xref: /openbmc/linux/mm/mmap.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50 
51 #include "internal.h"
52 
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)	(0)
55 #endif
56 
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)		(addr)
59 #endif
60 
61 static void unmap_region(struct mm_struct *mm,
62 		struct vm_area_struct *vma, struct vm_area_struct *prev,
63 		unsigned long start, unsigned long end);
64 
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type	prot
70  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
71  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
72  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
73  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
74  *
75  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
76  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
77  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84 
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87 	return __pgprot(pgprot_val(protection_map[vm_flags &
88 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92 
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97 
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101 	unsigned long vm_flags = vma->vm_flags;
102 
103 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 	if (vma_wants_writenotify(vma)) {
105 		vm_flags &= ~VM_SHARED;
106 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107 						     vm_flags);
108 	}
109 }
110 
111 
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123 
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
132 unsigned long vm_memory_committed(void)
133 {
134 	return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137 
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156 	long free, allowed, reserve;
157 
158 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 			-(s64)vm_committed_as_batch * num_online_cpus(),
160 			"memory commitment underflow");
161 
162 	vm_acct_memory(pages);
163 
164 	/*
165 	 * Sometimes we want to use more memory than we have
166 	 */
167 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168 		return 0;
169 
170 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 		free = global_page_state(NR_FREE_PAGES);
172 		free += global_page_state(NR_FILE_PAGES);
173 
174 		/*
175 		 * shmem pages shouldn't be counted as free in this
176 		 * case, they can't be purged, only swapped out, and
177 		 * that won't affect the overall amount of available
178 		 * memory in the system.
179 		 */
180 		free -= global_page_state(NR_SHMEM);
181 
182 		free += get_nr_swap_pages();
183 
184 		/*
185 		 * Any slabs which are created with the
186 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 		 * which are reclaimable, under pressure.  The dentry
188 		 * cache and most inode caches should fall into this
189 		 */
190 		free += global_page_state(NR_SLAB_RECLAIMABLE);
191 
192 		/*
193 		 * Leave reserved pages. The pages are not for anonymous pages.
194 		 */
195 		if (free <= totalreserve_pages)
196 			goto error;
197 		else
198 			free -= totalreserve_pages;
199 
200 		/*
201 		 * Reserve some for root
202 		 */
203 		if (!cap_sys_admin)
204 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 
206 		if (free > pages)
207 			return 0;
208 
209 		goto error;
210 	}
211 
212 	allowed = vm_commit_limit();
213 	/*
214 	 * Reserve some for root
215 	 */
216 	if (!cap_sys_admin)
217 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218 
219 	/*
220 	 * Don't let a single process grow so big a user can't recover
221 	 */
222 	if (mm) {
223 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 		allowed -= min_t(long, mm->total_vm / 32, reserve);
225 	}
226 
227 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228 		return 0;
229 error:
230 	vm_unacct_memory(pages);
231 
232 	return -ENOMEM;
233 }
234 
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 		struct file *file, struct address_space *mapping)
240 {
241 	if (vma->vm_flags & VM_DENYWRITE)
242 		atomic_inc(&file_inode(file)->i_writecount);
243 	if (vma->vm_flags & VM_SHARED)
244 		mapping_unmap_writable(mapping);
245 
246 	flush_dcache_mmap_lock(mapping);
247 	vma_interval_tree_remove(vma, &mapping->i_mmap);
248 	flush_dcache_mmap_unlock(mapping);
249 }
250 
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257 	struct file *file = vma->vm_file;
258 
259 	if (file) {
260 		struct address_space *mapping = file->f_mapping;
261 		i_mmap_lock_write(mapping);
262 		__remove_shared_vm_struct(vma, file, mapping);
263 		i_mmap_unlock_write(mapping);
264 	}
265 }
266 
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272 	struct vm_area_struct *next = vma->vm_next;
273 
274 	might_sleep();
275 	if (vma->vm_ops && vma->vm_ops->close)
276 		vma->vm_ops->close(vma);
277 	if (vma->vm_file)
278 		fput(vma->vm_file);
279 	mpol_put(vma_policy(vma));
280 	kmem_cache_free(vm_area_cachep, vma);
281 	return next;
282 }
283 
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285 
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288 	unsigned long retval;
289 	unsigned long newbrk, oldbrk;
290 	struct mm_struct *mm = current->mm;
291 	unsigned long min_brk;
292 	bool populate;
293 
294 	down_write(&mm->mmap_sem);
295 
296 #ifdef CONFIG_COMPAT_BRK
297 	/*
298 	 * CONFIG_COMPAT_BRK can still be overridden by setting
299 	 * randomize_va_space to 2, which will still cause mm->start_brk
300 	 * to be arbitrarily shifted
301 	 */
302 	if (current->brk_randomized)
303 		min_brk = mm->start_brk;
304 	else
305 		min_brk = mm->end_data;
306 #else
307 	min_brk = mm->start_brk;
308 #endif
309 	if (brk < min_brk)
310 		goto out;
311 
312 	/*
313 	 * Check against rlimit here. If this check is done later after the test
314 	 * of oldbrk with newbrk then it can escape the test and let the data
315 	 * segment grow beyond its set limit the in case where the limit is
316 	 * not page aligned -Ram Gupta
317 	 */
318 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 			      mm->end_data, mm->start_data))
320 		goto out;
321 
322 	newbrk = PAGE_ALIGN(brk);
323 	oldbrk = PAGE_ALIGN(mm->brk);
324 	if (oldbrk == newbrk)
325 		goto set_brk;
326 
327 	/* Always allow shrinking brk. */
328 	if (brk <= mm->brk) {
329 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330 			goto set_brk;
331 		goto out;
332 	}
333 
334 	/* Check against existing mmap mappings. */
335 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336 		goto out;
337 
338 	/* Ok, looks good - let it rip. */
339 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340 		goto out;
341 
342 set_brk:
343 	mm->brk = brk;
344 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 	up_write(&mm->mmap_sem);
346 	if (populate)
347 		mm_populate(oldbrk, newbrk - oldbrk);
348 	return brk;
349 
350 out:
351 	retval = mm->brk;
352 	up_write(&mm->mmap_sem);
353 	return retval;
354 }
355 
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358 	unsigned long max, subtree_gap;
359 	max = vma->vm_start;
360 	if (vma->vm_prev)
361 		max -= vma->vm_prev->vm_end;
362 	if (vma->vm_rb.rb_left) {
363 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 		if (subtree_gap > max)
366 			max = subtree_gap;
367 	}
368 	if (vma->vm_rb.rb_right) {
369 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 		if (subtree_gap > max)
372 			max = subtree_gap;
373 	}
374 	return max;
375 }
376 
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380 	int i = 0, j, bug = 0;
381 	struct rb_node *nd, *pn = NULL;
382 	unsigned long prev = 0, pend = 0;
383 
384 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 		struct vm_area_struct *vma;
386 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 		if (vma->vm_start < prev) {
388 			pr_emerg("vm_start %lx < prev %lx\n",
389 				  vma->vm_start, prev);
390 			bug = 1;
391 		}
392 		if (vma->vm_start < pend) {
393 			pr_emerg("vm_start %lx < pend %lx\n",
394 				  vma->vm_start, pend);
395 			bug = 1;
396 		}
397 		if (vma->vm_start > vma->vm_end) {
398 			pr_emerg("vm_start %lx > vm_end %lx\n",
399 				  vma->vm_start, vma->vm_end);
400 			bug = 1;
401 		}
402 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 			pr_emerg("free gap %lx, correct %lx\n",
404 			       vma->rb_subtree_gap,
405 			       vma_compute_subtree_gap(vma));
406 			bug = 1;
407 		}
408 		i++;
409 		pn = nd;
410 		prev = vma->vm_start;
411 		pend = vma->vm_end;
412 	}
413 	j = 0;
414 	for (nd = pn; nd; nd = rb_prev(nd))
415 		j++;
416 	if (i != j) {
417 		pr_emerg("backwards %d, forwards %d\n", j, i);
418 		bug = 1;
419 	}
420 	return bug ? -1 : i;
421 }
422 
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425 	struct rb_node *nd;
426 
427 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 		struct vm_area_struct *vma;
429 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 		VM_BUG_ON_VMA(vma != ignore &&
431 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432 			vma);
433 	}
434 }
435 
436 static void validate_mm(struct mm_struct *mm)
437 {
438 	int bug = 0;
439 	int i = 0;
440 	unsigned long highest_address = 0;
441 	struct vm_area_struct *vma = mm->mmap;
442 
443 	while (vma) {
444 		struct anon_vma_chain *avc;
445 
446 		vma_lock_anon_vma(vma);
447 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 			anon_vma_interval_tree_verify(avc);
449 		vma_unlock_anon_vma(vma);
450 		highest_address = vma->vm_end;
451 		vma = vma->vm_next;
452 		i++;
453 	}
454 	if (i != mm->map_count) {
455 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
456 		bug = 1;
457 	}
458 	if (highest_address != mm->highest_vm_end) {
459 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
460 			  mm->highest_vm_end, highest_address);
461 		bug = 1;
462 	}
463 	i = browse_rb(&mm->mm_rb);
464 	if (i != mm->map_count) {
465 		if (i != -1)
466 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
467 		bug = 1;
468 	}
469 	VM_BUG_ON_MM(bug, mm);
470 }
471 #else
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
474 #endif
475 
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
478 
479 /*
480  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481  * vma->vm_prev->vm_end values changed, without modifying the vma's position
482  * in the rbtree.
483  */
484 static void vma_gap_update(struct vm_area_struct *vma)
485 {
486 	/*
487 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488 	 * function that does exacltly what we want.
489 	 */
490 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
491 }
492 
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494 				 struct rb_root *root)
495 {
496 	/* All rb_subtree_gap values must be consistent prior to insertion */
497 	validate_mm_rb(root, NULL);
498 
499 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501 
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
503 {
504 	/*
505 	 * All rb_subtree_gap values must be consistent prior to erase,
506 	 * with the possible exception of the vma being erased.
507 	 */
508 	validate_mm_rb(root, vma);
509 
510 	/*
511 	 * Note rb_erase_augmented is a fairly large inline function,
512 	 * so make sure we instantiate it only once with our desired
513 	 * augmented rbtree callbacks.
514 	 */
515 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517 
518 /*
519  * vma has some anon_vma assigned, and is already inserted on that
520  * anon_vma's interval trees.
521  *
522  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523  * vma must be removed from the anon_vma's interval trees using
524  * anon_vma_interval_tree_pre_update_vma().
525  *
526  * After the update, the vma will be reinserted using
527  * anon_vma_interval_tree_post_update_vma().
528  *
529  * The entire update must be protected by exclusive mmap_sem and by
530  * the root anon_vma's mutex.
531  */
532 static inline void
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
534 {
535 	struct anon_vma_chain *avc;
536 
537 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
539 }
540 
541 static inline void
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
543 {
544 	struct anon_vma_chain *avc;
545 
546 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
548 }
549 
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551 		unsigned long end, struct vm_area_struct **pprev,
552 		struct rb_node ***rb_link, struct rb_node **rb_parent)
553 {
554 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
555 
556 	__rb_link = &mm->mm_rb.rb_node;
557 	rb_prev = __rb_parent = NULL;
558 
559 	while (*__rb_link) {
560 		struct vm_area_struct *vma_tmp;
561 
562 		__rb_parent = *__rb_link;
563 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
564 
565 		if (vma_tmp->vm_end > addr) {
566 			/* Fail if an existing vma overlaps the area */
567 			if (vma_tmp->vm_start < end)
568 				return -ENOMEM;
569 			__rb_link = &__rb_parent->rb_left;
570 		} else {
571 			rb_prev = __rb_parent;
572 			__rb_link = &__rb_parent->rb_right;
573 		}
574 	}
575 
576 	*pprev = NULL;
577 	if (rb_prev)
578 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579 	*rb_link = __rb_link;
580 	*rb_parent = __rb_parent;
581 	return 0;
582 }
583 
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585 		unsigned long addr, unsigned long end)
586 {
587 	unsigned long nr_pages = 0;
588 	struct vm_area_struct *vma;
589 
590 	/* Find first overlaping mapping */
591 	vma = find_vma_intersection(mm, addr, end);
592 	if (!vma)
593 		return 0;
594 
595 	nr_pages = (min(end, vma->vm_end) -
596 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
597 
598 	/* Iterate over the rest of the overlaps */
599 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600 		unsigned long overlap_len;
601 
602 		if (vma->vm_start > end)
603 			break;
604 
605 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
606 		nr_pages += overlap_len >> PAGE_SHIFT;
607 	}
608 
609 	return nr_pages;
610 }
611 
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613 		struct rb_node **rb_link, struct rb_node *rb_parent)
614 {
615 	WARN_ONCE(vma->vm_file && !vma->vm_ops, "missing vma->vm_ops");
616 
617 	/* Update tracking information for the gap following the new vma. */
618 	if (vma->vm_next)
619 		vma_gap_update(vma->vm_next);
620 	else
621 		mm->highest_vm_end = vma->vm_end;
622 
623 	/*
624 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
625 	 * correct insertion point for that vma. As a result, we could not
626 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
627 	 * So, we first insert the vma with a zero rb_subtree_gap value
628 	 * (to be consistent with what we did on the way down), and then
629 	 * immediately update the gap to the correct value. Finally we
630 	 * rebalance the rbtree after all augmented values have been set.
631 	 */
632 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633 	vma->rb_subtree_gap = 0;
634 	vma_gap_update(vma);
635 	vma_rb_insert(vma, &mm->mm_rb);
636 }
637 
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640 	struct file *file;
641 
642 	file = vma->vm_file;
643 	if (file) {
644 		struct address_space *mapping = file->f_mapping;
645 
646 		if (vma->vm_flags & VM_DENYWRITE)
647 			atomic_dec(&file_inode(file)->i_writecount);
648 		if (vma->vm_flags & VM_SHARED)
649 			atomic_inc(&mapping->i_mmap_writable);
650 
651 		flush_dcache_mmap_lock(mapping);
652 		vma_interval_tree_insert(vma, &mapping->i_mmap);
653 		flush_dcache_mmap_unlock(mapping);
654 	}
655 }
656 
657 static void
658 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
659 	struct vm_area_struct *prev, struct rb_node **rb_link,
660 	struct rb_node *rb_parent)
661 {
662 	__vma_link_list(mm, vma, prev, rb_parent);
663 	__vma_link_rb(mm, vma, rb_link, rb_parent);
664 }
665 
666 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
667 			struct vm_area_struct *prev, struct rb_node **rb_link,
668 			struct rb_node *rb_parent)
669 {
670 	struct address_space *mapping = NULL;
671 
672 	if (vma->vm_file) {
673 		mapping = vma->vm_file->f_mapping;
674 		i_mmap_lock_write(mapping);
675 	}
676 
677 	__vma_link(mm, vma, prev, rb_link, rb_parent);
678 	__vma_link_file(vma);
679 
680 	if (mapping)
681 		i_mmap_unlock_write(mapping);
682 
683 	mm->map_count++;
684 	validate_mm(mm);
685 }
686 
687 /*
688  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
689  * mm's list and rbtree.  It has already been inserted into the interval tree.
690  */
691 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
692 {
693 	struct vm_area_struct *prev;
694 	struct rb_node **rb_link, *rb_parent;
695 
696 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
697 			   &prev, &rb_link, &rb_parent))
698 		BUG();
699 	__vma_link(mm, vma, prev, rb_link, rb_parent);
700 	mm->map_count++;
701 }
702 
703 static inline void
704 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
705 		struct vm_area_struct *prev)
706 {
707 	struct vm_area_struct *next;
708 
709 	vma_rb_erase(vma, &mm->mm_rb);
710 	prev->vm_next = next = vma->vm_next;
711 	if (next)
712 		next->vm_prev = prev;
713 
714 	/* Kill the cache */
715 	vmacache_invalidate(mm);
716 }
717 
718 /*
719  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
720  * is already present in an i_mmap tree without adjusting the tree.
721  * The following helper function should be used when such adjustments
722  * are necessary.  The "insert" vma (if any) is to be inserted
723  * before we drop the necessary locks.
724  */
725 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
726 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
727 {
728 	struct mm_struct *mm = vma->vm_mm;
729 	struct vm_area_struct *next = vma->vm_next;
730 	struct vm_area_struct *importer = NULL;
731 	struct address_space *mapping = NULL;
732 	struct rb_root *root = NULL;
733 	struct anon_vma *anon_vma = NULL;
734 	struct file *file = vma->vm_file;
735 	bool start_changed = false, end_changed = false;
736 	long adjust_next = 0;
737 	int remove_next = 0;
738 
739 	if (next && !insert) {
740 		struct vm_area_struct *exporter = NULL;
741 
742 		if (end >= next->vm_end) {
743 			/*
744 			 * vma expands, overlapping all the next, and
745 			 * perhaps the one after too (mprotect case 6).
746 			 */
747 again:			remove_next = 1 + (end > next->vm_end);
748 			end = next->vm_end;
749 			exporter = next;
750 			importer = vma;
751 		} else if (end > next->vm_start) {
752 			/*
753 			 * vma expands, overlapping part of the next:
754 			 * mprotect case 5 shifting the boundary up.
755 			 */
756 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
757 			exporter = next;
758 			importer = vma;
759 		} else if (end < vma->vm_end) {
760 			/*
761 			 * vma shrinks, and !insert tells it's not
762 			 * split_vma inserting another: so it must be
763 			 * mprotect case 4 shifting the boundary down.
764 			 */
765 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
766 			exporter = vma;
767 			importer = next;
768 		}
769 
770 		/*
771 		 * Easily overlooked: when mprotect shifts the boundary,
772 		 * make sure the expanding vma has anon_vma set if the
773 		 * shrinking vma had, to cover any anon pages imported.
774 		 */
775 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
776 			int error;
777 
778 			importer->anon_vma = exporter->anon_vma;
779 			error = anon_vma_clone(importer, exporter);
780 			if (error)
781 				return error;
782 		}
783 	}
784 
785 	if (file) {
786 		mapping = file->f_mapping;
787 		root = &mapping->i_mmap;
788 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
789 
790 		if (adjust_next)
791 			uprobe_munmap(next, next->vm_start, next->vm_end);
792 
793 		i_mmap_lock_write(mapping);
794 		if (insert) {
795 			/*
796 			 * Put into interval tree now, so instantiated pages
797 			 * are visible to arm/parisc __flush_dcache_page
798 			 * throughout; but we cannot insert into address
799 			 * space until vma start or end is updated.
800 			 */
801 			__vma_link_file(insert);
802 		}
803 	}
804 
805 	vma_adjust_trans_huge(vma, start, end, adjust_next);
806 
807 	anon_vma = vma->anon_vma;
808 	if (!anon_vma && adjust_next)
809 		anon_vma = next->anon_vma;
810 	if (anon_vma) {
811 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
812 			  anon_vma != next->anon_vma, next);
813 		anon_vma_lock_write(anon_vma);
814 		anon_vma_interval_tree_pre_update_vma(vma);
815 		if (adjust_next)
816 			anon_vma_interval_tree_pre_update_vma(next);
817 	}
818 
819 	if (root) {
820 		flush_dcache_mmap_lock(mapping);
821 		vma_interval_tree_remove(vma, root);
822 		if (adjust_next)
823 			vma_interval_tree_remove(next, root);
824 	}
825 
826 	if (start != vma->vm_start) {
827 		vma->vm_start = start;
828 		start_changed = true;
829 	}
830 	if (end != vma->vm_end) {
831 		vma->vm_end = end;
832 		end_changed = true;
833 	}
834 	vma->vm_pgoff = pgoff;
835 	if (adjust_next) {
836 		next->vm_start += adjust_next << PAGE_SHIFT;
837 		next->vm_pgoff += adjust_next;
838 	}
839 
840 	if (root) {
841 		if (adjust_next)
842 			vma_interval_tree_insert(next, root);
843 		vma_interval_tree_insert(vma, root);
844 		flush_dcache_mmap_unlock(mapping);
845 	}
846 
847 	if (remove_next) {
848 		/*
849 		 * vma_merge has merged next into vma, and needs
850 		 * us to remove next before dropping the locks.
851 		 */
852 		__vma_unlink(mm, next, vma);
853 		if (file)
854 			__remove_shared_vm_struct(next, file, mapping);
855 	} else if (insert) {
856 		/*
857 		 * split_vma has split insert from vma, and needs
858 		 * us to insert it before dropping the locks
859 		 * (it may either follow vma or precede it).
860 		 */
861 		__insert_vm_struct(mm, insert);
862 	} else {
863 		if (start_changed)
864 			vma_gap_update(vma);
865 		if (end_changed) {
866 			if (!next)
867 				mm->highest_vm_end = end;
868 			else if (!adjust_next)
869 				vma_gap_update(next);
870 		}
871 	}
872 
873 	if (anon_vma) {
874 		anon_vma_interval_tree_post_update_vma(vma);
875 		if (adjust_next)
876 			anon_vma_interval_tree_post_update_vma(next);
877 		anon_vma_unlock_write(anon_vma);
878 	}
879 	if (mapping)
880 		i_mmap_unlock_write(mapping);
881 
882 	if (root) {
883 		uprobe_mmap(vma);
884 
885 		if (adjust_next)
886 			uprobe_mmap(next);
887 	}
888 
889 	if (remove_next) {
890 		if (file) {
891 			uprobe_munmap(next, next->vm_start, next->vm_end);
892 			fput(file);
893 		}
894 		if (next->anon_vma)
895 			anon_vma_merge(vma, next);
896 		mm->map_count--;
897 		mpol_put(vma_policy(next));
898 		kmem_cache_free(vm_area_cachep, next);
899 		/*
900 		 * In mprotect's case 6 (see comments on vma_merge),
901 		 * we must remove another next too. It would clutter
902 		 * up the code too much to do both in one go.
903 		 */
904 		next = vma->vm_next;
905 		if (remove_next == 2)
906 			goto again;
907 		else if (next)
908 			vma_gap_update(next);
909 		else
910 			mm->highest_vm_end = end;
911 	}
912 	if (insert && file)
913 		uprobe_mmap(insert);
914 
915 	validate_mm(mm);
916 
917 	return 0;
918 }
919 
920 /*
921  * If the vma has a ->close operation then the driver probably needs to release
922  * per-vma resources, so we don't attempt to merge those.
923  */
924 static inline int is_mergeable_vma(struct vm_area_struct *vma,
925 				struct file *file, unsigned long vm_flags,
926 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
927 {
928 	/*
929 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
930 	 * match the flags but dirty bit -- the caller should mark
931 	 * merged VMA as dirty. If dirty bit won't be excluded from
932 	 * comparison, we increase pressue on the memory system forcing
933 	 * the kernel to generate new VMAs when old one could be
934 	 * extended instead.
935 	 */
936 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
937 		return 0;
938 	if (vma->vm_file != file)
939 		return 0;
940 	if (vma->vm_ops && vma->vm_ops->close)
941 		return 0;
942 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
943 		return 0;
944 	return 1;
945 }
946 
947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
948 					struct anon_vma *anon_vma2,
949 					struct vm_area_struct *vma)
950 {
951 	/*
952 	 * The list_is_singular() test is to avoid merging VMA cloned from
953 	 * parents. This can improve scalability caused by anon_vma lock.
954 	 */
955 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
956 		list_is_singular(&vma->anon_vma_chain)))
957 		return 1;
958 	return anon_vma1 == anon_vma2;
959 }
960 
961 /*
962  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
963  * in front of (at a lower virtual address and file offset than) the vma.
964  *
965  * We cannot merge two vmas if they have differently assigned (non-NULL)
966  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
967  *
968  * We don't check here for the merged mmap wrapping around the end of pagecache
969  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
970  * wrap, nor mmaps which cover the final page at index -1UL.
971  */
972 static int
973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
974 		     struct anon_vma *anon_vma, struct file *file,
975 		     pgoff_t vm_pgoff,
976 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
977 {
978 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
979 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
980 		if (vma->vm_pgoff == vm_pgoff)
981 			return 1;
982 	}
983 	return 0;
984 }
985 
986 /*
987  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
988  * beyond (at a higher virtual address and file offset than) the vma.
989  *
990  * We cannot merge two vmas if they have differently assigned (non-NULL)
991  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
992  */
993 static int
994 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
995 		    struct anon_vma *anon_vma, struct file *file,
996 		    pgoff_t vm_pgoff,
997 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
998 {
999 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1000 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1001 		pgoff_t vm_pglen;
1002 		vm_pglen = vma_pages(vma);
1003 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1004 			return 1;
1005 	}
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1011  * whether that can be merged with its predecessor or its successor.
1012  * Or both (it neatly fills a hole).
1013  *
1014  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1015  * certain not to be mapped by the time vma_merge is called; but when
1016  * called for mprotect, it is certain to be already mapped (either at
1017  * an offset within prev, or at the start of next), and the flags of
1018  * this area are about to be changed to vm_flags - and the no-change
1019  * case has already been eliminated.
1020  *
1021  * The following mprotect cases have to be considered, where AAAA is
1022  * the area passed down from mprotect_fixup, never extending beyond one
1023  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1024  *
1025  *     AAAA             AAAA                AAAA          AAAA
1026  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1027  *    cannot merge    might become    might become    might become
1028  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1029  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1030  *    mremap move:                                    PPPPNNNNNNNN 8
1031  *        AAAA
1032  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1033  *    might become    case 1 below    case 2 below    case 3 below
1034  *
1035  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1036  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1037  */
1038 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1039 			struct vm_area_struct *prev, unsigned long addr,
1040 			unsigned long end, unsigned long vm_flags,
1041 			struct anon_vma *anon_vma, struct file *file,
1042 			pgoff_t pgoff, struct mempolicy *policy,
1043 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1044 {
1045 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1046 	struct vm_area_struct *area, *next;
1047 	int err;
1048 
1049 	/*
1050 	 * We later require that vma->vm_flags == vm_flags,
1051 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1052 	 */
1053 	if (vm_flags & VM_SPECIAL)
1054 		return NULL;
1055 
1056 	if (prev)
1057 		next = prev->vm_next;
1058 	else
1059 		next = mm->mmap;
1060 	area = next;
1061 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1062 		next = next->vm_next;
1063 
1064 	/*
1065 	 * Can it merge with the predecessor?
1066 	 */
1067 	if (prev && prev->vm_end == addr &&
1068 			mpol_equal(vma_policy(prev), policy) &&
1069 			can_vma_merge_after(prev, vm_flags,
1070 					    anon_vma, file, pgoff,
1071 					    vm_userfaultfd_ctx)) {
1072 		/*
1073 		 * OK, it can.  Can we now merge in the successor as well?
1074 		 */
1075 		if (next && end == next->vm_start &&
1076 				mpol_equal(policy, vma_policy(next)) &&
1077 				can_vma_merge_before(next, vm_flags,
1078 						     anon_vma, file,
1079 						     pgoff+pglen,
1080 						     vm_userfaultfd_ctx) &&
1081 				is_mergeable_anon_vma(prev->anon_vma,
1082 						      next->anon_vma, NULL)) {
1083 							/* cases 1, 6 */
1084 			err = vma_adjust(prev, prev->vm_start,
1085 				next->vm_end, prev->vm_pgoff, NULL);
1086 		} else					/* cases 2, 5, 7 */
1087 			err = vma_adjust(prev, prev->vm_start,
1088 				end, prev->vm_pgoff, NULL);
1089 		if (err)
1090 			return NULL;
1091 		khugepaged_enter_vma_merge(prev, vm_flags);
1092 		return prev;
1093 	}
1094 
1095 	/*
1096 	 * Can this new request be merged in front of next?
1097 	 */
1098 	if (next && end == next->vm_start &&
1099 			mpol_equal(policy, vma_policy(next)) &&
1100 			can_vma_merge_before(next, vm_flags,
1101 					     anon_vma, file, pgoff+pglen,
1102 					     vm_userfaultfd_ctx)) {
1103 		if (prev && addr < prev->vm_end)	/* case 4 */
1104 			err = vma_adjust(prev, prev->vm_start,
1105 				addr, prev->vm_pgoff, NULL);
1106 		else					/* cases 3, 8 */
1107 			err = vma_adjust(area, addr, next->vm_end,
1108 				next->vm_pgoff - pglen, NULL);
1109 		if (err)
1110 			return NULL;
1111 		khugepaged_enter_vma_merge(area, vm_flags);
1112 		return area;
1113 	}
1114 
1115 	return NULL;
1116 }
1117 
1118 /*
1119  * Rough compatbility check to quickly see if it's even worth looking
1120  * at sharing an anon_vma.
1121  *
1122  * They need to have the same vm_file, and the flags can only differ
1123  * in things that mprotect may change.
1124  *
1125  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1126  * we can merge the two vma's. For example, we refuse to merge a vma if
1127  * there is a vm_ops->close() function, because that indicates that the
1128  * driver is doing some kind of reference counting. But that doesn't
1129  * really matter for the anon_vma sharing case.
1130  */
1131 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1132 {
1133 	return a->vm_end == b->vm_start &&
1134 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1135 		a->vm_file == b->vm_file &&
1136 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1137 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1138 }
1139 
1140 /*
1141  * Do some basic sanity checking to see if we can re-use the anon_vma
1142  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1143  * the same as 'old', the other will be the new one that is trying
1144  * to share the anon_vma.
1145  *
1146  * NOTE! This runs with mm_sem held for reading, so it is possible that
1147  * the anon_vma of 'old' is concurrently in the process of being set up
1148  * by another page fault trying to merge _that_. But that's ok: if it
1149  * is being set up, that automatically means that it will be a singleton
1150  * acceptable for merging, so we can do all of this optimistically. But
1151  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1152  *
1153  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1154  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1155  * is to return an anon_vma that is "complex" due to having gone through
1156  * a fork).
1157  *
1158  * We also make sure that the two vma's are compatible (adjacent,
1159  * and with the same memory policies). That's all stable, even with just
1160  * a read lock on the mm_sem.
1161  */
1162 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1163 {
1164 	if (anon_vma_compatible(a, b)) {
1165 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1166 
1167 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1168 			return anon_vma;
1169 	}
1170 	return NULL;
1171 }
1172 
1173 /*
1174  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1175  * neighbouring vmas for a suitable anon_vma, before it goes off
1176  * to allocate a new anon_vma.  It checks because a repetitive
1177  * sequence of mprotects and faults may otherwise lead to distinct
1178  * anon_vmas being allocated, preventing vma merge in subsequent
1179  * mprotect.
1180  */
1181 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1182 {
1183 	struct anon_vma *anon_vma;
1184 	struct vm_area_struct *near;
1185 
1186 	near = vma->vm_next;
1187 	if (!near)
1188 		goto try_prev;
1189 
1190 	anon_vma = reusable_anon_vma(near, vma, near);
1191 	if (anon_vma)
1192 		return anon_vma;
1193 try_prev:
1194 	near = vma->vm_prev;
1195 	if (!near)
1196 		goto none;
1197 
1198 	anon_vma = reusable_anon_vma(near, near, vma);
1199 	if (anon_vma)
1200 		return anon_vma;
1201 none:
1202 	/*
1203 	 * There's no absolute need to look only at touching neighbours:
1204 	 * we could search further afield for "compatible" anon_vmas.
1205 	 * But it would probably just be a waste of time searching,
1206 	 * or lead to too many vmas hanging off the same anon_vma.
1207 	 * We're trying to allow mprotect remerging later on,
1208 	 * not trying to minimize memory used for anon_vmas.
1209 	 */
1210 	return NULL;
1211 }
1212 
1213 #ifdef CONFIG_PROC_FS
1214 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1215 						struct file *file, long pages)
1216 {
1217 	const unsigned long stack_flags
1218 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1219 
1220 	mm->total_vm += pages;
1221 
1222 	if (file) {
1223 		mm->shared_vm += pages;
1224 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1225 			mm->exec_vm += pages;
1226 	} else if (flags & stack_flags)
1227 		mm->stack_vm += pages;
1228 }
1229 #endif /* CONFIG_PROC_FS */
1230 
1231 /*
1232  * If a hint addr is less than mmap_min_addr change hint to be as
1233  * low as possible but still greater than mmap_min_addr
1234  */
1235 static inline unsigned long round_hint_to_min(unsigned long hint)
1236 {
1237 	hint &= PAGE_MASK;
1238 	if (((void *)hint != NULL) &&
1239 	    (hint < mmap_min_addr))
1240 		return PAGE_ALIGN(mmap_min_addr);
1241 	return hint;
1242 }
1243 
1244 static inline int mlock_future_check(struct mm_struct *mm,
1245 				     unsigned long flags,
1246 				     unsigned long len)
1247 {
1248 	unsigned long locked, lock_limit;
1249 
1250 	/*  mlock MCL_FUTURE? */
1251 	if (flags & VM_LOCKED) {
1252 		locked = len >> PAGE_SHIFT;
1253 		locked += mm->locked_vm;
1254 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1255 		lock_limit >>= PAGE_SHIFT;
1256 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1257 			return -EAGAIN;
1258 	}
1259 	return 0;
1260 }
1261 
1262 /*
1263  * The caller must hold down_write(&current->mm->mmap_sem).
1264  */
1265 unsigned long do_mmap(struct file *file, unsigned long addr,
1266 			unsigned long len, unsigned long prot,
1267 			unsigned long flags, vm_flags_t vm_flags,
1268 			unsigned long pgoff, unsigned long *populate)
1269 {
1270 	struct mm_struct *mm = current->mm;
1271 
1272 	*populate = 0;
1273 
1274 	if (!len)
1275 		return -EINVAL;
1276 
1277 	/*
1278 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1279 	 *
1280 	 * (the exception is when the underlying filesystem is noexec
1281 	 *  mounted, in which case we dont add PROT_EXEC.)
1282 	 */
1283 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1284 		if (!(file && path_noexec(&file->f_path)))
1285 			prot |= PROT_EXEC;
1286 
1287 	if (!(flags & MAP_FIXED))
1288 		addr = round_hint_to_min(addr);
1289 
1290 	/* Careful about overflows.. */
1291 	len = PAGE_ALIGN(len);
1292 	if (!len)
1293 		return -ENOMEM;
1294 
1295 	/* offset overflow? */
1296 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1297 		return -EOVERFLOW;
1298 
1299 	/* Too many mappings? */
1300 	if (mm->map_count > sysctl_max_map_count)
1301 		return -ENOMEM;
1302 
1303 	/* Obtain the address to map to. we verify (or select) it and ensure
1304 	 * that it represents a valid section of the address space.
1305 	 */
1306 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1307 	if (addr & ~PAGE_MASK)
1308 		return addr;
1309 
1310 	/* Do simple checking here so the lower-level routines won't have
1311 	 * to. we assume access permissions have been handled by the open
1312 	 * of the memory object, so we don't do any here.
1313 	 */
1314 	vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1315 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1316 
1317 	if (flags & MAP_LOCKED)
1318 		if (!can_do_mlock())
1319 			return -EPERM;
1320 
1321 	if (mlock_future_check(mm, vm_flags, len))
1322 		return -EAGAIN;
1323 
1324 	if (file) {
1325 		struct inode *inode = file_inode(file);
1326 
1327 		switch (flags & MAP_TYPE) {
1328 		case MAP_SHARED:
1329 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1330 				return -EACCES;
1331 
1332 			/*
1333 			 * Make sure we don't allow writing to an append-only
1334 			 * file..
1335 			 */
1336 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337 				return -EACCES;
1338 
1339 			/*
1340 			 * Make sure there are no mandatory locks on the file.
1341 			 */
1342 			if (locks_verify_locked(file))
1343 				return -EAGAIN;
1344 
1345 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1346 			if (!(file->f_mode & FMODE_WRITE))
1347 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1348 
1349 			/* fall through */
1350 		case MAP_PRIVATE:
1351 			if (!(file->f_mode & FMODE_READ))
1352 				return -EACCES;
1353 			if (path_noexec(&file->f_path)) {
1354 				if (vm_flags & VM_EXEC)
1355 					return -EPERM;
1356 				vm_flags &= ~VM_MAYEXEC;
1357 			}
1358 
1359 			if (!file->f_op->mmap)
1360 				return -ENODEV;
1361 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1362 				return -EINVAL;
1363 			break;
1364 
1365 		default:
1366 			return -EINVAL;
1367 		}
1368 	} else {
1369 		switch (flags & MAP_TYPE) {
1370 		case MAP_SHARED:
1371 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372 				return -EINVAL;
1373 			/*
1374 			 * Ignore pgoff.
1375 			 */
1376 			pgoff = 0;
1377 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1378 			break;
1379 		case MAP_PRIVATE:
1380 			/*
1381 			 * Set pgoff according to addr for anon_vma.
1382 			 */
1383 			pgoff = addr >> PAGE_SHIFT;
1384 			break;
1385 		default:
1386 			return -EINVAL;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Set 'VM_NORESERVE' if we should not account for the
1392 	 * memory use of this mapping.
1393 	 */
1394 	if (flags & MAP_NORESERVE) {
1395 		/* We honor MAP_NORESERVE if allowed to overcommit */
1396 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1397 			vm_flags |= VM_NORESERVE;
1398 
1399 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1400 		if (file && is_file_hugepages(file))
1401 			vm_flags |= VM_NORESERVE;
1402 	}
1403 
1404 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1405 	if (!IS_ERR_VALUE(addr) &&
1406 	    ((vm_flags & VM_LOCKED) ||
1407 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1408 		*populate = len;
1409 	return addr;
1410 }
1411 
1412 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1413 		unsigned long, prot, unsigned long, flags,
1414 		unsigned long, fd, unsigned long, pgoff)
1415 {
1416 	struct file *file = NULL;
1417 	unsigned long retval = -EBADF;
1418 
1419 	if (!(flags & MAP_ANONYMOUS)) {
1420 		audit_mmap_fd(fd, flags);
1421 		file = fget(fd);
1422 		if (!file)
1423 			goto out;
1424 		if (is_file_hugepages(file))
1425 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1426 		retval = -EINVAL;
1427 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1428 			goto out_fput;
1429 	} else if (flags & MAP_HUGETLB) {
1430 		struct user_struct *user = NULL;
1431 		struct hstate *hs;
1432 
1433 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1434 		if (!hs)
1435 			return -EINVAL;
1436 
1437 		len = ALIGN(len, huge_page_size(hs));
1438 		/*
1439 		 * VM_NORESERVE is used because the reservations will be
1440 		 * taken when vm_ops->mmap() is called
1441 		 * A dummy user value is used because we are not locking
1442 		 * memory so no accounting is necessary
1443 		 */
1444 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1445 				VM_NORESERVE,
1446 				&user, HUGETLB_ANONHUGE_INODE,
1447 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1448 		if (IS_ERR(file))
1449 			return PTR_ERR(file);
1450 	}
1451 
1452 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1453 
1454 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1455 out_fput:
1456 	if (file)
1457 		fput(file);
1458 out:
1459 	return retval;
1460 }
1461 
1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1463 struct mmap_arg_struct {
1464 	unsigned long addr;
1465 	unsigned long len;
1466 	unsigned long prot;
1467 	unsigned long flags;
1468 	unsigned long fd;
1469 	unsigned long offset;
1470 };
1471 
1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1473 {
1474 	struct mmap_arg_struct a;
1475 
1476 	if (copy_from_user(&a, arg, sizeof(a)))
1477 		return -EFAULT;
1478 	if (a.offset & ~PAGE_MASK)
1479 		return -EINVAL;
1480 
1481 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1482 			      a.offset >> PAGE_SHIFT);
1483 }
1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1485 
1486 /*
1487  * Some shared mappigns will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma)
1493 {
1494 	vm_flags_t vm_flags = vma->vm_flags;
1495 
1496 	/* If it was private or non-writable, the write bit is already clear */
1497 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1498 		return 0;
1499 
1500 	/* The backer wishes to know when pages are first written to? */
1501 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1502 		return 1;
1503 
1504 	/* The open routine did something to the protections that pgprot_modify
1505 	 * won't preserve? */
1506 	if (pgprot_val(vma->vm_page_prot) !=
1507 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1508 		return 0;
1509 
1510 	/* Do we need to track softdirty? */
1511 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1512 		return 1;
1513 
1514 	/* Specialty mapping? */
1515 	if (vm_flags & VM_PFNMAP)
1516 		return 0;
1517 
1518 	/* Can the mapping track the dirty pages? */
1519 	return vma->vm_file && vma->vm_file->f_mapping &&
1520 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1521 }
1522 
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529 	/*
1530 	 * hugetlb has its own accounting separate from the core VM
1531 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532 	 */
1533 	if (file && is_file_hugepages(file))
1534 		return 0;
1535 
1536 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538 
1539 unsigned long mmap_region(struct file *file, unsigned long addr,
1540 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1541 {
1542 	struct mm_struct *mm = current->mm;
1543 	struct vm_area_struct *vma, *prev;
1544 	int error;
1545 	struct rb_node **rb_link, *rb_parent;
1546 	unsigned long charged = 0;
1547 
1548 	/* Check against address space limit. */
1549 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1550 		unsigned long nr_pages;
1551 
1552 		/*
1553 		 * MAP_FIXED may remove pages of mappings that intersects with
1554 		 * requested mapping. Account for the pages it would unmap.
1555 		 */
1556 		if (!(vm_flags & MAP_FIXED))
1557 			return -ENOMEM;
1558 
1559 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1560 
1561 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1562 			return -ENOMEM;
1563 	}
1564 
1565 	/* Clear old maps */
1566 	error = -ENOMEM;
1567 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1568 			      &rb_parent)) {
1569 		if (do_munmap(mm, addr, len))
1570 			return -ENOMEM;
1571 	}
1572 
1573 	/*
1574 	 * Private writable mapping: check memory availability
1575 	 */
1576 	if (accountable_mapping(file, vm_flags)) {
1577 		charged = len >> PAGE_SHIFT;
1578 		if (security_vm_enough_memory_mm(mm, charged))
1579 			return -ENOMEM;
1580 		vm_flags |= VM_ACCOUNT;
1581 	}
1582 
1583 	/*
1584 	 * Can we just expand an old mapping?
1585 	 */
1586 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1587 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1588 	if (vma)
1589 		goto out;
1590 
1591 	/*
1592 	 * Determine the object being mapped and call the appropriate
1593 	 * specific mapper. the address has already been validated, but
1594 	 * not unmapped, but the maps are removed from the list.
1595 	 */
1596 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1597 	if (!vma) {
1598 		error = -ENOMEM;
1599 		goto unacct_error;
1600 	}
1601 
1602 	vma->vm_mm = mm;
1603 	vma->vm_start = addr;
1604 	vma->vm_end = addr + len;
1605 	vma->vm_flags = vm_flags;
1606 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1607 	vma->vm_pgoff = pgoff;
1608 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1609 
1610 	if (file) {
1611 		if (vm_flags & VM_DENYWRITE) {
1612 			error = deny_write_access(file);
1613 			if (error)
1614 				goto free_vma;
1615 		}
1616 		if (vm_flags & VM_SHARED) {
1617 			error = mapping_map_writable(file->f_mapping);
1618 			if (error)
1619 				goto allow_write_and_free_vma;
1620 		}
1621 
1622 		/* ->mmap() can change vma->vm_file, but must guarantee that
1623 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1624 		 * and map writably if VM_SHARED is set. This usually means the
1625 		 * new file must not have been exposed to user-space, yet.
1626 		 */
1627 		vma->vm_file = get_file(file);
1628 		error = file->f_op->mmap(file, vma);
1629 		if (error)
1630 			goto unmap_and_free_vma;
1631 
1632 		/* Can addr have changed??
1633 		 *
1634 		 * Answer: Yes, several device drivers can do it in their
1635 		 *         f_op->mmap method. -DaveM
1636 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1637 		 *      be updated for vma_link()
1638 		 */
1639 		WARN_ON_ONCE(addr != vma->vm_start);
1640 
1641 		/* All file mapping must have ->vm_ops set */
1642 		if (!vma->vm_ops) {
1643 			static const struct vm_operations_struct dummy_ops = {};
1644 			vma->vm_ops = &dummy_ops;
1645 		}
1646 
1647 		addr = vma->vm_start;
1648 		vm_flags = vma->vm_flags;
1649 	} else if (vm_flags & VM_SHARED) {
1650 		error = shmem_zero_setup(vma);
1651 		if (error)
1652 			goto free_vma;
1653 	}
1654 
1655 	vma_link(mm, vma, prev, rb_link, rb_parent);
1656 	/* Once vma denies write, undo our temporary denial count */
1657 	if (file) {
1658 		if (vm_flags & VM_SHARED)
1659 			mapping_unmap_writable(file->f_mapping);
1660 		if (vm_flags & VM_DENYWRITE)
1661 			allow_write_access(file);
1662 	}
1663 	file = vma->vm_file;
1664 out:
1665 	perf_event_mmap(vma);
1666 
1667 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1668 	if (vm_flags & VM_LOCKED) {
1669 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1670 					vma == get_gate_vma(current->mm)))
1671 			mm->locked_vm += (len >> PAGE_SHIFT);
1672 		else
1673 			vma->vm_flags &= ~VM_LOCKED;
1674 	}
1675 
1676 	if (file)
1677 		uprobe_mmap(vma);
1678 
1679 	/*
1680 	 * New (or expanded) vma always get soft dirty status.
1681 	 * Otherwise user-space soft-dirty page tracker won't
1682 	 * be able to distinguish situation when vma area unmapped,
1683 	 * then new mapped in-place (which must be aimed as
1684 	 * a completely new data area).
1685 	 */
1686 	vma->vm_flags |= VM_SOFTDIRTY;
1687 
1688 	vma_set_page_prot(vma);
1689 
1690 	return addr;
1691 
1692 unmap_and_free_vma:
1693 	vma->vm_file = NULL;
1694 	fput(file);
1695 
1696 	/* Undo any partial mapping done by a device driver. */
1697 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1698 	charged = 0;
1699 	if (vm_flags & VM_SHARED)
1700 		mapping_unmap_writable(file->f_mapping);
1701 allow_write_and_free_vma:
1702 	if (vm_flags & VM_DENYWRITE)
1703 		allow_write_access(file);
1704 free_vma:
1705 	kmem_cache_free(vm_area_cachep, vma);
1706 unacct_error:
1707 	if (charged)
1708 		vm_unacct_memory(charged);
1709 	return error;
1710 }
1711 
1712 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1713 {
1714 	/*
1715 	 * We implement the search by looking for an rbtree node that
1716 	 * immediately follows a suitable gap. That is,
1717 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1718 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1719 	 * - gap_end - gap_start >= length
1720 	 */
1721 
1722 	struct mm_struct *mm = current->mm;
1723 	struct vm_area_struct *vma;
1724 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1725 
1726 	/* Adjust search length to account for worst case alignment overhead */
1727 	length = info->length + info->align_mask;
1728 	if (length < info->length)
1729 		return -ENOMEM;
1730 
1731 	/* Adjust search limits by the desired length */
1732 	if (info->high_limit < length)
1733 		return -ENOMEM;
1734 	high_limit = info->high_limit - length;
1735 
1736 	if (info->low_limit > high_limit)
1737 		return -ENOMEM;
1738 	low_limit = info->low_limit + length;
1739 
1740 	/* Check if rbtree root looks promising */
1741 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1742 		goto check_highest;
1743 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1744 	if (vma->rb_subtree_gap < length)
1745 		goto check_highest;
1746 
1747 	while (true) {
1748 		/* Visit left subtree if it looks promising */
1749 		gap_end = vma->vm_start;
1750 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1751 			struct vm_area_struct *left =
1752 				rb_entry(vma->vm_rb.rb_left,
1753 					 struct vm_area_struct, vm_rb);
1754 			if (left->rb_subtree_gap >= length) {
1755 				vma = left;
1756 				continue;
1757 			}
1758 		}
1759 
1760 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1761 check_current:
1762 		/* Check if current node has a suitable gap */
1763 		if (gap_start > high_limit)
1764 			return -ENOMEM;
1765 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1766 			goto found;
1767 
1768 		/* Visit right subtree if it looks promising */
1769 		if (vma->vm_rb.rb_right) {
1770 			struct vm_area_struct *right =
1771 				rb_entry(vma->vm_rb.rb_right,
1772 					 struct vm_area_struct, vm_rb);
1773 			if (right->rb_subtree_gap >= length) {
1774 				vma = right;
1775 				continue;
1776 			}
1777 		}
1778 
1779 		/* Go back up the rbtree to find next candidate node */
1780 		while (true) {
1781 			struct rb_node *prev = &vma->vm_rb;
1782 			if (!rb_parent(prev))
1783 				goto check_highest;
1784 			vma = rb_entry(rb_parent(prev),
1785 				       struct vm_area_struct, vm_rb);
1786 			if (prev == vma->vm_rb.rb_left) {
1787 				gap_start = vma->vm_prev->vm_end;
1788 				gap_end = vma->vm_start;
1789 				goto check_current;
1790 			}
1791 		}
1792 	}
1793 
1794 check_highest:
1795 	/* Check highest gap, which does not precede any rbtree node */
1796 	gap_start = mm->highest_vm_end;
1797 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1798 	if (gap_start > high_limit)
1799 		return -ENOMEM;
1800 
1801 found:
1802 	/* We found a suitable gap. Clip it with the original low_limit. */
1803 	if (gap_start < info->low_limit)
1804 		gap_start = info->low_limit;
1805 
1806 	/* Adjust gap address to the desired alignment */
1807 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1808 
1809 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1810 	VM_BUG_ON(gap_start + info->length > gap_end);
1811 	return gap_start;
1812 }
1813 
1814 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1815 {
1816 	struct mm_struct *mm = current->mm;
1817 	struct vm_area_struct *vma;
1818 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1819 
1820 	/* Adjust search length to account for worst case alignment overhead */
1821 	length = info->length + info->align_mask;
1822 	if (length < info->length)
1823 		return -ENOMEM;
1824 
1825 	/*
1826 	 * Adjust search limits by the desired length.
1827 	 * See implementation comment at top of unmapped_area().
1828 	 */
1829 	gap_end = info->high_limit;
1830 	if (gap_end < length)
1831 		return -ENOMEM;
1832 	high_limit = gap_end - length;
1833 
1834 	if (info->low_limit > high_limit)
1835 		return -ENOMEM;
1836 	low_limit = info->low_limit + length;
1837 
1838 	/* Check highest gap, which does not precede any rbtree node */
1839 	gap_start = mm->highest_vm_end;
1840 	if (gap_start <= high_limit)
1841 		goto found_highest;
1842 
1843 	/* Check if rbtree root looks promising */
1844 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1845 		return -ENOMEM;
1846 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1847 	if (vma->rb_subtree_gap < length)
1848 		return -ENOMEM;
1849 
1850 	while (true) {
1851 		/* Visit right subtree if it looks promising */
1852 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1853 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1854 			struct vm_area_struct *right =
1855 				rb_entry(vma->vm_rb.rb_right,
1856 					 struct vm_area_struct, vm_rb);
1857 			if (right->rb_subtree_gap >= length) {
1858 				vma = right;
1859 				continue;
1860 			}
1861 		}
1862 
1863 check_current:
1864 		/* Check if current node has a suitable gap */
1865 		gap_end = vma->vm_start;
1866 		if (gap_end < low_limit)
1867 			return -ENOMEM;
1868 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1869 			goto found;
1870 
1871 		/* Visit left subtree if it looks promising */
1872 		if (vma->vm_rb.rb_left) {
1873 			struct vm_area_struct *left =
1874 				rb_entry(vma->vm_rb.rb_left,
1875 					 struct vm_area_struct, vm_rb);
1876 			if (left->rb_subtree_gap >= length) {
1877 				vma = left;
1878 				continue;
1879 			}
1880 		}
1881 
1882 		/* Go back up the rbtree to find next candidate node */
1883 		while (true) {
1884 			struct rb_node *prev = &vma->vm_rb;
1885 			if (!rb_parent(prev))
1886 				return -ENOMEM;
1887 			vma = rb_entry(rb_parent(prev),
1888 				       struct vm_area_struct, vm_rb);
1889 			if (prev == vma->vm_rb.rb_right) {
1890 				gap_start = vma->vm_prev ?
1891 					vma->vm_prev->vm_end : 0;
1892 				goto check_current;
1893 			}
1894 		}
1895 	}
1896 
1897 found:
1898 	/* We found a suitable gap. Clip it with the original high_limit. */
1899 	if (gap_end > info->high_limit)
1900 		gap_end = info->high_limit;
1901 
1902 found_highest:
1903 	/* Compute highest gap address at the desired alignment */
1904 	gap_end -= info->length;
1905 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1906 
1907 	VM_BUG_ON(gap_end < info->low_limit);
1908 	VM_BUG_ON(gap_end < gap_start);
1909 	return gap_end;
1910 }
1911 
1912 /* Get an address range which is currently unmapped.
1913  * For shmat() with addr=0.
1914  *
1915  * Ugly calling convention alert:
1916  * Return value with the low bits set means error value,
1917  * ie
1918  *	if (ret & ~PAGE_MASK)
1919  *		error = ret;
1920  *
1921  * This function "knows" that -ENOMEM has the bits set.
1922  */
1923 #ifndef HAVE_ARCH_UNMAPPED_AREA
1924 unsigned long
1925 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1926 		unsigned long len, unsigned long pgoff, unsigned long flags)
1927 {
1928 	struct mm_struct *mm = current->mm;
1929 	struct vm_area_struct *vma;
1930 	struct vm_unmapped_area_info info;
1931 
1932 	if (len > TASK_SIZE - mmap_min_addr)
1933 		return -ENOMEM;
1934 
1935 	if (flags & MAP_FIXED)
1936 		return addr;
1937 
1938 	if (addr) {
1939 		addr = PAGE_ALIGN(addr);
1940 		vma = find_vma(mm, addr);
1941 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1942 		    (!vma || addr + len <= vma->vm_start))
1943 			return addr;
1944 	}
1945 
1946 	info.flags = 0;
1947 	info.length = len;
1948 	info.low_limit = mm->mmap_base;
1949 	info.high_limit = TASK_SIZE;
1950 	info.align_mask = 0;
1951 	return vm_unmapped_area(&info);
1952 }
1953 #endif
1954 
1955 /*
1956  * This mmap-allocator allocates new areas top-down from below the
1957  * stack's low limit (the base):
1958  */
1959 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1960 unsigned long
1961 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1962 			  const unsigned long len, const unsigned long pgoff,
1963 			  const unsigned long flags)
1964 {
1965 	struct vm_area_struct *vma;
1966 	struct mm_struct *mm = current->mm;
1967 	unsigned long addr = addr0;
1968 	struct vm_unmapped_area_info info;
1969 
1970 	/* requested length too big for entire address space */
1971 	if (len > TASK_SIZE - mmap_min_addr)
1972 		return -ENOMEM;
1973 
1974 	if (flags & MAP_FIXED)
1975 		return addr;
1976 
1977 	/* requesting a specific address */
1978 	if (addr) {
1979 		addr = PAGE_ALIGN(addr);
1980 		vma = find_vma(mm, addr);
1981 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1982 				(!vma || addr + len <= vma->vm_start))
1983 			return addr;
1984 	}
1985 
1986 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1987 	info.length = len;
1988 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1989 	info.high_limit = mm->mmap_base;
1990 	info.align_mask = 0;
1991 	addr = vm_unmapped_area(&info);
1992 
1993 	/*
1994 	 * A failed mmap() very likely causes application failure,
1995 	 * so fall back to the bottom-up function here. This scenario
1996 	 * can happen with large stack limits and large mmap()
1997 	 * allocations.
1998 	 */
1999 	if (addr & ~PAGE_MASK) {
2000 		VM_BUG_ON(addr != -ENOMEM);
2001 		info.flags = 0;
2002 		info.low_limit = TASK_UNMAPPED_BASE;
2003 		info.high_limit = TASK_SIZE;
2004 		addr = vm_unmapped_area(&info);
2005 	}
2006 
2007 	return addr;
2008 }
2009 #endif
2010 
2011 unsigned long
2012 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2013 		unsigned long pgoff, unsigned long flags)
2014 {
2015 	unsigned long (*get_area)(struct file *, unsigned long,
2016 				  unsigned long, unsigned long, unsigned long);
2017 
2018 	unsigned long error = arch_mmap_check(addr, len, flags);
2019 	if (error)
2020 		return error;
2021 
2022 	/* Careful about overflows.. */
2023 	if (len > TASK_SIZE)
2024 		return -ENOMEM;
2025 
2026 	get_area = current->mm->get_unmapped_area;
2027 	if (file && file->f_op->get_unmapped_area)
2028 		get_area = file->f_op->get_unmapped_area;
2029 	addr = get_area(file, addr, len, pgoff, flags);
2030 	if (IS_ERR_VALUE(addr))
2031 		return addr;
2032 
2033 	if (addr > TASK_SIZE - len)
2034 		return -ENOMEM;
2035 	if (addr & ~PAGE_MASK)
2036 		return -EINVAL;
2037 
2038 	addr = arch_rebalance_pgtables(addr, len);
2039 	error = security_mmap_addr(addr);
2040 	return error ? error : addr;
2041 }
2042 
2043 EXPORT_SYMBOL(get_unmapped_area);
2044 
2045 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2046 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2047 {
2048 	struct rb_node *rb_node;
2049 	struct vm_area_struct *vma;
2050 
2051 	/* Check the cache first. */
2052 	vma = vmacache_find(mm, addr);
2053 	if (likely(vma))
2054 		return vma;
2055 
2056 	rb_node = mm->mm_rb.rb_node;
2057 	vma = NULL;
2058 
2059 	while (rb_node) {
2060 		struct vm_area_struct *tmp;
2061 
2062 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2063 
2064 		if (tmp->vm_end > addr) {
2065 			vma = tmp;
2066 			if (tmp->vm_start <= addr)
2067 				break;
2068 			rb_node = rb_node->rb_left;
2069 		} else
2070 			rb_node = rb_node->rb_right;
2071 	}
2072 
2073 	if (vma)
2074 		vmacache_update(addr, vma);
2075 	return vma;
2076 }
2077 
2078 EXPORT_SYMBOL(find_vma);
2079 
2080 /*
2081  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2082  */
2083 struct vm_area_struct *
2084 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2085 			struct vm_area_struct **pprev)
2086 {
2087 	struct vm_area_struct *vma;
2088 
2089 	vma = find_vma(mm, addr);
2090 	if (vma) {
2091 		*pprev = vma->vm_prev;
2092 	} else {
2093 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2094 		*pprev = NULL;
2095 		while (rb_node) {
2096 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2097 			rb_node = rb_node->rb_right;
2098 		}
2099 	}
2100 	return vma;
2101 }
2102 
2103 /*
2104  * Verify that the stack growth is acceptable and
2105  * update accounting. This is shared with both the
2106  * grow-up and grow-down cases.
2107  */
2108 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2109 {
2110 	struct mm_struct *mm = vma->vm_mm;
2111 	struct rlimit *rlim = current->signal->rlim;
2112 	unsigned long new_start, actual_size;
2113 
2114 	/* address space limit tests */
2115 	if (!may_expand_vm(mm, grow))
2116 		return -ENOMEM;
2117 
2118 	/* Stack limit test */
2119 	actual_size = size;
2120 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2121 		actual_size -= PAGE_SIZE;
2122 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2123 		return -ENOMEM;
2124 
2125 	/* mlock limit tests */
2126 	if (vma->vm_flags & VM_LOCKED) {
2127 		unsigned long locked;
2128 		unsigned long limit;
2129 		locked = mm->locked_vm + grow;
2130 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2131 		limit >>= PAGE_SHIFT;
2132 		if (locked > limit && !capable(CAP_IPC_LOCK))
2133 			return -ENOMEM;
2134 	}
2135 
2136 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2137 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2138 			vma->vm_end - size;
2139 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2140 		return -EFAULT;
2141 
2142 	/*
2143 	 * Overcommit..  This must be the final test, as it will
2144 	 * update security statistics.
2145 	 */
2146 	if (security_vm_enough_memory_mm(mm, grow))
2147 		return -ENOMEM;
2148 
2149 	/* Ok, everything looks good - let it rip */
2150 	if (vma->vm_flags & VM_LOCKED)
2151 		mm->locked_vm += grow;
2152 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2153 	return 0;
2154 }
2155 
2156 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2157 /*
2158  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2159  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2160  */
2161 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2162 {
2163 	int error;
2164 
2165 	if (!(vma->vm_flags & VM_GROWSUP))
2166 		return -EFAULT;
2167 
2168 	/*
2169 	 * We must make sure the anon_vma is allocated
2170 	 * so that the anon_vma locking is not a noop.
2171 	 */
2172 	if (unlikely(anon_vma_prepare(vma)))
2173 		return -ENOMEM;
2174 	vma_lock_anon_vma(vma);
2175 
2176 	/*
2177 	 * vma->vm_start/vm_end cannot change under us because the caller
2178 	 * is required to hold the mmap_sem in read mode.  We need the
2179 	 * anon_vma lock to serialize against concurrent expand_stacks.
2180 	 * Also guard against wrapping around to address 0.
2181 	 */
2182 	if (address < PAGE_ALIGN(address+4))
2183 		address = PAGE_ALIGN(address+4);
2184 	else {
2185 		vma_unlock_anon_vma(vma);
2186 		return -ENOMEM;
2187 	}
2188 	error = 0;
2189 
2190 	/* Somebody else might have raced and expanded it already */
2191 	if (address > vma->vm_end) {
2192 		unsigned long size, grow;
2193 
2194 		size = address - vma->vm_start;
2195 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2196 
2197 		error = -ENOMEM;
2198 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2199 			error = acct_stack_growth(vma, size, grow);
2200 			if (!error) {
2201 				/*
2202 				 * vma_gap_update() doesn't support concurrent
2203 				 * updates, but we only hold a shared mmap_sem
2204 				 * lock here, so we need to protect against
2205 				 * concurrent vma expansions.
2206 				 * vma_lock_anon_vma() doesn't help here, as
2207 				 * we don't guarantee that all growable vmas
2208 				 * in a mm share the same root anon vma.
2209 				 * So, we reuse mm->page_table_lock to guard
2210 				 * against concurrent vma expansions.
2211 				 */
2212 				spin_lock(&vma->vm_mm->page_table_lock);
2213 				anon_vma_interval_tree_pre_update_vma(vma);
2214 				vma->vm_end = address;
2215 				anon_vma_interval_tree_post_update_vma(vma);
2216 				if (vma->vm_next)
2217 					vma_gap_update(vma->vm_next);
2218 				else
2219 					vma->vm_mm->highest_vm_end = address;
2220 				spin_unlock(&vma->vm_mm->page_table_lock);
2221 
2222 				perf_event_mmap(vma);
2223 			}
2224 		}
2225 	}
2226 	vma_unlock_anon_vma(vma);
2227 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2228 	validate_mm(vma->vm_mm);
2229 	return error;
2230 }
2231 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2232 
2233 /*
2234  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2235  */
2236 int expand_downwards(struct vm_area_struct *vma,
2237 				   unsigned long address)
2238 {
2239 	int error;
2240 
2241 	/*
2242 	 * We must make sure the anon_vma is allocated
2243 	 * so that the anon_vma locking is not a noop.
2244 	 */
2245 	if (unlikely(anon_vma_prepare(vma)))
2246 		return -ENOMEM;
2247 
2248 	address &= PAGE_MASK;
2249 	error = security_mmap_addr(address);
2250 	if (error)
2251 		return error;
2252 
2253 	vma_lock_anon_vma(vma);
2254 
2255 	/*
2256 	 * vma->vm_start/vm_end cannot change under us because the caller
2257 	 * is required to hold the mmap_sem in read mode.  We need the
2258 	 * anon_vma lock to serialize against concurrent expand_stacks.
2259 	 */
2260 
2261 	/* Somebody else might have raced and expanded it already */
2262 	if (address < vma->vm_start) {
2263 		unsigned long size, grow;
2264 
2265 		size = vma->vm_end - address;
2266 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2267 
2268 		error = -ENOMEM;
2269 		if (grow <= vma->vm_pgoff) {
2270 			error = acct_stack_growth(vma, size, grow);
2271 			if (!error) {
2272 				/*
2273 				 * vma_gap_update() doesn't support concurrent
2274 				 * updates, but we only hold a shared mmap_sem
2275 				 * lock here, so we need to protect against
2276 				 * concurrent vma expansions.
2277 				 * vma_lock_anon_vma() doesn't help here, as
2278 				 * we don't guarantee that all growable vmas
2279 				 * in a mm share the same root anon vma.
2280 				 * So, we reuse mm->page_table_lock to guard
2281 				 * against concurrent vma expansions.
2282 				 */
2283 				spin_lock(&vma->vm_mm->page_table_lock);
2284 				anon_vma_interval_tree_pre_update_vma(vma);
2285 				vma->vm_start = address;
2286 				vma->vm_pgoff -= grow;
2287 				anon_vma_interval_tree_post_update_vma(vma);
2288 				vma_gap_update(vma);
2289 				spin_unlock(&vma->vm_mm->page_table_lock);
2290 
2291 				perf_event_mmap(vma);
2292 			}
2293 		}
2294 	}
2295 	vma_unlock_anon_vma(vma);
2296 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2297 	validate_mm(vma->vm_mm);
2298 	return error;
2299 }
2300 
2301 /*
2302  * Note how expand_stack() refuses to expand the stack all the way to
2303  * abut the next virtual mapping, *unless* that mapping itself is also
2304  * a stack mapping. We want to leave room for a guard page, after all
2305  * (the guard page itself is not added here, that is done by the
2306  * actual page faulting logic)
2307  *
2308  * This matches the behavior of the guard page logic (see mm/memory.c:
2309  * check_stack_guard_page()), which only allows the guard page to be
2310  * removed under these circumstances.
2311  */
2312 #ifdef CONFIG_STACK_GROWSUP
2313 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2314 {
2315 	struct vm_area_struct *next;
2316 
2317 	address &= PAGE_MASK;
2318 	next = vma->vm_next;
2319 	if (next && next->vm_start == address + PAGE_SIZE) {
2320 		if (!(next->vm_flags & VM_GROWSUP))
2321 			return -ENOMEM;
2322 	}
2323 	return expand_upwards(vma, address);
2324 }
2325 
2326 struct vm_area_struct *
2327 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2328 {
2329 	struct vm_area_struct *vma, *prev;
2330 
2331 	addr &= PAGE_MASK;
2332 	vma = find_vma_prev(mm, addr, &prev);
2333 	if (vma && (vma->vm_start <= addr))
2334 		return vma;
2335 	if (!prev || expand_stack(prev, addr))
2336 		return NULL;
2337 	if (prev->vm_flags & VM_LOCKED)
2338 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2339 	return prev;
2340 }
2341 #else
2342 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2343 {
2344 	struct vm_area_struct *prev;
2345 
2346 	address &= PAGE_MASK;
2347 	prev = vma->vm_prev;
2348 	if (prev && prev->vm_end == address) {
2349 		if (!(prev->vm_flags & VM_GROWSDOWN))
2350 			return -ENOMEM;
2351 	}
2352 	return expand_downwards(vma, address);
2353 }
2354 
2355 struct vm_area_struct *
2356 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2357 {
2358 	struct vm_area_struct *vma;
2359 	unsigned long start;
2360 
2361 	addr &= PAGE_MASK;
2362 	vma = find_vma(mm, addr);
2363 	if (!vma)
2364 		return NULL;
2365 	if (vma->vm_start <= addr)
2366 		return vma;
2367 	if (!(vma->vm_flags & VM_GROWSDOWN))
2368 		return NULL;
2369 	start = vma->vm_start;
2370 	if (expand_stack(vma, addr))
2371 		return NULL;
2372 	if (vma->vm_flags & VM_LOCKED)
2373 		populate_vma_page_range(vma, addr, start, NULL);
2374 	return vma;
2375 }
2376 #endif
2377 
2378 EXPORT_SYMBOL_GPL(find_extend_vma);
2379 
2380 /*
2381  * Ok - we have the memory areas we should free on the vma list,
2382  * so release them, and do the vma updates.
2383  *
2384  * Called with the mm semaphore held.
2385  */
2386 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2387 {
2388 	unsigned long nr_accounted = 0;
2389 
2390 	/* Update high watermark before we lower total_vm */
2391 	update_hiwater_vm(mm);
2392 	do {
2393 		long nrpages = vma_pages(vma);
2394 
2395 		if (vma->vm_flags & VM_ACCOUNT)
2396 			nr_accounted += nrpages;
2397 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2398 		vma = remove_vma(vma);
2399 	} while (vma);
2400 	vm_unacct_memory(nr_accounted);
2401 	validate_mm(mm);
2402 }
2403 
2404 /*
2405  * Get rid of page table information in the indicated region.
2406  *
2407  * Called with the mm semaphore held.
2408  */
2409 static void unmap_region(struct mm_struct *mm,
2410 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2411 		unsigned long start, unsigned long end)
2412 {
2413 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2414 	struct mmu_gather tlb;
2415 
2416 	lru_add_drain();
2417 	tlb_gather_mmu(&tlb, mm, start, end);
2418 	update_hiwater_rss(mm);
2419 	unmap_vmas(&tlb, vma, start, end);
2420 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2421 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2422 	tlb_finish_mmu(&tlb, start, end);
2423 }
2424 
2425 /*
2426  * Create a list of vma's touched by the unmap, removing them from the mm's
2427  * vma list as we go..
2428  */
2429 static void
2430 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2431 	struct vm_area_struct *prev, unsigned long end)
2432 {
2433 	struct vm_area_struct **insertion_point;
2434 	struct vm_area_struct *tail_vma = NULL;
2435 
2436 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2437 	vma->vm_prev = NULL;
2438 	do {
2439 		vma_rb_erase(vma, &mm->mm_rb);
2440 		mm->map_count--;
2441 		tail_vma = vma;
2442 		vma = vma->vm_next;
2443 	} while (vma && vma->vm_start < end);
2444 	*insertion_point = vma;
2445 	if (vma) {
2446 		vma->vm_prev = prev;
2447 		vma_gap_update(vma);
2448 	} else
2449 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2450 	tail_vma->vm_next = NULL;
2451 
2452 	/* Kill the cache */
2453 	vmacache_invalidate(mm);
2454 }
2455 
2456 /*
2457  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2458  * munmap path where it doesn't make sense to fail.
2459  */
2460 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2461 	      unsigned long addr, int new_below)
2462 {
2463 	struct vm_area_struct *new;
2464 	int err;
2465 
2466 	if (is_vm_hugetlb_page(vma) && (addr &
2467 					~(huge_page_mask(hstate_vma(vma)))))
2468 		return -EINVAL;
2469 
2470 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2471 	if (!new)
2472 		return -ENOMEM;
2473 
2474 	/* most fields are the same, copy all, and then fixup */
2475 	*new = *vma;
2476 
2477 	INIT_LIST_HEAD(&new->anon_vma_chain);
2478 
2479 	if (new_below)
2480 		new->vm_end = addr;
2481 	else {
2482 		new->vm_start = addr;
2483 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2484 	}
2485 
2486 	err = vma_dup_policy(vma, new);
2487 	if (err)
2488 		goto out_free_vma;
2489 
2490 	err = anon_vma_clone(new, vma);
2491 	if (err)
2492 		goto out_free_mpol;
2493 
2494 	if (new->vm_file)
2495 		get_file(new->vm_file);
2496 
2497 	if (new->vm_ops && new->vm_ops->open)
2498 		new->vm_ops->open(new);
2499 
2500 	if (new_below)
2501 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2502 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2503 	else
2504 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2505 
2506 	/* Success. */
2507 	if (!err)
2508 		return 0;
2509 
2510 	/* Clean everything up if vma_adjust failed. */
2511 	if (new->vm_ops && new->vm_ops->close)
2512 		new->vm_ops->close(new);
2513 	if (new->vm_file)
2514 		fput(new->vm_file);
2515 	unlink_anon_vmas(new);
2516  out_free_mpol:
2517 	mpol_put(vma_policy(new));
2518  out_free_vma:
2519 	kmem_cache_free(vm_area_cachep, new);
2520 	return err;
2521 }
2522 
2523 /*
2524  * Split a vma into two pieces at address 'addr', a new vma is allocated
2525  * either for the first part or the tail.
2526  */
2527 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2528 	      unsigned long addr, int new_below)
2529 {
2530 	if (mm->map_count >= sysctl_max_map_count)
2531 		return -ENOMEM;
2532 
2533 	return __split_vma(mm, vma, addr, new_below);
2534 }
2535 
2536 /* Munmap is split into 2 main parts -- this part which finds
2537  * what needs doing, and the areas themselves, which do the
2538  * work.  This now handles partial unmappings.
2539  * Jeremy Fitzhardinge <jeremy@goop.org>
2540  */
2541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2542 {
2543 	unsigned long end;
2544 	struct vm_area_struct *vma, *prev, *last;
2545 
2546 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2547 		return -EINVAL;
2548 
2549 	len = PAGE_ALIGN(len);
2550 	if (len == 0)
2551 		return -EINVAL;
2552 
2553 	/* Find the first overlapping VMA */
2554 	vma = find_vma(mm, start);
2555 	if (!vma)
2556 		return 0;
2557 	prev = vma->vm_prev;
2558 	/* we have  start < vma->vm_end  */
2559 
2560 	/* if it doesn't overlap, we have nothing.. */
2561 	end = start + len;
2562 	if (vma->vm_start >= end)
2563 		return 0;
2564 
2565 	/*
2566 	 * If we need to split any vma, do it now to save pain later.
2567 	 *
2568 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2569 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2570 	 * places tmp vma above, and higher split_vma places tmp vma below.
2571 	 */
2572 	if (start > vma->vm_start) {
2573 		int error;
2574 
2575 		/*
2576 		 * Make sure that map_count on return from munmap() will
2577 		 * not exceed its limit; but let map_count go just above
2578 		 * its limit temporarily, to help free resources as expected.
2579 		 */
2580 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2581 			return -ENOMEM;
2582 
2583 		error = __split_vma(mm, vma, start, 0);
2584 		if (error)
2585 			return error;
2586 		prev = vma;
2587 	}
2588 
2589 	/* Does it split the last one? */
2590 	last = find_vma(mm, end);
2591 	if (last && end > last->vm_start) {
2592 		int error = __split_vma(mm, last, end, 1);
2593 		if (error)
2594 			return error;
2595 	}
2596 	vma = prev ? prev->vm_next : mm->mmap;
2597 
2598 	/*
2599 	 * unlock any mlock()ed ranges before detaching vmas
2600 	 */
2601 	if (mm->locked_vm) {
2602 		struct vm_area_struct *tmp = vma;
2603 		while (tmp && tmp->vm_start < end) {
2604 			if (tmp->vm_flags & VM_LOCKED) {
2605 				mm->locked_vm -= vma_pages(tmp);
2606 				munlock_vma_pages_all(tmp);
2607 			}
2608 			tmp = tmp->vm_next;
2609 		}
2610 	}
2611 
2612 	/*
2613 	 * Remove the vma's, and unmap the actual pages
2614 	 */
2615 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2616 	unmap_region(mm, vma, prev, start, end);
2617 
2618 	arch_unmap(mm, vma, start, end);
2619 
2620 	/* Fix up all other VM information */
2621 	remove_vma_list(mm, vma);
2622 
2623 	return 0;
2624 }
2625 
2626 int vm_munmap(unsigned long start, size_t len)
2627 {
2628 	int ret;
2629 	struct mm_struct *mm = current->mm;
2630 
2631 	down_write(&mm->mmap_sem);
2632 	ret = do_munmap(mm, start, len);
2633 	up_write(&mm->mmap_sem);
2634 	return ret;
2635 }
2636 EXPORT_SYMBOL(vm_munmap);
2637 
2638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2639 {
2640 	profile_munmap(addr);
2641 	return vm_munmap(addr, len);
2642 }
2643 
2644 
2645 /*
2646  * Emulation of deprecated remap_file_pages() syscall.
2647  */
2648 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2649 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2650 {
2651 
2652 	struct mm_struct *mm = current->mm;
2653 	struct vm_area_struct *vma;
2654 	unsigned long populate = 0;
2655 	unsigned long ret = -EINVAL;
2656 	struct file *file;
2657 
2658 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2659 			"See Documentation/vm/remap_file_pages.txt.\n",
2660 			current->comm, current->pid);
2661 
2662 	if (prot)
2663 		return ret;
2664 	start = start & PAGE_MASK;
2665 	size = size & PAGE_MASK;
2666 
2667 	if (start + size <= start)
2668 		return ret;
2669 
2670 	/* Does pgoff wrap? */
2671 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2672 		return ret;
2673 
2674 	down_write(&mm->mmap_sem);
2675 	vma = find_vma(mm, start);
2676 
2677 	if (!vma || !(vma->vm_flags & VM_SHARED))
2678 		goto out;
2679 
2680 	if (start < vma->vm_start || start + size > vma->vm_end)
2681 		goto out;
2682 
2683 	if (pgoff == linear_page_index(vma, start)) {
2684 		ret = 0;
2685 		goto out;
2686 	}
2687 
2688 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2689 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2690 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2691 
2692 	flags &= MAP_NONBLOCK;
2693 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2694 	if (vma->vm_flags & VM_LOCKED) {
2695 		flags |= MAP_LOCKED;
2696 		/* drop PG_Mlocked flag for over-mapped range */
2697 		munlock_vma_pages_range(vma, start, start + size);
2698 	}
2699 
2700 	file = get_file(vma->vm_file);
2701 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2702 			prot, flags, pgoff, &populate);
2703 	fput(file);
2704 out:
2705 	up_write(&mm->mmap_sem);
2706 	if (populate)
2707 		mm_populate(ret, populate);
2708 	if (!IS_ERR_VALUE(ret))
2709 		ret = 0;
2710 	return ret;
2711 }
2712 
2713 static inline void verify_mm_writelocked(struct mm_struct *mm)
2714 {
2715 #ifdef CONFIG_DEBUG_VM
2716 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2717 		WARN_ON(1);
2718 		up_read(&mm->mmap_sem);
2719 	}
2720 #endif
2721 }
2722 
2723 /*
2724  *  this is really a simplified "do_mmap".  it only handles
2725  *  anonymous maps.  eventually we may be able to do some
2726  *  brk-specific accounting here.
2727  */
2728 static unsigned long do_brk(unsigned long addr, unsigned long len)
2729 {
2730 	struct mm_struct *mm = current->mm;
2731 	struct vm_area_struct *vma, *prev;
2732 	unsigned long flags;
2733 	struct rb_node **rb_link, *rb_parent;
2734 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2735 	int error;
2736 
2737 	len = PAGE_ALIGN(len);
2738 	if (!len)
2739 		return addr;
2740 
2741 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2742 
2743 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2744 	if (error & ~PAGE_MASK)
2745 		return error;
2746 
2747 	error = mlock_future_check(mm, mm->def_flags, len);
2748 	if (error)
2749 		return error;
2750 
2751 	/*
2752 	 * mm->mmap_sem is required to protect against another thread
2753 	 * changing the mappings in case we sleep.
2754 	 */
2755 	verify_mm_writelocked(mm);
2756 
2757 	/*
2758 	 * Clear old maps.  this also does some error checking for us
2759 	 */
2760 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2761 			      &rb_parent)) {
2762 		if (do_munmap(mm, addr, len))
2763 			return -ENOMEM;
2764 	}
2765 
2766 	/* Check against address space limits *after* clearing old maps... */
2767 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2768 		return -ENOMEM;
2769 
2770 	if (mm->map_count > sysctl_max_map_count)
2771 		return -ENOMEM;
2772 
2773 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2774 		return -ENOMEM;
2775 
2776 	/* Can we just expand an old private anonymous mapping? */
2777 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2778 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2779 	if (vma)
2780 		goto out;
2781 
2782 	/*
2783 	 * create a vma struct for an anonymous mapping
2784 	 */
2785 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2786 	if (!vma) {
2787 		vm_unacct_memory(len >> PAGE_SHIFT);
2788 		return -ENOMEM;
2789 	}
2790 
2791 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2792 	vma->vm_mm = mm;
2793 	vma->vm_start = addr;
2794 	vma->vm_end = addr + len;
2795 	vma->vm_pgoff = pgoff;
2796 	vma->vm_flags = flags;
2797 	vma->vm_page_prot = vm_get_page_prot(flags);
2798 	vma_link(mm, vma, prev, rb_link, rb_parent);
2799 out:
2800 	perf_event_mmap(vma);
2801 	mm->total_vm += len >> PAGE_SHIFT;
2802 	if (flags & VM_LOCKED)
2803 		mm->locked_vm += (len >> PAGE_SHIFT);
2804 	vma->vm_flags |= VM_SOFTDIRTY;
2805 	return addr;
2806 }
2807 
2808 unsigned long vm_brk(unsigned long addr, unsigned long len)
2809 {
2810 	struct mm_struct *mm = current->mm;
2811 	unsigned long ret;
2812 	bool populate;
2813 
2814 	down_write(&mm->mmap_sem);
2815 	ret = do_brk(addr, len);
2816 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2817 	up_write(&mm->mmap_sem);
2818 	if (populate)
2819 		mm_populate(addr, len);
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL(vm_brk);
2823 
2824 /* Release all mmaps. */
2825 void exit_mmap(struct mm_struct *mm)
2826 {
2827 	struct mmu_gather tlb;
2828 	struct vm_area_struct *vma;
2829 	unsigned long nr_accounted = 0;
2830 
2831 	/* mm's last user has gone, and its about to be pulled down */
2832 	mmu_notifier_release(mm);
2833 
2834 	if (mm->locked_vm) {
2835 		vma = mm->mmap;
2836 		while (vma) {
2837 			if (vma->vm_flags & VM_LOCKED)
2838 				munlock_vma_pages_all(vma);
2839 			vma = vma->vm_next;
2840 		}
2841 	}
2842 
2843 	arch_exit_mmap(mm);
2844 
2845 	vma = mm->mmap;
2846 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2847 		return;
2848 
2849 	lru_add_drain();
2850 	flush_cache_mm(mm);
2851 	tlb_gather_mmu(&tlb, mm, 0, -1);
2852 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2853 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2854 	unmap_vmas(&tlb, vma, 0, -1);
2855 
2856 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2857 	tlb_finish_mmu(&tlb, 0, -1);
2858 
2859 	/*
2860 	 * Walk the list again, actually closing and freeing it,
2861 	 * with preemption enabled, without holding any MM locks.
2862 	 */
2863 	while (vma) {
2864 		if (vma->vm_flags & VM_ACCOUNT)
2865 			nr_accounted += vma_pages(vma);
2866 		vma = remove_vma(vma);
2867 	}
2868 	vm_unacct_memory(nr_accounted);
2869 }
2870 
2871 /* Insert vm structure into process list sorted by address
2872  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2873  * then i_mmap_rwsem is taken here.
2874  */
2875 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2876 {
2877 	struct vm_area_struct *prev;
2878 	struct rb_node **rb_link, *rb_parent;
2879 
2880 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2881 			   &prev, &rb_link, &rb_parent))
2882 		return -ENOMEM;
2883 	if ((vma->vm_flags & VM_ACCOUNT) &&
2884 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2885 		return -ENOMEM;
2886 
2887 	/*
2888 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2889 	 * until its first write fault, when page's anon_vma and index
2890 	 * are set.  But now set the vm_pgoff it will almost certainly
2891 	 * end up with (unless mremap moves it elsewhere before that
2892 	 * first wfault), so /proc/pid/maps tells a consistent story.
2893 	 *
2894 	 * By setting it to reflect the virtual start address of the
2895 	 * vma, merges and splits can happen in a seamless way, just
2896 	 * using the existing file pgoff checks and manipulations.
2897 	 * Similarly in do_mmap_pgoff and in do_brk.
2898 	 */
2899 	if (vma_is_anonymous(vma)) {
2900 		BUG_ON(vma->anon_vma);
2901 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2902 	}
2903 
2904 	vma_link(mm, vma, prev, rb_link, rb_parent);
2905 	return 0;
2906 }
2907 
2908 /*
2909  * Copy the vma structure to a new location in the same mm,
2910  * prior to moving page table entries, to effect an mremap move.
2911  */
2912 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2913 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2914 	bool *need_rmap_locks)
2915 {
2916 	struct vm_area_struct *vma = *vmap;
2917 	unsigned long vma_start = vma->vm_start;
2918 	struct mm_struct *mm = vma->vm_mm;
2919 	struct vm_area_struct *new_vma, *prev;
2920 	struct rb_node **rb_link, *rb_parent;
2921 	bool faulted_in_anon_vma = true;
2922 
2923 	/*
2924 	 * If anonymous vma has not yet been faulted, update new pgoff
2925 	 * to match new location, to increase its chance of merging.
2926 	 */
2927 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2928 		pgoff = addr >> PAGE_SHIFT;
2929 		faulted_in_anon_vma = false;
2930 	}
2931 
2932 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2933 		return NULL;	/* should never get here */
2934 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2935 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2936 			    vma->vm_userfaultfd_ctx);
2937 	if (new_vma) {
2938 		/*
2939 		 * Source vma may have been merged into new_vma
2940 		 */
2941 		if (unlikely(vma_start >= new_vma->vm_start &&
2942 			     vma_start < new_vma->vm_end)) {
2943 			/*
2944 			 * The only way we can get a vma_merge with
2945 			 * self during an mremap is if the vma hasn't
2946 			 * been faulted in yet and we were allowed to
2947 			 * reset the dst vma->vm_pgoff to the
2948 			 * destination address of the mremap to allow
2949 			 * the merge to happen. mremap must change the
2950 			 * vm_pgoff linearity between src and dst vmas
2951 			 * (in turn preventing a vma_merge) to be
2952 			 * safe. It is only safe to keep the vm_pgoff
2953 			 * linear if there are no pages mapped yet.
2954 			 */
2955 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2956 			*vmap = vma = new_vma;
2957 		}
2958 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2959 	} else {
2960 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2961 		if (!new_vma)
2962 			goto out;
2963 		*new_vma = *vma;
2964 		new_vma->vm_start = addr;
2965 		new_vma->vm_end = addr + len;
2966 		new_vma->vm_pgoff = pgoff;
2967 		if (vma_dup_policy(vma, new_vma))
2968 			goto out_free_vma;
2969 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2970 		if (anon_vma_clone(new_vma, vma))
2971 			goto out_free_mempol;
2972 		if (new_vma->vm_file)
2973 			get_file(new_vma->vm_file);
2974 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2975 			new_vma->vm_ops->open(new_vma);
2976 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2977 		*need_rmap_locks = false;
2978 	}
2979 	return new_vma;
2980 
2981 out_free_mempol:
2982 	mpol_put(vma_policy(new_vma));
2983 out_free_vma:
2984 	kmem_cache_free(vm_area_cachep, new_vma);
2985 out:
2986 	return NULL;
2987 }
2988 
2989 /*
2990  * Return true if the calling process may expand its vm space by the passed
2991  * number of pages
2992  */
2993 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2994 {
2995 	unsigned long cur = mm->total_vm;	/* pages */
2996 	unsigned long lim;
2997 
2998 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2999 
3000 	if (cur + npages > lim)
3001 		return 0;
3002 	return 1;
3003 }
3004 
3005 static int special_mapping_fault(struct vm_area_struct *vma,
3006 				 struct vm_fault *vmf);
3007 
3008 /*
3009  * Having a close hook prevents vma merging regardless of flags.
3010  */
3011 static void special_mapping_close(struct vm_area_struct *vma)
3012 {
3013 }
3014 
3015 static const char *special_mapping_name(struct vm_area_struct *vma)
3016 {
3017 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3018 }
3019 
3020 static const struct vm_operations_struct special_mapping_vmops = {
3021 	.close = special_mapping_close,
3022 	.fault = special_mapping_fault,
3023 	.name = special_mapping_name,
3024 };
3025 
3026 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3027 	.close = special_mapping_close,
3028 	.fault = special_mapping_fault,
3029 };
3030 
3031 static int special_mapping_fault(struct vm_area_struct *vma,
3032 				struct vm_fault *vmf)
3033 {
3034 	pgoff_t pgoff;
3035 	struct page **pages;
3036 
3037 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3038 		pages = vma->vm_private_data;
3039 	else
3040 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3041 			pages;
3042 
3043 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3044 		pgoff--;
3045 
3046 	if (*pages) {
3047 		struct page *page = *pages;
3048 		get_page(page);
3049 		vmf->page = page;
3050 		return 0;
3051 	}
3052 
3053 	return VM_FAULT_SIGBUS;
3054 }
3055 
3056 static struct vm_area_struct *__install_special_mapping(
3057 	struct mm_struct *mm,
3058 	unsigned long addr, unsigned long len,
3059 	unsigned long vm_flags, const struct vm_operations_struct *ops,
3060 	void *priv)
3061 {
3062 	int ret;
3063 	struct vm_area_struct *vma;
3064 
3065 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3066 	if (unlikely(vma == NULL))
3067 		return ERR_PTR(-ENOMEM);
3068 
3069 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3070 	vma->vm_mm = mm;
3071 	vma->vm_start = addr;
3072 	vma->vm_end = addr + len;
3073 
3074 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3075 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3076 
3077 	vma->vm_ops = ops;
3078 	vma->vm_private_data = priv;
3079 
3080 	ret = insert_vm_struct(mm, vma);
3081 	if (ret)
3082 		goto out;
3083 
3084 	mm->total_vm += len >> PAGE_SHIFT;
3085 
3086 	perf_event_mmap(vma);
3087 
3088 	return vma;
3089 
3090 out:
3091 	kmem_cache_free(vm_area_cachep, vma);
3092 	return ERR_PTR(ret);
3093 }
3094 
3095 /*
3096  * Called with mm->mmap_sem held for writing.
3097  * Insert a new vma covering the given region, with the given flags.
3098  * Its pages are supplied by the given array of struct page *.
3099  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3100  * The region past the last page supplied will always produce SIGBUS.
3101  * The array pointer and the pages it points to are assumed to stay alive
3102  * for as long as this mapping might exist.
3103  */
3104 struct vm_area_struct *_install_special_mapping(
3105 	struct mm_struct *mm,
3106 	unsigned long addr, unsigned long len,
3107 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3108 {
3109 	return __install_special_mapping(mm, addr, len, vm_flags,
3110 					 &special_mapping_vmops, (void *)spec);
3111 }
3112 
3113 int install_special_mapping(struct mm_struct *mm,
3114 			    unsigned long addr, unsigned long len,
3115 			    unsigned long vm_flags, struct page **pages)
3116 {
3117 	struct vm_area_struct *vma = __install_special_mapping(
3118 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3119 		(void *)pages);
3120 
3121 	return PTR_ERR_OR_ZERO(vma);
3122 }
3123 
3124 static DEFINE_MUTEX(mm_all_locks_mutex);
3125 
3126 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3127 {
3128 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3129 		/*
3130 		 * The LSB of head.next can't change from under us
3131 		 * because we hold the mm_all_locks_mutex.
3132 		 */
3133 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3134 		/*
3135 		 * We can safely modify head.next after taking the
3136 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3137 		 * the same anon_vma we won't take it again.
3138 		 *
3139 		 * No need of atomic instructions here, head.next
3140 		 * can't change from under us thanks to the
3141 		 * anon_vma->root->rwsem.
3142 		 */
3143 		if (__test_and_set_bit(0, (unsigned long *)
3144 				       &anon_vma->root->rb_root.rb_node))
3145 			BUG();
3146 	}
3147 }
3148 
3149 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3150 {
3151 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3152 		/*
3153 		 * AS_MM_ALL_LOCKS can't change from under us because
3154 		 * we hold the mm_all_locks_mutex.
3155 		 *
3156 		 * Operations on ->flags have to be atomic because
3157 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3158 		 * mm_all_locks_mutex, there may be other cpus
3159 		 * changing other bitflags in parallel to us.
3160 		 */
3161 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3162 			BUG();
3163 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3164 	}
3165 }
3166 
3167 /*
3168  * This operation locks against the VM for all pte/vma/mm related
3169  * operations that could ever happen on a certain mm. This includes
3170  * vmtruncate, try_to_unmap, and all page faults.
3171  *
3172  * The caller must take the mmap_sem in write mode before calling
3173  * mm_take_all_locks(). The caller isn't allowed to release the
3174  * mmap_sem until mm_drop_all_locks() returns.
3175  *
3176  * mmap_sem in write mode is required in order to block all operations
3177  * that could modify pagetables and free pages without need of
3178  * altering the vma layout. It's also needed in write mode to avoid new
3179  * anon_vmas to be associated with existing vmas.
3180  *
3181  * A single task can't take more than one mm_take_all_locks() in a row
3182  * or it would deadlock.
3183  *
3184  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3185  * mapping->flags avoid to take the same lock twice, if more than one
3186  * vma in this mm is backed by the same anon_vma or address_space.
3187  *
3188  * We can take all the locks in random order because the VM code
3189  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3190  * takes more than one of them in a row. Secondly we're protected
3191  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3192  *
3193  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3194  * that may have to take thousand of locks.
3195  *
3196  * mm_take_all_locks() can fail if it's interrupted by signals.
3197  */
3198 int mm_take_all_locks(struct mm_struct *mm)
3199 {
3200 	struct vm_area_struct *vma;
3201 	struct anon_vma_chain *avc;
3202 
3203 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3204 
3205 	mutex_lock(&mm_all_locks_mutex);
3206 
3207 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3208 		if (signal_pending(current))
3209 			goto out_unlock;
3210 		if (vma->vm_file && vma->vm_file->f_mapping)
3211 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3212 	}
3213 
3214 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3215 		if (signal_pending(current))
3216 			goto out_unlock;
3217 		if (vma->anon_vma)
3218 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3219 				vm_lock_anon_vma(mm, avc->anon_vma);
3220 	}
3221 
3222 	return 0;
3223 
3224 out_unlock:
3225 	mm_drop_all_locks(mm);
3226 	return -EINTR;
3227 }
3228 
3229 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3230 {
3231 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3232 		/*
3233 		 * The LSB of head.next can't change to 0 from under
3234 		 * us because we hold the mm_all_locks_mutex.
3235 		 *
3236 		 * We must however clear the bitflag before unlocking
3237 		 * the vma so the users using the anon_vma->rb_root will
3238 		 * never see our bitflag.
3239 		 *
3240 		 * No need of atomic instructions here, head.next
3241 		 * can't change from under us until we release the
3242 		 * anon_vma->root->rwsem.
3243 		 */
3244 		if (!__test_and_clear_bit(0, (unsigned long *)
3245 					  &anon_vma->root->rb_root.rb_node))
3246 			BUG();
3247 		anon_vma_unlock_write(anon_vma);
3248 	}
3249 }
3250 
3251 static void vm_unlock_mapping(struct address_space *mapping)
3252 {
3253 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3254 		/*
3255 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3256 		 * because we hold the mm_all_locks_mutex.
3257 		 */
3258 		i_mmap_unlock_write(mapping);
3259 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3260 					&mapping->flags))
3261 			BUG();
3262 	}
3263 }
3264 
3265 /*
3266  * The mmap_sem cannot be released by the caller until
3267  * mm_drop_all_locks() returns.
3268  */
3269 void mm_drop_all_locks(struct mm_struct *mm)
3270 {
3271 	struct vm_area_struct *vma;
3272 	struct anon_vma_chain *avc;
3273 
3274 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3275 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3276 
3277 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3278 		if (vma->anon_vma)
3279 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3280 				vm_unlock_anon_vma(avc->anon_vma);
3281 		if (vma->vm_file && vma->vm_file->f_mapping)
3282 			vm_unlock_mapping(vma->vm_file->f_mapping);
3283 	}
3284 
3285 	mutex_unlock(&mm_all_locks_mutex);
3286 }
3287 
3288 /*
3289  * initialise the VMA slab
3290  */
3291 void __init mmap_init(void)
3292 {
3293 	int ret;
3294 
3295 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3296 	VM_BUG_ON(ret);
3297 }
3298 
3299 /*
3300  * Initialise sysctl_user_reserve_kbytes.
3301  *
3302  * This is intended to prevent a user from starting a single memory hogging
3303  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3304  * mode.
3305  *
3306  * The default value is min(3% of free memory, 128MB)
3307  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3308  */
3309 static int init_user_reserve(void)
3310 {
3311 	unsigned long free_kbytes;
3312 
3313 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3314 
3315 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3316 	return 0;
3317 }
3318 subsys_initcall(init_user_reserve);
3319 
3320 /*
3321  * Initialise sysctl_admin_reserve_kbytes.
3322  *
3323  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3324  * to log in and kill a memory hogging process.
3325  *
3326  * Systems with more than 256MB will reserve 8MB, enough to recover
3327  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3328  * only reserve 3% of free pages by default.
3329  */
3330 static int init_admin_reserve(void)
3331 {
3332 	unsigned long free_kbytes;
3333 
3334 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3335 
3336 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3337 	return 0;
3338 }
3339 subsys_initcall(init_admin_reserve);
3340 
3341 /*
3342  * Reinititalise user and admin reserves if memory is added or removed.
3343  *
3344  * The default user reserve max is 128MB, and the default max for the
3345  * admin reserve is 8MB. These are usually, but not always, enough to
3346  * enable recovery from a memory hogging process using login/sshd, a shell,
3347  * and tools like top. It may make sense to increase or even disable the
3348  * reserve depending on the existence of swap or variations in the recovery
3349  * tools. So, the admin may have changed them.
3350  *
3351  * If memory is added and the reserves have been eliminated or increased above
3352  * the default max, then we'll trust the admin.
3353  *
3354  * If memory is removed and there isn't enough free memory, then we
3355  * need to reset the reserves.
3356  *
3357  * Otherwise keep the reserve set by the admin.
3358  */
3359 static int reserve_mem_notifier(struct notifier_block *nb,
3360 			     unsigned long action, void *data)
3361 {
3362 	unsigned long tmp, free_kbytes;
3363 
3364 	switch (action) {
3365 	case MEM_ONLINE:
3366 		/* Default max is 128MB. Leave alone if modified by operator. */
3367 		tmp = sysctl_user_reserve_kbytes;
3368 		if (0 < tmp && tmp < (1UL << 17))
3369 			init_user_reserve();
3370 
3371 		/* Default max is 8MB.  Leave alone if modified by operator. */
3372 		tmp = sysctl_admin_reserve_kbytes;
3373 		if (0 < tmp && tmp < (1UL << 13))
3374 			init_admin_reserve();
3375 
3376 		break;
3377 	case MEM_OFFLINE:
3378 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3379 
3380 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3381 			init_user_reserve();
3382 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3383 				sysctl_user_reserve_kbytes);
3384 		}
3385 
3386 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3387 			init_admin_reserve();
3388 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3389 				sysctl_admin_reserve_kbytes);
3390 		}
3391 		break;
3392 	default:
3393 		break;
3394 	}
3395 	return NOTIFY_OK;
3396 }
3397 
3398 static struct notifier_block reserve_mem_nb = {
3399 	.notifier_call = reserve_mem_notifier,
3400 };
3401 
3402 static int __meminit init_reserve_notifier(void)
3403 {
3404 	if (register_hotmemory_notifier(&reserve_mem_nb))
3405 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3406 
3407 	return 0;
3408 }
3409 subsys_initcall(init_reserve_notifier);
3410