1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/cacheflush.h> 48 #include <asm/tlb.h> 49 #include <asm/mmu_context.h> 50 51 #include "internal.h" 52 53 #ifndef arch_mmap_check 54 #define arch_mmap_check(addr, len, flags) (0) 55 #endif 56 57 #ifndef arch_rebalance_pgtables 58 #define arch_rebalance_pgtables(addr, len) (addr) 59 #endif 60 61 static void unmap_region(struct mm_struct *mm, 62 struct vm_area_struct *vma, struct vm_area_struct *prev, 63 unsigned long start, unsigned long end); 64 65 /* description of effects of mapping type and prot in current implementation. 66 * this is due to the limited x86 page protection hardware. The expected 67 * behavior is in parens: 68 * 69 * map_type prot 70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 72 * w: (no) no w: (no) no w: (yes) yes w: (no) no 73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 74 * 75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 76 * w: (no) no w: (no) no w: (copy) copy w: (no) no 77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 78 * 79 */ 80 pgprot_t protection_map[16] = { 81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 83 }; 84 85 pgprot_t vm_get_page_prot(unsigned long vm_flags) 86 { 87 return __pgprot(pgprot_val(protection_map[vm_flags & 88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 89 pgprot_val(arch_vm_get_page_prot(vm_flags))); 90 } 91 EXPORT_SYMBOL(vm_get_page_prot); 92 93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 94 { 95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 96 } 97 98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 99 void vma_set_page_prot(struct vm_area_struct *vma) 100 { 101 unsigned long vm_flags = vma->vm_flags; 102 103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 104 if (vma_wants_writenotify(vma)) { 105 vm_flags &= ~VM_SHARED; 106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 107 vm_flags); 108 } 109 } 110 111 112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 114 unsigned long sysctl_overcommit_kbytes __read_mostly; 115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 118 /* 119 * Make sure vm_committed_as in one cacheline and not cacheline shared with 120 * other variables. It can be updated by several CPUs frequently. 121 */ 122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 123 124 /* 125 * The global memory commitment made in the system can be a metric 126 * that can be used to drive ballooning decisions when Linux is hosted 127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 128 * balancing memory across competing virtual machines that are hosted. 129 * Several metrics drive this policy engine including the guest reported 130 * memory commitment. 131 */ 132 unsigned long vm_memory_committed(void) 133 { 134 return percpu_counter_read_positive(&vm_committed_as); 135 } 136 EXPORT_SYMBOL_GPL(vm_memory_committed); 137 138 /* 139 * Check that a process has enough memory to allocate a new virtual 140 * mapping. 0 means there is enough memory for the allocation to 141 * succeed and -ENOMEM implies there is not. 142 * 143 * We currently support three overcommit policies, which are set via the 144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 145 * 146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 147 * Additional code 2002 Jul 20 by Robert Love. 148 * 149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 150 * 151 * Note this is a helper function intended to be used by LSMs which 152 * wish to use this logic. 153 */ 154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 155 { 156 long free, allowed, reserve; 157 158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 159 -(s64)vm_committed_as_batch * num_online_cpus(), 160 "memory commitment underflow"); 161 162 vm_acct_memory(pages); 163 164 /* 165 * Sometimes we want to use more memory than we have 166 */ 167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 168 return 0; 169 170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 171 free = global_page_state(NR_FREE_PAGES); 172 free += global_page_state(NR_FILE_PAGES); 173 174 /* 175 * shmem pages shouldn't be counted as free in this 176 * case, they can't be purged, only swapped out, and 177 * that won't affect the overall amount of available 178 * memory in the system. 179 */ 180 free -= global_page_state(NR_SHMEM); 181 182 free += get_nr_swap_pages(); 183 184 /* 185 * Any slabs which are created with the 186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 187 * which are reclaimable, under pressure. The dentry 188 * cache and most inode caches should fall into this 189 */ 190 free += global_page_state(NR_SLAB_RECLAIMABLE); 191 192 /* 193 * Leave reserved pages. The pages are not for anonymous pages. 194 */ 195 if (free <= totalreserve_pages) 196 goto error; 197 else 198 free -= totalreserve_pages; 199 200 /* 201 * Reserve some for root 202 */ 203 if (!cap_sys_admin) 204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 205 206 if (free > pages) 207 return 0; 208 209 goto error; 210 } 211 212 allowed = vm_commit_limit(); 213 /* 214 * Reserve some for root 215 */ 216 if (!cap_sys_admin) 217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 218 219 /* 220 * Don't let a single process grow so big a user can't recover 221 */ 222 if (mm) { 223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 224 allowed -= min_t(long, mm->total_vm / 32, reserve); 225 } 226 227 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 228 return 0; 229 error: 230 vm_unacct_memory(pages); 231 232 return -ENOMEM; 233 } 234 235 /* 236 * Requires inode->i_mapping->i_mmap_rwsem 237 */ 238 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 239 struct file *file, struct address_space *mapping) 240 { 241 if (vma->vm_flags & VM_DENYWRITE) 242 atomic_inc(&file_inode(file)->i_writecount); 243 if (vma->vm_flags & VM_SHARED) 244 mapping_unmap_writable(mapping); 245 246 flush_dcache_mmap_lock(mapping); 247 vma_interval_tree_remove(vma, &mapping->i_mmap); 248 flush_dcache_mmap_unlock(mapping); 249 } 250 251 /* 252 * Unlink a file-based vm structure from its interval tree, to hide 253 * vma from rmap and vmtruncate before freeing its page tables. 254 */ 255 void unlink_file_vma(struct vm_area_struct *vma) 256 { 257 struct file *file = vma->vm_file; 258 259 if (file) { 260 struct address_space *mapping = file->f_mapping; 261 i_mmap_lock_write(mapping); 262 __remove_shared_vm_struct(vma, file, mapping); 263 i_mmap_unlock_write(mapping); 264 } 265 } 266 267 /* 268 * Close a vm structure and free it, returning the next. 269 */ 270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 271 { 272 struct vm_area_struct *next = vma->vm_next; 273 274 might_sleep(); 275 if (vma->vm_ops && vma->vm_ops->close) 276 vma->vm_ops->close(vma); 277 if (vma->vm_file) 278 fput(vma->vm_file); 279 mpol_put(vma_policy(vma)); 280 kmem_cache_free(vm_area_cachep, vma); 281 return next; 282 } 283 284 static unsigned long do_brk(unsigned long addr, unsigned long len); 285 286 SYSCALL_DEFINE1(brk, unsigned long, brk) 287 { 288 unsigned long retval; 289 unsigned long newbrk, oldbrk; 290 struct mm_struct *mm = current->mm; 291 unsigned long min_brk; 292 bool populate; 293 294 down_write(&mm->mmap_sem); 295 296 #ifdef CONFIG_COMPAT_BRK 297 /* 298 * CONFIG_COMPAT_BRK can still be overridden by setting 299 * randomize_va_space to 2, which will still cause mm->start_brk 300 * to be arbitrarily shifted 301 */ 302 if (current->brk_randomized) 303 min_brk = mm->start_brk; 304 else 305 min_brk = mm->end_data; 306 #else 307 min_brk = mm->start_brk; 308 #endif 309 if (brk < min_brk) 310 goto out; 311 312 /* 313 * Check against rlimit here. If this check is done later after the test 314 * of oldbrk with newbrk then it can escape the test and let the data 315 * segment grow beyond its set limit the in case where the limit is 316 * not page aligned -Ram Gupta 317 */ 318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 319 mm->end_data, mm->start_data)) 320 goto out; 321 322 newbrk = PAGE_ALIGN(brk); 323 oldbrk = PAGE_ALIGN(mm->brk); 324 if (oldbrk == newbrk) 325 goto set_brk; 326 327 /* Always allow shrinking brk. */ 328 if (brk <= mm->brk) { 329 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 330 goto set_brk; 331 goto out; 332 } 333 334 /* Check against existing mmap mappings. */ 335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 336 goto out; 337 338 /* Ok, looks good - let it rip. */ 339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 340 goto out; 341 342 set_brk: 343 mm->brk = brk; 344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 345 up_write(&mm->mmap_sem); 346 if (populate) 347 mm_populate(oldbrk, newbrk - oldbrk); 348 return brk; 349 350 out: 351 retval = mm->brk; 352 up_write(&mm->mmap_sem); 353 return retval; 354 } 355 356 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 357 { 358 unsigned long max, subtree_gap; 359 max = vma->vm_start; 360 if (vma->vm_prev) 361 max -= vma->vm_prev->vm_end; 362 if (vma->vm_rb.rb_left) { 363 subtree_gap = rb_entry(vma->vm_rb.rb_left, 364 struct vm_area_struct, vm_rb)->rb_subtree_gap; 365 if (subtree_gap > max) 366 max = subtree_gap; 367 } 368 if (vma->vm_rb.rb_right) { 369 subtree_gap = rb_entry(vma->vm_rb.rb_right, 370 struct vm_area_struct, vm_rb)->rb_subtree_gap; 371 if (subtree_gap > max) 372 max = subtree_gap; 373 } 374 return max; 375 } 376 377 #ifdef CONFIG_DEBUG_VM_RB 378 static int browse_rb(struct rb_root *root) 379 { 380 int i = 0, j, bug = 0; 381 struct rb_node *nd, *pn = NULL; 382 unsigned long prev = 0, pend = 0; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 if (vma->vm_start < prev) { 388 pr_emerg("vm_start %lx < prev %lx\n", 389 vma->vm_start, prev); 390 bug = 1; 391 } 392 if (vma->vm_start < pend) { 393 pr_emerg("vm_start %lx < pend %lx\n", 394 vma->vm_start, pend); 395 bug = 1; 396 } 397 if (vma->vm_start > vma->vm_end) { 398 pr_emerg("vm_start %lx > vm_end %lx\n", 399 vma->vm_start, vma->vm_end); 400 bug = 1; 401 } 402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 403 pr_emerg("free gap %lx, correct %lx\n", 404 vma->rb_subtree_gap, 405 vma_compute_subtree_gap(vma)); 406 bug = 1; 407 } 408 i++; 409 pn = nd; 410 prev = vma->vm_start; 411 pend = vma->vm_end; 412 } 413 j = 0; 414 for (nd = pn; nd; nd = rb_prev(nd)) 415 j++; 416 if (i != j) { 417 pr_emerg("backwards %d, forwards %d\n", j, i); 418 bug = 1; 419 } 420 return bug ? -1 : i; 421 } 422 423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 424 { 425 struct rb_node *nd; 426 427 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 428 struct vm_area_struct *vma; 429 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 430 VM_BUG_ON_VMA(vma != ignore && 431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 432 vma); 433 } 434 } 435 436 static void validate_mm(struct mm_struct *mm) 437 { 438 int bug = 0; 439 int i = 0; 440 unsigned long highest_address = 0; 441 struct vm_area_struct *vma = mm->mmap; 442 443 while (vma) { 444 struct anon_vma_chain *avc; 445 446 vma_lock_anon_vma(vma); 447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 448 anon_vma_interval_tree_verify(avc); 449 vma_unlock_anon_vma(vma); 450 highest_address = vma->vm_end; 451 vma = vma->vm_next; 452 i++; 453 } 454 if (i != mm->map_count) { 455 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 456 bug = 1; 457 } 458 if (highest_address != mm->highest_vm_end) { 459 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 460 mm->highest_vm_end, highest_address); 461 bug = 1; 462 } 463 i = browse_rb(&mm->mm_rb); 464 if (i != mm->map_count) { 465 if (i != -1) 466 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 467 bug = 1; 468 } 469 VM_BUG_ON_MM(bug, mm); 470 } 471 #else 472 #define validate_mm_rb(root, ignore) do { } while (0) 473 #define validate_mm(mm) do { } while (0) 474 #endif 475 476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 478 479 /* 480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 481 * vma->vm_prev->vm_end values changed, without modifying the vma's position 482 * in the rbtree. 483 */ 484 static void vma_gap_update(struct vm_area_struct *vma) 485 { 486 /* 487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 488 * function that does exacltly what we want. 489 */ 490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 491 } 492 493 static inline void vma_rb_insert(struct vm_area_struct *vma, 494 struct rb_root *root) 495 { 496 /* All rb_subtree_gap values must be consistent prior to insertion */ 497 validate_mm_rb(root, NULL); 498 499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 500 } 501 502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 503 { 504 /* 505 * All rb_subtree_gap values must be consistent prior to erase, 506 * with the possible exception of the vma being erased. 507 */ 508 validate_mm_rb(root, vma); 509 510 /* 511 * Note rb_erase_augmented is a fairly large inline function, 512 * so make sure we instantiate it only once with our desired 513 * augmented rbtree callbacks. 514 */ 515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 516 } 517 518 /* 519 * vma has some anon_vma assigned, and is already inserted on that 520 * anon_vma's interval trees. 521 * 522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 523 * vma must be removed from the anon_vma's interval trees using 524 * anon_vma_interval_tree_pre_update_vma(). 525 * 526 * After the update, the vma will be reinserted using 527 * anon_vma_interval_tree_post_update_vma(). 528 * 529 * The entire update must be protected by exclusive mmap_sem and by 530 * the root anon_vma's mutex. 531 */ 532 static inline void 533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 534 { 535 struct anon_vma_chain *avc; 536 537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 539 } 540 541 static inline void 542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 543 { 544 struct anon_vma_chain *avc; 545 546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 548 } 549 550 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 551 unsigned long end, struct vm_area_struct **pprev, 552 struct rb_node ***rb_link, struct rb_node **rb_parent) 553 { 554 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 555 556 __rb_link = &mm->mm_rb.rb_node; 557 rb_prev = __rb_parent = NULL; 558 559 while (*__rb_link) { 560 struct vm_area_struct *vma_tmp; 561 562 __rb_parent = *__rb_link; 563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 564 565 if (vma_tmp->vm_end > addr) { 566 /* Fail if an existing vma overlaps the area */ 567 if (vma_tmp->vm_start < end) 568 return -ENOMEM; 569 __rb_link = &__rb_parent->rb_left; 570 } else { 571 rb_prev = __rb_parent; 572 __rb_link = &__rb_parent->rb_right; 573 } 574 } 575 576 *pprev = NULL; 577 if (rb_prev) 578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 579 *rb_link = __rb_link; 580 *rb_parent = __rb_parent; 581 return 0; 582 } 583 584 static unsigned long count_vma_pages_range(struct mm_struct *mm, 585 unsigned long addr, unsigned long end) 586 { 587 unsigned long nr_pages = 0; 588 struct vm_area_struct *vma; 589 590 /* Find first overlaping mapping */ 591 vma = find_vma_intersection(mm, addr, end); 592 if (!vma) 593 return 0; 594 595 nr_pages = (min(end, vma->vm_end) - 596 max(addr, vma->vm_start)) >> PAGE_SHIFT; 597 598 /* Iterate over the rest of the overlaps */ 599 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 600 unsigned long overlap_len; 601 602 if (vma->vm_start > end) 603 break; 604 605 overlap_len = min(end, vma->vm_end) - vma->vm_start; 606 nr_pages += overlap_len >> PAGE_SHIFT; 607 } 608 609 return nr_pages; 610 } 611 612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 613 struct rb_node **rb_link, struct rb_node *rb_parent) 614 { 615 WARN_ONCE(vma->vm_file && !vma->vm_ops, "missing vma->vm_ops"); 616 617 /* Update tracking information for the gap following the new vma. */ 618 if (vma->vm_next) 619 vma_gap_update(vma->vm_next); 620 else 621 mm->highest_vm_end = vma->vm_end; 622 623 /* 624 * vma->vm_prev wasn't known when we followed the rbtree to find the 625 * correct insertion point for that vma. As a result, we could not 626 * update the vma vm_rb parents rb_subtree_gap values on the way down. 627 * So, we first insert the vma with a zero rb_subtree_gap value 628 * (to be consistent with what we did on the way down), and then 629 * immediately update the gap to the correct value. Finally we 630 * rebalance the rbtree after all augmented values have been set. 631 */ 632 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 633 vma->rb_subtree_gap = 0; 634 vma_gap_update(vma); 635 vma_rb_insert(vma, &mm->mm_rb); 636 } 637 638 static void __vma_link_file(struct vm_area_struct *vma) 639 { 640 struct file *file; 641 642 file = vma->vm_file; 643 if (file) { 644 struct address_space *mapping = file->f_mapping; 645 646 if (vma->vm_flags & VM_DENYWRITE) 647 atomic_dec(&file_inode(file)->i_writecount); 648 if (vma->vm_flags & VM_SHARED) 649 atomic_inc(&mapping->i_mmap_writable); 650 651 flush_dcache_mmap_lock(mapping); 652 vma_interval_tree_insert(vma, &mapping->i_mmap); 653 flush_dcache_mmap_unlock(mapping); 654 } 655 } 656 657 static void 658 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 659 struct vm_area_struct *prev, struct rb_node **rb_link, 660 struct rb_node *rb_parent) 661 { 662 __vma_link_list(mm, vma, prev, rb_parent); 663 __vma_link_rb(mm, vma, rb_link, rb_parent); 664 } 665 666 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 667 struct vm_area_struct *prev, struct rb_node **rb_link, 668 struct rb_node *rb_parent) 669 { 670 struct address_space *mapping = NULL; 671 672 if (vma->vm_file) { 673 mapping = vma->vm_file->f_mapping; 674 i_mmap_lock_write(mapping); 675 } 676 677 __vma_link(mm, vma, prev, rb_link, rb_parent); 678 __vma_link_file(vma); 679 680 if (mapping) 681 i_mmap_unlock_write(mapping); 682 683 mm->map_count++; 684 validate_mm(mm); 685 } 686 687 /* 688 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 689 * mm's list and rbtree. It has already been inserted into the interval tree. 690 */ 691 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 692 { 693 struct vm_area_struct *prev; 694 struct rb_node **rb_link, *rb_parent; 695 696 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 697 &prev, &rb_link, &rb_parent)) 698 BUG(); 699 __vma_link(mm, vma, prev, rb_link, rb_parent); 700 mm->map_count++; 701 } 702 703 static inline void 704 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 705 struct vm_area_struct *prev) 706 { 707 struct vm_area_struct *next; 708 709 vma_rb_erase(vma, &mm->mm_rb); 710 prev->vm_next = next = vma->vm_next; 711 if (next) 712 next->vm_prev = prev; 713 714 /* Kill the cache */ 715 vmacache_invalidate(mm); 716 } 717 718 /* 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 720 * is already present in an i_mmap tree without adjusting the tree. 721 * The following helper function should be used when such adjustments 722 * are necessary. The "insert" vma (if any) is to be inserted 723 * before we drop the necessary locks. 724 */ 725 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 726 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 727 { 728 struct mm_struct *mm = vma->vm_mm; 729 struct vm_area_struct *next = vma->vm_next; 730 struct vm_area_struct *importer = NULL; 731 struct address_space *mapping = NULL; 732 struct rb_root *root = NULL; 733 struct anon_vma *anon_vma = NULL; 734 struct file *file = vma->vm_file; 735 bool start_changed = false, end_changed = false; 736 long adjust_next = 0; 737 int remove_next = 0; 738 739 if (next && !insert) { 740 struct vm_area_struct *exporter = NULL; 741 742 if (end >= next->vm_end) { 743 /* 744 * vma expands, overlapping all the next, and 745 * perhaps the one after too (mprotect case 6). 746 */ 747 again: remove_next = 1 + (end > next->vm_end); 748 end = next->vm_end; 749 exporter = next; 750 importer = vma; 751 } else if (end > next->vm_start) { 752 /* 753 * vma expands, overlapping part of the next: 754 * mprotect case 5 shifting the boundary up. 755 */ 756 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 757 exporter = next; 758 importer = vma; 759 } else if (end < vma->vm_end) { 760 /* 761 * vma shrinks, and !insert tells it's not 762 * split_vma inserting another: so it must be 763 * mprotect case 4 shifting the boundary down. 764 */ 765 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 766 exporter = vma; 767 importer = next; 768 } 769 770 /* 771 * Easily overlooked: when mprotect shifts the boundary, 772 * make sure the expanding vma has anon_vma set if the 773 * shrinking vma had, to cover any anon pages imported. 774 */ 775 if (exporter && exporter->anon_vma && !importer->anon_vma) { 776 int error; 777 778 importer->anon_vma = exporter->anon_vma; 779 error = anon_vma_clone(importer, exporter); 780 if (error) 781 return error; 782 } 783 } 784 785 if (file) { 786 mapping = file->f_mapping; 787 root = &mapping->i_mmap; 788 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 789 790 if (adjust_next) 791 uprobe_munmap(next, next->vm_start, next->vm_end); 792 793 i_mmap_lock_write(mapping); 794 if (insert) { 795 /* 796 * Put into interval tree now, so instantiated pages 797 * are visible to arm/parisc __flush_dcache_page 798 * throughout; but we cannot insert into address 799 * space until vma start or end is updated. 800 */ 801 __vma_link_file(insert); 802 } 803 } 804 805 vma_adjust_trans_huge(vma, start, end, adjust_next); 806 807 anon_vma = vma->anon_vma; 808 if (!anon_vma && adjust_next) 809 anon_vma = next->anon_vma; 810 if (anon_vma) { 811 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 812 anon_vma != next->anon_vma, next); 813 anon_vma_lock_write(anon_vma); 814 anon_vma_interval_tree_pre_update_vma(vma); 815 if (adjust_next) 816 anon_vma_interval_tree_pre_update_vma(next); 817 } 818 819 if (root) { 820 flush_dcache_mmap_lock(mapping); 821 vma_interval_tree_remove(vma, root); 822 if (adjust_next) 823 vma_interval_tree_remove(next, root); 824 } 825 826 if (start != vma->vm_start) { 827 vma->vm_start = start; 828 start_changed = true; 829 } 830 if (end != vma->vm_end) { 831 vma->vm_end = end; 832 end_changed = true; 833 } 834 vma->vm_pgoff = pgoff; 835 if (adjust_next) { 836 next->vm_start += adjust_next << PAGE_SHIFT; 837 next->vm_pgoff += adjust_next; 838 } 839 840 if (root) { 841 if (adjust_next) 842 vma_interval_tree_insert(next, root); 843 vma_interval_tree_insert(vma, root); 844 flush_dcache_mmap_unlock(mapping); 845 } 846 847 if (remove_next) { 848 /* 849 * vma_merge has merged next into vma, and needs 850 * us to remove next before dropping the locks. 851 */ 852 __vma_unlink(mm, next, vma); 853 if (file) 854 __remove_shared_vm_struct(next, file, mapping); 855 } else if (insert) { 856 /* 857 * split_vma has split insert from vma, and needs 858 * us to insert it before dropping the locks 859 * (it may either follow vma or precede it). 860 */ 861 __insert_vm_struct(mm, insert); 862 } else { 863 if (start_changed) 864 vma_gap_update(vma); 865 if (end_changed) { 866 if (!next) 867 mm->highest_vm_end = end; 868 else if (!adjust_next) 869 vma_gap_update(next); 870 } 871 } 872 873 if (anon_vma) { 874 anon_vma_interval_tree_post_update_vma(vma); 875 if (adjust_next) 876 anon_vma_interval_tree_post_update_vma(next); 877 anon_vma_unlock_write(anon_vma); 878 } 879 if (mapping) 880 i_mmap_unlock_write(mapping); 881 882 if (root) { 883 uprobe_mmap(vma); 884 885 if (adjust_next) 886 uprobe_mmap(next); 887 } 888 889 if (remove_next) { 890 if (file) { 891 uprobe_munmap(next, next->vm_start, next->vm_end); 892 fput(file); 893 } 894 if (next->anon_vma) 895 anon_vma_merge(vma, next); 896 mm->map_count--; 897 mpol_put(vma_policy(next)); 898 kmem_cache_free(vm_area_cachep, next); 899 /* 900 * In mprotect's case 6 (see comments on vma_merge), 901 * we must remove another next too. It would clutter 902 * up the code too much to do both in one go. 903 */ 904 next = vma->vm_next; 905 if (remove_next == 2) 906 goto again; 907 else if (next) 908 vma_gap_update(next); 909 else 910 mm->highest_vm_end = end; 911 } 912 if (insert && file) 913 uprobe_mmap(insert); 914 915 validate_mm(mm); 916 917 return 0; 918 } 919 920 /* 921 * If the vma has a ->close operation then the driver probably needs to release 922 * per-vma resources, so we don't attempt to merge those. 923 */ 924 static inline int is_mergeable_vma(struct vm_area_struct *vma, 925 struct file *file, unsigned long vm_flags, 926 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 927 { 928 /* 929 * VM_SOFTDIRTY should not prevent from VMA merging, if we 930 * match the flags but dirty bit -- the caller should mark 931 * merged VMA as dirty. If dirty bit won't be excluded from 932 * comparison, we increase pressue on the memory system forcing 933 * the kernel to generate new VMAs when old one could be 934 * extended instead. 935 */ 936 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 937 return 0; 938 if (vma->vm_file != file) 939 return 0; 940 if (vma->vm_ops && vma->vm_ops->close) 941 return 0; 942 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 943 return 0; 944 return 1; 945 } 946 947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 948 struct anon_vma *anon_vma2, 949 struct vm_area_struct *vma) 950 { 951 /* 952 * The list_is_singular() test is to avoid merging VMA cloned from 953 * parents. This can improve scalability caused by anon_vma lock. 954 */ 955 if ((!anon_vma1 || !anon_vma2) && (!vma || 956 list_is_singular(&vma->anon_vma_chain))) 957 return 1; 958 return anon_vma1 == anon_vma2; 959 } 960 961 /* 962 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 963 * in front of (at a lower virtual address and file offset than) the vma. 964 * 965 * We cannot merge two vmas if they have differently assigned (non-NULL) 966 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 967 * 968 * We don't check here for the merged mmap wrapping around the end of pagecache 969 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 970 * wrap, nor mmaps which cover the final page at index -1UL. 971 */ 972 static int 973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 974 struct anon_vma *anon_vma, struct file *file, 975 pgoff_t vm_pgoff, 976 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 977 { 978 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 979 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 980 if (vma->vm_pgoff == vm_pgoff) 981 return 1; 982 } 983 return 0; 984 } 985 986 /* 987 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 988 * beyond (at a higher virtual address and file offset than) the vma. 989 * 990 * We cannot merge two vmas if they have differently assigned (non-NULL) 991 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 992 */ 993 static int 994 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 995 struct anon_vma *anon_vma, struct file *file, 996 pgoff_t vm_pgoff, 997 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 998 { 999 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1000 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1001 pgoff_t vm_pglen; 1002 vm_pglen = vma_pages(vma); 1003 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1004 return 1; 1005 } 1006 return 0; 1007 } 1008 1009 /* 1010 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1011 * whether that can be merged with its predecessor or its successor. 1012 * Or both (it neatly fills a hole). 1013 * 1014 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1015 * certain not to be mapped by the time vma_merge is called; but when 1016 * called for mprotect, it is certain to be already mapped (either at 1017 * an offset within prev, or at the start of next), and the flags of 1018 * this area are about to be changed to vm_flags - and the no-change 1019 * case has already been eliminated. 1020 * 1021 * The following mprotect cases have to be considered, where AAAA is 1022 * the area passed down from mprotect_fixup, never extending beyond one 1023 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1024 * 1025 * AAAA AAAA AAAA AAAA 1026 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1027 * cannot merge might become might become might become 1028 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1029 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1030 * mremap move: PPPPNNNNNNNN 8 1031 * AAAA 1032 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1033 * might become case 1 below case 2 below case 3 below 1034 * 1035 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1036 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1037 */ 1038 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1039 struct vm_area_struct *prev, unsigned long addr, 1040 unsigned long end, unsigned long vm_flags, 1041 struct anon_vma *anon_vma, struct file *file, 1042 pgoff_t pgoff, struct mempolicy *policy, 1043 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1044 { 1045 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1046 struct vm_area_struct *area, *next; 1047 int err; 1048 1049 /* 1050 * We later require that vma->vm_flags == vm_flags, 1051 * so this tests vma->vm_flags & VM_SPECIAL, too. 1052 */ 1053 if (vm_flags & VM_SPECIAL) 1054 return NULL; 1055 1056 if (prev) 1057 next = prev->vm_next; 1058 else 1059 next = mm->mmap; 1060 area = next; 1061 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1062 next = next->vm_next; 1063 1064 /* 1065 * Can it merge with the predecessor? 1066 */ 1067 if (prev && prev->vm_end == addr && 1068 mpol_equal(vma_policy(prev), policy) && 1069 can_vma_merge_after(prev, vm_flags, 1070 anon_vma, file, pgoff, 1071 vm_userfaultfd_ctx)) { 1072 /* 1073 * OK, it can. Can we now merge in the successor as well? 1074 */ 1075 if (next && end == next->vm_start && 1076 mpol_equal(policy, vma_policy(next)) && 1077 can_vma_merge_before(next, vm_flags, 1078 anon_vma, file, 1079 pgoff+pglen, 1080 vm_userfaultfd_ctx) && 1081 is_mergeable_anon_vma(prev->anon_vma, 1082 next->anon_vma, NULL)) { 1083 /* cases 1, 6 */ 1084 err = vma_adjust(prev, prev->vm_start, 1085 next->vm_end, prev->vm_pgoff, NULL); 1086 } else /* cases 2, 5, 7 */ 1087 err = vma_adjust(prev, prev->vm_start, 1088 end, prev->vm_pgoff, NULL); 1089 if (err) 1090 return NULL; 1091 khugepaged_enter_vma_merge(prev, vm_flags); 1092 return prev; 1093 } 1094 1095 /* 1096 * Can this new request be merged in front of next? 1097 */ 1098 if (next && end == next->vm_start && 1099 mpol_equal(policy, vma_policy(next)) && 1100 can_vma_merge_before(next, vm_flags, 1101 anon_vma, file, pgoff+pglen, 1102 vm_userfaultfd_ctx)) { 1103 if (prev && addr < prev->vm_end) /* case 4 */ 1104 err = vma_adjust(prev, prev->vm_start, 1105 addr, prev->vm_pgoff, NULL); 1106 else /* cases 3, 8 */ 1107 err = vma_adjust(area, addr, next->vm_end, 1108 next->vm_pgoff - pglen, NULL); 1109 if (err) 1110 return NULL; 1111 khugepaged_enter_vma_merge(area, vm_flags); 1112 return area; 1113 } 1114 1115 return NULL; 1116 } 1117 1118 /* 1119 * Rough compatbility check to quickly see if it's even worth looking 1120 * at sharing an anon_vma. 1121 * 1122 * They need to have the same vm_file, and the flags can only differ 1123 * in things that mprotect may change. 1124 * 1125 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1126 * we can merge the two vma's. For example, we refuse to merge a vma if 1127 * there is a vm_ops->close() function, because that indicates that the 1128 * driver is doing some kind of reference counting. But that doesn't 1129 * really matter for the anon_vma sharing case. 1130 */ 1131 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1132 { 1133 return a->vm_end == b->vm_start && 1134 mpol_equal(vma_policy(a), vma_policy(b)) && 1135 a->vm_file == b->vm_file && 1136 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1137 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1138 } 1139 1140 /* 1141 * Do some basic sanity checking to see if we can re-use the anon_vma 1142 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1143 * the same as 'old', the other will be the new one that is trying 1144 * to share the anon_vma. 1145 * 1146 * NOTE! This runs with mm_sem held for reading, so it is possible that 1147 * the anon_vma of 'old' is concurrently in the process of being set up 1148 * by another page fault trying to merge _that_. But that's ok: if it 1149 * is being set up, that automatically means that it will be a singleton 1150 * acceptable for merging, so we can do all of this optimistically. But 1151 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1152 * 1153 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1154 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1155 * is to return an anon_vma that is "complex" due to having gone through 1156 * a fork). 1157 * 1158 * We also make sure that the two vma's are compatible (adjacent, 1159 * and with the same memory policies). That's all stable, even with just 1160 * a read lock on the mm_sem. 1161 */ 1162 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1163 { 1164 if (anon_vma_compatible(a, b)) { 1165 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1166 1167 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1168 return anon_vma; 1169 } 1170 return NULL; 1171 } 1172 1173 /* 1174 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1175 * neighbouring vmas for a suitable anon_vma, before it goes off 1176 * to allocate a new anon_vma. It checks because a repetitive 1177 * sequence of mprotects and faults may otherwise lead to distinct 1178 * anon_vmas being allocated, preventing vma merge in subsequent 1179 * mprotect. 1180 */ 1181 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1182 { 1183 struct anon_vma *anon_vma; 1184 struct vm_area_struct *near; 1185 1186 near = vma->vm_next; 1187 if (!near) 1188 goto try_prev; 1189 1190 anon_vma = reusable_anon_vma(near, vma, near); 1191 if (anon_vma) 1192 return anon_vma; 1193 try_prev: 1194 near = vma->vm_prev; 1195 if (!near) 1196 goto none; 1197 1198 anon_vma = reusable_anon_vma(near, near, vma); 1199 if (anon_vma) 1200 return anon_vma; 1201 none: 1202 /* 1203 * There's no absolute need to look only at touching neighbours: 1204 * we could search further afield for "compatible" anon_vmas. 1205 * But it would probably just be a waste of time searching, 1206 * or lead to too many vmas hanging off the same anon_vma. 1207 * We're trying to allow mprotect remerging later on, 1208 * not trying to minimize memory used for anon_vmas. 1209 */ 1210 return NULL; 1211 } 1212 1213 #ifdef CONFIG_PROC_FS 1214 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1215 struct file *file, long pages) 1216 { 1217 const unsigned long stack_flags 1218 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1219 1220 mm->total_vm += pages; 1221 1222 if (file) { 1223 mm->shared_vm += pages; 1224 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1225 mm->exec_vm += pages; 1226 } else if (flags & stack_flags) 1227 mm->stack_vm += pages; 1228 } 1229 #endif /* CONFIG_PROC_FS */ 1230 1231 /* 1232 * If a hint addr is less than mmap_min_addr change hint to be as 1233 * low as possible but still greater than mmap_min_addr 1234 */ 1235 static inline unsigned long round_hint_to_min(unsigned long hint) 1236 { 1237 hint &= PAGE_MASK; 1238 if (((void *)hint != NULL) && 1239 (hint < mmap_min_addr)) 1240 return PAGE_ALIGN(mmap_min_addr); 1241 return hint; 1242 } 1243 1244 static inline int mlock_future_check(struct mm_struct *mm, 1245 unsigned long flags, 1246 unsigned long len) 1247 { 1248 unsigned long locked, lock_limit; 1249 1250 /* mlock MCL_FUTURE? */ 1251 if (flags & VM_LOCKED) { 1252 locked = len >> PAGE_SHIFT; 1253 locked += mm->locked_vm; 1254 lock_limit = rlimit(RLIMIT_MEMLOCK); 1255 lock_limit >>= PAGE_SHIFT; 1256 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1257 return -EAGAIN; 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * The caller must hold down_write(¤t->mm->mmap_sem). 1264 */ 1265 unsigned long do_mmap(struct file *file, unsigned long addr, 1266 unsigned long len, unsigned long prot, 1267 unsigned long flags, vm_flags_t vm_flags, 1268 unsigned long pgoff, unsigned long *populate) 1269 { 1270 struct mm_struct *mm = current->mm; 1271 1272 *populate = 0; 1273 1274 if (!len) 1275 return -EINVAL; 1276 1277 /* 1278 * Does the application expect PROT_READ to imply PROT_EXEC? 1279 * 1280 * (the exception is when the underlying filesystem is noexec 1281 * mounted, in which case we dont add PROT_EXEC.) 1282 */ 1283 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1284 if (!(file && path_noexec(&file->f_path))) 1285 prot |= PROT_EXEC; 1286 1287 if (!(flags & MAP_FIXED)) 1288 addr = round_hint_to_min(addr); 1289 1290 /* Careful about overflows.. */ 1291 len = PAGE_ALIGN(len); 1292 if (!len) 1293 return -ENOMEM; 1294 1295 /* offset overflow? */ 1296 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1297 return -EOVERFLOW; 1298 1299 /* Too many mappings? */ 1300 if (mm->map_count > sysctl_max_map_count) 1301 return -ENOMEM; 1302 1303 /* Obtain the address to map to. we verify (or select) it and ensure 1304 * that it represents a valid section of the address space. 1305 */ 1306 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1307 if (addr & ~PAGE_MASK) 1308 return addr; 1309 1310 /* Do simple checking here so the lower-level routines won't have 1311 * to. we assume access permissions have been handled by the open 1312 * of the memory object, so we don't do any here. 1313 */ 1314 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1315 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1316 1317 if (flags & MAP_LOCKED) 1318 if (!can_do_mlock()) 1319 return -EPERM; 1320 1321 if (mlock_future_check(mm, vm_flags, len)) 1322 return -EAGAIN; 1323 1324 if (file) { 1325 struct inode *inode = file_inode(file); 1326 1327 switch (flags & MAP_TYPE) { 1328 case MAP_SHARED: 1329 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1330 return -EACCES; 1331 1332 /* 1333 * Make sure we don't allow writing to an append-only 1334 * file.. 1335 */ 1336 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1337 return -EACCES; 1338 1339 /* 1340 * Make sure there are no mandatory locks on the file. 1341 */ 1342 if (locks_verify_locked(file)) 1343 return -EAGAIN; 1344 1345 vm_flags |= VM_SHARED | VM_MAYSHARE; 1346 if (!(file->f_mode & FMODE_WRITE)) 1347 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1348 1349 /* fall through */ 1350 case MAP_PRIVATE: 1351 if (!(file->f_mode & FMODE_READ)) 1352 return -EACCES; 1353 if (path_noexec(&file->f_path)) { 1354 if (vm_flags & VM_EXEC) 1355 return -EPERM; 1356 vm_flags &= ~VM_MAYEXEC; 1357 } 1358 1359 if (!file->f_op->mmap) 1360 return -ENODEV; 1361 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1362 return -EINVAL; 1363 break; 1364 1365 default: 1366 return -EINVAL; 1367 } 1368 } else { 1369 switch (flags & MAP_TYPE) { 1370 case MAP_SHARED: 1371 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1372 return -EINVAL; 1373 /* 1374 * Ignore pgoff. 1375 */ 1376 pgoff = 0; 1377 vm_flags |= VM_SHARED | VM_MAYSHARE; 1378 break; 1379 case MAP_PRIVATE: 1380 /* 1381 * Set pgoff according to addr for anon_vma. 1382 */ 1383 pgoff = addr >> PAGE_SHIFT; 1384 break; 1385 default: 1386 return -EINVAL; 1387 } 1388 } 1389 1390 /* 1391 * Set 'VM_NORESERVE' if we should not account for the 1392 * memory use of this mapping. 1393 */ 1394 if (flags & MAP_NORESERVE) { 1395 /* We honor MAP_NORESERVE if allowed to overcommit */ 1396 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1397 vm_flags |= VM_NORESERVE; 1398 1399 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1400 if (file && is_file_hugepages(file)) 1401 vm_flags |= VM_NORESERVE; 1402 } 1403 1404 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1405 if (!IS_ERR_VALUE(addr) && 1406 ((vm_flags & VM_LOCKED) || 1407 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1408 *populate = len; 1409 return addr; 1410 } 1411 1412 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1413 unsigned long, prot, unsigned long, flags, 1414 unsigned long, fd, unsigned long, pgoff) 1415 { 1416 struct file *file = NULL; 1417 unsigned long retval = -EBADF; 1418 1419 if (!(flags & MAP_ANONYMOUS)) { 1420 audit_mmap_fd(fd, flags); 1421 file = fget(fd); 1422 if (!file) 1423 goto out; 1424 if (is_file_hugepages(file)) 1425 len = ALIGN(len, huge_page_size(hstate_file(file))); 1426 retval = -EINVAL; 1427 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1428 goto out_fput; 1429 } else if (flags & MAP_HUGETLB) { 1430 struct user_struct *user = NULL; 1431 struct hstate *hs; 1432 1433 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1434 if (!hs) 1435 return -EINVAL; 1436 1437 len = ALIGN(len, huge_page_size(hs)); 1438 /* 1439 * VM_NORESERVE is used because the reservations will be 1440 * taken when vm_ops->mmap() is called 1441 * A dummy user value is used because we are not locking 1442 * memory so no accounting is necessary 1443 */ 1444 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1445 VM_NORESERVE, 1446 &user, HUGETLB_ANONHUGE_INODE, 1447 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1448 if (IS_ERR(file)) 1449 return PTR_ERR(file); 1450 } 1451 1452 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1453 1454 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1455 out_fput: 1456 if (file) 1457 fput(file); 1458 out: 1459 return retval; 1460 } 1461 1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1463 struct mmap_arg_struct { 1464 unsigned long addr; 1465 unsigned long len; 1466 unsigned long prot; 1467 unsigned long flags; 1468 unsigned long fd; 1469 unsigned long offset; 1470 }; 1471 1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1473 { 1474 struct mmap_arg_struct a; 1475 1476 if (copy_from_user(&a, arg, sizeof(a))) 1477 return -EFAULT; 1478 if (a.offset & ~PAGE_MASK) 1479 return -EINVAL; 1480 1481 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1482 a.offset >> PAGE_SHIFT); 1483 } 1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1485 1486 /* 1487 * Some shared mappigns will want the pages marked read-only 1488 * to track write events. If so, we'll downgrade vm_page_prot 1489 * to the private version (using protection_map[] without the 1490 * VM_SHARED bit). 1491 */ 1492 int vma_wants_writenotify(struct vm_area_struct *vma) 1493 { 1494 vm_flags_t vm_flags = vma->vm_flags; 1495 1496 /* If it was private or non-writable, the write bit is already clear */ 1497 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1498 return 0; 1499 1500 /* The backer wishes to know when pages are first written to? */ 1501 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1502 return 1; 1503 1504 /* The open routine did something to the protections that pgprot_modify 1505 * won't preserve? */ 1506 if (pgprot_val(vma->vm_page_prot) != 1507 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1508 return 0; 1509 1510 /* Do we need to track softdirty? */ 1511 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1512 return 1; 1513 1514 /* Specialty mapping? */ 1515 if (vm_flags & VM_PFNMAP) 1516 return 0; 1517 1518 /* Can the mapping track the dirty pages? */ 1519 return vma->vm_file && vma->vm_file->f_mapping && 1520 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1521 } 1522 1523 /* 1524 * We account for memory if it's a private writeable mapping, 1525 * not hugepages and VM_NORESERVE wasn't set. 1526 */ 1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1528 { 1529 /* 1530 * hugetlb has its own accounting separate from the core VM 1531 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1532 */ 1533 if (file && is_file_hugepages(file)) 1534 return 0; 1535 1536 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1537 } 1538 1539 unsigned long mmap_region(struct file *file, unsigned long addr, 1540 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1541 { 1542 struct mm_struct *mm = current->mm; 1543 struct vm_area_struct *vma, *prev; 1544 int error; 1545 struct rb_node **rb_link, *rb_parent; 1546 unsigned long charged = 0; 1547 1548 /* Check against address space limit. */ 1549 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1550 unsigned long nr_pages; 1551 1552 /* 1553 * MAP_FIXED may remove pages of mappings that intersects with 1554 * requested mapping. Account for the pages it would unmap. 1555 */ 1556 if (!(vm_flags & MAP_FIXED)) 1557 return -ENOMEM; 1558 1559 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1560 1561 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1562 return -ENOMEM; 1563 } 1564 1565 /* Clear old maps */ 1566 error = -ENOMEM; 1567 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1568 &rb_parent)) { 1569 if (do_munmap(mm, addr, len)) 1570 return -ENOMEM; 1571 } 1572 1573 /* 1574 * Private writable mapping: check memory availability 1575 */ 1576 if (accountable_mapping(file, vm_flags)) { 1577 charged = len >> PAGE_SHIFT; 1578 if (security_vm_enough_memory_mm(mm, charged)) 1579 return -ENOMEM; 1580 vm_flags |= VM_ACCOUNT; 1581 } 1582 1583 /* 1584 * Can we just expand an old mapping? 1585 */ 1586 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1587 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1588 if (vma) 1589 goto out; 1590 1591 /* 1592 * Determine the object being mapped and call the appropriate 1593 * specific mapper. the address has already been validated, but 1594 * not unmapped, but the maps are removed from the list. 1595 */ 1596 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1597 if (!vma) { 1598 error = -ENOMEM; 1599 goto unacct_error; 1600 } 1601 1602 vma->vm_mm = mm; 1603 vma->vm_start = addr; 1604 vma->vm_end = addr + len; 1605 vma->vm_flags = vm_flags; 1606 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1607 vma->vm_pgoff = pgoff; 1608 INIT_LIST_HEAD(&vma->anon_vma_chain); 1609 1610 if (file) { 1611 if (vm_flags & VM_DENYWRITE) { 1612 error = deny_write_access(file); 1613 if (error) 1614 goto free_vma; 1615 } 1616 if (vm_flags & VM_SHARED) { 1617 error = mapping_map_writable(file->f_mapping); 1618 if (error) 1619 goto allow_write_and_free_vma; 1620 } 1621 1622 /* ->mmap() can change vma->vm_file, but must guarantee that 1623 * vma_link() below can deny write-access if VM_DENYWRITE is set 1624 * and map writably if VM_SHARED is set. This usually means the 1625 * new file must not have been exposed to user-space, yet. 1626 */ 1627 vma->vm_file = get_file(file); 1628 error = file->f_op->mmap(file, vma); 1629 if (error) 1630 goto unmap_and_free_vma; 1631 1632 /* Can addr have changed?? 1633 * 1634 * Answer: Yes, several device drivers can do it in their 1635 * f_op->mmap method. -DaveM 1636 * Bug: If addr is changed, prev, rb_link, rb_parent should 1637 * be updated for vma_link() 1638 */ 1639 WARN_ON_ONCE(addr != vma->vm_start); 1640 1641 /* All file mapping must have ->vm_ops set */ 1642 if (!vma->vm_ops) { 1643 static const struct vm_operations_struct dummy_ops = {}; 1644 vma->vm_ops = &dummy_ops; 1645 } 1646 1647 addr = vma->vm_start; 1648 vm_flags = vma->vm_flags; 1649 } else if (vm_flags & VM_SHARED) { 1650 error = shmem_zero_setup(vma); 1651 if (error) 1652 goto free_vma; 1653 } 1654 1655 vma_link(mm, vma, prev, rb_link, rb_parent); 1656 /* Once vma denies write, undo our temporary denial count */ 1657 if (file) { 1658 if (vm_flags & VM_SHARED) 1659 mapping_unmap_writable(file->f_mapping); 1660 if (vm_flags & VM_DENYWRITE) 1661 allow_write_access(file); 1662 } 1663 file = vma->vm_file; 1664 out: 1665 perf_event_mmap(vma); 1666 1667 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1668 if (vm_flags & VM_LOCKED) { 1669 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1670 vma == get_gate_vma(current->mm))) 1671 mm->locked_vm += (len >> PAGE_SHIFT); 1672 else 1673 vma->vm_flags &= ~VM_LOCKED; 1674 } 1675 1676 if (file) 1677 uprobe_mmap(vma); 1678 1679 /* 1680 * New (or expanded) vma always get soft dirty status. 1681 * Otherwise user-space soft-dirty page tracker won't 1682 * be able to distinguish situation when vma area unmapped, 1683 * then new mapped in-place (which must be aimed as 1684 * a completely new data area). 1685 */ 1686 vma->vm_flags |= VM_SOFTDIRTY; 1687 1688 vma_set_page_prot(vma); 1689 1690 return addr; 1691 1692 unmap_and_free_vma: 1693 vma->vm_file = NULL; 1694 fput(file); 1695 1696 /* Undo any partial mapping done by a device driver. */ 1697 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1698 charged = 0; 1699 if (vm_flags & VM_SHARED) 1700 mapping_unmap_writable(file->f_mapping); 1701 allow_write_and_free_vma: 1702 if (vm_flags & VM_DENYWRITE) 1703 allow_write_access(file); 1704 free_vma: 1705 kmem_cache_free(vm_area_cachep, vma); 1706 unacct_error: 1707 if (charged) 1708 vm_unacct_memory(charged); 1709 return error; 1710 } 1711 1712 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1713 { 1714 /* 1715 * We implement the search by looking for an rbtree node that 1716 * immediately follows a suitable gap. That is, 1717 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1718 * - gap_end = vma->vm_start >= info->low_limit + length; 1719 * - gap_end - gap_start >= length 1720 */ 1721 1722 struct mm_struct *mm = current->mm; 1723 struct vm_area_struct *vma; 1724 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1725 1726 /* Adjust search length to account for worst case alignment overhead */ 1727 length = info->length + info->align_mask; 1728 if (length < info->length) 1729 return -ENOMEM; 1730 1731 /* Adjust search limits by the desired length */ 1732 if (info->high_limit < length) 1733 return -ENOMEM; 1734 high_limit = info->high_limit - length; 1735 1736 if (info->low_limit > high_limit) 1737 return -ENOMEM; 1738 low_limit = info->low_limit + length; 1739 1740 /* Check if rbtree root looks promising */ 1741 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1742 goto check_highest; 1743 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1744 if (vma->rb_subtree_gap < length) 1745 goto check_highest; 1746 1747 while (true) { 1748 /* Visit left subtree if it looks promising */ 1749 gap_end = vma->vm_start; 1750 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1751 struct vm_area_struct *left = 1752 rb_entry(vma->vm_rb.rb_left, 1753 struct vm_area_struct, vm_rb); 1754 if (left->rb_subtree_gap >= length) { 1755 vma = left; 1756 continue; 1757 } 1758 } 1759 1760 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1761 check_current: 1762 /* Check if current node has a suitable gap */ 1763 if (gap_start > high_limit) 1764 return -ENOMEM; 1765 if (gap_end >= low_limit && gap_end - gap_start >= length) 1766 goto found; 1767 1768 /* Visit right subtree if it looks promising */ 1769 if (vma->vm_rb.rb_right) { 1770 struct vm_area_struct *right = 1771 rb_entry(vma->vm_rb.rb_right, 1772 struct vm_area_struct, vm_rb); 1773 if (right->rb_subtree_gap >= length) { 1774 vma = right; 1775 continue; 1776 } 1777 } 1778 1779 /* Go back up the rbtree to find next candidate node */ 1780 while (true) { 1781 struct rb_node *prev = &vma->vm_rb; 1782 if (!rb_parent(prev)) 1783 goto check_highest; 1784 vma = rb_entry(rb_parent(prev), 1785 struct vm_area_struct, vm_rb); 1786 if (prev == vma->vm_rb.rb_left) { 1787 gap_start = vma->vm_prev->vm_end; 1788 gap_end = vma->vm_start; 1789 goto check_current; 1790 } 1791 } 1792 } 1793 1794 check_highest: 1795 /* Check highest gap, which does not precede any rbtree node */ 1796 gap_start = mm->highest_vm_end; 1797 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1798 if (gap_start > high_limit) 1799 return -ENOMEM; 1800 1801 found: 1802 /* We found a suitable gap. Clip it with the original low_limit. */ 1803 if (gap_start < info->low_limit) 1804 gap_start = info->low_limit; 1805 1806 /* Adjust gap address to the desired alignment */ 1807 gap_start += (info->align_offset - gap_start) & info->align_mask; 1808 1809 VM_BUG_ON(gap_start + info->length > info->high_limit); 1810 VM_BUG_ON(gap_start + info->length > gap_end); 1811 return gap_start; 1812 } 1813 1814 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1815 { 1816 struct mm_struct *mm = current->mm; 1817 struct vm_area_struct *vma; 1818 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1819 1820 /* Adjust search length to account for worst case alignment overhead */ 1821 length = info->length + info->align_mask; 1822 if (length < info->length) 1823 return -ENOMEM; 1824 1825 /* 1826 * Adjust search limits by the desired length. 1827 * See implementation comment at top of unmapped_area(). 1828 */ 1829 gap_end = info->high_limit; 1830 if (gap_end < length) 1831 return -ENOMEM; 1832 high_limit = gap_end - length; 1833 1834 if (info->low_limit > high_limit) 1835 return -ENOMEM; 1836 low_limit = info->low_limit + length; 1837 1838 /* Check highest gap, which does not precede any rbtree node */ 1839 gap_start = mm->highest_vm_end; 1840 if (gap_start <= high_limit) 1841 goto found_highest; 1842 1843 /* Check if rbtree root looks promising */ 1844 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1845 return -ENOMEM; 1846 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1847 if (vma->rb_subtree_gap < length) 1848 return -ENOMEM; 1849 1850 while (true) { 1851 /* Visit right subtree if it looks promising */ 1852 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1853 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1854 struct vm_area_struct *right = 1855 rb_entry(vma->vm_rb.rb_right, 1856 struct vm_area_struct, vm_rb); 1857 if (right->rb_subtree_gap >= length) { 1858 vma = right; 1859 continue; 1860 } 1861 } 1862 1863 check_current: 1864 /* Check if current node has a suitable gap */ 1865 gap_end = vma->vm_start; 1866 if (gap_end < low_limit) 1867 return -ENOMEM; 1868 if (gap_start <= high_limit && gap_end - gap_start >= length) 1869 goto found; 1870 1871 /* Visit left subtree if it looks promising */ 1872 if (vma->vm_rb.rb_left) { 1873 struct vm_area_struct *left = 1874 rb_entry(vma->vm_rb.rb_left, 1875 struct vm_area_struct, vm_rb); 1876 if (left->rb_subtree_gap >= length) { 1877 vma = left; 1878 continue; 1879 } 1880 } 1881 1882 /* Go back up the rbtree to find next candidate node */ 1883 while (true) { 1884 struct rb_node *prev = &vma->vm_rb; 1885 if (!rb_parent(prev)) 1886 return -ENOMEM; 1887 vma = rb_entry(rb_parent(prev), 1888 struct vm_area_struct, vm_rb); 1889 if (prev == vma->vm_rb.rb_right) { 1890 gap_start = vma->vm_prev ? 1891 vma->vm_prev->vm_end : 0; 1892 goto check_current; 1893 } 1894 } 1895 } 1896 1897 found: 1898 /* We found a suitable gap. Clip it with the original high_limit. */ 1899 if (gap_end > info->high_limit) 1900 gap_end = info->high_limit; 1901 1902 found_highest: 1903 /* Compute highest gap address at the desired alignment */ 1904 gap_end -= info->length; 1905 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1906 1907 VM_BUG_ON(gap_end < info->low_limit); 1908 VM_BUG_ON(gap_end < gap_start); 1909 return gap_end; 1910 } 1911 1912 /* Get an address range which is currently unmapped. 1913 * For shmat() with addr=0. 1914 * 1915 * Ugly calling convention alert: 1916 * Return value with the low bits set means error value, 1917 * ie 1918 * if (ret & ~PAGE_MASK) 1919 * error = ret; 1920 * 1921 * This function "knows" that -ENOMEM has the bits set. 1922 */ 1923 #ifndef HAVE_ARCH_UNMAPPED_AREA 1924 unsigned long 1925 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1926 unsigned long len, unsigned long pgoff, unsigned long flags) 1927 { 1928 struct mm_struct *mm = current->mm; 1929 struct vm_area_struct *vma; 1930 struct vm_unmapped_area_info info; 1931 1932 if (len > TASK_SIZE - mmap_min_addr) 1933 return -ENOMEM; 1934 1935 if (flags & MAP_FIXED) 1936 return addr; 1937 1938 if (addr) { 1939 addr = PAGE_ALIGN(addr); 1940 vma = find_vma(mm, addr); 1941 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1942 (!vma || addr + len <= vma->vm_start)) 1943 return addr; 1944 } 1945 1946 info.flags = 0; 1947 info.length = len; 1948 info.low_limit = mm->mmap_base; 1949 info.high_limit = TASK_SIZE; 1950 info.align_mask = 0; 1951 return vm_unmapped_area(&info); 1952 } 1953 #endif 1954 1955 /* 1956 * This mmap-allocator allocates new areas top-down from below the 1957 * stack's low limit (the base): 1958 */ 1959 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1960 unsigned long 1961 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1962 const unsigned long len, const unsigned long pgoff, 1963 const unsigned long flags) 1964 { 1965 struct vm_area_struct *vma; 1966 struct mm_struct *mm = current->mm; 1967 unsigned long addr = addr0; 1968 struct vm_unmapped_area_info info; 1969 1970 /* requested length too big for entire address space */ 1971 if (len > TASK_SIZE - mmap_min_addr) 1972 return -ENOMEM; 1973 1974 if (flags & MAP_FIXED) 1975 return addr; 1976 1977 /* requesting a specific address */ 1978 if (addr) { 1979 addr = PAGE_ALIGN(addr); 1980 vma = find_vma(mm, addr); 1981 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1982 (!vma || addr + len <= vma->vm_start)) 1983 return addr; 1984 } 1985 1986 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1987 info.length = len; 1988 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1989 info.high_limit = mm->mmap_base; 1990 info.align_mask = 0; 1991 addr = vm_unmapped_area(&info); 1992 1993 /* 1994 * A failed mmap() very likely causes application failure, 1995 * so fall back to the bottom-up function here. This scenario 1996 * can happen with large stack limits and large mmap() 1997 * allocations. 1998 */ 1999 if (addr & ~PAGE_MASK) { 2000 VM_BUG_ON(addr != -ENOMEM); 2001 info.flags = 0; 2002 info.low_limit = TASK_UNMAPPED_BASE; 2003 info.high_limit = TASK_SIZE; 2004 addr = vm_unmapped_area(&info); 2005 } 2006 2007 return addr; 2008 } 2009 #endif 2010 2011 unsigned long 2012 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2013 unsigned long pgoff, unsigned long flags) 2014 { 2015 unsigned long (*get_area)(struct file *, unsigned long, 2016 unsigned long, unsigned long, unsigned long); 2017 2018 unsigned long error = arch_mmap_check(addr, len, flags); 2019 if (error) 2020 return error; 2021 2022 /* Careful about overflows.. */ 2023 if (len > TASK_SIZE) 2024 return -ENOMEM; 2025 2026 get_area = current->mm->get_unmapped_area; 2027 if (file && file->f_op->get_unmapped_area) 2028 get_area = file->f_op->get_unmapped_area; 2029 addr = get_area(file, addr, len, pgoff, flags); 2030 if (IS_ERR_VALUE(addr)) 2031 return addr; 2032 2033 if (addr > TASK_SIZE - len) 2034 return -ENOMEM; 2035 if (addr & ~PAGE_MASK) 2036 return -EINVAL; 2037 2038 addr = arch_rebalance_pgtables(addr, len); 2039 error = security_mmap_addr(addr); 2040 return error ? error : addr; 2041 } 2042 2043 EXPORT_SYMBOL(get_unmapped_area); 2044 2045 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2046 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2047 { 2048 struct rb_node *rb_node; 2049 struct vm_area_struct *vma; 2050 2051 /* Check the cache first. */ 2052 vma = vmacache_find(mm, addr); 2053 if (likely(vma)) 2054 return vma; 2055 2056 rb_node = mm->mm_rb.rb_node; 2057 vma = NULL; 2058 2059 while (rb_node) { 2060 struct vm_area_struct *tmp; 2061 2062 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2063 2064 if (tmp->vm_end > addr) { 2065 vma = tmp; 2066 if (tmp->vm_start <= addr) 2067 break; 2068 rb_node = rb_node->rb_left; 2069 } else 2070 rb_node = rb_node->rb_right; 2071 } 2072 2073 if (vma) 2074 vmacache_update(addr, vma); 2075 return vma; 2076 } 2077 2078 EXPORT_SYMBOL(find_vma); 2079 2080 /* 2081 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2082 */ 2083 struct vm_area_struct * 2084 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2085 struct vm_area_struct **pprev) 2086 { 2087 struct vm_area_struct *vma; 2088 2089 vma = find_vma(mm, addr); 2090 if (vma) { 2091 *pprev = vma->vm_prev; 2092 } else { 2093 struct rb_node *rb_node = mm->mm_rb.rb_node; 2094 *pprev = NULL; 2095 while (rb_node) { 2096 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2097 rb_node = rb_node->rb_right; 2098 } 2099 } 2100 return vma; 2101 } 2102 2103 /* 2104 * Verify that the stack growth is acceptable and 2105 * update accounting. This is shared with both the 2106 * grow-up and grow-down cases. 2107 */ 2108 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2109 { 2110 struct mm_struct *mm = vma->vm_mm; 2111 struct rlimit *rlim = current->signal->rlim; 2112 unsigned long new_start, actual_size; 2113 2114 /* address space limit tests */ 2115 if (!may_expand_vm(mm, grow)) 2116 return -ENOMEM; 2117 2118 /* Stack limit test */ 2119 actual_size = size; 2120 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2121 actual_size -= PAGE_SIZE; 2122 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2123 return -ENOMEM; 2124 2125 /* mlock limit tests */ 2126 if (vma->vm_flags & VM_LOCKED) { 2127 unsigned long locked; 2128 unsigned long limit; 2129 locked = mm->locked_vm + grow; 2130 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2131 limit >>= PAGE_SHIFT; 2132 if (locked > limit && !capable(CAP_IPC_LOCK)) 2133 return -ENOMEM; 2134 } 2135 2136 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2137 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2138 vma->vm_end - size; 2139 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2140 return -EFAULT; 2141 2142 /* 2143 * Overcommit.. This must be the final test, as it will 2144 * update security statistics. 2145 */ 2146 if (security_vm_enough_memory_mm(mm, grow)) 2147 return -ENOMEM; 2148 2149 /* Ok, everything looks good - let it rip */ 2150 if (vma->vm_flags & VM_LOCKED) 2151 mm->locked_vm += grow; 2152 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2153 return 0; 2154 } 2155 2156 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2157 /* 2158 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2159 * vma is the last one with address > vma->vm_end. Have to extend vma. 2160 */ 2161 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2162 { 2163 int error; 2164 2165 if (!(vma->vm_flags & VM_GROWSUP)) 2166 return -EFAULT; 2167 2168 /* 2169 * We must make sure the anon_vma is allocated 2170 * so that the anon_vma locking is not a noop. 2171 */ 2172 if (unlikely(anon_vma_prepare(vma))) 2173 return -ENOMEM; 2174 vma_lock_anon_vma(vma); 2175 2176 /* 2177 * vma->vm_start/vm_end cannot change under us because the caller 2178 * is required to hold the mmap_sem in read mode. We need the 2179 * anon_vma lock to serialize against concurrent expand_stacks. 2180 * Also guard against wrapping around to address 0. 2181 */ 2182 if (address < PAGE_ALIGN(address+4)) 2183 address = PAGE_ALIGN(address+4); 2184 else { 2185 vma_unlock_anon_vma(vma); 2186 return -ENOMEM; 2187 } 2188 error = 0; 2189 2190 /* Somebody else might have raced and expanded it already */ 2191 if (address > vma->vm_end) { 2192 unsigned long size, grow; 2193 2194 size = address - vma->vm_start; 2195 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2196 2197 error = -ENOMEM; 2198 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2199 error = acct_stack_growth(vma, size, grow); 2200 if (!error) { 2201 /* 2202 * vma_gap_update() doesn't support concurrent 2203 * updates, but we only hold a shared mmap_sem 2204 * lock here, so we need to protect against 2205 * concurrent vma expansions. 2206 * vma_lock_anon_vma() doesn't help here, as 2207 * we don't guarantee that all growable vmas 2208 * in a mm share the same root anon vma. 2209 * So, we reuse mm->page_table_lock to guard 2210 * against concurrent vma expansions. 2211 */ 2212 spin_lock(&vma->vm_mm->page_table_lock); 2213 anon_vma_interval_tree_pre_update_vma(vma); 2214 vma->vm_end = address; 2215 anon_vma_interval_tree_post_update_vma(vma); 2216 if (vma->vm_next) 2217 vma_gap_update(vma->vm_next); 2218 else 2219 vma->vm_mm->highest_vm_end = address; 2220 spin_unlock(&vma->vm_mm->page_table_lock); 2221 2222 perf_event_mmap(vma); 2223 } 2224 } 2225 } 2226 vma_unlock_anon_vma(vma); 2227 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2228 validate_mm(vma->vm_mm); 2229 return error; 2230 } 2231 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2232 2233 /* 2234 * vma is the first one with address < vma->vm_start. Have to extend vma. 2235 */ 2236 int expand_downwards(struct vm_area_struct *vma, 2237 unsigned long address) 2238 { 2239 int error; 2240 2241 /* 2242 * We must make sure the anon_vma is allocated 2243 * so that the anon_vma locking is not a noop. 2244 */ 2245 if (unlikely(anon_vma_prepare(vma))) 2246 return -ENOMEM; 2247 2248 address &= PAGE_MASK; 2249 error = security_mmap_addr(address); 2250 if (error) 2251 return error; 2252 2253 vma_lock_anon_vma(vma); 2254 2255 /* 2256 * vma->vm_start/vm_end cannot change under us because the caller 2257 * is required to hold the mmap_sem in read mode. We need the 2258 * anon_vma lock to serialize against concurrent expand_stacks. 2259 */ 2260 2261 /* Somebody else might have raced and expanded it already */ 2262 if (address < vma->vm_start) { 2263 unsigned long size, grow; 2264 2265 size = vma->vm_end - address; 2266 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2267 2268 error = -ENOMEM; 2269 if (grow <= vma->vm_pgoff) { 2270 error = acct_stack_growth(vma, size, grow); 2271 if (!error) { 2272 /* 2273 * vma_gap_update() doesn't support concurrent 2274 * updates, but we only hold a shared mmap_sem 2275 * lock here, so we need to protect against 2276 * concurrent vma expansions. 2277 * vma_lock_anon_vma() doesn't help here, as 2278 * we don't guarantee that all growable vmas 2279 * in a mm share the same root anon vma. 2280 * So, we reuse mm->page_table_lock to guard 2281 * against concurrent vma expansions. 2282 */ 2283 spin_lock(&vma->vm_mm->page_table_lock); 2284 anon_vma_interval_tree_pre_update_vma(vma); 2285 vma->vm_start = address; 2286 vma->vm_pgoff -= grow; 2287 anon_vma_interval_tree_post_update_vma(vma); 2288 vma_gap_update(vma); 2289 spin_unlock(&vma->vm_mm->page_table_lock); 2290 2291 perf_event_mmap(vma); 2292 } 2293 } 2294 } 2295 vma_unlock_anon_vma(vma); 2296 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2297 validate_mm(vma->vm_mm); 2298 return error; 2299 } 2300 2301 /* 2302 * Note how expand_stack() refuses to expand the stack all the way to 2303 * abut the next virtual mapping, *unless* that mapping itself is also 2304 * a stack mapping. We want to leave room for a guard page, after all 2305 * (the guard page itself is not added here, that is done by the 2306 * actual page faulting logic) 2307 * 2308 * This matches the behavior of the guard page logic (see mm/memory.c: 2309 * check_stack_guard_page()), which only allows the guard page to be 2310 * removed under these circumstances. 2311 */ 2312 #ifdef CONFIG_STACK_GROWSUP 2313 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2314 { 2315 struct vm_area_struct *next; 2316 2317 address &= PAGE_MASK; 2318 next = vma->vm_next; 2319 if (next && next->vm_start == address + PAGE_SIZE) { 2320 if (!(next->vm_flags & VM_GROWSUP)) 2321 return -ENOMEM; 2322 } 2323 return expand_upwards(vma, address); 2324 } 2325 2326 struct vm_area_struct * 2327 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2328 { 2329 struct vm_area_struct *vma, *prev; 2330 2331 addr &= PAGE_MASK; 2332 vma = find_vma_prev(mm, addr, &prev); 2333 if (vma && (vma->vm_start <= addr)) 2334 return vma; 2335 if (!prev || expand_stack(prev, addr)) 2336 return NULL; 2337 if (prev->vm_flags & VM_LOCKED) 2338 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2339 return prev; 2340 } 2341 #else 2342 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2343 { 2344 struct vm_area_struct *prev; 2345 2346 address &= PAGE_MASK; 2347 prev = vma->vm_prev; 2348 if (prev && prev->vm_end == address) { 2349 if (!(prev->vm_flags & VM_GROWSDOWN)) 2350 return -ENOMEM; 2351 } 2352 return expand_downwards(vma, address); 2353 } 2354 2355 struct vm_area_struct * 2356 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2357 { 2358 struct vm_area_struct *vma; 2359 unsigned long start; 2360 2361 addr &= PAGE_MASK; 2362 vma = find_vma(mm, addr); 2363 if (!vma) 2364 return NULL; 2365 if (vma->vm_start <= addr) 2366 return vma; 2367 if (!(vma->vm_flags & VM_GROWSDOWN)) 2368 return NULL; 2369 start = vma->vm_start; 2370 if (expand_stack(vma, addr)) 2371 return NULL; 2372 if (vma->vm_flags & VM_LOCKED) 2373 populate_vma_page_range(vma, addr, start, NULL); 2374 return vma; 2375 } 2376 #endif 2377 2378 EXPORT_SYMBOL_GPL(find_extend_vma); 2379 2380 /* 2381 * Ok - we have the memory areas we should free on the vma list, 2382 * so release them, and do the vma updates. 2383 * 2384 * Called with the mm semaphore held. 2385 */ 2386 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2387 { 2388 unsigned long nr_accounted = 0; 2389 2390 /* Update high watermark before we lower total_vm */ 2391 update_hiwater_vm(mm); 2392 do { 2393 long nrpages = vma_pages(vma); 2394 2395 if (vma->vm_flags & VM_ACCOUNT) 2396 nr_accounted += nrpages; 2397 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2398 vma = remove_vma(vma); 2399 } while (vma); 2400 vm_unacct_memory(nr_accounted); 2401 validate_mm(mm); 2402 } 2403 2404 /* 2405 * Get rid of page table information in the indicated region. 2406 * 2407 * Called with the mm semaphore held. 2408 */ 2409 static void unmap_region(struct mm_struct *mm, 2410 struct vm_area_struct *vma, struct vm_area_struct *prev, 2411 unsigned long start, unsigned long end) 2412 { 2413 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2414 struct mmu_gather tlb; 2415 2416 lru_add_drain(); 2417 tlb_gather_mmu(&tlb, mm, start, end); 2418 update_hiwater_rss(mm); 2419 unmap_vmas(&tlb, vma, start, end); 2420 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2421 next ? next->vm_start : USER_PGTABLES_CEILING); 2422 tlb_finish_mmu(&tlb, start, end); 2423 } 2424 2425 /* 2426 * Create a list of vma's touched by the unmap, removing them from the mm's 2427 * vma list as we go.. 2428 */ 2429 static void 2430 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2431 struct vm_area_struct *prev, unsigned long end) 2432 { 2433 struct vm_area_struct **insertion_point; 2434 struct vm_area_struct *tail_vma = NULL; 2435 2436 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2437 vma->vm_prev = NULL; 2438 do { 2439 vma_rb_erase(vma, &mm->mm_rb); 2440 mm->map_count--; 2441 tail_vma = vma; 2442 vma = vma->vm_next; 2443 } while (vma && vma->vm_start < end); 2444 *insertion_point = vma; 2445 if (vma) { 2446 vma->vm_prev = prev; 2447 vma_gap_update(vma); 2448 } else 2449 mm->highest_vm_end = prev ? prev->vm_end : 0; 2450 tail_vma->vm_next = NULL; 2451 2452 /* Kill the cache */ 2453 vmacache_invalidate(mm); 2454 } 2455 2456 /* 2457 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2458 * munmap path where it doesn't make sense to fail. 2459 */ 2460 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2461 unsigned long addr, int new_below) 2462 { 2463 struct vm_area_struct *new; 2464 int err; 2465 2466 if (is_vm_hugetlb_page(vma) && (addr & 2467 ~(huge_page_mask(hstate_vma(vma))))) 2468 return -EINVAL; 2469 2470 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2471 if (!new) 2472 return -ENOMEM; 2473 2474 /* most fields are the same, copy all, and then fixup */ 2475 *new = *vma; 2476 2477 INIT_LIST_HEAD(&new->anon_vma_chain); 2478 2479 if (new_below) 2480 new->vm_end = addr; 2481 else { 2482 new->vm_start = addr; 2483 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2484 } 2485 2486 err = vma_dup_policy(vma, new); 2487 if (err) 2488 goto out_free_vma; 2489 2490 err = anon_vma_clone(new, vma); 2491 if (err) 2492 goto out_free_mpol; 2493 2494 if (new->vm_file) 2495 get_file(new->vm_file); 2496 2497 if (new->vm_ops && new->vm_ops->open) 2498 new->vm_ops->open(new); 2499 2500 if (new_below) 2501 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2502 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2503 else 2504 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2505 2506 /* Success. */ 2507 if (!err) 2508 return 0; 2509 2510 /* Clean everything up if vma_adjust failed. */ 2511 if (new->vm_ops && new->vm_ops->close) 2512 new->vm_ops->close(new); 2513 if (new->vm_file) 2514 fput(new->vm_file); 2515 unlink_anon_vmas(new); 2516 out_free_mpol: 2517 mpol_put(vma_policy(new)); 2518 out_free_vma: 2519 kmem_cache_free(vm_area_cachep, new); 2520 return err; 2521 } 2522 2523 /* 2524 * Split a vma into two pieces at address 'addr', a new vma is allocated 2525 * either for the first part or the tail. 2526 */ 2527 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2528 unsigned long addr, int new_below) 2529 { 2530 if (mm->map_count >= sysctl_max_map_count) 2531 return -ENOMEM; 2532 2533 return __split_vma(mm, vma, addr, new_below); 2534 } 2535 2536 /* Munmap is split into 2 main parts -- this part which finds 2537 * what needs doing, and the areas themselves, which do the 2538 * work. This now handles partial unmappings. 2539 * Jeremy Fitzhardinge <jeremy@goop.org> 2540 */ 2541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2542 { 2543 unsigned long end; 2544 struct vm_area_struct *vma, *prev, *last; 2545 2546 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2547 return -EINVAL; 2548 2549 len = PAGE_ALIGN(len); 2550 if (len == 0) 2551 return -EINVAL; 2552 2553 /* Find the first overlapping VMA */ 2554 vma = find_vma(mm, start); 2555 if (!vma) 2556 return 0; 2557 prev = vma->vm_prev; 2558 /* we have start < vma->vm_end */ 2559 2560 /* if it doesn't overlap, we have nothing.. */ 2561 end = start + len; 2562 if (vma->vm_start >= end) 2563 return 0; 2564 2565 /* 2566 * If we need to split any vma, do it now to save pain later. 2567 * 2568 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2569 * unmapped vm_area_struct will remain in use: so lower split_vma 2570 * places tmp vma above, and higher split_vma places tmp vma below. 2571 */ 2572 if (start > vma->vm_start) { 2573 int error; 2574 2575 /* 2576 * Make sure that map_count on return from munmap() will 2577 * not exceed its limit; but let map_count go just above 2578 * its limit temporarily, to help free resources as expected. 2579 */ 2580 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2581 return -ENOMEM; 2582 2583 error = __split_vma(mm, vma, start, 0); 2584 if (error) 2585 return error; 2586 prev = vma; 2587 } 2588 2589 /* Does it split the last one? */ 2590 last = find_vma(mm, end); 2591 if (last && end > last->vm_start) { 2592 int error = __split_vma(mm, last, end, 1); 2593 if (error) 2594 return error; 2595 } 2596 vma = prev ? prev->vm_next : mm->mmap; 2597 2598 /* 2599 * unlock any mlock()ed ranges before detaching vmas 2600 */ 2601 if (mm->locked_vm) { 2602 struct vm_area_struct *tmp = vma; 2603 while (tmp && tmp->vm_start < end) { 2604 if (tmp->vm_flags & VM_LOCKED) { 2605 mm->locked_vm -= vma_pages(tmp); 2606 munlock_vma_pages_all(tmp); 2607 } 2608 tmp = tmp->vm_next; 2609 } 2610 } 2611 2612 /* 2613 * Remove the vma's, and unmap the actual pages 2614 */ 2615 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2616 unmap_region(mm, vma, prev, start, end); 2617 2618 arch_unmap(mm, vma, start, end); 2619 2620 /* Fix up all other VM information */ 2621 remove_vma_list(mm, vma); 2622 2623 return 0; 2624 } 2625 2626 int vm_munmap(unsigned long start, size_t len) 2627 { 2628 int ret; 2629 struct mm_struct *mm = current->mm; 2630 2631 down_write(&mm->mmap_sem); 2632 ret = do_munmap(mm, start, len); 2633 up_write(&mm->mmap_sem); 2634 return ret; 2635 } 2636 EXPORT_SYMBOL(vm_munmap); 2637 2638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2639 { 2640 profile_munmap(addr); 2641 return vm_munmap(addr, len); 2642 } 2643 2644 2645 /* 2646 * Emulation of deprecated remap_file_pages() syscall. 2647 */ 2648 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2649 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2650 { 2651 2652 struct mm_struct *mm = current->mm; 2653 struct vm_area_struct *vma; 2654 unsigned long populate = 0; 2655 unsigned long ret = -EINVAL; 2656 struct file *file; 2657 2658 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. " 2659 "See Documentation/vm/remap_file_pages.txt.\n", 2660 current->comm, current->pid); 2661 2662 if (prot) 2663 return ret; 2664 start = start & PAGE_MASK; 2665 size = size & PAGE_MASK; 2666 2667 if (start + size <= start) 2668 return ret; 2669 2670 /* Does pgoff wrap? */ 2671 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2672 return ret; 2673 2674 down_write(&mm->mmap_sem); 2675 vma = find_vma(mm, start); 2676 2677 if (!vma || !(vma->vm_flags & VM_SHARED)) 2678 goto out; 2679 2680 if (start < vma->vm_start || start + size > vma->vm_end) 2681 goto out; 2682 2683 if (pgoff == linear_page_index(vma, start)) { 2684 ret = 0; 2685 goto out; 2686 } 2687 2688 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2689 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2690 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2691 2692 flags &= MAP_NONBLOCK; 2693 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2694 if (vma->vm_flags & VM_LOCKED) { 2695 flags |= MAP_LOCKED; 2696 /* drop PG_Mlocked flag for over-mapped range */ 2697 munlock_vma_pages_range(vma, start, start + size); 2698 } 2699 2700 file = get_file(vma->vm_file); 2701 ret = do_mmap_pgoff(vma->vm_file, start, size, 2702 prot, flags, pgoff, &populate); 2703 fput(file); 2704 out: 2705 up_write(&mm->mmap_sem); 2706 if (populate) 2707 mm_populate(ret, populate); 2708 if (!IS_ERR_VALUE(ret)) 2709 ret = 0; 2710 return ret; 2711 } 2712 2713 static inline void verify_mm_writelocked(struct mm_struct *mm) 2714 { 2715 #ifdef CONFIG_DEBUG_VM 2716 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2717 WARN_ON(1); 2718 up_read(&mm->mmap_sem); 2719 } 2720 #endif 2721 } 2722 2723 /* 2724 * this is really a simplified "do_mmap". it only handles 2725 * anonymous maps. eventually we may be able to do some 2726 * brk-specific accounting here. 2727 */ 2728 static unsigned long do_brk(unsigned long addr, unsigned long len) 2729 { 2730 struct mm_struct *mm = current->mm; 2731 struct vm_area_struct *vma, *prev; 2732 unsigned long flags; 2733 struct rb_node **rb_link, *rb_parent; 2734 pgoff_t pgoff = addr >> PAGE_SHIFT; 2735 int error; 2736 2737 len = PAGE_ALIGN(len); 2738 if (!len) 2739 return addr; 2740 2741 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2742 2743 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2744 if (error & ~PAGE_MASK) 2745 return error; 2746 2747 error = mlock_future_check(mm, mm->def_flags, len); 2748 if (error) 2749 return error; 2750 2751 /* 2752 * mm->mmap_sem is required to protect against another thread 2753 * changing the mappings in case we sleep. 2754 */ 2755 verify_mm_writelocked(mm); 2756 2757 /* 2758 * Clear old maps. this also does some error checking for us 2759 */ 2760 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2761 &rb_parent)) { 2762 if (do_munmap(mm, addr, len)) 2763 return -ENOMEM; 2764 } 2765 2766 /* Check against address space limits *after* clearing old maps... */ 2767 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2768 return -ENOMEM; 2769 2770 if (mm->map_count > sysctl_max_map_count) 2771 return -ENOMEM; 2772 2773 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2774 return -ENOMEM; 2775 2776 /* Can we just expand an old private anonymous mapping? */ 2777 vma = vma_merge(mm, prev, addr, addr + len, flags, 2778 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2779 if (vma) 2780 goto out; 2781 2782 /* 2783 * create a vma struct for an anonymous mapping 2784 */ 2785 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2786 if (!vma) { 2787 vm_unacct_memory(len >> PAGE_SHIFT); 2788 return -ENOMEM; 2789 } 2790 2791 INIT_LIST_HEAD(&vma->anon_vma_chain); 2792 vma->vm_mm = mm; 2793 vma->vm_start = addr; 2794 vma->vm_end = addr + len; 2795 vma->vm_pgoff = pgoff; 2796 vma->vm_flags = flags; 2797 vma->vm_page_prot = vm_get_page_prot(flags); 2798 vma_link(mm, vma, prev, rb_link, rb_parent); 2799 out: 2800 perf_event_mmap(vma); 2801 mm->total_vm += len >> PAGE_SHIFT; 2802 if (flags & VM_LOCKED) 2803 mm->locked_vm += (len >> PAGE_SHIFT); 2804 vma->vm_flags |= VM_SOFTDIRTY; 2805 return addr; 2806 } 2807 2808 unsigned long vm_brk(unsigned long addr, unsigned long len) 2809 { 2810 struct mm_struct *mm = current->mm; 2811 unsigned long ret; 2812 bool populate; 2813 2814 down_write(&mm->mmap_sem); 2815 ret = do_brk(addr, len); 2816 populate = ((mm->def_flags & VM_LOCKED) != 0); 2817 up_write(&mm->mmap_sem); 2818 if (populate) 2819 mm_populate(addr, len); 2820 return ret; 2821 } 2822 EXPORT_SYMBOL(vm_brk); 2823 2824 /* Release all mmaps. */ 2825 void exit_mmap(struct mm_struct *mm) 2826 { 2827 struct mmu_gather tlb; 2828 struct vm_area_struct *vma; 2829 unsigned long nr_accounted = 0; 2830 2831 /* mm's last user has gone, and its about to be pulled down */ 2832 mmu_notifier_release(mm); 2833 2834 if (mm->locked_vm) { 2835 vma = mm->mmap; 2836 while (vma) { 2837 if (vma->vm_flags & VM_LOCKED) 2838 munlock_vma_pages_all(vma); 2839 vma = vma->vm_next; 2840 } 2841 } 2842 2843 arch_exit_mmap(mm); 2844 2845 vma = mm->mmap; 2846 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2847 return; 2848 2849 lru_add_drain(); 2850 flush_cache_mm(mm); 2851 tlb_gather_mmu(&tlb, mm, 0, -1); 2852 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2853 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2854 unmap_vmas(&tlb, vma, 0, -1); 2855 2856 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2857 tlb_finish_mmu(&tlb, 0, -1); 2858 2859 /* 2860 * Walk the list again, actually closing and freeing it, 2861 * with preemption enabled, without holding any MM locks. 2862 */ 2863 while (vma) { 2864 if (vma->vm_flags & VM_ACCOUNT) 2865 nr_accounted += vma_pages(vma); 2866 vma = remove_vma(vma); 2867 } 2868 vm_unacct_memory(nr_accounted); 2869 } 2870 2871 /* Insert vm structure into process list sorted by address 2872 * and into the inode's i_mmap tree. If vm_file is non-NULL 2873 * then i_mmap_rwsem is taken here. 2874 */ 2875 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2876 { 2877 struct vm_area_struct *prev; 2878 struct rb_node **rb_link, *rb_parent; 2879 2880 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2881 &prev, &rb_link, &rb_parent)) 2882 return -ENOMEM; 2883 if ((vma->vm_flags & VM_ACCOUNT) && 2884 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2885 return -ENOMEM; 2886 2887 /* 2888 * The vm_pgoff of a purely anonymous vma should be irrelevant 2889 * until its first write fault, when page's anon_vma and index 2890 * are set. But now set the vm_pgoff it will almost certainly 2891 * end up with (unless mremap moves it elsewhere before that 2892 * first wfault), so /proc/pid/maps tells a consistent story. 2893 * 2894 * By setting it to reflect the virtual start address of the 2895 * vma, merges and splits can happen in a seamless way, just 2896 * using the existing file pgoff checks and manipulations. 2897 * Similarly in do_mmap_pgoff and in do_brk. 2898 */ 2899 if (vma_is_anonymous(vma)) { 2900 BUG_ON(vma->anon_vma); 2901 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2902 } 2903 2904 vma_link(mm, vma, prev, rb_link, rb_parent); 2905 return 0; 2906 } 2907 2908 /* 2909 * Copy the vma structure to a new location in the same mm, 2910 * prior to moving page table entries, to effect an mremap move. 2911 */ 2912 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2913 unsigned long addr, unsigned long len, pgoff_t pgoff, 2914 bool *need_rmap_locks) 2915 { 2916 struct vm_area_struct *vma = *vmap; 2917 unsigned long vma_start = vma->vm_start; 2918 struct mm_struct *mm = vma->vm_mm; 2919 struct vm_area_struct *new_vma, *prev; 2920 struct rb_node **rb_link, *rb_parent; 2921 bool faulted_in_anon_vma = true; 2922 2923 /* 2924 * If anonymous vma has not yet been faulted, update new pgoff 2925 * to match new location, to increase its chance of merging. 2926 */ 2927 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2928 pgoff = addr >> PAGE_SHIFT; 2929 faulted_in_anon_vma = false; 2930 } 2931 2932 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2933 return NULL; /* should never get here */ 2934 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2935 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2936 vma->vm_userfaultfd_ctx); 2937 if (new_vma) { 2938 /* 2939 * Source vma may have been merged into new_vma 2940 */ 2941 if (unlikely(vma_start >= new_vma->vm_start && 2942 vma_start < new_vma->vm_end)) { 2943 /* 2944 * The only way we can get a vma_merge with 2945 * self during an mremap is if the vma hasn't 2946 * been faulted in yet and we were allowed to 2947 * reset the dst vma->vm_pgoff to the 2948 * destination address of the mremap to allow 2949 * the merge to happen. mremap must change the 2950 * vm_pgoff linearity between src and dst vmas 2951 * (in turn preventing a vma_merge) to be 2952 * safe. It is only safe to keep the vm_pgoff 2953 * linear if there are no pages mapped yet. 2954 */ 2955 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2956 *vmap = vma = new_vma; 2957 } 2958 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2959 } else { 2960 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2961 if (!new_vma) 2962 goto out; 2963 *new_vma = *vma; 2964 new_vma->vm_start = addr; 2965 new_vma->vm_end = addr + len; 2966 new_vma->vm_pgoff = pgoff; 2967 if (vma_dup_policy(vma, new_vma)) 2968 goto out_free_vma; 2969 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2970 if (anon_vma_clone(new_vma, vma)) 2971 goto out_free_mempol; 2972 if (new_vma->vm_file) 2973 get_file(new_vma->vm_file); 2974 if (new_vma->vm_ops && new_vma->vm_ops->open) 2975 new_vma->vm_ops->open(new_vma); 2976 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2977 *need_rmap_locks = false; 2978 } 2979 return new_vma; 2980 2981 out_free_mempol: 2982 mpol_put(vma_policy(new_vma)); 2983 out_free_vma: 2984 kmem_cache_free(vm_area_cachep, new_vma); 2985 out: 2986 return NULL; 2987 } 2988 2989 /* 2990 * Return true if the calling process may expand its vm space by the passed 2991 * number of pages 2992 */ 2993 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2994 { 2995 unsigned long cur = mm->total_vm; /* pages */ 2996 unsigned long lim; 2997 2998 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2999 3000 if (cur + npages > lim) 3001 return 0; 3002 return 1; 3003 } 3004 3005 static int special_mapping_fault(struct vm_area_struct *vma, 3006 struct vm_fault *vmf); 3007 3008 /* 3009 * Having a close hook prevents vma merging regardless of flags. 3010 */ 3011 static void special_mapping_close(struct vm_area_struct *vma) 3012 { 3013 } 3014 3015 static const char *special_mapping_name(struct vm_area_struct *vma) 3016 { 3017 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3018 } 3019 3020 static const struct vm_operations_struct special_mapping_vmops = { 3021 .close = special_mapping_close, 3022 .fault = special_mapping_fault, 3023 .name = special_mapping_name, 3024 }; 3025 3026 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3027 .close = special_mapping_close, 3028 .fault = special_mapping_fault, 3029 }; 3030 3031 static int special_mapping_fault(struct vm_area_struct *vma, 3032 struct vm_fault *vmf) 3033 { 3034 pgoff_t pgoff; 3035 struct page **pages; 3036 3037 if (vma->vm_ops == &legacy_special_mapping_vmops) 3038 pages = vma->vm_private_data; 3039 else 3040 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 3041 pages; 3042 3043 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3044 pgoff--; 3045 3046 if (*pages) { 3047 struct page *page = *pages; 3048 get_page(page); 3049 vmf->page = page; 3050 return 0; 3051 } 3052 3053 return VM_FAULT_SIGBUS; 3054 } 3055 3056 static struct vm_area_struct *__install_special_mapping( 3057 struct mm_struct *mm, 3058 unsigned long addr, unsigned long len, 3059 unsigned long vm_flags, const struct vm_operations_struct *ops, 3060 void *priv) 3061 { 3062 int ret; 3063 struct vm_area_struct *vma; 3064 3065 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3066 if (unlikely(vma == NULL)) 3067 return ERR_PTR(-ENOMEM); 3068 3069 INIT_LIST_HEAD(&vma->anon_vma_chain); 3070 vma->vm_mm = mm; 3071 vma->vm_start = addr; 3072 vma->vm_end = addr + len; 3073 3074 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3075 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3076 3077 vma->vm_ops = ops; 3078 vma->vm_private_data = priv; 3079 3080 ret = insert_vm_struct(mm, vma); 3081 if (ret) 3082 goto out; 3083 3084 mm->total_vm += len >> PAGE_SHIFT; 3085 3086 perf_event_mmap(vma); 3087 3088 return vma; 3089 3090 out: 3091 kmem_cache_free(vm_area_cachep, vma); 3092 return ERR_PTR(ret); 3093 } 3094 3095 /* 3096 * Called with mm->mmap_sem held for writing. 3097 * Insert a new vma covering the given region, with the given flags. 3098 * Its pages are supplied by the given array of struct page *. 3099 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3100 * The region past the last page supplied will always produce SIGBUS. 3101 * The array pointer and the pages it points to are assumed to stay alive 3102 * for as long as this mapping might exist. 3103 */ 3104 struct vm_area_struct *_install_special_mapping( 3105 struct mm_struct *mm, 3106 unsigned long addr, unsigned long len, 3107 unsigned long vm_flags, const struct vm_special_mapping *spec) 3108 { 3109 return __install_special_mapping(mm, addr, len, vm_flags, 3110 &special_mapping_vmops, (void *)spec); 3111 } 3112 3113 int install_special_mapping(struct mm_struct *mm, 3114 unsigned long addr, unsigned long len, 3115 unsigned long vm_flags, struct page **pages) 3116 { 3117 struct vm_area_struct *vma = __install_special_mapping( 3118 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3119 (void *)pages); 3120 3121 return PTR_ERR_OR_ZERO(vma); 3122 } 3123 3124 static DEFINE_MUTEX(mm_all_locks_mutex); 3125 3126 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3127 { 3128 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3129 /* 3130 * The LSB of head.next can't change from under us 3131 * because we hold the mm_all_locks_mutex. 3132 */ 3133 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3134 /* 3135 * We can safely modify head.next after taking the 3136 * anon_vma->root->rwsem. If some other vma in this mm shares 3137 * the same anon_vma we won't take it again. 3138 * 3139 * No need of atomic instructions here, head.next 3140 * can't change from under us thanks to the 3141 * anon_vma->root->rwsem. 3142 */ 3143 if (__test_and_set_bit(0, (unsigned long *) 3144 &anon_vma->root->rb_root.rb_node)) 3145 BUG(); 3146 } 3147 } 3148 3149 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3150 { 3151 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3152 /* 3153 * AS_MM_ALL_LOCKS can't change from under us because 3154 * we hold the mm_all_locks_mutex. 3155 * 3156 * Operations on ->flags have to be atomic because 3157 * even if AS_MM_ALL_LOCKS is stable thanks to the 3158 * mm_all_locks_mutex, there may be other cpus 3159 * changing other bitflags in parallel to us. 3160 */ 3161 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3162 BUG(); 3163 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3164 } 3165 } 3166 3167 /* 3168 * This operation locks against the VM for all pte/vma/mm related 3169 * operations that could ever happen on a certain mm. This includes 3170 * vmtruncate, try_to_unmap, and all page faults. 3171 * 3172 * The caller must take the mmap_sem in write mode before calling 3173 * mm_take_all_locks(). The caller isn't allowed to release the 3174 * mmap_sem until mm_drop_all_locks() returns. 3175 * 3176 * mmap_sem in write mode is required in order to block all operations 3177 * that could modify pagetables and free pages without need of 3178 * altering the vma layout. It's also needed in write mode to avoid new 3179 * anon_vmas to be associated with existing vmas. 3180 * 3181 * A single task can't take more than one mm_take_all_locks() in a row 3182 * or it would deadlock. 3183 * 3184 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3185 * mapping->flags avoid to take the same lock twice, if more than one 3186 * vma in this mm is backed by the same anon_vma or address_space. 3187 * 3188 * We can take all the locks in random order because the VM code 3189 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never 3190 * takes more than one of them in a row. Secondly we're protected 3191 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3192 * 3193 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3194 * that may have to take thousand of locks. 3195 * 3196 * mm_take_all_locks() can fail if it's interrupted by signals. 3197 */ 3198 int mm_take_all_locks(struct mm_struct *mm) 3199 { 3200 struct vm_area_struct *vma; 3201 struct anon_vma_chain *avc; 3202 3203 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3204 3205 mutex_lock(&mm_all_locks_mutex); 3206 3207 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3208 if (signal_pending(current)) 3209 goto out_unlock; 3210 if (vma->vm_file && vma->vm_file->f_mapping) 3211 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3212 } 3213 3214 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3215 if (signal_pending(current)) 3216 goto out_unlock; 3217 if (vma->anon_vma) 3218 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3219 vm_lock_anon_vma(mm, avc->anon_vma); 3220 } 3221 3222 return 0; 3223 3224 out_unlock: 3225 mm_drop_all_locks(mm); 3226 return -EINTR; 3227 } 3228 3229 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3230 { 3231 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3232 /* 3233 * The LSB of head.next can't change to 0 from under 3234 * us because we hold the mm_all_locks_mutex. 3235 * 3236 * We must however clear the bitflag before unlocking 3237 * the vma so the users using the anon_vma->rb_root will 3238 * never see our bitflag. 3239 * 3240 * No need of atomic instructions here, head.next 3241 * can't change from under us until we release the 3242 * anon_vma->root->rwsem. 3243 */ 3244 if (!__test_and_clear_bit(0, (unsigned long *) 3245 &anon_vma->root->rb_root.rb_node)) 3246 BUG(); 3247 anon_vma_unlock_write(anon_vma); 3248 } 3249 } 3250 3251 static void vm_unlock_mapping(struct address_space *mapping) 3252 { 3253 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3254 /* 3255 * AS_MM_ALL_LOCKS can't change to 0 from under us 3256 * because we hold the mm_all_locks_mutex. 3257 */ 3258 i_mmap_unlock_write(mapping); 3259 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3260 &mapping->flags)) 3261 BUG(); 3262 } 3263 } 3264 3265 /* 3266 * The mmap_sem cannot be released by the caller until 3267 * mm_drop_all_locks() returns. 3268 */ 3269 void mm_drop_all_locks(struct mm_struct *mm) 3270 { 3271 struct vm_area_struct *vma; 3272 struct anon_vma_chain *avc; 3273 3274 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3275 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3276 3277 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3278 if (vma->anon_vma) 3279 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3280 vm_unlock_anon_vma(avc->anon_vma); 3281 if (vma->vm_file && vma->vm_file->f_mapping) 3282 vm_unlock_mapping(vma->vm_file->f_mapping); 3283 } 3284 3285 mutex_unlock(&mm_all_locks_mutex); 3286 } 3287 3288 /* 3289 * initialise the VMA slab 3290 */ 3291 void __init mmap_init(void) 3292 { 3293 int ret; 3294 3295 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3296 VM_BUG_ON(ret); 3297 } 3298 3299 /* 3300 * Initialise sysctl_user_reserve_kbytes. 3301 * 3302 * This is intended to prevent a user from starting a single memory hogging 3303 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3304 * mode. 3305 * 3306 * The default value is min(3% of free memory, 128MB) 3307 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3308 */ 3309 static int init_user_reserve(void) 3310 { 3311 unsigned long free_kbytes; 3312 3313 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3314 3315 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3316 return 0; 3317 } 3318 subsys_initcall(init_user_reserve); 3319 3320 /* 3321 * Initialise sysctl_admin_reserve_kbytes. 3322 * 3323 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3324 * to log in and kill a memory hogging process. 3325 * 3326 * Systems with more than 256MB will reserve 8MB, enough to recover 3327 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3328 * only reserve 3% of free pages by default. 3329 */ 3330 static int init_admin_reserve(void) 3331 { 3332 unsigned long free_kbytes; 3333 3334 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3335 3336 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3337 return 0; 3338 } 3339 subsys_initcall(init_admin_reserve); 3340 3341 /* 3342 * Reinititalise user and admin reserves if memory is added or removed. 3343 * 3344 * The default user reserve max is 128MB, and the default max for the 3345 * admin reserve is 8MB. These are usually, but not always, enough to 3346 * enable recovery from a memory hogging process using login/sshd, a shell, 3347 * and tools like top. It may make sense to increase or even disable the 3348 * reserve depending on the existence of swap or variations in the recovery 3349 * tools. So, the admin may have changed them. 3350 * 3351 * If memory is added and the reserves have been eliminated or increased above 3352 * the default max, then we'll trust the admin. 3353 * 3354 * If memory is removed and there isn't enough free memory, then we 3355 * need to reset the reserves. 3356 * 3357 * Otherwise keep the reserve set by the admin. 3358 */ 3359 static int reserve_mem_notifier(struct notifier_block *nb, 3360 unsigned long action, void *data) 3361 { 3362 unsigned long tmp, free_kbytes; 3363 3364 switch (action) { 3365 case MEM_ONLINE: 3366 /* Default max is 128MB. Leave alone if modified by operator. */ 3367 tmp = sysctl_user_reserve_kbytes; 3368 if (0 < tmp && tmp < (1UL << 17)) 3369 init_user_reserve(); 3370 3371 /* Default max is 8MB. Leave alone if modified by operator. */ 3372 tmp = sysctl_admin_reserve_kbytes; 3373 if (0 < tmp && tmp < (1UL << 13)) 3374 init_admin_reserve(); 3375 3376 break; 3377 case MEM_OFFLINE: 3378 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3379 3380 if (sysctl_user_reserve_kbytes > free_kbytes) { 3381 init_user_reserve(); 3382 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3383 sysctl_user_reserve_kbytes); 3384 } 3385 3386 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3387 init_admin_reserve(); 3388 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3389 sysctl_admin_reserve_kbytes); 3390 } 3391 break; 3392 default: 3393 break; 3394 } 3395 return NOTIFY_OK; 3396 } 3397 3398 static struct notifier_block reserve_mem_nb = { 3399 .notifier_call = reserve_mem_notifier, 3400 }; 3401 3402 static int __meminit init_reserve_notifier(void) 3403 { 3404 if (register_hotmemory_notifier(&reserve_mem_nb)) 3405 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3406 3407 return 0; 3408 } 3409 subsys_initcall(init_reserve_notifier); 3410