1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 95 * MAP_PRIVATE: 96 * r: (no) no 97 * w: (no) no 98 * x: (yes) yes 99 */ 100 pgprot_t protection_map[16] __ro_after_init = { 101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 103 }; 104 105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 107 { 108 return prot; 109 } 110 #endif 111 112 pgprot_t vm_get_page_prot(unsigned long vm_flags) 113 { 114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 116 pgprot_val(arch_vm_get_page_prot(vm_flags))); 117 118 return arch_filter_pgprot(ret); 119 } 120 EXPORT_SYMBOL(vm_get_page_prot); 121 122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 123 { 124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 125 } 126 127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 128 void vma_set_page_prot(struct vm_area_struct *vma) 129 { 130 unsigned long vm_flags = vma->vm_flags; 131 pgprot_t vm_page_prot; 132 133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 134 if (vma_wants_writenotify(vma, vm_page_prot)) { 135 vm_flags &= ~VM_SHARED; 136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 137 } 138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 140 } 141 142 /* 143 * Requires inode->i_mapping->i_mmap_rwsem 144 */ 145 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 146 struct file *file, struct address_space *mapping) 147 { 148 if (vma->vm_flags & VM_DENYWRITE) 149 atomic_inc(&file_inode(file)->i_writecount); 150 if (vma->vm_flags & VM_SHARED) 151 mapping_unmap_writable(mapping); 152 153 flush_dcache_mmap_lock(mapping); 154 vma_interval_tree_remove(vma, &mapping->i_mmap); 155 flush_dcache_mmap_unlock(mapping); 156 } 157 158 /* 159 * Unlink a file-based vm structure from its interval tree, to hide 160 * vma from rmap and vmtruncate before freeing its page tables. 161 */ 162 void unlink_file_vma(struct vm_area_struct *vma) 163 { 164 struct file *file = vma->vm_file; 165 166 if (file) { 167 struct address_space *mapping = file->f_mapping; 168 i_mmap_lock_write(mapping); 169 __remove_shared_vm_struct(vma, file, mapping); 170 i_mmap_unlock_write(mapping); 171 } 172 } 173 174 /* 175 * Close a vm structure and free it, returning the next. 176 */ 177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 178 { 179 struct vm_area_struct *next = vma->vm_next; 180 181 might_sleep(); 182 if (vma->vm_ops && vma->vm_ops->close) 183 vma->vm_ops->close(vma); 184 if (vma->vm_file) 185 fput(vma->vm_file); 186 mpol_put(vma_policy(vma)); 187 vm_area_free(vma); 188 return next; 189 } 190 191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 192 struct list_head *uf); 193 SYSCALL_DEFINE1(brk, unsigned long, brk) 194 { 195 unsigned long retval; 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 brk = untagged_addr(brk); 205 206 if (down_write_killable(&mm->mmap_sem)) 207 return -EINTR; 208 209 origbrk = mm->brk; 210 211 #ifdef CONFIG_COMPAT_BRK 212 /* 213 * CONFIG_COMPAT_BRK can still be overridden by setting 214 * randomize_va_space to 2, which will still cause mm->start_brk 215 * to be arbitrarily shifted 216 */ 217 if (current->brk_randomized) 218 min_brk = mm->start_brk; 219 else 220 min_brk = mm->end_data; 221 #else 222 min_brk = mm->start_brk; 223 #endif 224 if (brk < min_brk) 225 goto out; 226 227 /* 228 * Check against rlimit here. If this check is done later after the test 229 * of oldbrk with newbrk then it can escape the test and let the data 230 * segment grow beyond its set limit the in case where the limit is 231 * not page aligned -Ram Gupta 232 */ 233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 234 mm->end_data, mm->start_data)) 235 goto out; 236 237 newbrk = PAGE_ALIGN(brk); 238 oldbrk = PAGE_ALIGN(mm->brk); 239 if (oldbrk == newbrk) { 240 mm->brk = brk; 241 goto success; 242 } 243 244 /* 245 * Always allow shrinking brk. 246 * __do_munmap() may downgrade mmap_sem to read. 247 */ 248 if (brk <= mm->brk) { 249 int ret; 250 251 /* 252 * mm->brk must to be protected by write mmap_sem so update it 253 * before downgrading mmap_sem. When __do_munmap() fails, 254 * mm->brk will be restored from origbrk. 255 */ 256 mm->brk = brk; 257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 258 if (ret < 0) { 259 mm->brk = origbrk; 260 goto out; 261 } else if (ret == 1) { 262 downgraded = true; 263 } 264 goto success; 265 } 266 267 /* Check against existing mmap mappings. */ 268 next = find_vma(mm, oldbrk); 269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 270 goto out; 271 272 /* Ok, looks good - let it rip. */ 273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 274 goto out; 275 mm->brk = brk; 276 277 success: 278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 279 if (downgraded) 280 up_read(&mm->mmap_sem); 281 else 282 up_write(&mm->mmap_sem); 283 userfaultfd_unmap_complete(mm, &uf); 284 if (populate) 285 mm_populate(oldbrk, newbrk - oldbrk); 286 return brk; 287 288 out: 289 retval = origbrk; 290 up_write(&mm->mmap_sem); 291 return retval; 292 } 293 294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 295 { 296 unsigned long gap, prev_end; 297 298 /* 299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 300 * allow two stack_guard_gaps between them here, and when choosing 301 * an unmapped area; whereas when expanding we only require one. 302 * That's a little inconsistent, but keeps the code here simpler. 303 */ 304 gap = vm_start_gap(vma); 305 if (vma->vm_prev) { 306 prev_end = vm_end_gap(vma->vm_prev); 307 if (gap > prev_end) 308 gap -= prev_end; 309 else 310 gap = 0; 311 } 312 return gap; 313 } 314 315 #ifdef CONFIG_DEBUG_VM_RB 316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 317 { 318 unsigned long max = vma_compute_gap(vma), subtree_gap; 319 if (vma->vm_rb.rb_left) { 320 subtree_gap = rb_entry(vma->vm_rb.rb_left, 321 struct vm_area_struct, vm_rb)->rb_subtree_gap; 322 if (subtree_gap > max) 323 max = subtree_gap; 324 } 325 if (vma->vm_rb.rb_right) { 326 subtree_gap = rb_entry(vma->vm_rb.rb_right, 327 struct vm_area_struct, vm_rb)->rb_subtree_gap; 328 if (subtree_gap > max) 329 max = subtree_gap; 330 } 331 return max; 332 } 333 334 static int browse_rb(struct mm_struct *mm) 335 { 336 struct rb_root *root = &mm->mm_rb; 337 int i = 0, j, bug = 0; 338 struct rb_node *nd, *pn = NULL; 339 unsigned long prev = 0, pend = 0; 340 341 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 342 struct vm_area_struct *vma; 343 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 344 if (vma->vm_start < prev) { 345 pr_emerg("vm_start %lx < prev %lx\n", 346 vma->vm_start, prev); 347 bug = 1; 348 } 349 if (vma->vm_start < pend) { 350 pr_emerg("vm_start %lx < pend %lx\n", 351 vma->vm_start, pend); 352 bug = 1; 353 } 354 if (vma->vm_start > vma->vm_end) { 355 pr_emerg("vm_start %lx > vm_end %lx\n", 356 vma->vm_start, vma->vm_end); 357 bug = 1; 358 } 359 spin_lock(&mm->page_table_lock); 360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 361 pr_emerg("free gap %lx, correct %lx\n", 362 vma->rb_subtree_gap, 363 vma_compute_subtree_gap(vma)); 364 bug = 1; 365 } 366 spin_unlock(&mm->page_table_lock); 367 i++; 368 pn = nd; 369 prev = vma->vm_start; 370 pend = vma->vm_end; 371 } 372 j = 0; 373 for (nd = pn; nd; nd = rb_prev(nd)) 374 j++; 375 if (i != j) { 376 pr_emerg("backwards %d, forwards %d\n", j, i); 377 bug = 1; 378 } 379 return bug ? -1 : i; 380 } 381 382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 383 { 384 struct rb_node *nd; 385 386 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 387 struct vm_area_struct *vma; 388 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 389 VM_BUG_ON_VMA(vma != ignore && 390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 391 vma); 392 } 393 } 394 395 static void validate_mm(struct mm_struct *mm) 396 { 397 int bug = 0; 398 int i = 0; 399 unsigned long highest_address = 0; 400 struct vm_area_struct *vma = mm->mmap; 401 402 while (vma) { 403 struct anon_vma *anon_vma = vma->anon_vma; 404 struct anon_vma_chain *avc; 405 406 if (anon_vma) { 407 anon_vma_lock_read(anon_vma); 408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 409 anon_vma_interval_tree_verify(avc); 410 anon_vma_unlock_read(anon_vma); 411 } 412 413 highest_address = vm_end_gap(vma); 414 vma = vma->vm_next; 415 i++; 416 } 417 if (i != mm->map_count) { 418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 419 bug = 1; 420 } 421 if (highest_address != mm->highest_vm_end) { 422 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 423 mm->highest_vm_end, highest_address); 424 bug = 1; 425 } 426 i = browse_rb(mm); 427 if (i != mm->map_count) { 428 if (i != -1) 429 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 430 bug = 1; 431 } 432 VM_BUG_ON_MM(bug, mm); 433 } 434 #else 435 #define validate_mm_rb(root, ignore) do { } while (0) 436 #define validate_mm(mm) do { } while (0) 437 #endif 438 439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 440 struct vm_area_struct, vm_rb, 441 unsigned long, rb_subtree_gap, vma_compute_gap) 442 443 /* 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position 446 * in the rbtree. 447 */ 448 static void vma_gap_update(struct vm_area_struct *vma) 449 { 450 /* 451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 452 * a callback function that does exactly what we want. 453 */ 454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 455 } 456 457 static inline void vma_rb_insert(struct vm_area_struct *vma, 458 struct rb_root *root) 459 { 460 /* All rb_subtree_gap values must be consistent prior to insertion */ 461 validate_mm_rb(root, NULL); 462 463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 464 } 465 466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 467 { 468 /* 469 * Note rb_erase_augmented is a fairly large inline function, 470 * so make sure we instantiate it only once with our desired 471 * augmented rbtree callbacks. 472 */ 473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 474 } 475 476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 477 struct rb_root *root, 478 struct vm_area_struct *ignore) 479 { 480 /* 481 * All rb_subtree_gap values must be consistent prior to erase, 482 * with the possible exception of the "next" vma being erased if 483 * next->vm_start was reduced. 484 */ 485 validate_mm_rb(root, ignore); 486 487 __vma_rb_erase(vma, root); 488 } 489 490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 491 struct rb_root *root) 492 { 493 /* 494 * All rb_subtree_gap values must be consistent prior to erase, 495 * with the possible exception of the vma being erased. 496 */ 497 validate_mm_rb(root, vma); 498 499 __vma_rb_erase(vma, root); 500 } 501 502 /* 503 * vma has some anon_vma assigned, and is already inserted on that 504 * anon_vma's interval trees. 505 * 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 507 * vma must be removed from the anon_vma's interval trees using 508 * anon_vma_interval_tree_pre_update_vma(). 509 * 510 * After the update, the vma will be reinserted using 511 * anon_vma_interval_tree_post_update_vma(). 512 * 513 * The entire update must be protected by exclusive mmap_sem and by 514 * the root anon_vma's mutex. 515 */ 516 static inline void 517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 518 { 519 struct anon_vma_chain *avc; 520 521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 522 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 523 } 524 525 static inline void 526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 527 { 528 struct anon_vma_chain *avc; 529 530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 531 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 532 } 533 534 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 535 unsigned long end, struct vm_area_struct **pprev, 536 struct rb_node ***rb_link, struct rb_node **rb_parent) 537 { 538 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 539 540 __rb_link = &mm->mm_rb.rb_node; 541 rb_prev = __rb_parent = NULL; 542 543 while (*__rb_link) { 544 struct vm_area_struct *vma_tmp; 545 546 __rb_parent = *__rb_link; 547 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 548 549 if (vma_tmp->vm_end > addr) { 550 /* Fail if an existing vma overlaps the area */ 551 if (vma_tmp->vm_start < end) 552 return -ENOMEM; 553 __rb_link = &__rb_parent->rb_left; 554 } else { 555 rb_prev = __rb_parent; 556 __rb_link = &__rb_parent->rb_right; 557 } 558 } 559 560 *pprev = NULL; 561 if (rb_prev) 562 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 563 *rb_link = __rb_link; 564 *rb_parent = __rb_parent; 565 return 0; 566 } 567 568 static unsigned long count_vma_pages_range(struct mm_struct *mm, 569 unsigned long addr, unsigned long end) 570 { 571 unsigned long nr_pages = 0; 572 struct vm_area_struct *vma; 573 574 /* Find first overlaping mapping */ 575 vma = find_vma_intersection(mm, addr, end); 576 if (!vma) 577 return 0; 578 579 nr_pages = (min(end, vma->vm_end) - 580 max(addr, vma->vm_start)) >> PAGE_SHIFT; 581 582 /* Iterate over the rest of the overlaps */ 583 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 584 unsigned long overlap_len; 585 586 if (vma->vm_start > end) 587 break; 588 589 overlap_len = min(end, vma->vm_end) - vma->vm_start; 590 nr_pages += overlap_len >> PAGE_SHIFT; 591 } 592 593 return nr_pages; 594 } 595 596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 597 struct rb_node **rb_link, struct rb_node *rb_parent) 598 { 599 /* Update tracking information for the gap following the new vma. */ 600 if (vma->vm_next) 601 vma_gap_update(vma->vm_next); 602 else 603 mm->highest_vm_end = vm_end_gap(vma); 604 605 /* 606 * vma->vm_prev wasn't known when we followed the rbtree to find the 607 * correct insertion point for that vma. As a result, we could not 608 * update the vma vm_rb parents rb_subtree_gap values on the way down. 609 * So, we first insert the vma with a zero rb_subtree_gap value 610 * (to be consistent with what we did on the way down), and then 611 * immediately update the gap to the correct value. Finally we 612 * rebalance the rbtree after all augmented values have been set. 613 */ 614 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 615 vma->rb_subtree_gap = 0; 616 vma_gap_update(vma); 617 vma_rb_insert(vma, &mm->mm_rb); 618 } 619 620 static void __vma_link_file(struct vm_area_struct *vma) 621 { 622 struct file *file; 623 624 file = vma->vm_file; 625 if (file) { 626 struct address_space *mapping = file->f_mapping; 627 628 if (vma->vm_flags & VM_DENYWRITE) 629 atomic_dec(&file_inode(file)->i_writecount); 630 if (vma->vm_flags & VM_SHARED) 631 atomic_inc(&mapping->i_mmap_writable); 632 633 flush_dcache_mmap_lock(mapping); 634 vma_interval_tree_insert(vma, &mapping->i_mmap); 635 flush_dcache_mmap_unlock(mapping); 636 } 637 } 638 639 static void 640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 641 struct vm_area_struct *prev, struct rb_node **rb_link, 642 struct rb_node *rb_parent) 643 { 644 __vma_link_list(mm, vma, prev, rb_parent); 645 __vma_link_rb(mm, vma, rb_link, rb_parent); 646 } 647 648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 649 struct vm_area_struct *prev, struct rb_node **rb_link, 650 struct rb_node *rb_parent) 651 { 652 struct address_space *mapping = NULL; 653 654 if (vma->vm_file) { 655 mapping = vma->vm_file->f_mapping; 656 i_mmap_lock_write(mapping); 657 } 658 659 __vma_link(mm, vma, prev, rb_link, rb_parent); 660 __vma_link_file(vma); 661 662 if (mapping) 663 i_mmap_unlock_write(mapping); 664 665 mm->map_count++; 666 validate_mm(mm); 667 } 668 669 /* 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 671 * mm's list and rbtree. It has already been inserted into the interval tree. 672 */ 673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 674 { 675 struct vm_area_struct *prev; 676 struct rb_node **rb_link, *rb_parent; 677 678 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 679 &prev, &rb_link, &rb_parent)) 680 BUG(); 681 __vma_link(mm, vma, prev, rb_link, rb_parent); 682 mm->map_count++; 683 } 684 685 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 686 struct vm_area_struct *vma, 687 struct vm_area_struct *prev, 688 bool has_prev, 689 struct vm_area_struct *ignore) 690 { 691 struct vm_area_struct *next; 692 693 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 694 next = vma->vm_next; 695 if (has_prev) 696 prev->vm_next = next; 697 else { 698 prev = vma->vm_prev; 699 if (prev) 700 prev->vm_next = next; 701 else 702 mm->mmap = next; 703 } 704 if (next) 705 next->vm_prev = prev; 706 707 /* Kill the cache */ 708 vmacache_invalidate(mm); 709 } 710 711 static inline void __vma_unlink_prev(struct mm_struct *mm, 712 struct vm_area_struct *vma, 713 struct vm_area_struct *prev) 714 { 715 __vma_unlink_common(mm, vma, prev, true, vma); 716 } 717 718 /* 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 720 * is already present in an i_mmap tree without adjusting the tree. 721 * The following helper function should be used when such adjustments 722 * are necessary. The "insert" vma (if any) is to be inserted 723 * before we drop the necessary locks. 724 */ 725 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 726 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 727 struct vm_area_struct *expand) 728 { 729 struct mm_struct *mm = vma->vm_mm; 730 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 731 struct address_space *mapping = NULL; 732 struct rb_root_cached *root = NULL; 733 struct anon_vma *anon_vma = NULL; 734 struct file *file = vma->vm_file; 735 bool start_changed = false, end_changed = false; 736 long adjust_next = 0; 737 int remove_next = 0; 738 739 if (next && !insert) { 740 struct vm_area_struct *exporter = NULL, *importer = NULL; 741 742 if (end >= next->vm_end) { 743 /* 744 * vma expands, overlapping all the next, and 745 * perhaps the one after too (mprotect case 6). 746 * The only other cases that gets here are 747 * case 1, case 7 and case 8. 748 */ 749 if (next == expand) { 750 /* 751 * The only case where we don't expand "vma" 752 * and we expand "next" instead is case 8. 753 */ 754 VM_WARN_ON(end != next->vm_end); 755 /* 756 * remove_next == 3 means we're 757 * removing "vma" and that to do so we 758 * swapped "vma" and "next". 759 */ 760 remove_next = 3; 761 VM_WARN_ON(file != next->vm_file); 762 swap(vma, next); 763 } else { 764 VM_WARN_ON(expand != vma); 765 /* 766 * case 1, 6, 7, remove_next == 2 is case 6, 767 * remove_next == 1 is case 1 or 7. 768 */ 769 remove_next = 1 + (end > next->vm_end); 770 VM_WARN_ON(remove_next == 2 && 771 end != next->vm_next->vm_end); 772 VM_WARN_ON(remove_next == 1 && 773 end != next->vm_end); 774 /* trim end to next, for case 6 first pass */ 775 end = next->vm_end; 776 } 777 778 exporter = next; 779 importer = vma; 780 781 /* 782 * If next doesn't have anon_vma, import from vma after 783 * next, if the vma overlaps with it. 784 */ 785 if (remove_next == 2 && !next->anon_vma) 786 exporter = next->vm_next; 787 788 } else if (end > next->vm_start) { 789 /* 790 * vma expands, overlapping part of the next: 791 * mprotect case 5 shifting the boundary up. 792 */ 793 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 794 exporter = next; 795 importer = vma; 796 VM_WARN_ON(expand != importer); 797 } else if (end < vma->vm_end) { 798 /* 799 * vma shrinks, and !insert tells it's not 800 * split_vma inserting another: so it must be 801 * mprotect case 4 shifting the boundary down. 802 */ 803 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 804 exporter = vma; 805 importer = next; 806 VM_WARN_ON(expand != importer); 807 } 808 809 /* 810 * Easily overlooked: when mprotect shifts the boundary, 811 * make sure the expanding vma has anon_vma set if the 812 * shrinking vma had, to cover any anon pages imported. 813 */ 814 if (exporter && exporter->anon_vma && !importer->anon_vma) { 815 int error; 816 817 importer->anon_vma = exporter->anon_vma; 818 error = anon_vma_clone(importer, exporter); 819 if (error) 820 return error; 821 } 822 } 823 again: 824 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 825 826 if (file) { 827 mapping = file->f_mapping; 828 root = &mapping->i_mmap; 829 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 830 831 if (adjust_next) 832 uprobe_munmap(next, next->vm_start, next->vm_end); 833 834 i_mmap_lock_write(mapping); 835 if (insert) { 836 /* 837 * Put into interval tree now, so instantiated pages 838 * are visible to arm/parisc __flush_dcache_page 839 * throughout; but we cannot insert into address 840 * space until vma start or end is updated. 841 */ 842 __vma_link_file(insert); 843 } 844 } 845 846 anon_vma = vma->anon_vma; 847 if (!anon_vma && adjust_next) 848 anon_vma = next->anon_vma; 849 if (anon_vma) { 850 VM_WARN_ON(adjust_next && next->anon_vma && 851 anon_vma != next->anon_vma); 852 anon_vma_lock_write(anon_vma); 853 anon_vma_interval_tree_pre_update_vma(vma); 854 if (adjust_next) 855 anon_vma_interval_tree_pre_update_vma(next); 856 } 857 858 if (root) { 859 flush_dcache_mmap_lock(mapping); 860 vma_interval_tree_remove(vma, root); 861 if (adjust_next) 862 vma_interval_tree_remove(next, root); 863 } 864 865 if (start != vma->vm_start) { 866 vma->vm_start = start; 867 start_changed = true; 868 } 869 if (end != vma->vm_end) { 870 vma->vm_end = end; 871 end_changed = true; 872 } 873 vma->vm_pgoff = pgoff; 874 if (adjust_next) { 875 next->vm_start += adjust_next << PAGE_SHIFT; 876 next->vm_pgoff += adjust_next; 877 } 878 879 if (root) { 880 if (adjust_next) 881 vma_interval_tree_insert(next, root); 882 vma_interval_tree_insert(vma, root); 883 flush_dcache_mmap_unlock(mapping); 884 } 885 886 if (remove_next) { 887 /* 888 * vma_merge has merged next into vma, and needs 889 * us to remove next before dropping the locks. 890 */ 891 if (remove_next != 3) 892 __vma_unlink_prev(mm, next, vma); 893 else 894 /* 895 * vma is not before next if they've been 896 * swapped. 897 * 898 * pre-swap() next->vm_start was reduced so 899 * tell validate_mm_rb to ignore pre-swap() 900 * "next" (which is stored in post-swap() 901 * "vma"). 902 */ 903 __vma_unlink_common(mm, next, NULL, false, vma); 904 if (file) 905 __remove_shared_vm_struct(next, file, mapping); 906 } else if (insert) { 907 /* 908 * split_vma has split insert from vma, and needs 909 * us to insert it before dropping the locks 910 * (it may either follow vma or precede it). 911 */ 912 __insert_vm_struct(mm, insert); 913 } else { 914 if (start_changed) 915 vma_gap_update(vma); 916 if (end_changed) { 917 if (!next) 918 mm->highest_vm_end = vm_end_gap(vma); 919 else if (!adjust_next) 920 vma_gap_update(next); 921 } 922 } 923 924 if (anon_vma) { 925 anon_vma_interval_tree_post_update_vma(vma); 926 if (adjust_next) 927 anon_vma_interval_tree_post_update_vma(next); 928 anon_vma_unlock_write(anon_vma); 929 } 930 if (mapping) 931 i_mmap_unlock_write(mapping); 932 933 if (root) { 934 uprobe_mmap(vma); 935 936 if (adjust_next) 937 uprobe_mmap(next); 938 } 939 940 if (remove_next) { 941 if (file) { 942 uprobe_munmap(next, next->vm_start, next->vm_end); 943 fput(file); 944 } 945 if (next->anon_vma) 946 anon_vma_merge(vma, next); 947 mm->map_count--; 948 mpol_put(vma_policy(next)); 949 vm_area_free(next); 950 /* 951 * In mprotect's case 6 (see comments on vma_merge), 952 * we must remove another next too. It would clutter 953 * up the code too much to do both in one go. 954 */ 955 if (remove_next != 3) { 956 /* 957 * If "next" was removed and vma->vm_end was 958 * expanded (up) over it, in turn 959 * "next->vm_prev->vm_end" changed and the 960 * "vma->vm_next" gap must be updated. 961 */ 962 next = vma->vm_next; 963 } else { 964 /* 965 * For the scope of the comment "next" and 966 * "vma" considered pre-swap(): if "vma" was 967 * removed, next->vm_start was expanded (down) 968 * over it and the "next" gap must be updated. 969 * Because of the swap() the post-swap() "vma" 970 * actually points to pre-swap() "next" 971 * (post-swap() "next" as opposed is now a 972 * dangling pointer). 973 */ 974 next = vma; 975 } 976 if (remove_next == 2) { 977 remove_next = 1; 978 end = next->vm_end; 979 goto again; 980 } 981 else if (next) 982 vma_gap_update(next); 983 else { 984 /* 985 * If remove_next == 2 we obviously can't 986 * reach this path. 987 * 988 * If remove_next == 3 we can't reach this 989 * path because pre-swap() next is always not 990 * NULL. pre-swap() "next" is not being 991 * removed and its next->vm_end is not altered 992 * (and furthermore "end" already matches 993 * next->vm_end in remove_next == 3). 994 * 995 * We reach this only in the remove_next == 1 996 * case if the "next" vma that was removed was 997 * the highest vma of the mm. However in such 998 * case next->vm_end == "end" and the extended 999 * "vma" has vma->vm_end == next->vm_end so 1000 * mm->highest_vm_end doesn't need any update 1001 * in remove_next == 1 case. 1002 */ 1003 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1004 } 1005 } 1006 if (insert && file) 1007 uprobe_mmap(insert); 1008 1009 validate_mm(mm); 1010 1011 return 0; 1012 } 1013 1014 /* 1015 * If the vma has a ->close operation then the driver probably needs to release 1016 * per-vma resources, so we don't attempt to merge those. 1017 */ 1018 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1019 struct file *file, unsigned long vm_flags, 1020 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1021 { 1022 /* 1023 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1024 * match the flags but dirty bit -- the caller should mark 1025 * merged VMA as dirty. If dirty bit won't be excluded from 1026 * comparison, we increase pressure on the memory system forcing 1027 * the kernel to generate new VMAs when old one could be 1028 * extended instead. 1029 */ 1030 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1031 return 0; 1032 if (vma->vm_file != file) 1033 return 0; 1034 if (vma->vm_ops && vma->vm_ops->close) 1035 return 0; 1036 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1037 return 0; 1038 return 1; 1039 } 1040 1041 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1042 struct anon_vma *anon_vma2, 1043 struct vm_area_struct *vma) 1044 { 1045 /* 1046 * The list_is_singular() test is to avoid merging VMA cloned from 1047 * parents. This can improve scalability caused by anon_vma lock. 1048 */ 1049 if ((!anon_vma1 || !anon_vma2) && (!vma || 1050 list_is_singular(&vma->anon_vma_chain))) 1051 return 1; 1052 return anon_vma1 == anon_vma2; 1053 } 1054 1055 /* 1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1057 * in front of (at a lower virtual address and file offset than) the vma. 1058 * 1059 * We cannot merge two vmas if they have differently assigned (non-NULL) 1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1061 * 1062 * We don't check here for the merged mmap wrapping around the end of pagecache 1063 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1064 * wrap, nor mmaps which cover the final page at index -1UL. 1065 */ 1066 static int 1067 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1068 struct anon_vma *anon_vma, struct file *file, 1069 pgoff_t vm_pgoff, 1070 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1071 { 1072 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1073 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1074 if (vma->vm_pgoff == vm_pgoff) 1075 return 1; 1076 } 1077 return 0; 1078 } 1079 1080 /* 1081 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1082 * beyond (at a higher virtual address and file offset than) the vma. 1083 * 1084 * We cannot merge two vmas if they have differently assigned (non-NULL) 1085 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1086 */ 1087 static int 1088 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1089 struct anon_vma *anon_vma, struct file *file, 1090 pgoff_t vm_pgoff, 1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1092 { 1093 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1094 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1095 pgoff_t vm_pglen; 1096 vm_pglen = vma_pages(vma); 1097 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1098 return 1; 1099 } 1100 return 0; 1101 } 1102 1103 /* 1104 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1105 * whether that can be merged with its predecessor or its successor. 1106 * Or both (it neatly fills a hole). 1107 * 1108 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1109 * certain not to be mapped by the time vma_merge is called; but when 1110 * called for mprotect, it is certain to be already mapped (either at 1111 * an offset within prev, or at the start of next), and the flags of 1112 * this area are about to be changed to vm_flags - and the no-change 1113 * case has already been eliminated. 1114 * 1115 * The following mprotect cases have to be considered, where AAAA is 1116 * the area passed down from mprotect_fixup, never extending beyond one 1117 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1118 * 1119 * AAAA AAAA AAAA AAAA 1120 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1121 * cannot merge might become might become might become 1122 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1123 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1124 * mremap move: PPPPXXXXXXXX 8 1125 * AAAA 1126 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1127 * might become case 1 below case 2 below case 3 below 1128 * 1129 * It is important for case 8 that the vma NNNN overlapping the 1130 * region AAAA is never going to extended over XXXX. Instead XXXX must 1131 * be extended in region AAAA and NNNN must be removed. This way in 1132 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1133 * rmap_locks, the properties of the merged vma will be already 1134 * correct for the whole merged range. Some of those properties like 1135 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1136 * be correct for the whole merged range immediately after the 1137 * rmap_locks are released. Otherwise if XXXX would be removed and 1138 * NNNN would be extended over the XXXX range, remove_migration_ptes 1139 * or other rmap walkers (if working on addresses beyond the "end" 1140 * parameter) may establish ptes with the wrong permissions of NNNN 1141 * instead of the right permissions of XXXX. 1142 */ 1143 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1144 struct vm_area_struct *prev, unsigned long addr, 1145 unsigned long end, unsigned long vm_flags, 1146 struct anon_vma *anon_vma, struct file *file, 1147 pgoff_t pgoff, struct mempolicy *policy, 1148 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1149 { 1150 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1151 struct vm_area_struct *area, *next; 1152 int err; 1153 1154 /* 1155 * We later require that vma->vm_flags == vm_flags, 1156 * so this tests vma->vm_flags & VM_SPECIAL, too. 1157 */ 1158 if (vm_flags & VM_SPECIAL) 1159 return NULL; 1160 1161 if (prev) 1162 next = prev->vm_next; 1163 else 1164 next = mm->mmap; 1165 area = next; 1166 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1167 next = next->vm_next; 1168 1169 /* verify some invariant that must be enforced by the caller */ 1170 VM_WARN_ON(prev && addr <= prev->vm_start); 1171 VM_WARN_ON(area && end > area->vm_end); 1172 VM_WARN_ON(addr >= end); 1173 1174 /* 1175 * Can it merge with the predecessor? 1176 */ 1177 if (prev && prev->vm_end == addr && 1178 mpol_equal(vma_policy(prev), policy) && 1179 can_vma_merge_after(prev, vm_flags, 1180 anon_vma, file, pgoff, 1181 vm_userfaultfd_ctx)) { 1182 /* 1183 * OK, it can. Can we now merge in the successor as well? 1184 */ 1185 if (next && end == next->vm_start && 1186 mpol_equal(policy, vma_policy(next)) && 1187 can_vma_merge_before(next, vm_flags, 1188 anon_vma, file, 1189 pgoff+pglen, 1190 vm_userfaultfd_ctx) && 1191 is_mergeable_anon_vma(prev->anon_vma, 1192 next->anon_vma, NULL)) { 1193 /* cases 1, 6 */ 1194 err = __vma_adjust(prev, prev->vm_start, 1195 next->vm_end, prev->vm_pgoff, NULL, 1196 prev); 1197 } else /* cases 2, 5, 7 */ 1198 err = __vma_adjust(prev, prev->vm_start, 1199 end, prev->vm_pgoff, NULL, prev); 1200 if (err) 1201 return NULL; 1202 khugepaged_enter_vma_merge(prev, vm_flags); 1203 return prev; 1204 } 1205 1206 /* 1207 * Can this new request be merged in front of next? 1208 */ 1209 if (next && end == next->vm_start && 1210 mpol_equal(policy, vma_policy(next)) && 1211 can_vma_merge_before(next, vm_flags, 1212 anon_vma, file, pgoff+pglen, 1213 vm_userfaultfd_ctx)) { 1214 if (prev && addr < prev->vm_end) /* case 4 */ 1215 err = __vma_adjust(prev, prev->vm_start, 1216 addr, prev->vm_pgoff, NULL, next); 1217 else { /* cases 3, 8 */ 1218 err = __vma_adjust(area, addr, next->vm_end, 1219 next->vm_pgoff - pglen, NULL, next); 1220 /* 1221 * In case 3 area is already equal to next and 1222 * this is a noop, but in case 8 "area" has 1223 * been removed and next was expanded over it. 1224 */ 1225 area = next; 1226 } 1227 if (err) 1228 return NULL; 1229 khugepaged_enter_vma_merge(area, vm_flags); 1230 return area; 1231 } 1232 1233 return NULL; 1234 } 1235 1236 /* 1237 * Rough compatbility check to quickly see if it's even worth looking 1238 * at sharing an anon_vma. 1239 * 1240 * They need to have the same vm_file, and the flags can only differ 1241 * in things that mprotect may change. 1242 * 1243 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1244 * we can merge the two vma's. For example, we refuse to merge a vma if 1245 * there is a vm_ops->close() function, because that indicates that the 1246 * driver is doing some kind of reference counting. But that doesn't 1247 * really matter for the anon_vma sharing case. 1248 */ 1249 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1250 { 1251 return a->vm_end == b->vm_start && 1252 mpol_equal(vma_policy(a), vma_policy(b)) && 1253 a->vm_file == b->vm_file && 1254 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1255 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1256 } 1257 1258 /* 1259 * Do some basic sanity checking to see if we can re-use the anon_vma 1260 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1261 * the same as 'old', the other will be the new one that is trying 1262 * to share the anon_vma. 1263 * 1264 * NOTE! This runs with mm_sem held for reading, so it is possible that 1265 * the anon_vma of 'old' is concurrently in the process of being set up 1266 * by another page fault trying to merge _that_. But that's ok: if it 1267 * is being set up, that automatically means that it will be a singleton 1268 * acceptable for merging, so we can do all of this optimistically. But 1269 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1270 * 1271 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1272 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1273 * is to return an anon_vma that is "complex" due to having gone through 1274 * a fork). 1275 * 1276 * We also make sure that the two vma's are compatible (adjacent, 1277 * and with the same memory policies). That's all stable, even with just 1278 * a read lock on the mm_sem. 1279 */ 1280 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1281 { 1282 if (anon_vma_compatible(a, b)) { 1283 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1284 1285 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1286 return anon_vma; 1287 } 1288 return NULL; 1289 } 1290 1291 /* 1292 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1293 * neighbouring vmas for a suitable anon_vma, before it goes off 1294 * to allocate a new anon_vma. It checks because a repetitive 1295 * sequence of mprotects and faults may otherwise lead to distinct 1296 * anon_vmas being allocated, preventing vma merge in subsequent 1297 * mprotect. 1298 */ 1299 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1300 { 1301 struct anon_vma *anon_vma; 1302 struct vm_area_struct *near; 1303 1304 near = vma->vm_next; 1305 if (!near) 1306 goto try_prev; 1307 1308 anon_vma = reusable_anon_vma(near, vma, near); 1309 if (anon_vma) 1310 return anon_vma; 1311 try_prev: 1312 near = vma->vm_prev; 1313 if (!near) 1314 goto none; 1315 1316 anon_vma = reusable_anon_vma(near, near, vma); 1317 if (anon_vma) 1318 return anon_vma; 1319 none: 1320 /* 1321 * There's no absolute need to look only at touching neighbours: 1322 * we could search further afield for "compatible" anon_vmas. 1323 * But it would probably just be a waste of time searching, 1324 * or lead to too many vmas hanging off the same anon_vma. 1325 * We're trying to allow mprotect remerging later on, 1326 * not trying to minimize memory used for anon_vmas. 1327 */ 1328 return NULL; 1329 } 1330 1331 /* 1332 * If a hint addr is less than mmap_min_addr change hint to be as 1333 * low as possible but still greater than mmap_min_addr 1334 */ 1335 static inline unsigned long round_hint_to_min(unsigned long hint) 1336 { 1337 hint &= PAGE_MASK; 1338 if (((void *)hint != NULL) && 1339 (hint < mmap_min_addr)) 1340 return PAGE_ALIGN(mmap_min_addr); 1341 return hint; 1342 } 1343 1344 static inline int mlock_future_check(struct mm_struct *mm, 1345 unsigned long flags, 1346 unsigned long len) 1347 { 1348 unsigned long locked, lock_limit; 1349 1350 /* mlock MCL_FUTURE? */ 1351 if (flags & VM_LOCKED) { 1352 locked = len >> PAGE_SHIFT; 1353 locked += mm->locked_vm; 1354 lock_limit = rlimit(RLIMIT_MEMLOCK); 1355 lock_limit >>= PAGE_SHIFT; 1356 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1357 return -EAGAIN; 1358 } 1359 return 0; 1360 } 1361 1362 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1363 { 1364 if (S_ISREG(inode->i_mode)) 1365 return MAX_LFS_FILESIZE; 1366 1367 if (S_ISBLK(inode->i_mode)) 1368 return MAX_LFS_FILESIZE; 1369 1370 if (S_ISSOCK(inode->i_mode)) 1371 return MAX_LFS_FILESIZE; 1372 1373 /* Special "we do even unsigned file positions" case */ 1374 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1375 return 0; 1376 1377 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1378 return ULONG_MAX; 1379 } 1380 1381 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1382 unsigned long pgoff, unsigned long len) 1383 { 1384 u64 maxsize = file_mmap_size_max(file, inode); 1385 1386 if (maxsize && len > maxsize) 1387 return false; 1388 maxsize -= len; 1389 if (pgoff > maxsize >> PAGE_SHIFT) 1390 return false; 1391 return true; 1392 } 1393 1394 /* 1395 * The caller must hold down_write(¤t->mm->mmap_sem). 1396 */ 1397 unsigned long do_mmap(struct file *file, unsigned long addr, 1398 unsigned long len, unsigned long prot, 1399 unsigned long flags, vm_flags_t vm_flags, 1400 unsigned long pgoff, unsigned long *populate, 1401 struct list_head *uf) 1402 { 1403 struct mm_struct *mm = current->mm; 1404 int pkey = 0; 1405 1406 *populate = 0; 1407 1408 if (!len) 1409 return -EINVAL; 1410 1411 /* 1412 * Does the application expect PROT_READ to imply PROT_EXEC? 1413 * 1414 * (the exception is when the underlying filesystem is noexec 1415 * mounted, in which case we dont add PROT_EXEC.) 1416 */ 1417 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1418 if (!(file && path_noexec(&file->f_path))) 1419 prot |= PROT_EXEC; 1420 1421 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1422 if (flags & MAP_FIXED_NOREPLACE) 1423 flags |= MAP_FIXED; 1424 1425 if (!(flags & MAP_FIXED)) 1426 addr = round_hint_to_min(addr); 1427 1428 /* Careful about overflows.. */ 1429 len = PAGE_ALIGN(len); 1430 if (!len) 1431 return -ENOMEM; 1432 1433 /* offset overflow? */ 1434 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1435 return -EOVERFLOW; 1436 1437 /* Too many mappings? */ 1438 if (mm->map_count > sysctl_max_map_count) 1439 return -ENOMEM; 1440 1441 /* Obtain the address to map to. we verify (or select) it and ensure 1442 * that it represents a valid section of the address space. 1443 */ 1444 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1445 if (offset_in_page(addr)) 1446 return addr; 1447 1448 if (flags & MAP_FIXED_NOREPLACE) { 1449 struct vm_area_struct *vma = find_vma(mm, addr); 1450 1451 if (vma && vma->vm_start < addr + len) 1452 return -EEXIST; 1453 } 1454 1455 if (prot == PROT_EXEC) { 1456 pkey = execute_only_pkey(mm); 1457 if (pkey < 0) 1458 pkey = 0; 1459 } 1460 1461 /* Do simple checking here so the lower-level routines won't have 1462 * to. we assume access permissions have been handled by the open 1463 * of the memory object, so we don't do any here. 1464 */ 1465 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1466 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1467 1468 if (flags & MAP_LOCKED) 1469 if (!can_do_mlock()) 1470 return -EPERM; 1471 1472 if (mlock_future_check(mm, vm_flags, len)) 1473 return -EAGAIN; 1474 1475 if (file) { 1476 struct inode *inode = file_inode(file); 1477 unsigned long flags_mask; 1478 1479 if (!file_mmap_ok(file, inode, pgoff, len)) 1480 return -EOVERFLOW; 1481 1482 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1483 1484 switch (flags & MAP_TYPE) { 1485 case MAP_SHARED: 1486 /* 1487 * Force use of MAP_SHARED_VALIDATE with non-legacy 1488 * flags. E.g. MAP_SYNC is dangerous to use with 1489 * MAP_SHARED as you don't know which consistency model 1490 * you will get. We silently ignore unsupported flags 1491 * with MAP_SHARED to preserve backward compatibility. 1492 */ 1493 flags &= LEGACY_MAP_MASK; 1494 /* fall through */ 1495 case MAP_SHARED_VALIDATE: 1496 if (flags & ~flags_mask) 1497 return -EOPNOTSUPP; 1498 if (prot & PROT_WRITE) { 1499 if (!(file->f_mode & FMODE_WRITE)) 1500 return -EACCES; 1501 if (IS_SWAPFILE(file->f_mapping->host)) 1502 return -ETXTBSY; 1503 } 1504 1505 /* 1506 * Make sure we don't allow writing to an append-only 1507 * file.. 1508 */ 1509 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1510 return -EACCES; 1511 1512 /* 1513 * Make sure there are no mandatory locks on the file. 1514 */ 1515 if (locks_verify_locked(file)) 1516 return -EAGAIN; 1517 1518 vm_flags |= VM_SHARED | VM_MAYSHARE; 1519 if (!(file->f_mode & FMODE_WRITE)) 1520 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1521 1522 /* fall through */ 1523 case MAP_PRIVATE: 1524 if (!(file->f_mode & FMODE_READ)) 1525 return -EACCES; 1526 if (path_noexec(&file->f_path)) { 1527 if (vm_flags & VM_EXEC) 1528 return -EPERM; 1529 vm_flags &= ~VM_MAYEXEC; 1530 } 1531 1532 if (!file->f_op->mmap) 1533 return -ENODEV; 1534 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1535 return -EINVAL; 1536 break; 1537 1538 default: 1539 return -EINVAL; 1540 } 1541 } else { 1542 switch (flags & MAP_TYPE) { 1543 case MAP_SHARED: 1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1545 return -EINVAL; 1546 /* 1547 * Ignore pgoff. 1548 */ 1549 pgoff = 0; 1550 vm_flags |= VM_SHARED | VM_MAYSHARE; 1551 break; 1552 case MAP_PRIVATE: 1553 /* 1554 * Set pgoff according to addr for anon_vma. 1555 */ 1556 pgoff = addr >> PAGE_SHIFT; 1557 break; 1558 default: 1559 return -EINVAL; 1560 } 1561 } 1562 1563 /* 1564 * Set 'VM_NORESERVE' if we should not account for the 1565 * memory use of this mapping. 1566 */ 1567 if (flags & MAP_NORESERVE) { 1568 /* We honor MAP_NORESERVE if allowed to overcommit */ 1569 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1570 vm_flags |= VM_NORESERVE; 1571 1572 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1573 if (file && is_file_hugepages(file)) 1574 vm_flags |= VM_NORESERVE; 1575 } 1576 1577 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1578 if (!IS_ERR_VALUE(addr) && 1579 ((vm_flags & VM_LOCKED) || 1580 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1581 *populate = len; 1582 return addr; 1583 } 1584 1585 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1586 unsigned long prot, unsigned long flags, 1587 unsigned long fd, unsigned long pgoff) 1588 { 1589 struct file *file = NULL; 1590 unsigned long retval; 1591 1592 addr = untagged_addr(addr); 1593 1594 if (!(flags & MAP_ANONYMOUS)) { 1595 audit_mmap_fd(fd, flags); 1596 file = fget(fd); 1597 if (!file) 1598 return -EBADF; 1599 if (is_file_hugepages(file)) 1600 len = ALIGN(len, huge_page_size(hstate_file(file))); 1601 retval = -EINVAL; 1602 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1603 goto out_fput; 1604 } else if (flags & MAP_HUGETLB) { 1605 struct user_struct *user = NULL; 1606 struct hstate *hs; 1607 1608 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1609 if (!hs) 1610 return -EINVAL; 1611 1612 len = ALIGN(len, huge_page_size(hs)); 1613 /* 1614 * VM_NORESERVE is used because the reservations will be 1615 * taken when vm_ops->mmap() is called 1616 * A dummy user value is used because we are not locking 1617 * memory so no accounting is necessary 1618 */ 1619 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1620 VM_NORESERVE, 1621 &user, HUGETLB_ANONHUGE_INODE, 1622 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1623 if (IS_ERR(file)) 1624 return PTR_ERR(file); 1625 } 1626 1627 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1628 1629 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1630 out_fput: 1631 if (file) 1632 fput(file); 1633 return retval; 1634 } 1635 1636 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1637 unsigned long, prot, unsigned long, flags, 1638 unsigned long, fd, unsigned long, pgoff) 1639 { 1640 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1641 } 1642 1643 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1644 struct mmap_arg_struct { 1645 unsigned long addr; 1646 unsigned long len; 1647 unsigned long prot; 1648 unsigned long flags; 1649 unsigned long fd; 1650 unsigned long offset; 1651 }; 1652 1653 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1654 { 1655 struct mmap_arg_struct a; 1656 1657 if (copy_from_user(&a, arg, sizeof(a))) 1658 return -EFAULT; 1659 if (offset_in_page(a.offset)) 1660 return -EINVAL; 1661 1662 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1663 a.offset >> PAGE_SHIFT); 1664 } 1665 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1666 1667 /* 1668 * Some shared mappings will want the pages marked read-only 1669 * to track write events. If so, we'll downgrade vm_page_prot 1670 * to the private version (using protection_map[] without the 1671 * VM_SHARED bit). 1672 */ 1673 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1674 { 1675 vm_flags_t vm_flags = vma->vm_flags; 1676 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1677 1678 /* If it was private or non-writable, the write bit is already clear */ 1679 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1680 return 0; 1681 1682 /* The backer wishes to know when pages are first written to? */ 1683 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1684 return 1; 1685 1686 /* The open routine did something to the protections that pgprot_modify 1687 * won't preserve? */ 1688 if (pgprot_val(vm_page_prot) != 1689 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1690 return 0; 1691 1692 /* Do we need to track softdirty? */ 1693 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1694 return 1; 1695 1696 /* Specialty mapping? */ 1697 if (vm_flags & VM_PFNMAP) 1698 return 0; 1699 1700 /* Can the mapping track the dirty pages? */ 1701 return vma->vm_file && vma->vm_file->f_mapping && 1702 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1703 } 1704 1705 /* 1706 * We account for memory if it's a private writeable mapping, 1707 * not hugepages and VM_NORESERVE wasn't set. 1708 */ 1709 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1710 { 1711 /* 1712 * hugetlb has its own accounting separate from the core VM 1713 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1714 */ 1715 if (file && is_file_hugepages(file)) 1716 return 0; 1717 1718 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1719 } 1720 1721 unsigned long mmap_region(struct file *file, unsigned long addr, 1722 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1723 struct list_head *uf) 1724 { 1725 struct mm_struct *mm = current->mm; 1726 struct vm_area_struct *vma, *prev; 1727 int error; 1728 struct rb_node **rb_link, *rb_parent; 1729 unsigned long charged = 0; 1730 1731 /* Check against address space limit. */ 1732 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1733 unsigned long nr_pages; 1734 1735 /* 1736 * MAP_FIXED may remove pages of mappings that intersects with 1737 * requested mapping. Account for the pages it would unmap. 1738 */ 1739 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1740 1741 if (!may_expand_vm(mm, vm_flags, 1742 (len >> PAGE_SHIFT) - nr_pages)) 1743 return -ENOMEM; 1744 } 1745 1746 /* Clear old maps */ 1747 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1748 &rb_parent)) { 1749 if (do_munmap(mm, addr, len, uf)) 1750 return -ENOMEM; 1751 } 1752 1753 /* 1754 * Private writable mapping: check memory availability 1755 */ 1756 if (accountable_mapping(file, vm_flags)) { 1757 charged = len >> PAGE_SHIFT; 1758 if (security_vm_enough_memory_mm(mm, charged)) 1759 return -ENOMEM; 1760 vm_flags |= VM_ACCOUNT; 1761 } 1762 1763 /* 1764 * Can we just expand an old mapping? 1765 */ 1766 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1767 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1768 if (vma) 1769 goto out; 1770 1771 /* 1772 * Determine the object being mapped and call the appropriate 1773 * specific mapper. the address has already been validated, but 1774 * not unmapped, but the maps are removed from the list. 1775 */ 1776 vma = vm_area_alloc(mm); 1777 if (!vma) { 1778 error = -ENOMEM; 1779 goto unacct_error; 1780 } 1781 1782 vma->vm_start = addr; 1783 vma->vm_end = addr + len; 1784 vma->vm_flags = vm_flags; 1785 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1786 vma->vm_pgoff = pgoff; 1787 1788 if (file) { 1789 if (vm_flags & VM_DENYWRITE) { 1790 error = deny_write_access(file); 1791 if (error) 1792 goto free_vma; 1793 } 1794 if (vm_flags & VM_SHARED) { 1795 error = mapping_map_writable(file->f_mapping); 1796 if (error) 1797 goto allow_write_and_free_vma; 1798 } 1799 1800 /* ->mmap() can change vma->vm_file, but must guarantee that 1801 * vma_link() below can deny write-access if VM_DENYWRITE is set 1802 * and map writably if VM_SHARED is set. This usually means the 1803 * new file must not have been exposed to user-space, yet. 1804 */ 1805 vma->vm_file = get_file(file); 1806 error = call_mmap(file, vma); 1807 if (error) 1808 goto unmap_and_free_vma; 1809 1810 /* Can addr have changed?? 1811 * 1812 * Answer: Yes, several device drivers can do it in their 1813 * f_op->mmap method. -DaveM 1814 * Bug: If addr is changed, prev, rb_link, rb_parent should 1815 * be updated for vma_link() 1816 */ 1817 WARN_ON_ONCE(addr != vma->vm_start); 1818 1819 addr = vma->vm_start; 1820 vm_flags = vma->vm_flags; 1821 } else if (vm_flags & VM_SHARED) { 1822 error = shmem_zero_setup(vma); 1823 if (error) 1824 goto free_vma; 1825 } else { 1826 vma_set_anonymous(vma); 1827 } 1828 1829 vma_link(mm, vma, prev, rb_link, rb_parent); 1830 /* Once vma denies write, undo our temporary denial count */ 1831 if (file) { 1832 if (vm_flags & VM_SHARED) 1833 mapping_unmap_writable(file->f_mapping); 1834 if (vm_flags & VM_DENYWRITE) 1835 allow_write_access(file); 1836 } 1837 file = vma->vm_file; 1838 out: 1839 perf_event_mmap(vma); 1840 1841 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1842 if (vm_flags & VM_LOCKED) { 1843 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1844 is_vm_hugetlb_page(vma) || 1845 vma == get_gate_vma(current->mm)) 1846 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1847 else 1848 mm->locked_vm += (len >> PAGE_SHIFT); 1849 } 1850 1851 if (file) 1852 uprobe_mmap(vma); 1853 1854 /* 1855 * New (or expanded) vma always get soft dirty status. 1856 * Otherwise user-space soft-dirty page tracker won't 1857 * be able to distinguish situation when vma area unmapped, 1858 * then new mapped in-place (which must be aimed as 1859 * a completely new data area). 1860 */ 1861 vma->vm_flags |= VM_SOFTDIRTY; 1862 1863 vma_set_page_prot(vma); 1864 1865 return addr; 1866 1867 unmap_and_free_vma: 1868 vma->vm_file = NULL; 1869 fput(file); 1870 1871 /* Undo any partial mapping done by a device driver. */ 1872 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1873 charged = 0; 1874 if (vm_flags & VM_SHARED) 1875 mapping_unmap_writable(file->f_mapping); 1876 allow_write_and_free_vma: 1877 if (vm_flags & VM_DENYWRITE) 1878 allow_write_access(file); 1879 free_vma: 1880 vm_area_free(vma); 1881 unacct_error: 1882 if (charged) 1883 vm_unacct_memory(charged); 1884 return error; 1885 } 1886 1887 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1888 { 1889 /* 1890 * We implement the search by looking for an rbtree node that 1891 * immediately follows a suitable gap. That is, 1892 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1893 * - gap_end = vma->vm_start >= info->low_limit + length; 1894 * - gap_end - gap_start >= length 1895 */ 1896 1897 struct mm_struct *mm = current->mm; 1898 struct vm_area_struct *vma; 1899 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1900 1901 /* Adjust search length to account for worst case alignment overhead */ 1902 length = info->length + info->align_mask; 1903 if (length < info->length) 1904 return -ENOMEM; 1905 1906 /* Adjust search limits by the desired length */ 1907 if (info->high_limit < length) 1908 return -ENOMEM; 1909 high_limit = info->high_limit - length; 1910 1911 if (info->low_limit > high_limit) 1912 return -ENOMEM; 1913 low_limit = info->low_limit + length; 1914 1915 /* Check if rbtree root looks promising */ 1916 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1917 goto check_highest; 1918 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1919 if (vma->rb_subtree_gap < length) 1920 goto check_highest; 1921 1922 while (true) { 1923 /* Visit left subtree if it looks promising */ 1924 gap_end = vm_start_gap(vma); 1925 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1926 struct vm_area_struct *left = 1927 rb_entry(vma->vm_rb.rb_left, 1928 struct vm_area_struct, vm_rb); 1929 if (left->rb_subtree_gap >= length) { 1930 vma = left; 1931 continue; 1932 } 1933 } 1934 1935 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1936 check_current: 1937 /* Check if current node has a suitable gap */ 1938 if (gap_start > high_limit) 1939 return -ENOMEM; 1940 if (gap_end >= low_limit && 1941 gap_end > gap_start && gap_end - gap_start >= length) 1942 goto found; 1943 1944 /* Visit right subtree if it looks promising */ 1945 if (vma->vm_rb.rb_right) { 1946 struct vm_area_struct *right = 1947 rb_entry(vma->vm_rb.rb_right, 1948 struct vm_area_struct, vm_rb); 1949 if (right->rb_subtree_gap >= length) { 1950 vma = right; 1951 continue; 1952 } 1953 } 1954 1955 /* Go back up the rbtree to find next candidate node */ 1956 while (true) { 1957 struct rb_node *prev = &vma->vm_rb; 1958 if (!rb_parent(prev)) 1959 goto check_highest; 1960 vma = rb_entry(rb_parent(prev), 1961 struct vm_area_struct, vm_rb); 1962 if (prev == vma->vm_rb.rb_left) { 1963 gap_start = vm_end_gap(vma->vm_prev); 1964 gap_end = vm_start_gap(vma); 1965 goto check_current; 1966 } 1967 } 1968 } 1969 1970 check_highest: 1971 /* Check highest gap, which does not precede any rbtree node */ 1972 gap_start = mm->highest_vm_end; 1973 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1974 if (gap_start > high_limit) 1975 return -ENOMEM; 1976 1977 found: 1978 /* We found a suitable gap. Clip it with the original low_limit. */ 1979 if (gap_start < info->low_limit) 1980 gap_start = info->low_limit; 1981 1982 /* Adjust gap address to the desired alignment */ 1983 gap_start += (info->align_offset - gap_start) & info->align_mask; 1984 1985 VM_BUG_ON(gap_start + info->length > info->high_limit); 1986 VM_BUG_ON(gap_start + info->length > gap_end); 1987 return gap_start; 1988 } 1989 1990 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1991 { 1992 struct mm_struct *mm = current->mm; 1993 struct vm_area_struct *vma; 1994 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1995 1996 /* Adjust search length to account for worst case alignment overhead */ 1997 length = info->length + info->align_mask; 1998 if (length < info->length) 1999 return -ENOMEM; 2000 2001 /* 2002 * Adjust search limits by the desired length. 2003 * See implementation comment at top of unmapped_area(). 2004 */ 2005 gap_end = info->high_limit; 2006 if (gap_end < length) 2007 return -ENOMEM; 2008 high_limit = gap_end - length; 2009 2010 if (info->low_limit > high_limit) 2011 return -ENOMEM; 2012 low_limit = info->low_limit + length; 2013 2014 /* Check highest gap, which does not precede any rbtree node */ 2015 gap_start = mm->highest_vm_end; 2016 if (gap_start <= high_limit) 2017 goto found_highest; 2018 2019 /* Check if rbtree root looks promising */ 2020 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2021 return -ENOMEM; 2022 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2023 if (vma->rb_subtree_gap < length) 2024 return -ENOMEM; 2025 2026 while (true) { 2027 /* Visit right subtree if it looks promising */ 2028 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2029 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2030 struct vm_area_struct *right = 2031 rb_entry(vma->vm_rb.rb_right, 2032 struct vm_area_struct, vm_rb); 2033 if (right->rb_subtree_gap >= length) { 2034 vma = right; 2035 continue; 2036 } 2037 } 2038 2039 check_current: 2040 /* Check if current node has a suitable gap */ 2041 gap_end = vm_start_gap(vma); 2042 if (gap_end < low_limit) 2043 return -ENOMEM; 2044 if (gap_start <= high_limit && 2045 gap_end > gap_start && gap_end - gap_start >= length) 2046 goto found; 2047 2048 /* Visit left subtree if it looks promising */ 2049 if (vma->vm_rb.rb_left) { 2050 struct vm_area_struct *left = 2051 rb_entry(vma->vm_rb.rb_left, 2052 struct vm_area_struct, vm_rb); 2053 if (left->rb_subtree_gap >= length) { 2054 vma = left; 2055 continue; 2056 } 2057 } 2058 2059 /* Go back up the rbtree to find next candidate node */ 2060 while (true) { 2061 struct rb_node *prev = &vma->vm_rb; 2062 if (!rb_parent(prev)) 2063 return -ENOMEM; 2064 vma = rb_entry(rb_parent(prev), 2065 struct vm_area_struct, vm_rb); 2066 if (prev == vma->vm_rb.rb_right) { 2067 gap_start = vma->vm_prev ? 2068 vm_end_gap(vma->vm_prev) : 0; 2069 goto check_current; 2070 } 2071 } 2072 } 2073 2074 found: 2075 /* We found a suitable gap. Clip it with the original high_limit. */ 2076 if (gap_end > info->high_limit) 2077 gap_end = info->high_limit; 2078 2079 found_highest: 2080 /* Compute highest gap address at the desired alignment */ 2081 gap_end -= info->length; 2082 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2083 2084 VM_BUG_ON(gap_end < info->low_limit); 2085 VM_BUG_ON(gap_end < gap_start); 2086 return gap_end; 2087 } 2088 2089 2090 #ifndef arch_get_mmap_end 2091 #define arch_get_mmap_end(addr) (TASK_SIZE) 2092 #endif 2093 2094 #ifndef arch_get_mmap_base 2095 #define arch_get_mmap_base(addr, base) (base) 2096 #endif 2097 2098 /* Get an address range which is currently unmapped. 2099 * For shmat() with addr=0. 2100 * 2101 * Ugly calling convention alert: 2102 * Return value with the low bits set means error value, 2103 * ie 2104 * if (ret & ~PAGE_MASK) 2105 * error = ret; 2106 * 2107 * This function "knows" that -ENOMEM has the bits set. 2108 */ 2109 #ifndef HAVE_ARCH_UNMAPPED_AREA 2110 unsigned long 2111 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2112 unsigned long len, unsigned long pgoff, unsigned long flags) 2113 { 2114 struct mm_struct *mm = current->mm; 2115 struct vm_area_struct *vma, *prev; 2116 struct vm_unmapped_area_info info; 2117 const unsigned long mmap_end = arch_get_mmap_end(addr); 2118 2119 if (len > mmap_end - mmap_min_addr) 2120 return -ENOMEM; 2121 2122 if (flags & MAP_FIXED) 2123 return addr; 2124 2125 if (addr) { 2126 addr = PAGE_ALIGN(addr); 2127 vma = find_vma_prev(mm, addr, &prev); 2128 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2129 (!vma || addr + len <= vm_start_gap(vma)) && 2130 (!prev || addr >= vm_end_gap(prev))) 2131 return addr; 2132 } 2133 2134 info.flags = 0; 2135 info.length = len; 2136 info.low_limit = mm->mmap_base; 2137 info.high_limit = mmap_end; 2138 info.align_mask = 0; 2139 return vm_unmapped_area(&info); 2140 } 2141 #endif 2142 2143 /* 2144 * This mmap-allocator allocates new areas top-down from below the 2145 * stack's low limit (the base): 2146 */ 2147 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2148 unsigned long 2149 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2150 unsigned long len, unsigned long pgoff, 2151 unsigned long flags) 2152 { 2153 struct vm_area_struct *vma, *prev; 2154 struct mm_struct *mm = current->mm; 2155 struct vm_unmapped_area_info info; 2156 const unsigned long mmap_end = arch_get_mmap_end(addr); 2157 2158 /* requested length too big for entire address space */ 2159 if (len > mmap_end - mmap_min_addr) 2160 return -ENOMEM; 2161 2162 if (flags & MAP_FIXED) 2163 return addr; 2164 2165 /* requesting a specific address */ 2166 if (addr) { 2167 addr = PAGE_ALIGN(addr); 2168 vma = find_vma_prev(mm, addr, &prev); 2169 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2170 (!vma || addr + len <= vm_start_gap(vma)) && 2171 (!prev || addr >= vm_end_gap(prev))) 2172 return addr; 2173 } 2174 2175 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2176 info.length = len; 2177 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2178 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2179 info.align_mask = 0; 2180 addr = vm_unmapped_area(&info); 2181 2182 /* 2183 * A failed mmap() very likely causes application failure, 2184 * so fall back to the bottom-up function here. This scenario 2185 * can happen with large stack limits and large mmap() 2186 * allocations. 2187 */ 2188 if (offset_in_page(addr)) { 2189 VM_BUG_ON(addr != -ENOMEM); 2190 info.flags = 0; 2191 info.low_limit = TASK_UNMAPPED_BASE; 2192 info.high_limit = mmap_end; 2193 addr = vm_unmapped_area(&info); 2194 } 2195 2196 return addr; 2197 } 2198 #endif 2199 2200 unsigned long 2201 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2202 unsigned long pgoff, unsigned long flags) 2203 { 2204 unsigned long (*get_area)(struct file *, unsigned long, 2205 unsigned long, unsigned long, unsigned long); 2206 2207 unsigned long error = arch_mmap_check(addr, len, flags); 2208 if (error) 2209 return error; 2210 2211 /* Careful about overflows.. */ 2212 if (len > TASK_SIZE) 2213 return -ENOMEM; 2214 2215 get_area = current->mm->get_unmapped_area; 2216 if (file) { 2217 if (file->f_op->get_unmapped_area) 2218 get_area = file->f_op->get_unmapped_area; 2219 } else if (flags & MAP_SHARED) { 2220 /* 2221 * mmap_region() will call shmem_zero_setup() to create a file, 2222 * so use shmem's get_unmapped_area in case it can be huge. 2223 * do_mmap_pgoff() will clear pgoff, so match alignment. 2224 */ 2225 pgoff = 0; 2226 get_area = shmem_get_unmapped_area; 2227 } 2228 2229 addr = get_area(file, addr, len, pgoff, flags); 2230 if (IS_ERR_VALUE(addr)) 2231 return addr; 2232 2233 if (addr > TASK_SIZE - len) 2234 return -ENOMEM; 2235 if (offset_in_page(addr)) 2236 return -EINVAL; 2237 2238 error = security_mmap_addr(addr); 2239 return error ? error : addr; 2240 } 2241 2242 EXPORT_SYMBOL(get_unmapped_area); 2243 2244 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2245 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2246 { 2247 struct rb_node *rb_node; 2248 struct vm_area_struct *vma; 2249 2250 /* Check the cache first. */ 2251 vma = vmacache_find(mm, addr); 2252 if (likely(vma)) 2253 return vma; 2254 2255 rb_node = mm->mm_rb.rb_node; 2256 2257 while (rb_node) { 2258 struct vm_area_struct *tmp; 2259 2260 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2261 2262 if (tmp->vm_end > addr) { 2263 vma = tmp; 2264 if (tmp->vm_start <= addr) 2265 break; 2266 rb_node = rb_node->rb_left; 2267 } else 2268 rb_node = rb_node->rb_right; 2269 } 2270 2271 if (vma) 2272 vmacache_update(addr, vma); 2273 return vma; 2274 } 2275 2276 EXPORT_SYMBOL(find_vma); 2277 2278 /* 2279 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2280 */ 2281 struct vm_area_struct * 2282 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2283 struct vm_area_struct **pprev) 2284 { 2285 struct vm_area_struct *vma; 2286 2287 vma = find_vma(mm, addr); 2288 if (vma) { 2289 *pprev = vma->vm_prev; 2290 } else { 2291 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2292 2293 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2294 } 2295 return vma; 2296 } 2297 2298 /* 2299 * Verify that the stack growth is acceptable and 2300 * update accounting. This is shared with both the 2301 * grow-up and grow-down cases. 2302 */ 2303 static int acct_stack_growth(struct vm_area_struct *vma, 2304 unsigned long size, unsigned long grow) 2305 { 2306 struct mm_struct *mm = vma->vm_mm; 2307 unsigned long new_start; 2308 2309 /* address space limit tests */ 2310 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2311 return -ENOMEM; 2312 2313 /* Stack limit test */ 2314 if (size > rlimit(RLIMIT_STACK)) 2315 return -ENOMEM; 2316 2317 /* mlock limit tests */ 2318 if (vma->vm_flags & VM_LOCKED) { 2319 unsigned long locked; 2320 unsigned long limit; 2321 locked = mm->locked_vm + grow; 2322 limit = rlimit(RLIMIT_MEMLOCK); 2323 limit >>= PAGE_SHIFT; 2324 if (locked > limit && !capable(CAP_IPC_LOCK)) 2325 return -ENOMEM; 2326 } 2327 2328 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2329 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2330 vma->vm_end - size; 2331 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2332 return -EFAULT; 2333 2334 /* 2335 * Overcommit.. This must be the final test, as it will 2336 * update security statistics. 2337 */ 2338 if (security_vm_enough_memory_mm(mm, grow)) 2339 return -ENOMEM; 2340 2341 return 0; 2342 } 2343 2344 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2345 /* 2346 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2347 * vma is the last one with address > vma->vm_end. Have to extend vma. 2348 */ 2349 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2350 { 2351 struct mm_struct *mm = vma->vm_mm; 2352 struct vm_area_struct *next; 2353 unsigned long gap_addr; 2354 int error = 0; 2355 2356 if (!(vma->vm_flags & VM_GROWSUP)) 2357 return -EFAULT; 2358 2359 /* Guard against exceeding limits of the address space. */ 2360 address &= PAGE_MASK; 2361 if (address >= (TASK_SIZE & PAGE_MASK)) 2362 return -ENOMEM; 2363 address += PAGE_SIZE; 2364 2365 /* Enforce stack_guard_gap */ 2366 gap_addr = address + stack_guard_gap; 2367 2368 /* Guard against overflow */ 2369 if (gap_addr < address || gap_addr > TASK_SIZE) 2370 gap_addr = TASK_SIZE; 2371 2372 next = vma->vm_next; 2373 if (next && next->vm_start < gap_addr && 2374 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2375 if (!(next->vm_flags & VM_GROWSUP)) 2376 return -ENOMEM; 2377 /* Check that both stack segments have the same anon_vma? */ 2378 } 2379 2380 /* We must make sure the anon_vma is allocated. */ 2381 if (unlikely(anon_vma_prepare(vma))) 2382 return -ENOMEM; 2383 2384 /* 2385 * vma->vm_start/vm_end cannot change under us because the caller 2386 * is required to hold the mmap_sem in read mode. We need the 2387 * anon_vma lock to serialize against concurrent expand_stacks. 2388 */ 2389 anon_vma_lock_write(vma->anon_vma); 2390 2391 /* Somebody else might have raced and expanded it already */ 2392 if (address > vma->vm_end) { 2393 unsigned long size, grow; 2394 2395 size = address - vma->vm_start; 2396 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2397 2398 error = -ENOMEM; 2399 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2400 error = acct_stack_growth(vma, size, grow); 2401 if (!error) { 2402 /* 2403 * vma_gap_update() doesn't support concurrent 2404 * updates, but we only hold a shared mmap_sem 2405 * lock here, so we need to protect against 2406 * concurrent vma expansions. 2407 * anon_vma_lock_write() doesn't help here, as 2408 * we don't guarantee that all growable vmas 2409 * in a mm share the same root anon vma. 2410 * So, we reuse mm->page_table_lock to guard 2411 * against concurrent vma expansions. 2412 */ 2413 spin_lock(&mm->page_table_lock); 2414 if (vma->vm_flags & VM_LOCKED) 2415 mm->locked_vm += grow; 2416 vm_stat_account(mm, vma->vm_flags, grow); 2417 anon_vma_interval_tree_pre_update_vma(vma); 2418 vma->vm_end = address; 2419 anon_vma_interval_tree_post_update_vma(vma); 2420 if (vma->vm_next) 2421 vma_gap_update(vma->vm_next); 2422 else 2423 mm->highest_vm_end = vm_end_gap(vma); 2424 spin_unlock(&mm->page_table_lock); 2425 2426 perf_event_mmap(vma); 2427 } 2428 } 2429 } 2430 anon_vma_unlock_write(vma->anon_vma); 2431 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2432 validate_mm(mm); 2433 return error; 2434 } 2435 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2436 2437 /* 2438 * vma is the first one with address < vma->vm_start. Have to extend vma. 2439 */ 2440 int expand_downwards(struct vm_area_struct *vma, 2441 unsigned long address) 2442 { 2443 struct mm_struct *mm = vma->vm_mm; 2444 struct vm_area_struct *prev; 2445 int error = 0; 2446 2447 address &= PAGE_MASK; 2448 if (address < mmap_min_addr) 2449 return -EPERM; 2450 2451 /* Enforce stack_guard_gap */ 2452 prev = vma->vm_prev; 2453 /* Check that both stack segments have the same anon_vma? */ 2454 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2455 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2456 if (address - prev->vm_end < stack_guard_gap) 2457 return -ENOMEM; 2458 } 2459 2460 /* We must make sure the anon_vma is allocated. */ 2461 if (unlikely(anon_vma_prepare(vma))) 2462 return -ENOMEM; 2463 2464 /* 2465 * vma->vm_start/vm_end cannot change under us because the caller 2466 * is required to hold the mmap_sem in read mode. We need the 2467 * anon_vma lock to serialize against concurrent expand_stacks. 2468 */ 2469 anon_vma_lock_write(vma->anon_vma); 2470 2471 /* Somebody else might have raced and expanded it already */ 2472 if (address < vma->vm_start) { 2473 unsigned long size, grow; 2474 2475 size = vma->vm_end - address; 2476 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2477 2478 error = -ENOMEM; 2479 if (grow <= vma->vm_pgoff) { 2480 error = acct_stack_growth(vma, size, grow); 2481 if (!error) { 2482 /* 2483 * vma_gap_update() doesn't support concurrent 2484 * updates, but we only hold a shared mmap_sem 2485 * lock here, so we need to protect against 2486 * concurrent vma expansions. 2487 * anon_vma_lock_write() doesn't help here, as 2488 * we don't guarantee that all growable vmas 2489 * in a mm share the same root anon vma. 2490 * So, we reuse mm->page_table_lock to guard 2491 * against concurrent vma expansions. 2492 */ 2493 spin_lock(&mm->page_table_lock); 2494 if (vma->vm_flags & VM_LOCKED) 2495 mm->locked_vm += grow; 2496 vm_stat_account(mm, vma->vm_flags, grow); 2497 anon_vma_interval_tree_pre_update_vma(vma); 2498 vma->vm_start = address; 2499 vma->vm_pgoff -= grow; 2500 anon_vma_interval_tree_post_update_vma(vma); 2501 vma_gap_update(vma); 2502 spin_unlock(&mm->page_table_lock); 2503 2504 perf_event_mmap(vma); 2505 } 2506 } 2507 } 2508 anon_vma_unlock_write(vma->anon_vma); 2509 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2510 validate_mm(mm); 2511 return error; 2512 } 2513 2514 /* enforced gap between the expanding stack and other mappings. */ 2515 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2516 2517 static int __init cmdline_parse_stack_guard_gap(char *p) 2518 { 2519 unsigned long val; 2520 char *endptr; 2521 2522 val = simple_strtoul(p, &endptr, 10); 2523 if (!*endptr) 2524 stack_guard_gap = val << PAGE_SHIFT; 2525 2526 return 0; 2527 } 2528 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2529 2530 #ifdef CONFIG_STACK_GROWSUP 2531 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2532 { 2533 return expand_upwards(vma, address); 2534 } 2535 2536 struct vm_area_struct * 2537 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2538 { 2539 struct vm_area_struct *vma, *prev; 2540 2541 addr &= PAGE_MASK; 2542 vma = find_vma_prev(mm, addr, &prev); 2543 if (vma && (vma->vm_start <= addr)) 2544 return vma; 2545 /* don't alter vm_end if the coredump is running */ 2546 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2547 return NULL; 2548 if (prev->vm_flags & VM_LOCKED) 2549 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2550 return prev; 2551 } 2552 #else 2553 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2554 { 2555 return expand_downwards(vma, address); 2556 } 2557 2558 struct vm_area_struct * 2559 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2560 { 2561 struct vm_area_struct *vma; 2562 unsigned long start; 2563 2564 addr &= PAGE_MASK; 2565 vma = find_vma(mm, addr); 2566 if (!vma) 2567 return NULL; 2568 if (vma->vm_start <= addr) 2569 return vma; 2570 if (!(vma->vm_flags & VM_GROWSDOWN)) 2571 return NULL; 2572 /* don't alter vm_start if the coredump is running */ 2573 if (!mmget_still_valid(mm)) 2574 return NULL; 2575 start = vma->vm_start; 2576 if (expand_stack(vma, addr)) 2577 return NULL; 2578 if (vma->vm_flags & VM_LOCKED) 2579 populate_vma_page_range(vma, addr, start, NULL); 2580 return vma; 2581 } 2582 #endif 2583 2584 EXPORT_SYMBOL_GPL(find_extend_vma); 2585 2586 /* 2587 * Ok - we have the memory areas we should free on the vma list, 2588 * so release them, and do the vma updates. 2589 * 2590 * Called with the mm semaphore held. 2591 */ 2592 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2593 { 2594 unsigned long nr_accounted = 0; 2595 2596 /* Update high watermark before we lower total_vm */ 2597 update_hiwater_vm(mm); 2598 do { 2599 long nrpages = vma_pages(vma); 2600 2601 if (vma->vm_flags & VM_ACCOUNT) 2602 nr_accounted += nrpages; 2603 vm_stat_account(mm, vma->vm_flags, -nrpages); 2604 vma = remove_vma(vma); 2605 } while (vma); 2606 vm_unacct_memory(nr_accounted); 2607 validate_mm(mm); 2608 } 2609 2610 /* 2611 * Get rid of page table information in the indicated region. 2612 * 2613 * Called with the mm semaphore held. 2614 */ 2615 static void unmap_region(struct mm_struct *mm, 2616 struct vm_area_struct *vma, struct vm_area_struct *prev, 2617 unsigned long start, unsigned long end) 2618 { 2619 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2620 struct mmu_gather tlb; 2621 2622 lru_add_drain(); 2623 tlb_gather_mmu(&tlb, mm, start, end); 2624 update_hiwater_rss(mm); 2625 unmap_vmas(&tlb, vma, start, end); 2626 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2627 next ? next->vm_start : USER_PGTABLES_CEILING); 2628 tlb_finish_mmu(&tlb, start, end); 2629 } 2630 2631 /* 2632 * Create a list of vma's touched by the unmap, removing them from the mm's 2633 * vma list as we go.. 2634 */ 2635 static void 2636 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2637 struct vm_area_struct *prev, unsigned long end) 2638 { 2639 struct vm_area_struct **insertion_point; 2640 struct vm_area_struct *tail_vma = NULL; 2641 2642 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2643 vma->vm_prev = NULL; 2644 do { 2645 vma_rb_erase(vma, &mm->mm_rb); 2646 mm->map_count--; 2647 tail_vma = vma; 2648 vma = vma->vm_next; 2649 } while (vma && vma->vm_start < end); 2650 *insertion_point = vma; 2651 if (vma) { 2652 vma->vm_prev = prev; 2653 vma_gap_update(vma); 2654 } else 2655 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2656 tail_vma->vm_next = NULL; 2657 2658 /* Kill the cache */ 2659 vmacache_invalidate(mm); 2660 } 2661 2662 /* 2663 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2664 * has already been checked or doesn't make sense to fail. 2665 */ 2666 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2667 unsigned long addr, int new_below) 2668 { 2669 struct vm_area_struct *new; 2670 int err; 2671 2672 if (vma->vm_ops && vma->vm_ops->split) { 2673 err = vma->vm_ops->split(vma, addr); 2674 if (err) 2675 return err; 2676 } 2677 2678 new = vm_area_dup(vma); 2679 if (!new) 2680 return -ENOMEM; 2681 2682 if (new_below) 2683 new->vm_end = addr; 2684 else { 2685 new->vm_start = addr; 2686 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2687 } 2688 2689 err = vma_dup_policy(vma, new); 2690 if (err) 2691 goto out_free_vma; 2692 2693 err = anon_vma_clone(new, vma); 2694 if (err) 2695 goto out_free_mpol; 2696 2697 if (new->vm_file) 2698 get_file(new->vm_file); 2699 2700 if (new->vm_ops && new->vm_ops->open) 2701 new->vm_ops->open(new); 2702 2703 if (new_below) 2704 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2705 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2706 else 2707 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2708 2709 /* Success. */ 2710 if (!err) 2711 return 0; 2712 2713 /* Clean everything up if vma_adjust failed. */ 2714 if (new->vm_ops && new->vm_ops->close) 2715 new->vm_ops->close(new); 2716 if (new->vm_file) 2717 fput(new->vm_file); 2718 unlink_anon_vmas(new); 2719 out_free_mpol: 2720 mpol_put(vma_policy(new)); 2721 out_free_vma: 2722 vm_area_free(new); 2723 return err; 2724 } 2725 2726 /* 2727 * Split a vma into two pieces at address 'addr', a new vma is allocated 2728 * either for the first part or the tail. 2729 */ 2730 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2731 unsigned long addr, int new_below) 2732 { 2733 if (mm->map_count >= sysctl_max_map_count) 2734 return -ENOMEM; 2735 2736 return __split_vma(mm, vma, addr, new_below); 2737 } 2738 2739 /* Munmap is split into 2 main parts -- this part which finds 2740 * what needs doing, and the areas themselves, which do the 2741 * work. This now handles partial unmappings. 2742 * Jeremy Fitzhardinge <jeremy@goop.org> 2743 */ 2744 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2745 struct list_head *uf, bool downgrade) 2746 { 2747 unsigned long end; 2748 struct vm_area_struct *vma, *prev, *last; 2749 2750 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2751 return -EINVAL; 2752 2753 len = PAGE_ALIGN(len); 2754 end = start + len; 2755 if (len == 0) 2756 return -EINVAL; 2757 2758 /* 2759 * arch_unmap() might do unmaps itself. It must be called 2760 * and finish any rbtree manipulation before this code 2761 * runs and also starts to manipulate the rbtree. 2762 */ 2763 arch_unmap(mm, start, end); 2764 2765 /* Find the first overlapping VMA */ 2766 vma = find_vma(mm, start); 2767 if (!vma) 2768 return 0; 2769 prev = vma->vm_prev; 2770 /* we have start < vma->vm_end */ 2771 2772 /* if it doesn't overlap, we have nothing.. */ 2773 if (vma->vm_start >= end) 2774 return 0; 2775 2776 /* 2777 * If we need to split any vma, do it now to save pain later. 2778 * 2779 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2780 * unmapped vm_area_struct will remain in use: so lower split_vma 2781 * places tmp vma above, and higher split_vma places tmp vma below. 2782 */ 2783 if (start > vma->vm_start) { 2784 int error; 2785 2786 /* 2787 * Make sure that map_count on return from munmap() will 2788 * not exceed its limit; but let map_count go just above 2789 * its limit temporarily, to help free resources as expected. 2790 */ 2791 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2792 return -ENOMEM; 2793 2794 error = __split_vma(mm, vma, start, 0); 2795 if (error) 2796 return error; 2797 prev = vma; 2798 } 2799 2800 /* Does it split the last one? */ 2801 last = find_vma(mm, end); 2802 if (last && end > last->vm_start) { 2803 int error = __split_vma(mm, last, end, 1); 2804 if (error) 2805 return error; 2806 } 2807 vma = prev ? prev->vm_next : mm->mmap; 2808 2809 if (unlikely(uf)) { 2810 /* 2811 * If userfaultfd_unmap_prep returns an error the vmas 2812 * will remain splitted, but userland will get a 2813 * highly unexpected error anyway. This is no 2814 * different than the case where the first of the two 2815 * __split_vma fails, but we don't undo the first 2816 * split, despite we could. This is unlikely enough 2817 * failure that it's not worth optimizing it for. 2818 */ 2819 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2820 if (error) 2821 return error; 2822 } 2823 2824 /* 2825 * unlock any mlock()ed ranges before detaching vmas 2826 */ 2827 if (mm->locked_vm) { 2828 struct vm_area_struct *tmp = vma; 2829 while (tmp && tmp->vm_start < end) { 2830 if (tmp->vm_flags & VM_LOCKED) { 2831 mm->locked_vm -= vma_pages(tmp); 2832 munlock_vma_pages_all(tmp); 2833 } 2834 2835 tmp = tmp->vm_next; 2836 } 2837 } 2838 2839 /* Detach vmas from rbtree */ 2840 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2841 2842 if (downgrade) 2843 downgrade_write(&mm->mmap_sem); 2844 2845 unmap_region(mm, vma, prev, start, end); 2846 2847 /* Fix up all other VM information */ 2848 remove_vma_list(mm, vma); 2849 2850 return downgrade ? 1 : 0; 2851 } 2852 2853 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2854 struct list_head *uf) 2855 { 2856 return __do_munmap(mm, start, len, uf, false); 2857 } 2858 2859 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2860 { 2861 int ret; 2862 struct mm_struct *mm = current->mm; 2863 LIST_HEAD(uf); 2864 2865 if (down_write_killable(&mm->mmap_sem)) 2866 return -EINTR; 2867 2868 ret = __do_munmap(mm, start, len, &uf, downgrade); 2869 /* 2870 * Returning 1 indicates mmap_sem is downgraded. 2871 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2872 * it to 0 before return. 2873 */ 2874 if (ret == 1) { 2875 up_read(&mm->mmap_sem); 2876 ret = 0; 2877 } else 2878 up_write(&mm->mmap_sem); 2879 2880 userfaultfd_unmap_complete(mm, &uf); 2881 return ret; 2882 } 2883 2884 int vm_munmap(unsigned long start, size_t len) 2885 { 2886 return __vm_munmap(start, len, false); 2887 } 2888 EXPORT_SYMBOL(vm_munmap); 2889 2890 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2891 { 2892 addr = untagged_addr(addr); 2893 profile_munmap(addr); 2894 return __vm_munmap(addr, len, true); 2895 } 2896 2897 2898 /* 2899 * Emulation of deprecated remap_file_pages() syscall. 2900 */ 2901 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2902 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2903 { 2904 2905 struct mm_struct *mm = current->mm; 2906 struct vm_area_struct *vma; 2907 unsigned long populate = 0; 2908 unsigned long ret = -EINVAL; 2909 struct file *file; 2910 2911 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2912 current->comm, current->pid); 2913 2914 if (prot) 2915 return ret; 2916 start = start & PAGE_MASK; 2917 size = size & PAGE_MASK; 2918 2919 if (start + size <= start) 2920 return ret; 2921 2922 /* Does pgoff wrap? */ 2923 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2924 return ret; 2925 2926 if (down_write_killable(&mm->mmap_sem)) 2927 return -EINTR; 2928 2929 vma = find_vma(mm, start); 2930 2931 if (!vma || !(vma->vm_flags & VM_SHARED)) 2932 goto out; 2933 2934 if (start < vma->vm_start) 2935 goto out; 2936 2937 if (start + size > vma->vm_end) { 2938 struct vm_area_struct *next; 2939 2940 for (next = vma->vm_next; next; next = next->vm_next) { 2941 /* hole between vmas ? */ 2942 if (next->vm_start != next->vm_prev->vm_end) 2943 goto out; 2944 2945 if (next->vm_file != vma->vm_file) 2946 goto out; 2947 2948 if (next->vm_flags != vma->vm_flags) 2949 goto out; 2950 2951 if (start + size <= next->vm_end) 2952 break; 2953 } 2954 2955 if (!next) 2956 goto out; 2957 } 2958 2959 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2960 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2961 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2962 2963 flags &= MAP_NONBLOCK; 2964 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2965 if (vma->vm_flags & VM_LOCKED) { 2966 struct vm_area_struct *tmp; 2967 flags |= MAP_LOCKED; 2968 2969 /* drop PG_Mlocked flag for over-mapped range */ 2970 for (tmp = vma; tmp->vm_start >= start + size; 2971 tmp = tmp->vm_next) { 2972 /* 2973 * Split pmd and munlock page on the border 2974 * of the range. 2975 */ 2976 vma_adjust_trans_huge(tmp, start, start + size, 0); 2977 2978 munlock_vma_pages_range(tmp, 2979 max(tmp->vm_start, start), 2980 min(tmp->vm_end, start + size)); 2981 } 2982 } 2983 2984 file = get_file(vma->vm_file); 2985 ret = do_mmap_pgoff(vma->vm_file, start, size, 2986 prot, flags, pgoff, &populate, NULL); 2987 fput(file); 2988 out: 2989 up_write(&mm->mmap_sem); 2990 if (populate) 2991 mm_populate(ret, populate); 2992 if (!IS_ERR_VALUE(ret)) 2993 ret = 0; 2994 return ret; 2995 } 2996 2997 /* 2998 * this is really a simplified "do_mmap". it only handles 2999 * anonymous maps. eventually we may be able to do some 3000 * brk-specific accounting here. 3001 */ 3002 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3003 { 3004 struct mm_struct *mm = current->mm; 3005 struct vm_area_struct *vma, *prev; 3006 struct rb_node **rb_link, *rb_parent; 3007 pgoff_t pgoff = addr >> PAGE_SHIFT; 3008 int error; 3009 3010 /* Until we need other flags, refuse anything except VM_EXEC. */ 3011 if ((flags & (~VM_EXEC)) != 0) 3012 return -EINVAL; 3013 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3014 3015 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3016 if (offset_in_page(error)) 3017 return error; 3018 3019 error = mlock_future_check(mm, mm->def_flags, len); 3020 if (error) 3021 return error; 3022 3023 /* 3024 * Clear old maps. this also does some error checking for us 3025 */ 3026 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3027 &rb_parent)) { 3028 if (do_munmap(mm, addr, len, uf)) 3029 return -ENOMEM; 3030 } 3031 3032 /* Check against address space limits *after* clearing old maps... */ 3033 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3034 return -ENOMEM; 3035 3036 if (mm->map_count > sysctl_max_map_count) 3037 return -ENOMEM; 3038 3039 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3040 return -ENOMEM; 3041 3042 /* Can we just expand an old private anonymous mapping? */ 3043 vma = vma_merge(mm, prev, addr, addr + len, flags, 3044 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3045 if (vma) 3046 goto out; 3047 3048 /* 3049 * create a vma struct for an anonymous mapping 3050 */ 3051 vma = vm_area_alloc(mm); 3052 if (!vma) { 3053 vm_unacct_memory(len >> PAGE_SHIFT); 3054 return -ENOMEM; 3055 } 3056 3057 vma_set_anonymous(vma); 3058 vma->vm_start = addr; 3059 vma->vm_end = addr + len; 3060 vma->vm_pgoff = pgoff; 3061 vma->vm_flags = flags; 3062 vma->vm_page_prot = vm_get_page_prot(flags); 3063 vma_link(mm, vma, prev, rb_link, rb_parent); 3064 out: 3065 perf_event_mmap(vma); 3066 mm->total_vm += len >> PAGE_SHIFT; 3067 mm->data_vm += len >> PAGE_SHIFT; 3068 if (flags & VM_LOCKED) 3069 mm->locked_vm += (len >> PAGE_SHIFT); 3070 vma->vm_flags |= VM_SOFTDIRTY; 3071 return 0; 3072 } 3073 3074 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3075 { 3076 struct mm_struct *mm = current->mm; 3077 unsigned long len; 3078 int ret; 3079 bool populate; 3080 LIST_HEAD(uf); 3081 3082 len = PAGE_ALIGN(request); 3083 if (len < request) 3084 return -ENOMEM; 3085 if (!len) 3086 return 0; 3087 3088 if (down_write_killable(&mm->mmap_sem)) 3089 return -EINTR; 3090 3091 ret = do_brk_flags(addr, len, flags, &uf); 3092 populate = ((mm->def_flags & VM_LOCKED) != 0); 3093 up_write(&mm->mmap_sem); 3094 userfaultfd_unmap_complete(mm, &uf); 3095 if (populate && !ret) 3096 mm_populate(addr, len); 3097 return ret; 3098 } 3099 EXPORT_SYMBOL(vm_brk_flags); 3100 3101 int vm_brk(unsigned long addr, unsigned long len) 3102 { 3103 return vm_brk_flags(addr, len, 0); 3104 } 3105 EXPORT_SYMBOL(vm_brk); 3106 3107 /* Release all mmaps. */ 3108 void exit_mmap(struct mm_struct *mm) 3109 { 3110 struct mmu_gather tlb; 3111 struct vm_area_struct *vma; 3112 unsigned long nr_accounted = 0; 3113 3114 /* mm's last user has gone, and its about to be pulled down */ 3115 mmu_notifier_release(mm); 3116 3117 if (unlikely(mm_is_oom_victim(mm))) { 3118 /* 3119 * Manually reap the mm to free as much memory as possible. 3120 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3121 * this mm from further consideration. Taking mm->mmap_sem for 3122 * write after setting MMF_OOM_SKIP will guarantee that the oom 3123 * reaper will not run on this mm again after mmap_sem is 3124 * dropped. 3125 * 3126 * Nothing can be holding mm->mmap_sem here and the above call 3127 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3128 * __oom_reap_task_mm() will not block. 3129 * 3130 * This needs to be done before calling munlock_vma_pages_all(), 3131 * which clears VM_LOCKED, otherwise the oom reaper cannot 3132 * reliably test it. 3133 */ 3134 (void)__oom_reap_task_mm(mm); 3135 3136 set_bit(MMF_OOM_SKIP, &mm->flags); 3137 down_write(&mm->mmap_sem); 3138 up_write(&mm->mmap_sem); 3139 } 3140 3141 if (mm->locked_vm) { 3142 vma = mm->mmap; 3143 while (vma) { 3144 if (vma->vm_flags & VM_LOCKED) 3145 munlock_vma_pages_all(vma); 3146 vma = vma->vm_next; 3147 } 3148 } 3149 3150 arch_exit_mmap(mm); 3151 3152 vma = mm->mmap; 3153 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3154 return; 3155 3156 lru_add_drain(); 3157 flush_cache_mm(mm); 3158 tlb_gather_mmu(&tlb, mm, 0, -1); 3159 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3160 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3161 unmap_vmas(&tlb, vma, 0, -1); 3162 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3163 tlb_finish_mmu(&tlb, 0, -1); 3164 3165 /* 3166 * Walk the list again, actually closing and freeing it, 3167 * with preemption enabled, without holding any MM locks. 3168 */ 3169 while (vma) { 3170 if (vma->vm_flags & VM_ACCOUNT) 3171 nr_accounted += vma_pages(vma); 3172 vma = remove_vma(vma); 3173 } 3174 vm_unacct_memory(nr_accounted); 3175 } 3176 3177 /* Insert vm structure into process list sorted by address 3178 * and into the inode's i_mmap tree. If vm_file is non-NULL 3179 * then i_mmap_rwsem is taken here. 3180 */ 3181 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3182 { 3183 struct vm_area_struct *prev; 3184 struct rb_node **rb_link, *rb_parent; 3185 3186 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3187 &prev, &rb_link, &rb_parent)) 3188 return -ENOMEM; 3189 if ((vma->vm_flags & VM_ACCOUNT) && 3190 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3191 return -ENOMEM; 3192 3193 /* 3194 * The vm_pgoff of a purely anonymous vma should be irrelevant 3195 * until its first write fault, when page's anon_vma and index 3196 * are set. But now set the vm_pgoff it will almost certainly 3197 * end up with (unless mremap moves it elsewhere before that 3198 * first wfault), so /proc/pid/maps tells a consistent story. 3199 * 3200 * By setting it to reflect the virtual start address of the 3201 * vma, merges and splits can happen in a seamless way, just 3202 * using the existing file pgoff checks and manipulations. 3203 * Similarly in do_mmap_pgoff and in do_brk. 3204 */ 3205 if (vma_is_anonymous(vma)) { 3206 BUG_ON(vma->anon_vma); 3207 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3208 } 3209 3210 vma_link(mm, vma, prev, rb_link, rb_parent); 3211 return 0; 3212 } 3213 3214 /* 3215 * Copy the vma structure to a new location in the same mm, 3216 * prior to moving page table entries, to effect an mremap move. 3217 */ 3218 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3219 unsigned long addr, unsigned long len, pgoff_t pgoff, 3220 bool *need_rmap_locks) 3221 { 3222 struct vm_area_struct *vma = *vmap; 3223 unsigned long vma_start = vma->vm_start; 3224 struct mm_struct *mm = vma->vm_mm; 3225 struct vm_area_struct *new_vma, *prev; 3226 struct rb_node **rb_link, *rb_parent; 3227 bool faulted_in_anon_vma = true; 3228 3229 /* 3230 * If anonymous vma has not yet been faulted, update new pgoff 3231 * to match new location, to increase its chance of merging. 3232 */ 3233 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3234 pgoff = addr >> PAGE_SHIFT; 3235 faulted_in_anon_vma = false; 3236 } 3237 3238 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3239 return NULL; /* should never get here */ 3240 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3241 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3242 vma->vm_userfaultfd_ctx); 3243 if (new_vma) { 3244 /* 3245 * Source vma may have been merged into new_vma 3246 */ 3247 if (unlikely(vma_start >= new_vma->vm_start && 3248 vma_start < new_vma->vm_end)) { 3249 /* 3250 * The only way we can get a vma_merge with 3251 * self during an mremap is if the vma hasn't 3252 * been faulted in yet and we were allowed to 3253 * reset the dst vma->vm_pgoff to the 3254 * destination address of the mremap to allow 3255 * the merge to happen. mremap must change the 3256 * vm_pgoff linearity between src and dst vmas 3257 * (in turn preventing a vma_merge) to be 3258 * safe. It is only safe to keep the vm_pgoff 3259 * linear if there are no pages mapped yet. 3260 */ 3261 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3262 *vmap = vma = new_vma; 3263 } 3264 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3265 } else { 3266 new_vma = vm_area_dup(vma); 3267 if (!new_vma) 3268 goto out; 3269 new_vma->vm_start = addr; 3270 new_vma->vm_end = addr + len; 3271 new_vma->vm_pgoff = pgoff; 3272 if (vma_dup_policy(vma, new_vma)) 3273 goto out_free_vma; 3274 if (anon_vma_clone(new_vma, vma)) 3275 goto out_free_mempol; 3276 if (new_vma->vm_file) 3277 get_file(new_vma->vm_file); 3278 if (new_vma->vm_ops && new_vma->vm_ops->open) 3279 new_vma->vm_ops->open(new_vma); 3280 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3281 *need_rmap_locks = false; 3282 } 3283 return new_vma; 3284 3285 out_free_mempol: 3286 mpol_put(vma_policy(new_vma)); 3287 out_free_vma: 3288 vm_area_free(new_vma); 3289 out: 3290 return NULL; 3291 } 3292 3293 /* 3294 * Return true if the calling process may expand its vm space by the passed 3295 * number of pages 3296 */ 3297 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3298 { 3299 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3300 return false; 3301 3302 if (is_data_mapping(flags) && 3303 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3304 /* Workaround for Valgrind */ 3305 if (rlimit(RLIMIT_DATA) == 0 && 3306 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3307 return true; 3308 3309 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3310 current->comm, current->pid, 3311 (mm->data_vm + npages) << PAGE_SHIFT, 3312 rlimit(RLIMIT_DATA), 3313 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3314 3315 if (!ignore_rlimit_data) 3316 return false; 3317 } 3318 3319 return true; 3320 } 3321 3322 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3323 { 3324 mm->total_vm += npages; 3325 3326 if (is_exec_mapping(flags)) 3327 mm->exec_vm += npages; 3328 else if (is_stack_mapping(flags)) 3329 mm->stack_vm += npages; 3330 else if (is_data_mapping(flags)) 3331 mm->data_vm += npages; 3332 } 3333 3334 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3335 3336 /* 3337 * Having a close hook prevents vma merging regardless of flags. 3338 */ 3339 static void special_mapping_close(struct vm_area_struct *vma) 3340 { 3341 } 3342 3343 static const char *special_mapping_name(struct vm_area_struct *vma) 3344 { 3345 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3346 } 3347 3348 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3349 { 3350 struct vm_special_mapping *sm = new_vma->vm_private_data; 3351 3352 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3353 return -EFAULT; 3354 3355 if (sm->mremap) 3356 return sm->mremap(sm, new_vma); 3357 3358 return 0; 3359 } 3360 3361 static const struct vm_operations_struct special_mapping_vmops = { 3362 .close = special_mapping_close, 3363 .fault = special_mapping_fault, 3364 .mremap = special_mapping_mremap, 3365 .name = special_mapping_name, 3366 }; 3367 3368 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3369 .close = special_mapping_close, 3370 .fault = special_mapping_fault, 3371 }; 3372 3373 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3374 { 3375 struct vm_area_struct *vma = vmf->vma; 3376 pgoff_t pgoff; 3377 struct page **pages; 3378 3379 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3380 pages = vma->vm_private_data; 3381 } else { 3382 struct vm_special_mapping *sm = vma->vm_private_data; 3383 3384 if (sm->fault) 3385 return sm->fault(sm, vmf->vma, vmf); 3386 3387 pages = sm->pages; 3388 } 3389 3390 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3391 pgoff--; 3392 3393 if (*pages) { 3394 struct page *page = *pages; 3395 get_page(page); 3396 vmf->page = page; 3397 return 0; 3398 } 3399 3400 return VM_FAULT_SIGBUS; 3401 } 3402 3403 static struct vm_area_struct *__install_special_mapping( 3404 struct mm_struct *mm, 3405 unsigned long addr, unsigned long len, 3406 unsigned long vm_flags, void *priv, 3407 const struct vm_operations_struct *ops) 3408 { 3409 int ret; 3410 struct vm_area_struct *vma; 3411 3412 vma = vm_area_alloc(mm); 3413 if (unlikely(vma == NULL)) 3414 return ERR_PTR(-ENOMEM); 3415 3416 vma->vm_start = addr; 3417 vma->vm_end = addr + len; 3418 3419 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3420 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3421 3422 vma->vm_ops = ops; 3423 vma->vm_private_data = priv; 3424 3425 ret = insert_vm_struct(mm, vma); 3426 if (ret) 3427 goto out; 3428 3429 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3430 3431 perf_event_mmap(vma); 3432 3433 return vma; 3434 3435 out: 3436 vm_area_free(vma); 3437 return ERR_PTR(ret); 3438 } 3439 3440 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3441 const struct vm_special_mapping *sm) 3442 { 3443 return vma->vm_private_data == sm && 3444 (vma->vm_ops == &special_mapping_vmops || 3445 vma->vm_ops == &legacy_special_mapping_vmops); 3446 } 3447 3448 /* 3449 * Called with mm->mmap_sem held for writing. 3450 * Insert a new vma covering the given region, with the given flags. 3451 * Its pages are supplied by the given array of struct page *. 3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3453 * The region past the last page supplied will always produce SIGBUS. 3454 * The array pointer and the pages it points to are assumed to stay alive 3455 * for as long as this mapping might exist. 3456 */ 3457 struct vm_area_struct *_install_special_mapping( 3458 struct mm_struct *mm, 3459 unsigned long addr, unsigned long len, 3460 unsigned long vm_flags, const struct vm_special_mapping *spec) 3461 { 3462 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3463 &special_mapping_vmops); 3464 } 3465 3466 int install_special_mapping(struct mm_struct *mm, 3467 unsigned long addr, unsigned long len, 3468 unsigned long vm_flags, struct page **pages) 3469 { 3470 struct vm_area_struct *vma = __install_special_mapping( 3471 mm, addr, len, vm_flags, (void *)pages, 3472 &legacy_special_mapping_vmops); 3473 3474 return PTR_ERR_OR_ZERO(vma); 3475 } 3476 3477 static DEFINE_MUTEX(mm_all_locks_mutex); 3478 3479 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3480 { 3481 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3482 /* 3483 * The LSB of head.next can't change from under us 3484 * because we hold the mm_all_locks_mutex. 3485 */ 3486 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3487 /* 3488 * We can safely modify head.next after taking the 3489 * anon_vma->root->rwsem. If some other vma in this mm shares 3490 * the same anon_vma we won't take it again. 3491 * 3492 * No need of atomic instructions here, head.next 3493 * can't change from under us thanks to the 3494 * anon_vma->root->rwsem. 3495 */ 3496 if (__test_and_set_bit(0, (unsigned long *) 3497 &anon_vma->root->rb_root.rb_root.rb_node)) 3498 BUG(); 3499 } 3500 } 3501 3502 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3503 { 3504 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3505 /* 3506 * AS_MM_ALL_LOCKS can't change from under us because 3507 * we hold the mm_all_locks_mutex. 3508 * 3509 * Operations on ->flags have to be atomic because 3510 * even if AS_MM_ALL_LOCKS is stable thanks to the 3511 * mm_all_locks_mutex, there may be other cpus 3512 * changing other bitflags in parallel to us. 3513 */ 3514 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3515 BUG(); 3516 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3517 } 3518 } 3519 3520 /* 3521 * This operation locks against the VM for all pte/vma/mm related 3522 * operations that could ever happen on a certain mm. This includes 3523 * vmtruncate, try_to_unmap, and all page faults. 3524 * 3525 * The caller must take the mmap_sem in write mode before calling 3526 * mm_take_all_locks(). The caller isn't allowed to release the 3527 * mmap_sem until mm_drop_all_locks() returns. 3528 * 3529 * mmap_sem in write mode is required in order to block all operations 3530 * that could modify pagetables and free pages without need of 3531 * altering the vma layout. It's also needed in write mode to avoid new 3532 * anon_vmas to be associated with existing vmas. 3533 * 3534 * A single task can't take more than one mm_take_all_locks() in a row 3535 * or it would deadlock. 3536 * 3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3538 * mapping->flags avoid to take the same lock twice, if more than one 3539 * vma in this mm is backed by the same anon_vma or address_space. 3540 * 3541 * We take locks in following order, accordingly to comment at beginning 3542 * of mm/rmap.c: 3543 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3544 * hugetlb mapping); 3545 * - all i_mmap_rwsem locks; 3546 * - all anon_vma->rwseml 3547 * 3548 * We can take all locks within these types randomly because the VM code 3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3550 * mm_all_locks_mutex. 3551 * 3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3553 * that may have to take thousand of locks. 3554 * 3555 * mm_take_all_locks() can fail if it's interrupted by signals. 3556 */ 3557 int mm_take_all_locks(struct mm_struct *mm) 3558 { 3559 struct vm_area_struct *vma; 3560 struct anon_vma_chain *avc; 3561 3562 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3563 3564 mutex_lock(&mm_all_locks_mutex); 3565 3566 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3567 if (signal_pending(current)) 3568 goto out_unlock; 3569 if (vma->vm_file && vma->vm_file->f_mapping && 3570 is_vm_hugetlb_page(vma)) 3571 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3572 } 3573 3574 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3575 if (signal_pending(current)) 3576 goto out_unlock; 3577 if (vma->vm_file && vma->vm_file->f_mapping && 3578 !is_vm_hugetlb_page(vma)) 3579 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3580 } 3581 3582 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3583 if (signal_pending(current)) 3584 goto out_unlock; 3585 if (vma->anon_vma) 3586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3587 vm_lock_anon_vma(mm, avc->anon_vma); 3588 } 3589 3590 return 0; 3591 3592 out_unlock: 3593 mm_drop_all_locks(mm); 3594 return -EINTR; 3595 } 3596 3597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3598 { 3599 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3600 /* 3601 * The LSB of head.next can't change to 0 from under 3602 * us because we hold the mm_all_locks_mutex. 3603 * 3604 * We must however clear the bitflag before unlocking 3605 * the vma so the users using the anon_vma->rb_root will 3606 * never see our bitflag. 3607 * 3608 * No need of atomic instructions here, head.next 3609 * can't change from under us until we release the 3610 * anon_vma->root->rwsem. 3611 */ 3612 if (!__test_and_clear_bit(0, (unsigned long *) 3613 &anon_vma->root->rb_root.rb_root.rb_node)) 3614 BUG(); 3615 anon_vma_unlock_write(anon_vma); 3616 } 3617 } 3618 3619 static void vm_unlock_mapping(struct address_space *mapping) 3620 { 3621 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3622 /* 3623 * AS_MM_ALL_LOCKS can't change to 0 from under us 3624 * because we hold the mm_all_locks_mutex. 3625 */ 3626 i_mmap_unlock_write(mapping); 3627 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3628 &mapping->flags)) 3629 BUG(); 3630 } 3631 } 3632 3633 /* 3634 * The mmap_sem cannot be released by the caller until 3635 * mm_drop_all_locks() returns. 3636 */ 3637 void mm_drop_all_locks(struct mm_struct *mm) 3638 { 3639 struct vm_area_struct *vma; 3640 struct anon_vma_chain *avc; 3641 3642 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3643 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3644 3645 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3646 if (vma->anon_vma) 3647 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3648 vm_unlock_anon_vma(avc->anon_vma); 3649 if (vma->vm_file && vma->vm_file->f_mapping) 3650 vm_unlock_mapping(vma->vm_file->f_mapping); 3651 } 3652 3653 mutex_unlock(&mm_all_locks_mutex); 3654 } 3655 3656 /* 3657 * initialise the percpu counter for VM 3658 */ 3659 void __init mmap_init(void) 3660 { 3661 int ret; 3662 3663 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3664 VM_BUG_ON(ret); 3665 } 3666 3667 /* 3668 * Initialise sysctl_user_reserve_kbytes. 3669 * 3670 * This is intended to prevent a user from starting a single memory hogging 3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3672 * mode. 3673 * 3674 * The default value is min(3% of free memory, 128MB) 3675 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3676 */ 3677 static int init_user_reserve(void) 3678 { 3679 unsigned long free_kbytes; 3680 3681 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3682 3683 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3684 return 0; 3685 } 3686 subsys_initcall(init_user_reserve); 3687 3688 /* 3689 * Initialise sysctl_admin_reserve_kbytes. 3690 * 3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3692 * to log in and kill a memory hogging process. 3693 * 3694 * Systems with more than 256MB will reserve 8MB, enough to recover 3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3696 * only reserve 3% of free pages by default. 3697 */ 3698 static int init_admin_reserve(void) 3699 { 3700 unsigned long free_kbytes; 3701 3702 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3703 3704 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3705 return 0; 3706 } 3707 subsys_initcall(init_admin_reserve); 3708 3709 /* 3710 * Reinititalise user and admin reserves if memory is added or removed. 3711 * 3712 * The default user reserve max is 128MB, and the default max for the 3713 * admin reserve is 8MB. These are usually, but not always, enough to 3714 * enable recovery from a memory hogging process using login/sshd, a shell, 3715 * and tools like top. It may make sense to increase or even disable the 3716 * reserve depending on the existence of swap or variations in the recovery 3717 * tools. So, the admin may have changed them. 3718 * 3719 * If memory is added and the reserves have been eliminated or increased above 3720 * the default max, then we'll trust the admin. 3721 * 3722 * If memory is removed and there isn't enough free memory, then we 3723 * need to reset the reserves. 3724 * 3725 * Otherwise keep the reserve set by the admin. 3726 */ 3727 static int reserve_mem_notifier(struct notifier_block *nb, 3728 unsigned long action, void *data) 3729 { 3730 unsigned long tmp, free_kbytes; 3731 3732 switch (action) { 3733 case MEM_ONLINE: 3734 /* Default max is 128MB. Leave alone if modified by operator. */ 3735 tmp = sysctl_user_reserve_kbytes; 3736 if (0 < tmp && tmp < (1UL << 17)) 3737 init_user_reserve(); 3738 3739 /* Default max is 8MB. Leave alone if modified by operator. */ 3740 tmp = sysctl_admin_reserve_kbytes; 3741 if (0 < tmp && tmp < (1UL << 13)) 3742 init_admin_reserve(); 3743 3744 break; 3745 case MEM_OFFLINE: 3746 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3747 3748 if (sysctl_user_reserve_kbytes > free_kbytes) { 3749 init_user_reserve(); 3750 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3751 sysctl_user_reserve_kbytes); 3752 } 3753 3754 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3755 init_admin_reserve(); 3756 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3757 sysctl_admin_reserve_kbytes); 3758 } 3759 break; 3760 default: 3761 break; 3762 } 3763 return NOTIFY_OK; 3764 } 3765 3766 static struct notifier_block reserve_mem_nb = { 3767 .notifier_call = reserve_mem_notifier, 3768 }; 3769 3770 static int __meminit init_reserve_notifier(void) 3771 { 3772 if (register_hotmemory_notifier(&reserve_mem_nb)) 3773 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3774 3775 return 0; 3776 } 3777 subsys_initcall(init_reserve_notifier); 3778