1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 30 #include <asm/uaccess.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlb.h> 33 #include <asm/mmu_context.h> 34 35 #ifndef arch_mmap_check 36 #define arch_mmap_check(addr, len, flags) (0) 37 #endif 38 39 #ifndef arch_rebalance_pgtables 40 #define arch_rebalance_pgtables(addr, len) (addr) 41 #endif 42 43 static void unmap_region(struct mm_struct *mm, 44 struct vm_area_struct *vma, struct vm_area_struct *prev, 45 unsigned long start, unsigned long end); 46 47 /* 48 * WARNING: the debugging will use recursive algorithms so never enable this 49 * unless you know what you are doing. 50 */ 51 #undef DEBUG_MM_RB 52 53 /* description of effects of mapping type and prot in current implementation. 54 * this is due to the limited x86 page protection hardware. The expected 55 * behavior is in parens: 56 * 57 * map_type prot 58 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 59 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 60 * w: (no) no w: (no) no w: (yes) yes w: (no) no 61 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 62 * 63 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 64 * w: (no) no w: (no) no w: (copy) copy w: (no) no 65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 66 * 67 */ 68 pgprot_t protection_map[16] = { 69 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 70 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 71 }; 72 73 pgprot_t vm_get_page_prot(unsigned long vm_flags) 74 { 75 return protection_map[vm_flags & 76 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 77 } 78 EXPORT_SYMBOL(vm_get_page_prot); 79 80 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 81 int sysctl_overcommit_ratio = 50; /* default is 50% */ 82 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 83 atomic_t vm_committed_space = ATOMIC_INIT(0); 84 85 /* 86 * Check that a process has enough memory to allocate a new virtual 87 * mapping. 0 means there is enough memory for the allocation to 88 * succeed and -ENOMEM implies there is not. 89 * 90 * We currently support three overcommit policies, which are set via the 91 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 92 * 93 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 94 * Additional code 2002 Jul 20 by Robert Love. 95 * 96 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 97 * 98 * Note this is a helper function intended to be used by LSMs which 99 * wish to use this logic. 100 */ 101 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 102 { 103 unsigned long free, allowed; 104 105 vm_acct_memory(pages); 106 107 /* 108 * Sometimes we want to use more memory than we have 109 */ 110 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 111 return 0; 112 113 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 114 unsigned long n; 115 116 free = global_page_state(NR_FILE_PAGES); 117 free += nr_swap_pages; 118 119 /* 120 * Any slabs which are created with the 121 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 122 * which are reclaimable, under pressure. The dentry 123 * cache and most inode caches should fall into this 124 */ 125 free += global_page_state(NR_SLAB_RECLAIMABLE); 126 127 /* 128 * Leave the last 3% for root 129 */ 130 if (!cap_sys_admin) 131 free -= free / 32; 132 133 if (free > pages) 134 return 0; 135 136 /* 137 * nr_free_pages() is very expensive on large systems, 138 * only call if we're about to fail. 139 */ 140 n = nr_free_pages(); 141 142 /* 143 * Leave reserved pages. The pages are not for anonymous pages. 144 */ 145 if (n <= totalreserve_pages) 146 goto error; 147 else 148 n -= totalreserve_pages; 149 150 /* 151 * Leave the last 3% for root 152 */ 153 if (!cap_sys_admin) 154 n -= n / 32; 155 free += n; 156 157 if (free > pages) 158 return 0; 159 160 goto error; 161 } 162 163 allowed = (totalram_pages - hugetlb_total_pages()) 164 * sysctl_overcommit_ratio / 100; 165 /* 166 * Leave the last 3% for root 167 */ 168 if (!cap_sys_admin) 169 allowed -= allowed / 32; 170 allowed += total_swap_pages; 171 172 /* Don't let a single process grow too big: 173 leave 3% of the size of this process for other processes */ 174 allowed -= mm->total_vm / 32; 175 176 /* 177 * cast `allowed' as a signed long because vm_committed_space 178 * sometimes has a negative value 179 */ 180 if (atomic_read(&vm_committed_space) < (long)allowed) 181 return 0; 182 error: 183 vm_unacct_memory(pages); 184 185 return -ENOMEM; 186 } 187 188 /* 189 * Requires inode->i_mapping->i_mmap_lock 190 */ 191 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 192 struct file *file, struct address_space *mapping) 193 { 194 if (vma->vm_flags & VM_DENYWRITE) 195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 196 if (vma->vm_flags & VM_SHARED) 197 mapping->i_mmap_writable--; 198 199 flush_dcache_mmap_lock(mapping); 200 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 201 list_del_init(&vma->shared.vm_set.list); 202 else 203 vma_prio_tree_remove(vma, &mapping->i_mmap); 204 flush_dcache_mmap_unlock(mapping); 205 } 206 207 /* 208 * Unlink a file-based vm structure from its prio_tree, to hide 209 * vma from rmap and vmtruncate before freeing its page tables. 210 */ 211 void unlink_file_vma(struct vm_area_struct *vma) 212 { 213 struct file *file = vma->vm_file; 214 215 if (file) { 216 struct address_space *mapping = file->f_mapping; 217 spin_lock(&mapping->i_mmap_lock); 218 __remove_shared_vm_struct(vma, file, mapping); 219 spin_unlock(&mapping->i_mmap_lock); 220 } 221 } 222 223 /* 224 * Close a vm structure and free it, returning the next. 225 */ 226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 227 { 228 struct vm_area_struct *next = vma->vm_next; 229 230 might_sleep(); 231 if (vma->vm_ops && vma->vm_ops->close) 232 vma->vm_ops->close(vma); 233 if (vma->vm_file) { 234 fput(vma->vm_file); 235 if (vma->vm_flags & VM_EXECUTABLE) 236 removed_exe_file_vma(vma->vm_mm); 237 } 238 mpol_put(vma_policy(vma)); 239 kmem_cache_free(vm_area_cachep, vma); 240 return next; 241 } 242 243 asmlinkage unsigned long sys_brk(unsigned long brk) 244 { 245 unsigned long rlim, retval; 246 unsigned long newbrk, oldbrk; 247 struct mm_struct *mm = current->mm; 248 249 down_write(&mm->mmap_sem); 250 251 if (brk < mm->start_brk) 252 goto out; 253 254 /* 255 * Check against rlimit here. If this check is done later after the test 256 * of oldbrk with newbrk then it can escape the test and let the data 257 * segment grow beyond its set limit the in case where the limit is 258 * not page aligned -Ram Gupta 259 */ 260 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 261 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 262 (mm->end_data - mm->start_data) > rlim) 263 goto out; 264 265 newbrk = PAGE_ALIGN(brk); 266 oldbrk = PAGE_ALIGN(mm->brk); 267 if (oldbrk == newbrk) 268 goto set_brk; 269 270 /* Always allow shrinking brk. */ 271 if (brk <= mm->brk) { 272 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 273 goto set_brk; 274 goto out; 275 } 276 277 /* Check against existing mmap mappings. */ 278 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 279 goto out; 280 281 /* Ok, looks good - let it rip. */ 282 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 283 goto out; 284 set_brk: 285 mm->brk = brk; 286 out: 287 retval = mm->brk; 288 up_write(&mm->mmap_sem); 289 return retval; 290 } 291 292 #ifdef DEBUG_MM_RB 293 static int browse_rb(struct rb_root *root) 294 { 295 int i = 0, j; 296 struct rb_node *nd, *pn = NULL; 297 unsigned long prev = 0, pend = 0; 298 299 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 300 struct vm_area_struct *vma; 301 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 302 if (vma->vm_start < prev) 303 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 304 if (vma->vm_start < pend) 305 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 306 if (vma->vm_start > vma->vm_end) 307 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 308 i++; 309 pn = nd; 310 prev = vma->vm_start; 311 pend = vma->vm_end; 312 } 313 j = 0; 314 for (nd = pn; nd; nd = rb_prev(nd)) { 315 j++; 316 } 317 if (i != j) 318 printk("backwards %d, forwards %d\n", j, i), i = 0; 319 return i; 320 } 321 322 void validate_mm(struct mm_struct *mm) 323 { 324 int bug = 0; 325 int i = 0; 326 struct vm_area_struct *tmp = mm->mmap; 327 while (tmp) { 328 tmp = tmp->vm_next; 329 i++; 330 } 331 if (i != mm->map_count) 332 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 333 i = browse_rb(&mm->mm_rb); 334 if (i != mm->map_count) 335 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 336 BUG_ON(bug); 337 } 338 #else 339 #define validate_mm(mm) do { } while (0) 340 #endif 341 342 static struct vm_area_struct * 343 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 344 struct vm_area_struct **pprev, struct rb_node ***rb_link, 345 struct rb_node ** rb_parent) 346 { 347 struct vm_area_struct * vma; 348 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 349 350 __rb_link = &mm->mm_rb.rb_node; 351 rb_prev = __rb_parent = NULL; 352 vma = NULL; 353 354 while (*__rb_link) { 355 struct vm_area_struct *vma_tmp; 356 357 __rb_parent = *__rb_link; 358 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 359 360 if (vma_tmp->vm_end > addr) { 361 vma = vma_tmp; 362 if (vma_tmp->vm_start <= addr) 363 return vma; 364 __rb_link = &__rb_parent->rb_left; 365 } else { 366 rb_prev = __rb_parent; 367 __rb_link = &__rb_parent->rb_right; 368 } 369 } 370 371 *pprev = NULL; 372 if (rb_prev) 373 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 374 *rb_link = __rb_link; 375 *rb_parent = __rb_parent; 376 return vma; 377 } 378 379 static inline void 380 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 381 struct vm_area_struct *prev, struct rb_node *rb_parent) 382 { 383 if (prev) { 384 vma->vm_next = prev->vm_next; 385 prev->vm_next = vma; 386 } else { 387 mm->mmap = vma; 388 if (rb_parent) 389 vma->vm_next = rb_entry(rb_parent, 390 struct vm_area_struct, vm_rb); 391 else 392 vma->vm_next = NULL; 393 } 394 } 395 396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 397 struct rb_node **rb_link, struct rb_node *rb_parent) 398 { 399 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 400 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 401 } 402 403 static inline void __vma_link_file(struct vm_area_struct *vma) 404 { 405 struct file * file; 406 407 file = vma->vm_file; 408 if (file) { 409 struct address_space *mapping = file->f_mapping; 410 411 if (vma->vm_flags & VM_DENYWRITE) 412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 413 if (vma->vm_flags & VM_SHARED) 414 mapping->i_mmap_writable++; 415 416 flush_dcache_mmap_lock(mapping); 417 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 419 else 420 vma_prio_tree_insert(vma, &mapping->i_mmap); 421 flush_dcache_mmap_unlock(mapping); 422 } 423 } 424 425 static void 426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 427 struct vm_area_struct *prev, struct rb_node **rb_link, 428 struct rb_node *rb_parent) 429 { 430 __vma_link_list(mm, vma, prev, rb_parent); 431 __vma_link_rb(mm, vma, rb_link, rb_parent); 432 __anon_vma_link(vma); 433 } 434 435 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 436 struct vm_area_struct *prev, struct rb_node **rb_link, 437 struct rb_node *rb_parent) 438 { 439 struct address_space *mapping = NULL; 440 441 if (vma->vm_file) 442 mapping = vma->vm_file->f_mapping; 443 444 if (mapping) { 445 spin_lock(&mapping->i_mmap_lock); 446 vma->vm_truncate_count = mapping->truncate_count; 447 } 448 anon_vma_lock(vma); 449 450 __vma_link(mm, vma, prev, rb_link, rb_parent); 451 __vma_link_file(vma); 452 453 anon_vma_unlock(vma); 454 if (mapping) 455 spin_unlock(&mapping->i_mmap_lock); 456 457 mm->map_count++; 458 validate_mm(mm); 459 } 460 461 /* 462 * Helper for vma_adjust in the split_vma insert case: 463 * insert vm structure into list and rbtree and anon_vma, 464 * but it has already been inserted into prio_tree earlier. 465 */ 466 static void 467 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 468 { 469 struct vm_area_struct * __vma, * prev; 470 struct rb_node ** rb_link, * rb_parent; 471 472 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 473 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 474 __vma_link(mm, vma, prev, rb_link, rb_parent); 475 mm->map_count++; 476 } 477 478 static inline void 479 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 480 struct vm_area_struct *prev) 481 { 482 prev->vm_next = vma->vm_next; 483 rb_erase(&vma->vm_rb, &mm->mm_rb); 484 if (mm->mmap_cache == vma) 485 mm->mmap_cache = prev; 486 } 487 488 /* 489 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 490 * is already present in an i_mmap tree without adjusting the tree. 491 * The following helper function should be used when such adjustments 492 * are necessary. The "insert" vma (if any) is to be inserted 493 * before we drop the necessary locks. 494 */ 495 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 496 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 497 { 498 struct mm_struct *mm = vma->vm_mm; 499 struct vm_area_struct *next = vma->vm_next; 500 struct vm_area_struct *importer = NULL; 501 struct address_space *mapping = NULL; 502 struct prio_tree_root *root = NULL; 503 struct file *file = vma->vm_file; 504 struct anon_vma *anon_vma = NULL; 505 long adjust_next = 0; 506 int remove_next = 0; 507 508 if (next && !insert) { 509 if (end >= next->vm_end) { 510 /* 511 * vma expands, overlapping all the next, and 512 * perhaps the one after too (mprotect case 6). 513 */ 514 again: remove_next = 1 + (end > next->vm_end); 515 end = next->vm_end; 516 anon_vma = next->anon_vma; 517 importer = vma; 518 } else if (end > next->vm_start) { 519 /* 520 * vma expands, overlapping part of the next: 521 * mprotect case 5 shifting the boundary up. 522 */ 523 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 524 anon_vma = next->anon_vma; 525 importer = vma; 526 } else if (end < vma->vm_end) { 527 /* 528 * vma shrinks, and !insert tells it's not 529 * split_vma inserting another: so it must be 530 * mprotect case 4 shifting the boundary down. 531 */ 532 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 533 anon_vma = next->anon_vma; 534 importer = next; 535 } 536 } 537 538 if (file) { 539 mapping = file->f_mapping; 540 if (!(vma->vm_flags & VM_NONLINEAR)) 541 root = &mapping->i_mmap; 542 spin_lock(&mapping->i_mmap_lock); 543 if (importer && 544 vma->vm_truncate_count != next->vm_truncate_count) { 545 /* 546 * unmap_mapping_range might be in progress: 547 * ensure that the expanding vma is rescanned. 548 */ 549 importer->vm_truncate_count = 0; 550 } 551 if (insert) { 552 insert->vm_truncate_count = vma->vm_truncate_count; 553 /* 554 * Put into prio_tree now, so instantiated pages 555 * are visible to arm/parisc __flush_dcache_page 556 * throughout; but we cannot insert into address 557 * space until vma start or end is updated. 558 */ 559 __vma_link_file(insert); 560 } 561 } 562 563 /* 564 * When changing only vma->vm_end, we don't really need 565 * anon_vma lock: but is that case worth optimizing out? 566 */ 567 if (vma->anon_vma) 568 anon_vma = vma->anon_vma; 569 if (anon_vma) { 570 spin_lock(&anon_vma->lock); 571 /* 572 * Easily overlooked: when mprotect shifts the boundary, 573 * make sure the expanding vma has anon_vma set if the 574 * shrinking vma had, to cover any anon pages imported. 575 */ 576 if (importer && !importer->anon_vma) { 577 importer->anon_vma = anon_vma; 578 __anon_vma_link(importer); 579 } 580 } 581 582 if (root) { 583 flush_dcache_mmap_lock(mapping); 584 vma_prio_tree_remove(vma, root); 585 if (adjust_next) 586 vma_prio_tree_remove(next, root); 587 } 588 589 vma->vm_start = start; 590 vma->vm_end = end; 591 vma->vm_pgoff = pgoff; 592 if (adjust_next) { 593 next->vm_start += adjust_next << PAGE_SHIFT; 594 next->vm_pgoff += adjust_next; 595 } 596 597 if (root) { 598 if (adjust_next) 599 vma_prio_tree_insert(next, root); 600 vma_prio_tree_insert(vma, root); 601 flush_dcache_mmap_unlock(mapping); 602 } 603 604 if (remove_next) { 605 /* 606 * vma_merge has merged next into vma, and needs 607 * us to remove next before dropping the locks. 608 */ 609 __vma_unlink(mm, next, vma); 610 if (file) 611 __remove_shared_vm_struct(next, file, mapping); 612 if (next->anon_vma) 613 __anon_vma_merge(vma, next); 614 } else if (insert) { 615 /* 616 * split_vma has split insert from vma, and needs 617 * us to insert it before dropping the locks 618 * (it may either follow vma or precede it). 619 */ 620 __insert_vm_struct(mm, insert); 621 } 622 623 if (anon_vma) 624 spin_unlock(&anon_vma->lock); 625 if (mapping) 626 spin_unlock(&mapping->i_mmap_lock); 627 628 if (remove_next) { 629 if (file) { 630 fput(file); 631 if (next->vm_flags & VM_EXECUTABLE) 632 removed_exe_file_vma(mm); 633 } 634 mm->map_count--; 635 mpol_put(vma_policy(next)); 636 kmem_cache_free(vm_area_cachep, next); 637 /* 638 * In mprotect's case 6 (see comments on vma_merge), 639 * we must remove another next too. It would clutter 640 * up the code too much to do both in one go. 641 */ 642 if (remove_next == 2) { 643 next = vma->vm_next; 644 goto again; 645 } 646 } 647 648 validate_mm(mm); 649 } 650 651 /* 652 * If the vma has a ->close operation then the driver probably needs to release 653 * per-vma resources, so we don't attempt to merge those. 654 */ 655 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 656 657 static inline int is_mergeable_vma(struct vm_area_struct *vma, 658 struct file *file, unsigned long vm_flags) 659 { 660 if (vma->vm_flags != vm_flags) 661 return 0; 662 if (vma->vm_file != file) 663 return 0; 664 if (vma->vm_ops && vma->vm_ops->close) 665 return 0; 666 return 1; 667 } 668 669 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 670 struct anon_vma *anon_vma2) 671 { 672 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 673 } 674 675 /* 676 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 677 * in front of (at a lower virtual address and file offset than) the vma. 678 * 679 * We cannot merge two vmas if they have differently assigned (non-NULL) 680 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 681 * 682 * We don't check here for the merged mmap wrapping around the end of pagecache 683 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 684 * wrap, nor mmaps which cover the final page at index -1UL. 685 */ 686 static int 687 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 688 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 689 { 690 if (is_mergeable_vma(vma, file, vm_flags) && 691 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 692 if (vma->vm_pgoff == vm_pgoff) 693 return 1; 694 } 695 return 0; 696 } 697 698 /* 699 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 700 * beyond (at a higher virtual address and file offset than) the vma. 701 * 702 * We cannot merge two vmas if they have differently assigned (non-NULL) 703 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 704 */ 705 static int 706 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 707 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 708 { 709 if (is_mergeable_vma(vma, file, vm_flags) && 710 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 711 pgoff_t vm_pglen; 712 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 713 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* 720 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 721 * whether that can be merged with its predecessor or its successor. 722 * Or both (it neatly fills a hole). 723 * 724 * In most cases - when called for mmap, brk or mremap - [addr,end) is 725 * certain not to be mapped by the time vma_merge is called; but when 726 * called for mprotect, it is certain to be already mapped (either at 727 * an offset within prev, or at the start of next), and the flags of 728 * this area are about to be changed to vm_flags - and the no-change 729 * case has already been eliminated. 730 * 731 * The following mprotect cases have to be considered, where AAAA is 732 * the area passed down from mprotect_fixup, never extending beyond one 733 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 734 * 735 * AAAA AAAA AAAA AAAA 736 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 737 * cannot merge might become might become might become 738 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 739 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 740 * mremap move: PPPPNNNNNNNN 8 741 * AAAA 742 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 743 * might become case 1 below case 2 below case 3 below 744 * 745 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 746 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 747 */ 748 struct vm_area_struct *vma_merge(struct mm_struct *mm, 749 struct vm_area_struct *prev, unsigned long addr, 750 unsigned long end, unsigned long vm_flags, 751 struct anon_vma *anon_vma, struct file *file, 752 pgoff_t pgoff, struct mempolicy *policy) 753 { 754 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 755 struct vm_area_struct *area, *next; 756 757 /* 758 * We later require that vma->vm_flags == vm_flags, 759 * so this tests vma->vm_flags & VM_SPECIAL, too. 760 */ 761 if (vm_flags & VM_SPECIAL) 762 return NULL; 763 764 if (prev) 765 next = prev->vm_next; 766 else 767 next = mm->mmap; 768 area = next; 769 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 770 next = next->vm_next; 771 772 /* 773 * Can it merge with the predecessor? 774 */ 775 if (prev && prev->vm_end == addr && 776 mpol_equal(vma_policy(prev), policy) && 777 can_vma_merge_after(prev, vm_flags, 778 anon_vma, file, pgoff)) { 779 /* 780 * OK, it can. Can we now merge in the successor as well? 781 */ 782 if (next && end == next->vm_start && 783 mpol_equal(policy, vma_policy(next)) && 784 can_vma_merge_before(next, vm_flags, 785 anon_vma, file, pgoff+pglen) && 786 is_mergeable_anon_vma(prev->anon_vma, 787 next->anon_vma)) { 788 /* cases 1, 6 */ 789 vma_adjust(prev, prev->vm_start, 790 next->vm_end, prev->vm_pgoff, NULL); 791 } else /* cases 2, 5, 7 */ 792 vma_adjust(prev, prev->vm_start, 793 end, prev->vm_pgoff, NULL); 794 return prev; 795 } 796 797 /* 798 * Can this new request be merged in front of next? 799 */ 800 if (next && end == next->vm_start && 801 mpol_equal(policy, vma_policy(next)) && 802 can_vma_merge_before(next, vm_flags, 803 anon_vma, file, pgoff+pglen)) { 804 if (prev && addr < prev->vm_end) /* case 4 */ 805 vma_adjust(prev, prev->vm_start, 806 addr, prev->vm_pgoff, NULL); 807 else /* cases 3, 8 */ 808 vma_adjust(area, addr, next->vm_end, 809 next->vm_pgoff - pglen, NULL); 810 return area; 811 } 812 813 return NULL; 814 } 815 816 /* 817 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 818 * neighbouring vmas for a suitable anon_vma, before it goes off 819 * to allocate a new anon_vma. It checks because a repetitive 820 * sequence of mprotects and faults may otherwise lead to distinct 821 * anon_vmas being allocated, preventing vma merge in subsequent 822 * mprotect. 823 */ 824 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 825 { 826 struct vm_area_struct *near; 827 unsigned long vm_flags; 828 829 near = vma->vm_next; 830 if (!near) 831 goto try_prev; 832 833 /* 834 * Since only mprotect tries to remerge vmas, match flags 835 * which might be mprotected into each other later on. 836 * Neither mlock nor madvise tries to remerge at present, 837 * so leave their flags as obstructing a merge. 838 */ 839 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 840 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 841 842 if (near->anon_vma && vma->vm_end == near->vm_start && 843 mpol_equal(vma_policy(vma), vma_policy(near)) && 844 can_vma_merge_before(near, vm_flags, 845 NULL, vma->vm_file, vma->vm_pgoff + 846 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 847 return near->anon_vma; 848 try_prev: 849 /* 850 * It is potentially slow to have to call find_vma_prev here. 851 * But it's only on the first write fault on the vma, not 852 * every time, and we could devise a way to avoid it later 853 * (e.g. stash info in next's anon_vma_node when assigning 854 * an anon_vma, or when trying vma_merge). Another time. 855 */ 856 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 857 if (!near) 858 goto none; 859 860 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 861 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 862 863 if (near->anon_vma && near->vm_end == vma->vm_start && 864 mpol_equal(vma_policy(near), vma_policy(vma)) && 865 can_vma_merge_after(near, vm_flags, 866 NULL, vma->vm_file, vma->vm_pgoff)) 867 return near->anon_vma; 868 none: 869 /* 870 * There's no absolute need to look only at touching neighbours: 871 * we could search further afield for "compatible" anon_vmas. 872 * But it would probably just be a waste of time searching, 873 * or lead to too many vmas hanging off the same anon_vma. 874 * We're trying to allow mprotect remerging later on, 875 * not trying to minimize memory used for anon_vmas. 876 */ 877 return NULL; 878 } 879 880 #ifdef CONFIG_PROC_FS 881 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 882 struct file *file, long pages) 883 { 884 const unsigned long stack_flags 885 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 886 887 if (file) { 888 mm->shared_vm += pages; 889 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 890 mm->exec_vm += pages; 891 } else if (flags & stack_flags) 892 mm->stack_vm += pages; 893 if (flags & (VM_RESERVED|VM_IO)) 894 mm->reserved_vm += pages; 895 } 896 #endif /* CONFIG_PROC_FS */ 897 898 /* 899 * The caller must hold down_write(current->mm->mmap_sem). 900 */ 901 902 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 903 unsigned long len, unsigned long prot, 904 unsigned long flags, unsigned long pgoff) 905 { 906 struct mm_struct * mm = current->mm; 907 struct inode *inode; 908 unsigned int vm_flags; 909 int error; 910 int accountable = 1; 911 unsigned long reqprot = prot; 912 913 /* 914 * Does the application expect PROT_READ to imply PROT_EXEC? 915 * 916 * (the exception is when the underlying filesystem is noexec 917 * mounted, in which case we dont add PROT_EXEC.) 918 */ 919 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 920 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 921 prot |= PROT_EXEC; 922 923 if (!len) 924 return -EINVAL; 925 926 if (!(flags & MAP_FIXED)) 927 addr = round_hint_to_min(addr); 928 929 error = arch_mmap_check(addr, len, flags); 930 if (error) 931 return error; 932 933 /* Careful about overflows.. */ 934 len = PAGE_ALIGN(len); 935 if (!len || len > TASK_SIZE) 936 return -ENOMEM; 937 938 /* offset overflow? */ 939 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 940 return -EOVERFLOW; 941 942 /* Too many mappings? */ 943 if (mm->map_count > sysctl_max_map_count) 944 return -ENOMEM; 945 946 /* Obtain the address to map to. we verify (or select) it and ensure 947 * that it represents a valid section of the address space. 948 */ 949 addr = get_unmapped_area(file, addr, len, pgoff, flags); 950 if (addr & ~PAGE_MASK) 951 return addr; 952 953 /* Do simple checking here so the lower-level routines won't have 954 * to. we assume access permissions have been handled by the open 955 * of the memory object, so we don't do any here. 956 */ 957 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 958 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 959 960 if (flags & MAP_LOCKED) { 961 if (!can_do_mlock()) 962 return -EPERM; 963 vm_flags |= VM_LOCKED; 964 } 965 /* mlock MCL_FUTURE? */ 966 if (vm_flags & VM_LOCKED) { 967 unsigned long locked, lock_limit; 968 locked = len >> PAGE_SHIFT; 969 locked += mm->locked_vm; 970 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 971 lock_limit >>= PAGE_SHIFT; 972 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 973 return -EAGAIN; 974 } 975 976 inode = file ? file->f_path.dentry->d_inode : NULL; 977 978 if (file) { 979 switch (flags & MAP_TYPE) { 980 case MAP_SHARED: 981 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 982 return -EACCES; 983 984 /* 985 * Make sure we don't allow writing to an append-only 986 * file.. 987 */ 988 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 989 return -EACCES; 990 991 /* 992 * Make sure there are no mandatory locks on the file. 993 */ 994 if (locks_verify_locked(inode)) 995 return -EAGAIN; 996 997 vm_flags |= VM_SHARED | VM_MAYSHARE; 998 if (!(file->f_mode & FMODE_WRITE)) 999 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1000 1001 /* fall through */ 1002 case MAP_PRIVATE: 1003 if (!(file->f_mode & FMODE_READ)) 1004 return -EACCES; 1005 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1006 if (vm_flags & VM_EXEC) 1007 return -EPERM; 1008 vm_flags &= ~VM_MAYEXEC; 1009 } 1010 if (is_file_hugepages(file)) 1011 accountable = 0; 1012 1013 if (!file->f_op || !file->f_op->mmap) 1014 return -ENODEV; 1015 break; 1016 1017 default: 1018 return -EINVAL; 1019 } 1020 } else { 1021 switch (flags & MAP_TYPE) { 1022 case MAP_SHARED: 1023 vm_flags |= VM_SHARED | VM_MAYSHARE; 1024 break; 1025 case MAP_PRIVATE: 1026 /* 1027 * Set pgoff according to addr for anon_vma. 1028 */ 1029 pgoff = addr >> PAGE_SHIFT; 1030 break; 1031 default: 1032 return -EINVAL; 1033 } 1034 } 1035 1036 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1037 if (error) 1038 return error; 1039 1040 return mmap_region(file, addr, len, flags, vm_flags, pgoff, 1041 accountable); 1042 } 1043 EXPORT_SYMBOL(do_mmap_pgoff); 1044 1045 /* 1046 * Some shared mappigns will want the pages marked read-only 1047 * to track write events. If so, we'll downgrade vm_page_prot 1048 * to the private version (using protection_map[] without the 1049 * VM_SHARED bit). 1050 */ 1051 int vma_wants_writenotify(struct vm_area_struct *vma) 1052 { 1053 unsigned int vm_flags = vma->vm_flags; 1054 1055 /* If it was private or non-writable, the write bit is already clear */ 1056 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1057 return 0; 1058 1059 /* The backer wishes to know when pages are first written to? */ 1060 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1061 return 1; 1062 1063 /* The open routine did something to the protections already? */ 1064 if (pgprot_val(vma->vm_page_prot) != 1065 pgprot_val(vm_get_page_prot(vm_flags))) 1066 return 0; 1067 1068 /* Specialty mapping? */ 1069 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1070 return 0; 1071 1072 /* Can the mapping track the dirty pages? */ 1073 return vma->vm_file && vma->vm_file->f_mapping && 1074 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1075 } 1076 1077 unsigned long mmap_region(struct file *file, unsigned long addr, 1078 unsigned long len, unsigned long flags, 1079 unsigned int vm_flags, unsigned long pgoff, 1080 int accountable) 1081 { 1082 struct mm_struct *mm = current->mm; 1083 struct vm_area_struct *vma, *prev; 1084 int correct_wcount = 0; 1085 int error; 1086 struct rb_node **rb_link, *rb_parent; 1087 unsigned long charged = 0; 1088 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1089 1090 /* Clear old maps */ 1091 error = -ENOMEM; 1092 munmap_back: 1093 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1094 if (vma && vma->vm_start < addr + len) { 1095 if (do_munmap(mm, addr, len)) 1096 return -ENOMEM; 1097 goto munmap_back; 1098 } 1099 1100 /* Check against address space limit. */ 1101 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1102 return -ENOMEM; 1103 1104 if (accountable && (!(flags & MAP_NORESERVE) || 1105 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1106 if (vm_flags & VM_SHARED) { 1107 /* Check memory availability in shmem_file_setup? */ 1108 vm_flags |= VM_ACCOUNT; 1109 } else if (vm_flags & VM_WRITE) { 1110 /* 1111 * Private writable mapping: check memory availability 1112 */ 1113 charged = len >> PAGE_SHIFT; 1114 if (security_vm_enough_memory(charged)) 1115 return -ENOMEM; 1116 vm_flags |= VM_ACCOUNT; 1117 } 1118 } 1119 1120 /* 1121 * Can we just expand an old private anonymous mapping? 1122 * The VM_SHARED test is necessary because shmem_zero_setup 1123 * will create the file object for a shared anonymous map below. 1124 */ 1125 if (!file && !(vm_flags & VM_SHARED) && 1126 vma_merge(mm, prev, addr, addr + len, vm_flags, 1127 NULL, NULL, pgoff, NULL)) 1128 goto out; 1129 1130 /* 1131 * Determine the object being mapped and call the appropriate 1132 * specific mapper. the address has already been validated, but 1133 * not unmapped, but the maps are removed from the list. 1134 */ 1135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1136 if (!vma) { 1137 error = -ENOMEM; 1138 goto unacct_error; 1139 } 1140 1141 vma->vm_mm = mm; 1142 vma->vm_start = addr; 1143 vma->vm_end = addr + len; 1144 vma->vm_flags = vm_flags; 1145 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1146 vma->vm_pgoff = pgoff; 1147 1148 if (file) { 1149 error = -EINVAL; 1150 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1151 goto free_vma; 1152 if (vm_flags & VM_DENYWRITE) { 1153 error = deny_write_access(file); 1154 if (error) 1155 goto free_vma; 1156 correct_wcount = 1; 1157 } 1158 vma->vm_file = file; 1159 get_file(file); 1160 error = file->f_op->mmap(file, vma); 1161 if (error) 1162 goto unmap_and_free_vma; 1163 if (vm_flags & VM_EXECUTABLE) 1164 added_exe_file_vma(mm); 1165 } else if (vm_flags & VM_SHARED) { 1166 error = shmem_zero_setup(vma); 1167 if (error) 1168 goto free_vma; 1169 } 1170 1171 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1172 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1173 * that memory reservation must be checked; but that reservation 1174 * belongs to shared memory object, not to vma: so now clear it. 1175 */ 1176 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1177 vma->vm_flags &= ~VM_ACCOUNT; 1178 1179 /* Can addr have changed?? 1180 * 1181 * Answer: Yes, several device drivers can do it in their 1182 * f_op->mmap method. -DaveM 1183 */ 1184 addr = vma->vm_start; 1185 pgoff = vma->vm_pgoff; 1186 vm_flags = vma->vm_flags; 1187 1188 if (vma_wants_writenotify(vma)) 1189 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1190 1191 if (file && vma_merge(mm, prev, addr, vma->vm_end, 1192 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1193 mpol_put(vma_policy(vma)); 1194 kmem_cache_free(vm_area_cachep, vma); 1195 fput(file); 1196 if (vm_flags & VM_EXECUTABLE) 1197 removed_exe_file_vma(mm); 1198 } else { 1199 vma_link(mm, vma, prev, rb_link, rb_parent); 1200 file = vma->vm_file; 1201 } 1202 1203 /* Once vma denies write, undo our temporary denial count */ 1204 if (correct_wcount) 1205 atomic_inc(&inode->i_writecount); 1206 out: 1207 mm->total_vm += len >> PAGE_SHIFT; 1208 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1209 if (vm_flags & VM_LOCKED) { 1210 mm->locked_vm += len >> PAGE_SHIFT; 1211 make_pages_present(addr, addr + len); 1212 } 1213 if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1214 make_pages_present(addr, addr + len); 1215 return addr; 1216 1217 unmap_and_free_vma: 1218 if (correct_wcount) 1219 atomic_inc(&inode->i_writecount); 1220 vma->vm_file = NULL; 1221 fput(file); 1222 1223 /* Undo any partial mapping done by a device driver. */ 1224 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1225 charged = 0; 1226 free_vma: 1227 kmem_cache_free(vm_area_cachep, vma); 1228 unacct_error: 1229 if (charged) 1230 vm_unacct_memory(charged); 1231 return error; 1232 } 1233 1234 /* Get an address range which is currently unmapped. 1235 * For shmat() with addr=0. 1236 * 1237 * Ugly calling convention alert: 1238 * Return value with the low bits set means error value, 1239 * ie 1240 * if (ret & ~PAGE_MASK) 1241 * error = ret; 1242 * 1243 * This function "knows" that -ENOMEM has the bits set. 1244 */ 1245 #ifndef HAVE_ARCH_UNMAPPED_AREA 1246 unsigned long 1247 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1248 unsigned long len, unsigned long pgoff, unsigned long flags) 1249 { 1250 struct mm_struct *mm = current->mm; 1251 struct vm_area_struct *vma; 1252 unsigned long start_addr; 1253 1254 if (len > TASK_SIZE) 1255 return -ENOMEM; 1256 1257 if (flags & MAP_FIXED) 1258 return addr; 1259 1260 if (addr) { 1261 addr = PAGE_ALIGN(addr); 1262 vma = find_vma(mm, addr); 1263 if (TASK_SIZE - len >= addr && 1264 (!vma || addr + len <= vma->vm_start)) 1265 return addr; 1266 } 1267 if (len > mm->cached_hole_size) { 1268 start_addr = addr = mm->free_area_cache; 1269 } else { 1270 start_addr = addr = TASK_UNMAPPED_BASE; 1271 mm->cached_hole_size = 0; 1272 } 1273 1274 full_search: 1275 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1276 /* At this point: (!vma || addr < vma->vm_end). */ 1277 if (TASK_SIZE - len < addr) { 1278 /* 1279 * Start a new search - just in case we missed 1280 * some holes. 1281 */ 1282 if (start_addr != TASK_UNMAPPED_BASE) { 1283 addr = TASK_UNMAPPED_BASE; 1284 start_addr = addr; 1285 mm->cached_hole_size = 0; 1286 goto full_search; 1287 } 1288 return -ENOMEM; 1289 } 1290 if (!vma || addr + len <= vma->vm_start) { 1291 /* 1292 * Remember the place where we stopped the search: 1293 */ 1294 mm->free_area_cache = addr + len; 1295 return addr; 1296 } 1297 if (addr + mm->cached_hole_size < vma->vm_start) 1298 mm->cached_hole_size = vma->vm_start - addr; 1299 addr = vma->vm_end; 1300 } 1301 } 1302 #endif 1303 1304 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1305 { 1306 /* 1307 * Is this a new hole at the lowest possible address? 1308 */ 1309 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1310 mm->free_area_cache = addr; 1311 mm->cached_hole_size = ~0UL; 1312 } 1313 } 1314 1315 /* 1316 * This mmap-allocator allocates new areas top-down from below the 1317 * stack's low limit (the base): 1318 */ 1319 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1320 unsigned long 1321 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1322 const unsigned long len, const unsigned long pgoff, 1323 const unsigned long flags) 1324 { 1325 struct vm_area_struct *vma; 1326 struct mm_struct *mm = current->mm; 1327 unsigned long addr = addr0; 1328 1329 /* requested length too big for entire address space */ 1330 if (len > TASK_SIZE) 1331 return -ENOMEM; 1332 1333 if (flags & MAP_FIXED) 1334 return addr; 1335 1336 /* requesting a specific address */ 1337 if (addr) { 1338 addr = PAGE_ALIGN(addr); 1339 vma = find_vma(mm, addr); 1340 if (TASK_SIZE - len >= addr && 1341 (!vma || addr + len <= vma->vm_start)) 1342 return addr; 1343 } 1344 1345 /* check if free_area_cache is useful for us */ 1346 if (len <= mm->cached_hole_size) { 1347 mm->cached_hole_size = 0; 1348 mm->free_area_cache = mm->mmap_base; 1349 } 1350 1351 /* either no address requested or can't fit in requested address hole */ 1352 addr = mm->free_area_cache; 1353 1354 /* make sure it can fit in the remaining address space */ 1355 if (addr > len) { 1356 vma = find_vma(mm, addr-len); 1357 if (!vma || addr <= vma->vm_start) 1358 /* remember the address as a hint for next time */ 1359 return (mm->free_area_cache = addr-len); 1360 } 1361 1362 if (mm->mmap_base < len) 1363 goto bottomup; 1364 1365 addr = mm->mmap_base-len; 1366 1367 do { 1368 /* 1369 * Lookup failure means no vma is above this address, 1370 * else if new region fits below vma->vm_start, 1371 * return with success: 1372 */ 1373 vma = find_vma(mm, addr); 1374 if (!vma || addr+len <= vma->vm_start) 1375 /* remember the address as a hint for next time */ 1376 return (mm->free_area_cache = addr); 1377 1378 /* remember the largest hole we saw so far */ 1379 if (addr + mm->cached_hole_size < vma->vm_start) 1380 mm->cached_hole_size = vma->vm_start - addr; 1381 1382 /* try just below the current vma->vm_start */ 1383 addr = vma->vm_start-len; 1384 } while (len < vma->vm_start); 1385 1386 bottomup: 1387 /* 1388 * A failed mmap() very likely causes application failure, 1389 * so fall back to the bottom-up function here. This scenario 1390 * can happen with large stack limits and large mmap() 1391 * allocations. 1392 */ 1393 mm->cached_hole_size = ~0UL; 1394 mm->free_area_cache = TASK_UNMAPPED_BASE; 1395 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1396 /* 1397 * Restore the topdown base: 1398 */ 1399 mm->free_area_cache = mm->mmap_base; 1400 mm->cached_hole_size = ~0UL; 1401 1402 return addr; 1403 } 1404 #endif 1405 1406 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1407 { 1408 /* 1409 * Is this a new hole at the highest possible address? 1410 */ 1411 if (addr > mm->free_area_cache) 1412 mm->free_area_cache = addr; 1413 1414 /* dont allow allocations above current base */ 1415 if (mm->free_area_cache > mm->mmap_base) 1416 mm->free_area_cache = mm->mmap_base; 1417 } 1418 1419 unsigned long 1420 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1421 unsigned long pgoff, unsigned long flags) 1422 { 1423 unsigned long (*get_area)(struct file *, unsigned long, 1424 unsigned long, unsigned long, unsigned long); 1425 1426 get_area = current->mm->get_unmapped_area; 1427 if (file && file->f_op && file->f_op->get_unmapped_area) 1428 get_area = file->f_op->get_unmapped_area; 1429 addr = get_area(file, addr, len, pgoff, flags); 1430 if (IS_ERR_VALUE(addr)) 1431 return addr; 1432 1433 if (addr > TASK_SIZE - len) 1434 return -ENOMEM; 1435 if (addr & ~PAGE_MASK) 1436 return -EINVAL; 1437 1438 return arch_rebalance_pgtables(addr, len); 1439 } 1440 1441 EXPORT_SYMBOL(get_unmapped_area); 1442 1443 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1444 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1445 { 1446 struct vm_area_struct *vma = NULL; 1447 1448 if (mm) { 1449 /* Check the cache first. */ 1450 /* (Cache hit rate is typically around 35%.) */ 1451 vma = mm->mmap_cache; 1452 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1453 struct rb_node * rb_node; 1454 1455 rb_node = mm->mm_rb.rb_node; 1456 vma = NULL; 1457 1458 while (rb_node) { 1459 struct vm_area_struct * vma_tmp; 1460 1461 vma_tmp = rb_entry(rb_node, 1462 struct vm_area_struct, vm_rb); 1463 1464 if (vma_tmp->vm_end > addr) { 1465 vma = vma_tmp; 1466 if (vma_tmp->vm_start <= addr) 1467 break; 1468 rb_node = rb_node->rb_left; 1469 } else 1470 rb_node = rb_node->rb_right; 1471 } 1472 if (vma) 1473 mm->mmap_cache = vma; 1474 } 1475 } 1476 return vma; 1477 } 1478 1479 EXPORT_SYMBOL(find_vma); 1480 1481 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1482 struct vm_area_struct * 1483 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1484 struct vm_area_struct **pprev) 1485 { 1486 struct vm_area_struct *vma = NULL, *prev = NULL; 1487 struct rb_node * rb_node; 1488 if (!mm) 1489 goto out; 1490 1491 /* Guard against addr being lower than the first VMA */ 1492 vma = mm->mmap; 1493 1494 /* Go through the RB tree quickly. */ 1495 rb_node = mm->mm_rb.rb_node; 1496 1497 while (rb_node) { 1498 struct vm_area_struct *vma_tmp; 1499 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1500 1501 if (addr < vma_tmp->vm_end) { 1502 rb_node = rb_node->rb_left; 1503 } else { 1504 prev = vma_tmp; 1505 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1506 break; 1507 rb_node = rb_node->rb_right; 1508 } 1509 } 1510 1511 out: 1512 *pprev = prev; 1513 return prev ? prev->vm_next : vma; 1514 } 1515 1516 /* 1517 * Verify that the stack growth is acceptable and 1518 * update accounting. This is shared with both the 1519 * grow-up and grow-down cases. 1520 */ 1521 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1522 { 1523 struct mm_struct *mm = vma->vm_mm; 1524 struct rlimit *rlim = current->signal->rlim; 1525 unsigned long new_start; 1526 1527 /* address space limit tests */ 1528 if (!may_expand_vm(mm, grow)) 1529 return -ENOMEM; 1530 1531 /* Stack limit test */ 1532 if (size > rlim[RLIMIT_STACK].rlim_cur) 1533 return -ENOMEM; 1534 1535 /* mlock limit tests */ 1536 if (vma->vm_flags & VM_LOCKED) { 1537 unsigned long locked; 1538 unsigned long limit; 1539 locked = mm->locked_vm + grow; 1540 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1541 if (locked > limit && !capable(CAP_IPC_LOCK)) 1542 return -ENOMEM; 1543 } 1544 1545 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1546 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1547 vma->vm_end - size; 1548 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1549 return -EFAULT; 1550 1551 /* 1552 * Overcommit.. This must be the final test, as it will 1553 * update security statistics. 1554 */ 1555 if (security_vm_enough_memory(grow)) 1556 return -ENOMEM; 1557 1558 /* Ok, everything looks good - let it rip */ 1559 mm->total_vm += grow; 1560 if (vma->vm_flags & VM_LOCKED) 1561 mm->locked_vm += grow; 1562 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1563 return 0; 1564 } 1565 1566 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1567 /* 1568 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1569 * vma is the last one with address > vma->vm_end. Have to extend vma. 1570 */ 1571 #ifndef CONFIG_IA64 1572 static inline 1573 #endif 1574 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1575 { 1576 int error; 1577 1578 if (!(vma->vm_flags & VM_GROWSUP)) 1579 return -EFAULT; 1580 1581 /* 1582 * We must make sure the anon_vma is allocated 1583 * so that the anon_vma locking is not a noop. 1584 */ 1585 if (unlikely(anon_vma_prepare(vma))) 1586 return -ENOMEM; 1587 anon_vma_lock(vma); 1588 1589 /* 1590 * vma->vm_start/vm_end cannot change under us because the caller 1591 * is required to hold the mmap_sem in read mode. We need the 1592 * anon_vma lock to serialize against concurrent expand_stacks. 1593 * Also guard against wrapping around to address 0. 1594 */ 1595 if (address < PAGE_ALIGN(address+4)) 1596 address = PAGE_ALIGN(address+4); 1597 else { 1598 anon_vma_unlock(vma); 1599 return -ENOMEM; 1600 } 1601 error = 0; 1602 1603 /* Somebody else might have raced and expanded it already */ 1604 if (address > vma->vm_end) { 1605 unsigned long size, grow; 1606 1607 size = address - vma->vm_start; 1608 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1609 1610 error = acct_stack_growth(vma, size, grow); 1611 if (!error) 1612 vma->vm_end = address; 1613 } 1614 anon_vma_unlock(vma); 1615 return error; 1616 } 1617 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1618 1619 /* 1620 * vma is the first one with address < vma->vm_start. Have to extend vma. 1621 */ 1622 static inline int expand_downwards(struct vm_area_struct *vma, 1623 unsigned long address) 1624 { 1625 int error; 1626 1627 /* 1628 * We must make sure the anon_vma is allocated 1629 * so that the anon_vma locking is not a noop. 1630 */ 1631 if (unlikely(anon_vma_prepare(vma))) 1632 return -ENOMEM; 1633 1634 address &= PAGE_MASK; 1635 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1636 if (error) 1637 return error; 1638 1639 anon_vma_lock(vma); 1640 1641 /* 1642 * vma->vm_start/vm_end cannot change under us because the caller 1643 * is required to hold the mmap_sem in read mode. We need the 1644 * anon_vma lock to serialize against concurrent expand_stacks. 1645 */ 1646 1647 /* Somebody else might have raced and expanded it already */ 1648 if (address < vma->vm_start) { 1649 unsigned long size, grow; 1650 1651 size = vma->vm_end - address; 1652 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1653 1654 error = acct_stack_growth(vma, size, grow); 1655 if (!error) { 1656 vma->vm_start = address; 1657 vma->vm_pgoff -= grow; 1658 } 1659 } 1660 anon_vma_unlock(vma); 1661 return error; 1662 } 1663 1664 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1665 { 1666 return expand_downwards(vma, address); 1667 } 1668 1669 #ifdef CONFIG_STACK_GROWSUP 1670 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1671 { 1672 return expand_upwards(vma, address); 1673 } 1674 1675 struct vm_area_struct * 1676 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1677 { 1678 struct vm_area_struct *vma, *prev; 1679 1680 addr &= PAGE_MASK; 1681 vma = find_vma_prev(mm, addr, &prev); 1682 if (vma && (vma->vm_start <= addr)) 1683 return vma; 1684 if (!prev || expand_stack(prev, addr)) 1685 return NULL; 1686 if (prev->vm_flags & VM_LOCKED) 1687 make_pages_present(addr, prev->vm_end); 1688 return prev; 1689 } 1690 #else 1691 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1692 { 1693 return expand_downwards(vma, address); 1694 } 1695 1696 struct vm_area_struct * 1697 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1698 { 1699 struct vm_area_struct * vma; 1700 unsigned long start; 1701 1702 addr &= PAGE_MASK; 1703 vma = find_vma(mm,addr); 1704 if (!vma) 1705 return NULL; 1706 if (vma->vm_start <= addr) 1707 return vma; 1708 if (!(vma->vm_flags & VM_GROWSDOWN)) 1709 return NULL; 1710 start = vma->vm_start; 1711 if (expand_stack(vma, addr)) 1712 return NULL; 1713 if (vma->vm_flags & VM_LOCKED) 1714 make_pages_present(addr, start); 1715 return vma; 1716 } 1717 #endif 1718 1719 /* 1720 * Ok - we have the memory areas we should free on the vma list, 1721 * so release them, and do the vma updates. 1722 * 1723 * Called with the mm semaphore held. 1724 */ 1725 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1726 { 1727 /* Update high watermark before we lower total_vm */ 1728 update_hiwater_vm(mm); 1729 do { 1730 long nrpages = vma_pages(vma); 1731 1732 mm->total_vm -= nrpages; 1733 if (vma->vm_flags & VM_LOCKED) 1734 mm->locked_vm -= nrpages; 1735 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1736 vma = remove_vma(vma); 1737 } while (vma); 1738 validate_mm(mm); 1739 } 1740 1741 /* 1742 * Get rid of page table information in the indicated region. 1743 * 1744 * Called with the mm semaphore held. 1745 */ 1746 static void unmap_region(struct mm_struct *mm, 1747 struct vm_area_struct *vma, struct vm_area_struct *prev, 1748 unsigned long start, unsigned long end) 1749 { 1750 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1751 struct mmu_gather *tlb; 1752 unsigned long nr_accounted = 0; 1753 1754 lru_add_drain(); 1755 tlb = tlb_gather_mmu(mm, 0); 1756 update_hiwater_rss(mm); 1757 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1758 vm_unacct_memory(nr_accounted); 1759 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1760 next? next->vm_start: 0); 1761 tlb_finish_mmu(tlb, start, end); 1762 } 1763 1764 /* 1765 * Create a list of vma's touched by the unmap, removing them from the mm's 1766 * vma list as we go.. 1767 */ 1768 static void 1769 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1770 struct vm_area_struct *prev, unsigned long end) 1771 { 1772 struct vm_area_struct **insertion_point; 1773 struct vm_area_struct *tail_vma = NULL; 1774 unsigned long addr; 1775 1776 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1777 do { 1778 rb_erase(&vma->vm_rb, &mm->mm_rb); 1779 mm->map_count--; 1780 tail_vma = vma; 1781 vma = vma->vm_next; 1782 } while (vma && vma->vm_start < end); 1783 *insertion_point = vma; 1784 tail_vma->vm_next = NULL; 1785 if (mm->unmap_area == arch_unmap_area) 1786 addr = prev ? prev->vm_end : mm->mmap_base; 1787 else 1788 addr = vma ? vma->vm_start : mm->mmap_base; 1789 mm->unmap_area(mm, addr); 1790 mm->mmap_cache = NULL; /* Kill the cache. */ 1791 } 1792 1793 /* 1794 * Split a vma into two pieces at address 'addr', a new vma is allocated 1795 * either for the first part or the tail. 1796 */ 1797 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1798 unsigned long addr, int new_below) 1799 { 1800 struct mempolicy *pol; 1801 struct vm_area_struct *new; 1802 1803 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1804 return -EINVAL; 1805 1806 if (mm->map_count >= sysctl_max_map_count) 1807 return -ENOMEM; 1808 1809 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1810 if (!new) 1811 return -ENOMEM; 1812 1813 /* most fields are the same, copy all, and then fixup */ 1814 *new = *vma; 1815 1816 if (new_below) 1817 new->vm_end = addr; 1818 else { 1819 new->vm_start = addr; 1820 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1821 } 1822 1823 pol = mpol_dup(vma_policy(vma)); 1824 if (IS_ERR(pol)) { 1825 kmem_cache_free(vm_area_cachep, new); 1826 return PTR_ERR(pol); 1827 } 1828 vma_set_policy(new, pol); 1829 1830 if (new->vm_file) { 1831 get_file(new->vm_file); 1832 if (vma->vm_flags & VM_EXECUTABLE) 1833 added_exe_file_vma(mm); 1834 } 1835 1836 if (new->vm_ops && new->vm_ops->open) 1837 new->vm_ops->open(new); 1838 1839 if (new_below) 1840 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1841 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1842 else 1843 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1844 1845 return 0; 1846 } 1847 1848 /* Munmap is split into 2 main parts -- this part which finds 1849 * what needs doing, and the areas themselves, which do the 1850 * work. This now handles partial unmappings. 1851 * Jeremy Fitzhardinge <jeremy@goop.org> 1852 */ 1853 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1854 { 1855 unsigned long end; 1856 struct vm_area_struct *vma, *prev, *last; 1857 1858 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1859 return -EINVAL; 1860 1861 if ((len = PAGE_ALIGN(len)) == 0) 1862 return -EINVAL; 1863 1864 /* Find the first overlapping VMA */ 1865 vma = find_vma_prev(mm, start, &prev); 1866 if (!vma) 1867 return 0; 1868 /* we have start < vma->vm_end */ 1869 1870 /* if it doesn't overlap, we have nothing.. */ 1871 end = start + len; 1872 if (vma->vm_start >= end) 1873 return 0; 1874 1875 /* 1876 * If we need to split any vma, do it now to save pain later. 1877 * 1878 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1879 * unmapped vm_area_struct will remain in use: so lower split_vma 1880 * places tmp vma above, and higher split_vma places tmp vma below. 1881 */ 1882 if (start > vma->vm_start) { 1883 int error = split_vma(mm, vma, start, 0); 1884 if (error) 1885 return error; 1886 prev = vma; 1887 } 1888 1889 /* Does it split the last one? */ 1890 last = find_vma(mm, end); 1891 if (last && end > last->vm_start) { 1892 int error = split_vma(mm, last, end, 1); 1893 if (error) 1894 return error; 1895 } 1896 vma = prev? prev->vm_next: mm->mmap; 1897 1898 /* 1899 * Remove the vma's, and unmap the actual pages 1900 */ 1901 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1902 unmap_region(mm, vma, prev, start, end); 1903 1904 /* Fix up all other VM information */ 1905 remove_vma_list(mm, vma); 1906 1907 return 0; 1908 } 1909 1910 EXPORT_SYMBOL(do_munmap); 1911 1912 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1913 { 1914 int ret; 1915 struct mm_struct *mm = current->mm; 1916 1917 profile_munmap(addr); 1918 1919 down_write(&mm->mmap_sem); 1920 ret = do_munmap(mm, addr, len); 1921 up_write(&mm->mmap_sem); 1922 return ret; 1923 } 1924 1925 static inline void verify_mm_writelocked(struct mm_struct *mm) 1926 { 1927 #ifdef CONFIG_DEBUG_VM 1928 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1929 WARN_ON(1); 1930 up_read(&mm->mmap_sem); 1931 } 1932 #endif 1933 } 1934 1935 /* 1936 * this is really a simplified "do_mmap". it only handles 1937 * anonymous maps. eventually we may be able to do some 1938 * brk-specific accounting here. 1939 */ 1940 unsigned long do_brk(unsigned long addr, unsigned long len) 1941 { 1942 struct mm_struct * mm = current->mm; 1943 struct vm_area_struct * vma, * prev; 1944 unsigned long flags; 1945 struct rb_node ** rb_link, * rb_parent; 1946 pgoff_t pgoff = addr >> PAGE_SHIFT; 1947 int error; 1948 1949 len = PAGE_ALIGN(len); 1950 if (!len) 1951 return addr; 1952 1953 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1954 return -EINVAL; 1955 1956 if (is_hugepage_only_range(mm, addr, len)) 1957 return -EINVAL; 1958 1959 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 1960 if (error) 1961 return error; 1962 1963 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1964 1965 error = arch_mmap_check(addr, len, flags); 1966 if (error) 1967 return error; 1968 1969 /* 1970 * mlock MCL_FUTURE? 1971 */ 1972 if (mm->def_flags & VM_LOCKED) { 1973 unsigned long locked, lock_limit; 1974 locked = len >> PAGE_SHIFT; 1975 locked += mm->locked_vm; 1976 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1977 lock_limit >>= PAGE_SHIFT; 1978 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1979 return -EAGAIN; 1980 } 1981 1982 /* 1983 * mm->mmap_sem is required to protect against another thread 1984 * changing the mappings in case we sleep. 1985 */ 1986 verify_mm_writelocked(mm); 1987 1988 /* 1989 * Clear old maps. this also does some error checking for us 1990 */ 1991 munmap_back: 1992 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1993 if (vma && vma->vm_start < addr + len) { 1994 if (do_munmap(mm, addr, len)) 1995 return -ENOMEM; 1996 goto munmap_back; 1997 } 1998 1999 /* Check against address space limits *after* clearing old maps... */ 2000 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2001 return -ENOMEM; 2002 2003 if (mm->map_count > sysctl_max_map_count) 2004 return -ENOMEM; 2005 2006 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2007 return -ENOMEM; 2008 2009 /* Can we just expand an old private anonymous mapping? */ 2010 if (vma_merge(mm, prev, addr, addr + len, flags, 2011 NULL, NULL, pgoff, NULL)) 2012 goto out; 2013 2014 /* 2015 * create a vma struct for an anonymous mapping 2016 */ 2017 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2018 if (!vma) { 2019 vm_unacct_memory(len >> PAGE_SHIFT); 2020 return -ENOMEM; 2021 } 2022 2023 vma->vm_mm = mm; 2024 vma->vm_start = addr; 2025 vma->vm_end = addr + len; 2026 vma->vm_pgoff = pgoff; 2027 vma->vm_flags = flags; 2028 vma->vm_page_prot = vm_get_page_prot(flags); 2029 vma_link(mm, vma, prev, rb_link, rb_parent); 2030 out: 2031 mm->total_vm += len >> PAGE_SHIFT; 2032 if (flags & VM_LOCKED) { 2033 mm->locked_vm += len >> PAGE_SHIFT; 2034 make_pages_present(addr, addr + len); 2035 } 2036 return addr; 2037 } 2038 2039 EXPORT_SYMBOL(do_brk); 2040 2041 /* Release all mmaps. */ 2042 void exit_mmap(struct mm_struct *mm) 2043 { 2044 struct mmu_gather *tlb; 2045 struct vm_area_struct *vma = mm->mmap; 2046 unsigned long nr_accounted = 0; 2047 unsigned long end; 2048 2049 /* mm's last user has gone, and its about to be pulled down */ 2050 arch_exit_mmap(mm); 2051 2052 lru_add_drain(); 2053 flush_cache_mm(mm); 2054 tlb = tlb_gather_mmu(mm, 1); 2055 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 2056 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2057 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2058 vm_unacct_memory(nr_accounted); 2059 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2060 tlb_finish_mmu(tlb, 0, end); 2061 2062 /* 2063 * Walk the list again, actually closing and freeing it, 2064 * with preemption enabled, without holding any MM locks. 2065 */ 2066 while (vma) 2067 vma = remove_vma(vma); 2068 2069 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2070 } 2071 2072 /* Insert vm structure into process list sorted by address 2073 * and into the inode's i_mmap tree. If vm_file is non-NULL 2074 * then i_mmap_lock is taken here. 2075 */ 2076 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2077 { 2078 struct vm_area_struct * __vma, * prev; 2079 struct rb_node ** rb_link, * rb_parent; 2080 2081 /* 2082 * The vm_pgoff of a purely anonymous vma should be irrelevant 2083 * until its first write fault, when page's anon_vma and index 2084 * are set. But now set the vm_pgoff it will almost certainly 2085 * end up with (unless mremap moves it elsewhere before that 2086 * first wfault), so /proc/pid/maps tells a consistent story. 2087 * 2088 * By setting it to reflect the virtual start address of the 2089 * vma, merges and splits can happen in a seamless way, just 2090 * using the existing file pgoff checks and manipulations. 2091 * Similarly in do_mmap_pgoff and in do_brk. 2092 */ 2093 if (!vma->vm_file) { 2094 BUG_ON(vma->anon_vma); 2095 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2096 } 2097 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2098 if (__vma && __vma->vm_start < vma->vm_end) 2099 return -ENOMEM; 2100 if ((vma->vm_flags & VM_ACCOUNT) && 2101 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2102 return -ENOMEM; 2103 vma_link(mm, vma, prev, rb_link, rb_parent); 2104 return 0; 2105 } 2106 2107 /* 2108 * Copy the vma structure to a new location in the same mm, 2109 * prior to moving page table entries, to effect an mremap move. 2110 */ 2111 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2112 unsigned long addr, unsigned long len, pgoff_t pgoff) 2113 { 2114 struct vm_area_struct *vma = *vmap; 2115 unsigned long vma_start = vma->vm_start; 2116 struct mm_struct *mm = vma->vm_mm; 2117 struct vm_area_struct *new_vma, *prev; 2118 struct rb_node **rb_link, *rb_parent; 2119 struct mempolicy *pol; 2120 2121 /* 2122 * If anonymous vma has not yet been faulted, update new pgoff 2123 * to match new location, to increase its chance of merging. 2124 */ 2125 if (!vma->vm_file && !vma->anon_vma) 2126 pgoff = addr >> PAGE_SHIFT; 2127 2128 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2129 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2130 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2131 if (new_vma) { 2132 /* 2133 * Source vma may have been merged into new_vma 2134 */ 2135 if (vma_start >= new_vma->vm_start && 2136 vma_start < new_vma->vm_end) 2137 *vmap = new_vma; 2138 } else { 2139 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2140 if (new_vma) { 2141 *new_vma = *vma; 2142 pol = mpol_dup(vma_policy(vma)); 2143 if (IS_ERR(pol)) { 2144 kmem_cache_free(vm_area_cachep, new_vma); 2145 return NULL; 2146 } 2147 vma_set_policy(new_vma, pol); 2148 new_vma->vm_start = addr; 2149 new_vma->vm_end = addr + len; 2150 new_vma->vm_pgoff = pgoff; 2151 if (new_vma->vm_file) { 2152 get_file(new_vma->vm_file); 2153 if (vma->vm_flags & VM_EXECUTABLE) 2154 added_exe_file_vma(mm); 2155 } 2156 if (new_vma->vm_ops && new_vma->vm_ops->open) 2157 new_vma->vm_ops->open(new_vma); 2158 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2159 } 2160 } 2161 return new_vma; 2162 } 2163 2164 /* 2165 * Return true if the calling process may expand its vm space by the passed 2166 * number of pages 2167 */ 2168 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2169 { 2170 unsigned long cur = mm->total_vm; /* pages */ 2171 unsigned long lim; 2172 2173 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2174 2175 if (cur + npages > lim) 2176 return 0; 2177 return 1; 2178 } 2179 2180 2181 static int special_mapping_fault(struct vm_area_struct *vma, 2182 struct vm_fault *vmf) 2183 { 2184 pgoff_t pgoff; 2185 struct page **pages; 2186 2187 /* 2188 * special mappings have no vm_file, and in that case, the mm 2189 * uses vm_pgoff internally. So we have to subtract it from here. 2190 * We are allowed to do this because we are the mm; do not copy 2191 * this code into drivers! 2192 */ 2193 pgoff = vmf->pgoff - vma->vm_pgoff; 2194 2195 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2196 pgoff--; 2197 2198 if (*pages) { 2199 struct page *page = *pages; 2200 get_page(page); 2201 vmf->page = page; 2202 return 0; 2203 } 2204 2205 return VM_FAULT_SIGBUS; 2206 } 2207 2208 /* 2209 * Having a close hook prevents vma merging regardless of flags. 2210 */ 2211 static void special_mapping_close(struct vm_area_struct *vma) 2212 { 2213 } 2214 2215 static struct vm_operations_struct special_mapping_vmops = { 2216 .close = special_mapping_close, 2217 .fault = special_mapping_fault, 2218 }; 2219 2220 /* 2221 * Called with mm->mmap_sem held for writing. 2222 * Insert a new vma covering the given region, with the given flags. 2223 * Its pages are supplied by the given array of struct page *. 2224 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2225 * The region past the last page supplied will always produce SIGBUS. 2226 * The array pointer and the pages it points to are assumed to stay alive 2227 * for as long as this mapping might exist. 2228 */ 2229 int install_special_mapping(struct mm_struct *mm, 2230 unsigned long addr, unsigned long len, 2231 unsigned long vm_flags, struct page **pages) 2232 { 2233 struct vm_area_struct *vma; 2234 2235 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2236 if (unlikely(vma == NULL)) 2237 return -ENOMEM; 2238 2239 vma->vm_mm = mm; 2240 vma->vm_start = addr; 2241 vma->vm_end = addr + len; 2242 2243 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2244 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2245 2246 vma->vm_ops = &special_mapping_vmops; 2247 vma->vm_private_data = pages; 2248 2249 if (unlikely(insert_vm_struct(mm, vma))) { 2250 kmem_cache_free(vm_area_cachep, vma); 2251 return -ENOMEM; 2252 } 2253 2254 mm->total_vm += len >> PAGE_SHIFT; 2255 2256 return 0; 2257 } 2258