_struct *new_vma, *prev; 3029 struct rb_node **rb_link, *rb_parent; 3030 bool faulted_in_anon_vma = true; 3031 3032 /* 3033 * If anonymous vma has not yet been faulted, update new pgoff 3034 * to match new location, to increase its chance of merging. 3035 */ 3036 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3037 pgoff = addr >> PAGE_SHIFT; 3038 faulted_in_anon_vma = false; 3039 } 3040 3041 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3042 return NULL; /* should never get here */ 3043 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3044 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3045 vma->vm_userfaultfd_ctx); 3046 if (new_vma) { 3047 /* 3048 * Source vma may have been merged into new_vma 3049 */ 3050 if (unlikely(vma_start >= new_vma->vm_start && 3051 vma_start < new_vma->vm_end)) { 3052 /* 3053 * The only way we can get a vma_merge with 3054 * self during an mremap is if the vma hasn't 3055 * been faulted in yet and we were allowed to 3056 * reset the dst vma->vm_pgoff to the 3057 * destination address of the mremap to allow 3058 * the merge to happen. mremap must change the 3059 * vm_pgoff linearity between src and dst vmas 3060 * (in turn preventing a vma_merge) to be 3061 * safe. It is only safe to keep the vm_pgoff 3062 * linear if there are no pages mapped yet. 3063 */ 3064 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3065 *vmap = vma = new_vma; 3066 } 3067 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3068 } else { 3069 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3070 if (!new_vma) 3071 goto out; 3072 *new_vma = *vma; 3073 new_vma->vm_start = addr; 3074 new_vma->vm_end = addr + len; 3075 new_vma->vm_pgoff = pgoff; 3076 if (vma_dup_policy(vma, new_vma)) 3077 goto out_free_vma; 3078 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3079 if (anon_vma_clone(new_vma, vma)) 3080 goto out_free_mempol; 3081 if (new_vma->vm_file) 3082 get_file(new_vma->vm_file); 3083 if (new_vma->vm_ops && new_vma->vm_ops->open) 3084 new_vma->vm_ops->open(new_vma); 3085 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3086 *need_rmap_locks = false; 3087 } 3088 return new_vma; 3089 3090 out_free_mempol: 3091 mpol_put(vma_policy(new_vma)); 3092 out_free_vma: 3093 kmem_cache_free(vm_area_cachep, new_vma); 3094 out: 3095 return NULL; 3096 } 3097 3098 /* 3099 * Return true if the calling process may expand its vm space by the passed 3100 * number of pages 3101 */ 3102 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3103 { 3104 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3105 return false; 3106 3107 if (is_data_mapping(flags) && 3108 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3109 /* Workaround for Valgrind */ 3110 if (rlimit(RLIMIT_DATA) == 0 && 3111 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3112 return true; 3113 if (!ignore_rlimit_data) { 3114 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 3115 current->comm, current->pid, 3116 (mm->data_vm + npages) << PAGE_SHIFT, 3117 rlimit(RLIMIT_DATA)); 3118 return false; 3119 } 3120 } 3121 3122 return true; 3123 } 3124 3125 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3126 { 3127 mm->total_vm += npages; 3128 3129 if (is_exec_mapping(flags)) 3130 mm->exec_vm += npages; 3131 else if (is_stack_mapping(flags)) 3132 mm->stack_vm += npages; 3133 else if (is_data_mapping(flags)) 3134 mm->data_vm += npages; 3135 } 3136 3137 static int special_mapping_fault(struct vm_fault *vmf); 3138 3139 /* 3140 * Having a close hook prevents vma merging regardless of flags. 3141 */ 3142 static void special_mapping_close(struct vm_area_struct *vma) 3143 { 3144 } 3145 3146 static const char *special_mapping_name(struct vm_area_struct *vma) 3147 { 3148 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3149 } 3150 3151 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3152 { 3153 struct vm_special_mapping *sm = new_vma->vm_private_data; 3154 3155 if (sm->mremap) 3156 return sm->mremap(sm, new_vma); 3157 return 0; 3158 } 3159 3160 static const struct vm_operations_struct special_mapping_vmops = { 3161 .close = special_mapping_close, 3162 .fault = special_mapping_fault, 3163 .mremap = special_mapping_mremap, 3164 .name = special_mapping_name, 3165 }; 3166 3167 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3168 .close = special_mapping_close, 3169 .fault = special_mapping_fault, 3170 }; 3171 3172 static int special_mapping_fault(struct vm_fault *vmf) 3173 { 3174 struct vm_area_struct *vma = vmf->vma; 3175 pgoff_t pgoff; 3176 struct page **pages; 3177 3178 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3179 pages = vma->vm_private_data; 3180 } else { 3181 struct vm_special_mapping *sm = vma->vm_private_data; 3182 3183 if (sm->fault) 3184 return sm->fault(sm, vmf->vma, vmf); 3185 3186 pages = sm->pages; 3187 } 3188 3189 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3190 pgoff--; 3191 3192 if (*pages) { 3193 struct page *page = *pages; 3194 get_page(page); 3195 vmf->page = page; 3196 return 0; 3197 } 3198 3199 return VM_FAULT_SIGBUS; 3200 } 3201 3202 static struct vm_area_struct *__install_special_mapping( 3203 struct mm_struct *mm, 3204 unsigned long addr, unsigned long len, 3205 unsigned long vm_flags, void *priv, 3206 const struct vm_operations_struct *ops) 3207 { 3208 int ret; 3209 struct vm_area_struct *vma; 3210 3211 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3212 if (unlikely(vma == NULL)) 3213 return ERR_PTR(-ENOMEM); 3214 3215 INIT_LIST_HEAD(&vma->anon_vma_chain); 3216 vma->vm_mm = mm; 3217 vma->vm_start = addr; 3218 vma->vm_end = addr + len; 3219 3220 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3221 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3222 3223 vma->vm_ops = ops; 3224 vma->vm_private_data = priv; 3225 3226 ret = insert_vm_struct(mm, vma); 3227 if (ret) 3228 goto out; 3229 3230 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3231 3232 perf_event_mmap(vma); 3233 3234 return vma; 3235 3236 out: 3237 kmem_cache_free(vm_area_cachep, vma); 3238 return ERR_PTR(ret); 3239 } 3240 3241 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3242 const struct vm_special_mapping *sm) 3243 { 3244 return vma->vm_private_data == sm && 3245 (vma->vm_ops == &special_mapping_vmops || 3246 vma->vm_ops == &legacy_special_mapping_vmops); 3247 } 3248 3249 /* 3250 * Called with mm->mmap_sem held for writing. 3251 * Insert a new vma covering the given region, with the given flags. 3252 * Its pages are supplied by the given array of struct page *. 3253 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3254 * The region past the last page supplied will always produce SIGBUS. 3255 * The array pointer and the pages it points to are assumed to stay alive 3256 * for as long as this mapping might exist. 3257 */ 3258 struct vm_area_struct *_install_special_mapping( 3259 struct mm_struct *mm, 3260 unsigned long addr, unsigned long len, 3261 unsigned long vm_flags, const struct vm_special_mapping *spec) 3262 { 3263 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3264 &special_mapping_vmops); 3265 } 3266 3267 int install_special_mapping(struct mm_struct *mm, 3268 unsigned long addr, unsigned long len, 3269 unsigned long vm_flags, struct page **pages) 3270 { 3271 struct vm_area_struct *vma = __install_special_mapping( 3272 mm, addr, len, vm_flags, (void *)pages, 3273 &legacy_special_mapping_vmops); 3274 3275 return PTR_ERR_OR_ZERO(vma); 3276 } 3277 3278 static DEFINE_MUTEX(mm_all_locks_mutex); 3279 3280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3281 { 3282 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3283 /* 3284 * The LSB of head.next can't change from under us 3285 * because we hold the mm_all_locks_mutex. 3286 */ 3287 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3288 /* 3289 * We can safely modify head.next after taking the 3290 * anon_vma->root->rwsem. If some other vma in this mm shares 3291 * the same anon_vma we won't take it again. 3292 * 3293 * No need of atomic instructions here, head.next 3294 * can't change from under us thanks to the 3295 * anon_vma->root->rwsem. 3296 */ 3297 if (__test_and_set_bit(0, (unsigned long *) 3298 &anon_vma->root->rb_root.rb_node)) 3299 BUG(); 3300 } 3301 } 3302 3303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3304 { 3305 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3306 /* 3307 * AS_MM_ALL_LOCKS can't change from under us because 3308 * we hold the mm_all_locks_mutex. 3309 * 3310 * Operations on ->flags have to be atomic because 3311 * even if AS_MM_ALL_LOCKS is stable thanks to the 3312 * mm_all_locks_mutex, there may be other cpus 3313 * changing other bitflags in parallel to us. 3314 */ 3315 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3316 BUG(); 3317 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3318 } 3319 } 3320 3321 /* 3322 * This operation locks against the VM for all pte/vma/mm related 3323 * operations that could ever happen on a certain mm. This includes 3324 * vmtruncate, try_to_unmap, and all page faults. 3325 * 3326 * The caller must take the mmap_sem in write mode before calling 3327 * mm_take_all_locks(). The caller isn't allowed to release the 3328 * mmap_sem until mm_drop_all_locks() returns. 3329 * 3330 * mmap_sem in write mode is required in order to block all operations 3331 * that could modify pagetables and free pages without need of 3332 * altering the vma layout. It's also needed in write mode to avoid new 3333 * anon_vmas to be associated with existing vmas. 3334 * 3335 * A single task can't take more than one mm_take_all_locks() in a row 3336 * or it would deadlock. 3337 * 3338 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3339 * mapping->flags avoid to take the same lock twice, if more than one 3340 * vma in this mm is backed by the same anon_vma or address_space. 3341 * 3342 * We take locks in following order, accordingly to comment at beginning 3343 * of mm/rmap.c: 3344 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3345 * hugetlb mapping); 3346 * - all i_mmap_rwsem locks; 3347 * - all anon_vma->rwseml 3348 * 3349 * We can take all locks within these types randomly because the VM code 3350 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3351 * mm_all_locks_mutex. 3352 * 3353 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3354 * that may have to take thousand of locks. 3355 * 3356 * mm_take_all_locks() can fail if it's interrupted by signals. 3357 */ 3358 int mm_take_all_locks(struct mm_struct *mm) 3359 { 3360 struct vm_area_struct *vma; 3361 struct anon_vma_chain *avc; 3362 3363 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3364 3365 mutex_lock(&mm_all_locks_mutex); 3366 3367 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3368 if (signal_pending(current)) 3369 goto out_unlock; 3370 if (vma->vm_file && vma->vm_file->f_mapping && 3371 is_vm_hugetlb_page(vma)) 3372 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3373 } 3374 3375 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3376 if (signal_pending(current)) 3377 goto out_unlock; 3378 if (vma->vm_file && vma->vm_file->f_mapping && 3379 !is_vm_hugetlb_page(vma)) 3380 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3381 } 3382 3383 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3384 if (signal_pending(current)) 3385 goto out_unlock; 3386 if (vma->anon_vma) 3387 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3388 vm_lock_anon_vma(mm, avc->anon_vma); 3389 } 3390 3391 return 0; 3392 3393 out_unlock: 3394 mm_drop_all_locks(mm); 3395 return -EINTR; 3396 } 3397 3398 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3399 { 3400 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3401 /* 3402 * The LSB of head.next can't change to 0 from under 3403 * us because we hold the mm_all_locks_mutex. 3404 * 3405 * We must however clear the bitflag before unlocking 3406 * the vma so the users using the anon_vma->rb_root will 3407 * never see our bitflag. 3408 * 3409 * No need of atomic instructions here, head.next 3410 * can't change from under us until we release the 3411 * anon_vma->root->rwsem. 3412 */ 3413 if (!__test_and_clear_bit(0, (unsigned long *) 3414 &anon_vma->root->rb_root.rb_node)) 3415 BUG(); 3416 anon_vma_unlock_write(anon_vma); 3417 } 3418 } 3419 3420 static void vm_unlock_mapping(struct address_space *mapping) 3421 { 3422 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3423 /* 3424 * AS_MM_ALL_LOCKS can't change to 0 from under us 3425 * because we hold the mm_all_locks_mutex. 3426 */ 3427 i_mmap_unlock_write(mapping); 3428 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3429 &mapping->flags)) 3430 BUG(); 3431 } 3432 } 3433 3434 /* 3435 * The mmap_sem cannot be released by the caller until 3436 * mm_drop_all_locks() returns. 3437 */ 3438 void mm_drop_all_locks(struct mm_struct *mm) 3439 { 3440 struct vm_area_struct *vma; 3441 struct anon_vma_chain *avc; 3442 3443 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3444 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3445 3446 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3447 if (vma->anon_vma) 3448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3449 vm_unlock_anon_vma(avc->anon_vma); 3450 if (vma->vm_file && vma->vm_file->f_mapping) 3451 vm_unlock_mapping(vma->vm_file->f_mapping); 3452 } 3453 3454 mutex_unlock(&mm_all_locks_mutex); 3455 } 3456 3457 /* 3458 * initialise the percpu counter for VM 3459 */ 3460 void __init mmap_init(void) 3461 { 3462 int ret; 3463 3464 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3465 VM_BUG_ON(ret); 3466 } 3467 3468 /* 3469 * Initialise sysctl_user_reserve_kbytes. 3470 * 3471 * This is intended to prevent a user from starting a single memory hogging 3472 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3473 * mode. 3474 * 3475 * The default value is min(3% of free memory, 128MB) 3476 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3477 */ 3478 static int init_user_reserve(void) 3479 { 3480 unsigned long free_kbytes; 3481 3482 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3483 3484 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3485 return 0; 3486 } 3487 subsys_initcall(init_user_reserve); 3488 3489 /* 3490 * Initialise sysctl_admin_reserve_kbytes. 3491 * 3492 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3493 * to log in and kill a memory hogging process. 3494 * 3495 * Systems with more than 256MB will reserve 8MB, enough to recover 3496 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3497 * only reserve 3% of free pages by default. 3498 */ 3499 static int init_admin_reserve(void) 3500 { 3501 unsigned long free_kbytes; 3502 3503 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3504 3505 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3506 return 0; 3507 } 3508 subsys_initcall(init_admin_reserve); 3509 3510 /* 3511 * Reinititalise user and admin reserves if memory is added or removed. 3512 * 3513 * The default user reserve max is 128MB, and the default max for the 3514 * admin reserve is 8MB. These are usually, but not always, enough to 3515 * enable recovery from a memory hogging process using login/sshd, a shell, 3516 * and tools like top. It may make sense to increase or even disable the 3517 * reserve depending on the existence of swap or variations in the recovery 3518 * tools. So, the admin may have changed them. 3519 * 3520 * If memory is added and the reserves have been eliminated or increased above 3521 * the default max, then we'll trust the admin. 3522 * 3523 * If memory is removed and there isn't enough free memory, then we 3524 * need to reset the reserves. 3525 * 3526 * Otherwise keep the reserve set by the admin. 3527 */ 3528 static int reserve_mem_notifier(struct notifier_block *nb, 3529 unsigned long action, void *data) 3530 { 3531 unsigned long tmp, free_kbytes; 3532 3533 switch (action) { 3534 case MEM_ONLINE: 3535 /* Default max is 128MB. Leave alone if modified by operator. */ 3536 tmp = sysctl_user_reserve_kbytes; 3537 if (0 < tmp && tmp < (1UL << 17)) 3538 init_user_reserve(); 3539 3540 /* Default max is 8MB. Leave alone if modified by operator. */ 3541 tmp = sysctl_admin_reserve_kbytes; 3542 if (0 < tmp && tmp < (1UL << 13)) 3543 init_admin_reserve(); 3544 3545 break; 3546 case MEM_OFFLINE: 3547 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3548 3549 if (sysctl_user_reserve_kbytes > free_kbytes) { 3550 init_user_reserve(); 3551 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3552 sysctl_user_reserve_kbytes); 3553 } 3554 3555 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3556 init_admin_reserve(); 3557 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3558 sysctl_admin_reserve_kbytes); 3559 } 3560 break; 3561 default: 3562 break; 3563 } 3564 return NOTIFY_OK; 3565 } 3566 3567 static struct notifier_block reserve_mem_nb = { 3568 .notifier_call = reserve_mem_notifier, 3569 }; 3570 3571 static int __meminit init_reserve_notifier(void) 3572 { 3573 if (register_hotmemory_notifier(&reserve_mem_nb)) 3574 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3575 3576 return 0; 3577 } 3578 subsys_initcall(init_reserve_notifier); 3579