xref: /openbmc/linux/mm/mmap.c (revision 110e6f26)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51 
52 #include "internal.h"
53 
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)	(0)
56 #endif
57 
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len)		(addr)
60 #endif
61 
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72 
73 static bool ignore_rlimit_data = true;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 
76 static void unmap_region(struct mm_struct *mm,
77 		struct vm_area_struct *vma, struct vm_area_struct *prev,
78 		unsigned long start, unsigned long end);
79 
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type	prot
85  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
86  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
87  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
88  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
89  *
90  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
91  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
92  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
93  *
94  */
95 pgprot_t protection_map[16] = {
96 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
97 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 };
99 
100 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 {
102 	return __pgprot(pgprot_val(protection_map[vm_flags &
103 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
104 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 }
106 EXPORT_SYMBOL(vm_get_page_prot);
107 
108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 {
110 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 }
112 
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct *vma)
115 {
116 	unsigned long vm_flags = vma->vm_flags;
117 
118 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
119 	if (vma_wants_writenotify(vma)) {
120 		vm_flags &= ~VM_SHARED;
121 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
122 						     vm_flags);
123 	}
124 }
125 
126 /*
127  * Requires inode->i_mapping->i_mmap_rwsem
128  */
129 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130 		struct file *file, struct address_space *mapping)
131 {
132 	if (vma->vm_flags & VM_DENYWRITE)
133 		atomic_inc(&file_inode(file)->i_writecount);
134 	if (vma->vm_flags & VM_SHARED)
135 		mapping_unmap_writable(mapping);
136 
137 	flush_dcache_mmap_lock(mapping);
138 	vma_interval_tree_remove(vma, &mapping->i_mmap);
139 	flush_dcache_mmap_unlock(mapping);
140 }
141 
142 /*
143  * Unlink a file-based vm structure from its interval tree, to hide
144  * vma from rmap and vmtruncate before freeing its page tables.
145  */
146 void unlink_file_vma(struct vm_area_struct *vma)
147 {
148 	struct file *file = vma->vm_file;
149 
150 	if (file) {
151 		struct address_space *mapping = file->f_mapping;
152 		i_mmap_lock_write(mapping);
153 		__remove_shared_vm_struct(vma, file, mapping);
154 		i_mmap_unlock_write(mapping);
155 	}
156 }
157 
158 /*
159  * Close a vm structure and free it, returning the next.
160  */
161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
162 {
163 	struct vm_area_struct *next = vma->vm_next;
164 
165 	might_sleep();
166 	if (vma->vm_ops && vma->vm_ops->close)
167 		vma->vm_ops->close(vma);
168 	if (vma->vm_file)
169 		fput(vma->vm_file);
170 	mpol_put(vma_policy(vma));
171 	kmem_cache_free(vm_area_cachep, vma);
172 	return next;
173 }
174 
175 static unsigned long do_brk(unsigned long addr, unsigned long len);
176 
177 SYSCALL_DEFINE1(brk, unsigned long, brk)
178 {
179 	unsigned long retval;
180 	unsigned long newbrk, oldbrk;
181 	struct mm_struct *mm = current->mm;
182 	unsigned long min_brk;
183 	bool populate;
184 
185 	down_write(&mm->mmap_sem);
186 
187 #ifdef CONFIG_COMPAT_BRK
188 	/*
189 	 * CONFIG_COMPAT_BRK can still be overridden by setting
190 	 * randomize_va_space to 2, which will still cause mm->start_brk
191 	 * to be arbitrarily shifted
192 	 */
193 	if (current->brk_randomized)
194 		min_brk = mm->start_brk;
195 	else
196 		min_brk = mm->end_data;
197 #else
198 	min_brk = mm->start_brk;
199 #endif
200 	if (brk < min_brk)
201 		goto out;
202 
203 	/*
204 	 * Check against rlimit here. If this check is done later after the test
205 	 * of oldbrk with newbrk then it can escape the test and let the data
206 	 * segment grow beyond its set limit the in case where the limit is
207 	 * not page aligned -Ram Gupta
208 	 */
209 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
210 			      mm->end_data, mm->start_data))
211 		goto out;
212 
213 	newbrk = PAGE_ALIGN(brk);
214 	oldbrk = PAGE_ALIGN(mm->brk);
215 	if (oldbrk == newbrk)
216 		goto set_brk;
217 
218 	/* Always allow shrinking brk. */
219 	if (brk <= mm->brk) {
220 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
221 			goto set_brk;
222 		goto out;
223 	}
224 
225 	/* Check against existing mmap mappings. */
226 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
227 		goto out;
228 
229 	/* Ok, looks good - let it rip. */
230 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
231 		goto out;
232 
233 set_brk:
234 	mm->brk = brk;
235 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
236 	up_write(&mm->mmap_sem);
237 	if (populate)
238 		mm_populate(oldbrk, newbrk - oldbrk);
239 	return brk;
240 
241 out:
242 	retval = mm->brk;
243 	up_write(&mm->mmap_sem);
244 	return retval;
245 }
246 
247 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
248 {
249 	unsigned long max, subtree_gap;
250 	max = vma->vm_start;
251 	if (vma->vm_prev)
252 		max -= vma->vm_prev->vm_end;
253 	if (vma->vm_rb.rb_left) {
254 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
255 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
256 		if (subtree_gap > max)
257 			max = subtree_gap;
258 	}
259 	if (vma->vm_rb.rb_right) {
260 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
261 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
262 		if (subtree_gap > max)
263 			max = subtree_gap;
264 	}
265 	return max;
266 }
267 
268 #ifdef CONFIG_DEBUG_VM_RB
269 static int browse_rb(struct mm_struct *mm)
270 {
271 	struct rb_root *root = &mm->mm_rb;
272 	int i = 0, j, bug = 0;
273 	struct rb_node *nd, *pn = NULL;
274 	unsigned long prev = 0, pend = 0;
275 
276 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
277 		struct vm_area_struct *vma;
278 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
279 		if (vma->vm_start < prev) {
280 			pr_emerg("vm_start %lx < prev %lx\n",
281 				  vma->vm_start, prev);
282 			bug = 1;
283 		}
284 		if (vma->vm_start < pend) {
285 			pr_emerg("vm_start %lx < pend %lx\n",
286 				  vma->vm_start, pend);
287 			bug = 1;
288 		}
289 		if (vma->vm_start > vma->vm_end) {
290 			pr_emerg("vm_start %lx > vm_end %lx\n",
291 				  vma->vm_start, vma->vm_end);
292 			bug = 1;
293 		}
294 		spin_lock(&mm->page_table_lock);
295 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
296 			pr_emerg("free gap %lx, correct %lx\n",
297 			       vma->rb_subtree_gap,
298 			       vma_compute_subtree_gap(vma));
299 			bug = 1;
300 		}
301 		spin_unlock(&mm->page_table_lock);
302 		i++;
303 		pn = nd;
304 		prev = vma->vm_start;
305 		pend = vma->vm_end;
306 	}
307 	j = 0;
308 	for (nd = pn; nd; nd = rb_prev(nd))
309 		j++;
310 	if (i != j) {
311 		pr_emerg("backwards %d, forwards %d\n", j, i);
312 		bug = 1;
313 	}
314 	return bug ? -1 : i;
315 }
316 
317 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
318 {
319 	struct rb_node *nd;
320 
321 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322 		struct vm_area_struct *vma;
323 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324 		VM_BUG_ON_VMA(vma != ignore &&
325 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
326 			vma);
327 	}
328 }
329 
330 static void validate_mm(struct mm_struct *mm)
331 {
332 	int bug = 0;
333 	int i = 0;
334 	unsigned long highest_address = 0;
335 	struct vm_area_struct *vma = mm->mmap;
336 
337 	while (vma) {
338 		struct anon_vma *anon_vma = vma->anon_vma;
339 		struct anon_vma_chain *avc;
340 
341 		if (anon_vma) {
342 			anon_vma_lock_read(anon_vma);
343 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
344 				anon_vma_interval_tree_verify(avc);
345 			anon_vma_unlock_read(anon_vma);
346 		}
347 
348 		highest_address = vma->vm_end;
349 		vma = vma->vm_next;
350 		i++;
351 	}
352 	if (i != mm->map_count) {
353 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
354 		bug = 1;
355 	}
356 	if (highest_address != mm->highest_vm_end) {
357 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
358 			  mm->highest_vm_end, highest_address);
359 		bug = 1;
360 	}
361 	i = browse_rb(mm);
362 	if (i != mm->map_count) {
363 		if (i != -1)
364 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
365 		bug = 1;
366 	}
367 	VM_BUG_ON_MM(bug, mm);
368 }
369 #else
370 #define validate_mm_rb(root, ignore) do { } while (0)
371 #define validate_mm(mm) do { } while (0)
372 #endif
373 
374 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
375 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
376 
377 /*
378  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
379  * vma->vm_prev->vm_end values changed, without modifying the vma's position
380  * in the rbtree.
381  */
382 static void vma_gap_update(struct vm_area_struct *vma)
383 {
384 	/*
385 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
386 	 * function that does exacltly what we want.
387 	 */
388 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
389 }
390 
391 static inline void vma_rb_insert(struct vm_area_struct *vma,
392 				 struct rb_root *root)
393 {
394 	/* All rb_subtree_gap values must be consistent prior to insertion */
395 	validate_mm_rb(root, NULL);
396 
397 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
398 }
399 
400 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
401 {
402 	/*
403 	 * All rb_subtree_gap values must be consistent prior to erase,
404 	 * with the possible exception of the vma being erased.
405 	 */
406 	validate_mm_rb(root, vma);
407 
408 	/*
409 	 * Note rb_erase_augmented is a fairly large inline function,
410 	 * so make sure we instantiate it only once with our desired
411 	 * augmented rbtree callbacks.
412 	 */
413 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
414 }
415 
416 /*
417  * vma has some anon_vma assigned, and is already inserted on that
418  * anon_vma's interval trees.
419  *
420  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
421  * vma must be removed from the anon_vma's interval trees using
422  * anon_vma_interval_tree_pre_update_vma().
423  *
424  * After the update, the vma will be reinserted using
425  * anon_vma_interval_tree_post_update_vma().
426  *
427  * The entire update must be protected by exclusive mmap_sem and by
428  * the root anon_vma's mutex.
429  */
430 static inline void
431 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
432 {
433 	struct anon_vma_chain *avc;
434 
435 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
436 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
437 }
438 
439 static inline void
440 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
441 {
442 	struct anon_vma_chain *avc;
443 
444 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
445 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
446 }
447 
448 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
449 		unsigned long end, struct vm_area_struct **pprev,
450 		struct rb_node ***rb_link, struct rb_node **rb_parent)
451 {
452 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
453 
454 	__rb_link = &mm->mm_rb.rb_node;
455 	rb_prev = __rb_parent = NULL;
456 
457 	while (*__rb_link) {
458 		struct vm_area_struct *vma_tmp;
459 
460 		__rb_parent = *__rb_link;
461 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
462 
463 		if (vma_tmp->vm_end > addr) {
464 			/* Fail if an existing vma overlaps the area */
465 			if (vma_tmp->vm_start < end)
466 				return -ENOMEM;
467 			__rb_link = &__rb_parent->rb_left;
468 		} else {
469 			rb_prev = __rb_parent;
470 			__rb_link = &__rb_parent->rb_right;
471 		}
472 	}
473 
474 	*pprev = NULL;
475 	if (rb_prev)
476 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
477 	*rb_link = __rb_link;
478 	*rb_parent = __rb_parent;
479 	return 0;
480 }
481 
482 static unsigned long count_vma_pages_range(struct mm_struct *mm,
483 		unsigned long addr, unsigned long end)
484 {
485 	unsigned long nr_pages = 0;
486 	struct vm_area_struct *vma;
487 
488 	/* Find first overlaping mapping */
489 	vma = find_vma_intersection(mm, addr, end);
490 	if (!vma)
491 		return 0;
492 
493 	nr_pages = (min(end, vma->vm_end) -
494 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
495 
496 	/* Iterate over the rest of the overlaps */
497 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
498 		unsigned long overlap_len;
499 
500 		if (vma->vm_start > end)
501 			break;
502 
503 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
504 		nr_pages += overlap_len >> PAGE_SHIFT;
505 	}
506 
507 	return nr_pages;
508 }
509 
510 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
511 		struct rb_node **rb_link, struct rb_node *rb_parent)
512 {
513 	/* Update tracking information for the gap following the new vma. */
514 	if (vma->vm_next)
515 		vma_gap_update(vma->vm_next);
516 	else
517 		mm->highest_vm_end = vma->vm_end;
518 
519 	/*
520 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
521 	 * correct insertion point for that vma. As a result, we could not
522 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
523 	 * So, we first insert the vma with a zero rb_subtree_gap value
524 	 * (to be consistent with what we did on the way down), and then
525 	 * immediately update the gap to the correct value. Finally we
526 	 * rebalance the rbtree after all augmented values have been set.
527 	 */
528 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
529 	vma->rb_subtree_gap = 0;
530 	vma_gap_update(vma);
531 	vma_rb_insert(vma, &mm->mm_rb);
532 }
533 
534 static void __vma_link_file(struct vm_area_struct *vma)
535 {
536 	struct file *file;
537 
538 	file = vma->vm_file;
539 	if (file) {
540 		struct address_space *mapping = file->f_mapping;
541 
542 		if (vma->vm_flags & VM_DENYWRITE)
543 			atomic_dec(&file_inode(file)->i_writecount);
544 		if (vma->vm_flags & VM_SHARED)
545 			atomic_inc(&mapping->i_mmap_writable);
546 
547 		flush_dcache_mmap_lock(mapping);
548 		vma_interval_tree_insert(vma, &mapping->i_mmap);
549 		flush_dcache_mmap_unlock(mapping);
550 	}
551 }
552 
553 static void
554 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
555 	struct vm_area_struct *prev, struct rb_node **rb_link,
556 	struct rb_node *rb_parent)
557 {
558 	__vma_link_list(mm, vma, prev, rb_parent);
559 	__vma_link_rb(mm, vma, rb_link, rb_parent);
560 }
561 
562 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
563 			struct vm_area_struct *prev, struct rb_node **rb_link,
564 			struct rb_node *rb_parent)
565 {
566 	struct address_space *mapping = NULL;
567 
568 	if (vma->vm_file) {
569 		mapping = vma->vm_file->f_mapping;
570 		i_mmap_lock_write(mapping);
571 	}
572 
573 	__vma_link(mm, vma, prev, rb_link, rb_parent);
574 	__vma_link_file(vma);
575 
576 	if (mapping)
577 		i_mmap_unlock_write(mapping);
578 
579 	mm->map_count++;
580 	validate_mm(mm);
581 }
582 
583 /*
584  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
585  * mm's list and rbtree.  It has already been inserted into the interval tree.
586  */
587 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
588 {
589 	struct vm_area_struct *prev;
590 	struct rb_node **rb_link, *rb_parent;
591 
592 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
593 			   &prev, &rb_link, &rb_parent))
594 		BUG();
595 	__vma_link(mm, vma, prev, rb_link, rb_parent);
596 	mm->map_count++;
597 }
598 
599 static inline void
600 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
601 		struct vm_area_struct *prev)
602 {
603 	struct vm_area_struct *next;
604 
605 	vma_rb_erase(vma, &mm->mm_rb);
606 	prev->vm_next = next = vma->vm_next;
607 	if (next)
608 		next->vm_prev = prev;
609 
610 	/* Kill the cache */
611 	vmacache_invalidate(mm);
612 }
613 
614 /*
615  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
616  * is already present in an i_mmap tree without adjusting the tree.
617  * The following helper function should be used when such adjustments
618  * are necessary.  The "insert" vma (if any) is to be inserted
619  * before we drop the necessary locks.
620  */
621 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
622 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
623 {
624 	struct mm_struct *mm = vma->vm_mm;
625 	struct vm_area_struct *next = vma->vm_next;
626 	struct vm_area_struct *importer = NULL;
627 	struct address_space *mapping = NULL;
628 	struct rb_root *root = NULL;
629 	struct anon_vma *anon_vma = NULL;
630 	struct file *file = vma->vm_file;
631 	bool start_changed = false, end_changed = false;
632 	long adjust_next = 0;
633 	int remove_next = 0;
634 
635 	if (next && !insert) {
636 		struct vm_area_struct *exporter = NULL;
637 
638 		if (end >= next->vm_end) {
639 			/*
640 			 * vma expands, overlapping all the next, and
641 			 * perhaps the one after too (mprotect case 6).
642 			 */
643 again:			remove_next = 1 + (end > next->vm_end);
644 			end = next->vm_end;
645 			exporter = next;
646 			importer = vma;
647 		} else if (end > next->vm_start) {
648 			/*
649 			 * vma expands, overlapping part of the next:
650 			 * mprotect case 5 shifting the boundary up.
651 			 */
652 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
653 			exporter = next;
654 			importer = vma;
655 		} else if (end < vma->vm_end) {
656 			/*
657 			 * vma shrinks, and !insert tells it's not
658 			 * split_vma inserting another: so it must be
659 			 * mprotect case 4 shifting the boundary down.
660 			 */
661 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
662 			exporter = vma;
663 			importer = next;
664 		}
665 
666 		/*
667 		 * Easily overlooked: when mprotect shifts the boundary,
668 		 * make sure the expanding vma has anon_vma set if the
669 		 * shrinking vma had, to cover any anon pages imported.
670 		 */
671 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
672 			int error;
673 
674 			importer->anon_vma = exporter->anon_vma;
675 			error = anon_vma_clone(importer, exporter);
676 			if (error)
677 				return error;
678 		}
679 	}
680 
681 	if (file) {
682 		mapping = file->f_mapping;
683 		root = &mapping->i_mmap;
684 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
685 
686 		if (adjust_next)
687 			uprobe_munmap(next, next->vm_start, next->vm_end);
688 
689 		i_mmap_lock_write(mapping);
690 		if (insert) {
691 			/*
692 			 * Put into interval tree now, so instantiated pages
693 			 * are visible to arm/parisc __flush_dcache_page
694 			 * throughout; but we cannot insert into address
695 			 * space until vma start or end is updated.
696 			 */
697 			__vma_link_file(insert);
698 		}
699 	}
700 
701 	vma_adjust_trans_huge(vma, start, end, adjust_next);
702 
703 	anon_vma = vma->anon_vma;
704 	if (!anon_vma && adjust_next)
705 		anon_vma = next->anon_vma;
706 	if (anon_vma) {
707 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
708 			  anon_vma != next->anon_vma, next);
709 		anon_vma_lock_write(anon_vma);
710 		anon_vma_interval_tree_pre_update_vma(vma);
711 		if (adjust_next)
712 			anon_vma_interval_tree_pre_update_vma(next);
713 	}
714 
715 	if (root) {
716 		flush_dcache_mmap_lock(mapping);
717 		vma_interval_tree_remove(vma, root);
718 		if (adjust_next)
719 			vma_interval_tree_remove(next, root);
720 	}
721 
722 	if (start != vma->vm_start) {
723 		vma->vm_start = start;
724 		start_changed = true;
725 	}
726 	if (end != vma->vm_end) {
727 		vma->vm_end = end;
728 		end_changed = true;
729 	}
730 	vma->vm_pgoff = pgoff;
731 	if (adjust_next) {
732 		next->vm_start += adjust_next << PAGE_SHIFT;
733 		next->vm_pgoff += adjust_next;
734 	}
735 
736 	if (root) {
737 		if (adjust_next)
738 			vma_interval_tree_insert(next, root);
739 		vma_interval_tree_insert(vma, root);
740 		flush_dcache_mmap_unlock(mapping);
741 	}
742 
743 	if (remove_next) {
744 		/*
745 		 * vma_merge has merged next into vma, and needs
746 		 * us to remove next before dropping the locks.
747 		 */
748 		__vma_unlink(mm, next, vma);
749 		if (file)
750 			__remove_shared_vm_struct(next, file, mapping);
751 	} else if (insert) {
752 		/*
753 		 * split_vma has split insert from vma, and needs
754 		 * us to insert it before dropping the locks
755 		 * (it may either follow vma or precede it).
756 		 */
757 		__insert_vm_struct(mm, insert);
758 	} else {
759 		if (start_changed)
760 			vma_gap_update(vma);
761 		if (end_changed) {
762 			if (!next)
763 				mm->highest_vm_end = end;
764 			else if (!adjust_next)
765 				vma_gap_update(next);
766 		}
767 	}
768 
769 	if (anon_vma) {
770 		anon_vma_interval_tree_post_update_vma(vma);
771 		if (adjust_next)
772 			anon_vma_interval_tree_post_update_vma(next);
773 		anon_vma_unlock_write(anon_vma);
774 	}
775 	if (mapping)
776 		i_mmap_unlock_write(mapping);
777 
778 	if (root) {
779 		uprobe_mmap(vma);
780 
781 		if (adjust_next)
782 			uprobe_mmap(next);
783 	}
784 
785 	if (remove_next) {
786 		if (file) {
787 			uprobe_munmap(next, next->vm_start, next->vm_end);
788 			fput(file);
789 		}
790 		if (next->anon_vma)
791 			anon_vma_merge(vma, next);
792 		mm->map_count--;
793 		mpol_put(vma_policy(next));
794 		kmem_cache_free(vm_area_cachep, next);
795 		/*
796 		 * In mprotect's case 6 (see comments on vma_merge),
797 		 * we must remove another next too. It would clutter
798 		 * up the code too much to do both in one go.
799 		 */
800 		next = vma->vm_next;
801 		if (remove_next == 2)
802 			goto again;
803 		else if (next)
804 			vma_gap_update(next);
805 		else
806 			mm->highest_vm_end = end;
807 	}
808 	if (insert && file)
809 		uprobe_mmap(insert);
810 
811 	validate_mm(mm);
812 
813 	return 0;
814 }
815 
816 /*
817  * If the vma has a ->close operation then the driver probably needs to release
818  * per-vma resources, so we don't attempt to merge those.
819  */
820 static inline int is_mergeable_vma(struct vm_area_struct *vma,
821 				struct file *file, unsigned long vm_flags,
822 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
823 {
824 	/*
825 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
826 	 * match the flags but dirty bit -- the caller should mark
827 	 * merged VMA as dirty. If dirty bit won't be excluded from
828 	 * comparison, we increase pressue on the memory system forcing
829 	 * the kernel to generate new VMAs when old one could be
830 	 * extended instead.
831 	 */
832 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
833 		return 0;
834 	if (vma->vm_file != file)
835 		return 0;
836 	if (vma->vm_ops && vma->vm_ops->close)
837 		return 0;
838 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
839 		return 0;
840 	return 1;
841 }
842 
843 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
844 					struct anon_vma *anon_vma2,
845 					struct vm_area_struct *vma)
846 {
847 	/*
848 	 * The list_is_singular() test is to avoid merging VMA cloned from
849 	 * parents. This can improve scalability caused by anon_vma lock.
850 	 */
851 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
852 		list_is_singular(&vma->anon_vma_chain)))
853 		return 1;
854 	return anon_vma1 == anon_vma2;
855 }
856 
857 /*
858  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
859  * in front of (at a lower virtual address and file offset than) the vma.
860  *
861  * We cannot merge two vmas if they have differently assigned (non-NULL)
862  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
863  *
864  * We don't check here for the merged mmap wrapping around the end of pagecache
865  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
866  * wrap, nor mmaps which cover the final page at index -1UL.
867  */
868 static int
869 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
870 		     struct anon_vma *anon_vma, struct file *file,
871 		     pgoff_t vm_pgoff,
872 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
873 {
874 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
875 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
876 		if (vma->vm_pgoff == vm_pgoff)
877 			return 1;
878 	}
879 	return 0;
880 }
881 
882 /*
883  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
884  * beyond (at a higher virtual address and file offset than) the vma.
885  *
886  * We cannot merge two vmas if they have differently assigned (non-NULL)
887  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
888  */
889 static int
890 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
891 		    struct anon_vma *anon_vma, struct file *file,
892 		    pgoff_t vm_pgoff,
893 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
894 {
895 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
896 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
897 		pgoff_t vm_pglen;
898 		vm_pglen = vma_pages(vma);
899 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
900 			return 1;
901 	}
902 	return 0;
903 }
904 
905 /*
906  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
907  * whether that can be merged with its predecessor or its successor.
908  * Or both (it neatly fills a hole).
909  *
910  * In most cases - when called for mmap, brk or mremap - [addr,end) is
911  * certain not to be mapped by the time vma_merge is called; but when
912  * called for mprotect, it is certain to be already mapped (either at
913  * an offset within prev, or at the start of next), and the flags of
914  * this area are about to be changed to vm_flags - and the no-change
915  * case has already been eliminated.
916  *
917  * The following mprotect cases have to be considered, where AAAA is
918  * the area passed down from mprotect_fixup, never extending beyond one
919  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
920  *
921  *     AAAA             AAAA                AAAA          AAAA
922  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
923  *    cannot merge    might become    might become    might become
924  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
925  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
926  *    mremap move:                                    PPPPNNNNNNNN 8
927  *        AAAA
928  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
929  *    might become    case 1 below    case 2 below    case 3 below
930  *
931  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
932  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
933  */
934 struct vm_area_struct *vma_merge(struct mm_struct *mm,
935 			struct vm_area_struct *prev, unsigned long addr,
936 			unsigned long end, unsigned long vm_flags,
937 			struct anon_vma *anon_vma, struct file *file,
938 			pgoff_t pgoff, struct mempolicy *policy,
939 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
940 {
941 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
942 	struct vm_area_struct *area, *next;
943 	int err;
944 
945 	/*
946 	 * We later require that vma->vm_flags == vm_flags,
947 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
948 	 */
949 	if (vm_flags & VM_SPECIAL)
950 		return NULL;
951 
952 	if (prev)
953 		next = prev->vm_next;
954 	else
955 		next = mm->mmap;
956 	area = next;
957 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
958 		next = next->vm_next;
959 
960 	/*
961 	 * Can it merge with the predecessor?
962 	 */
963 	if (prev && prev->vm_end == addr &&
964 			mpol_equal(vma_policy(prev), policy) &&
965 			can_vma_merge_after(prev, vm_flags,
966 					    anon_vma, file, pgoff,
967 					    vm_userfaultfd_ctx)) {
968 		/*
969 		 * OK, it can.  Can we now merge in the successor as well?
970 		 */
971 		if (next && end == next->vm_start &&
972 				mpol_equal(policy, vma_policy(next)) &&
973 				can_vma_merge_before(next, vm_flags,
974 						     anon_vma, file,
975 						     pgoff+pglen,
976 						     vm_userfaultfd_ctx) &&
977 				is_mergeable_anon_vma(prev->anon_vma,
978 						      next->anon_vma, NULL)) {
979 							/* cases 1, 6 */
980 			err = vma_adjust(prev, prev->vm_start,
981 				next->vm_end, prev->vm_pgoff, NULL);
982 		} else					/* cases 2, 5, 7 */
983 			err = vma_adjust(prev, prev->vm_start,
984 				end, prev->vm_pgoff, NULL);
985 		if (err)
986 			return NULL;
987 		khugepaged_enter_vma_merge(prev, vm_flags);
988 		return prev;
989 	}
990 
991 	/*
992 	 * Can this new request be merged in front of next?
993 	 */
994 	if (next && end == next->vm_start &&
995 			mpol_equal(policy, vma_policy(next)) &&
996 			can_vma_merge_before(next, vm_flags,
997 					     anon_vma, file, pgoff+pglen,
998 					     vm_userfaultfd_ctx)) {
999 		if (prev && addr < prev->vm_end)	/* case 4 */
1000 			err = vma_adjust(prev, prev->vm_start,
1001 				addr, prev->vm_pgoff, NULL);
1002 		else					/* cases 3, 8 */
1003 			err = vma_adjust(area, addr, next->vm_end,
1004 				next->vm_pgoff - pglen, NULL);
1005 		if (err)
1006 			return NULL;
1007 		khugepaged_enter_vma_merge(area, vm_flags);
1008 		return area;
1009 	}
1010 
1011 	return NULL;
1012 }
1013 
1014 /*
1015  * Rough compatbility check to quickly see if it's even worth looking
1016  * at sharing an anon_vma.
1017  *
1018  * They need to have the same vm_file, and the flags can only differ
1019  * in things that mprotect may change.
1020  *
1021  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022  * we can merge the two vma's. For example, we refuse to merge a vma if
1023  * there is a vm_ops->close() function, because that indicates that the
1024  * driver is doing some kind of reference counting. But that doesn't
1025  * really matter for the anon_vma sharing case.
1026  */
1027 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028 {
1029 	return a->vm_end == b->vm_start &&
1030 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031 		a->vm_file == b->vm_file &&
1032 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034 }
1035 
1036 /*
1037  * Do some basic sanity checking to see if we can re-use the anon_vma
1038  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039  * the same as 'old', the other will be the new one that is trying
1040  * to share the anon_vma.
1041  *
1042  * NOTE! This runs with mm_sem held for reading, so it is possible that
1043  * the anon_vma of 'old' is concurrently in the process of being set up
1044  * by another page fault trying to merge _that_. But that's ok: if it
1045  * is being set up, that automatically means that it will be a singleton
1046  * acceptable for merging, so we can do all of this optimistically. But
1047  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048  *
1049  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051  * is to return an anon_vma that is "complex" due to having gone through
1052  * a fork).
1053  *
1054  * We also make sure that the two vma's are compatible (adjacent,
1055  * and with the same memory policies). That's all stable, even with just
1056  * a read lock on the mm_sem.
1057  */
1058 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059 {
1060 	if (anon_vma_compatible(a, b)) {
1061 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062 
1063 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064 			return anon_vma;
1065 	}
1066 	return NULL;
1067 }
1068 
1069 /*
1070  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071  * neighbouring vmas for a suitable anon_vma, before it goes off
1072  * to allocate a new anon_vma.  It checks because a repetitive
1073  * sequence of mprotects and faults may otherwise lead to distinct
1074  * anon_vmas being allocated, preventing vma merge in subsequent
1075  * mprotect.
1076  */
1077 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078 {
1079 	struct anon_vma *anon_vma;
1080 	struct vm_area_struct *near;
1081 
1082 	near = vma->vm_next;
1083 	if (!near)
1084 		goto try_prev;
1085 
1086 	anon_vma = reusable_anon_vma(near, vma, near);
1087 	if (anon_vma)
1088 		return anon_vma;
1089 try_prev:
1090 	near = vma->vm_prev;
1091 	if (!near)
1092 		goto none;
1093 
1094 	anon_vma = reusable_anon_vma(near, near, vma);
1095 	if (anon_vma)
1096 		return anon_vma;
1097 none:
1098 	/*
1099 	 * There's no absolute need to look only at touching neighbours:
1100 	 * we could search further afield for "compatible" anon_vmas.
1101 	 * But it would probably just be a waste of time searching,
1102 	 * or lead to too many vmas hanging off the same anon_vma.
1103 	 * We're trying to allow mprotect remerging later on,
1104 	 * not trying to minimize memory used for anon_vmas.
1105 	 */
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * If a hint addr is less than mmap_min_addr change hint to be as
1111  * low as possible but still greater than mmap_min_addr
1112  */
1113 static inline unsigned long round_hint_to_min(unsigned long hint)
1114 {
1115 	hint &= PAGE_MASK;
1116 	if (((void *)hint != NULL) &&
1117 	    (hint < mmap_min_addr))
1118 		return PAGE_ALIGN(mmap_min_addr);
1119 	return hint;
1120 }
1121 
1122 static inline int mlock_future_check(struct mm_struct *mm,
1123 				     unsigned long flags,
1124 				     unsigned long len)
1125 {
1126 	unsigned long locked, lock_limit;
1127 
1128 	/*  mlock MCL_FUTURE? */
1129 	if (flags & VM_LOCKED) {
1130 		locked = len >> PAGE_SHIFT;
1131 		locked += mm->locked_vm;
1132 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133 		lock_limit >>= PAGE_SHIFT;
1134 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135 			return -EAGAIN;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /*
1141  * The caller must hold down_write(&current->mm->mmap_sem).
1142  */
1143 unsigned long do_mmap(struct file *file, unsigned long addr,
1144 			unsigned long len, unsigned long prot,
1145 			unsigned long flags, vm_flags_t vm_flags,
1146 			unsigned long pgoff, unsigned long *populate)
1147 {
1148 	struct mm_struct *mm = current->mm;
1149 	int pkey = 0;
1150 
1151 	*populate = 0;
1152 
1153 	if (!len)
1154 		return -EINVAL;
1155 
1156 	/*
1157 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158 	 *
1159 	 * (the exception is when the underlying filesystem is noexec
1160 	 *  mounted, in which case we dont add PROT_EXEC.)
1161 	 */
1162 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163 		if (!(file && path_noexec(&file->f_path)))
1164 			prot |= PROT_EXEC;
1165 
1166 	if (!(flags & MAP_FIXED))
1167 		addr = round_hint_to_min(addr);
1168 
1169 	/* Careful about overflows.. */
1170 	len = PAGE_ALIGN(len);
1171 	if (!len)
1172 		return -ENOMEM;
1173 
1174 	/* offset overflow? */
1175 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176 		return -EOVERFLOW;
1177 
1178 	/* Too many mappings? */
1179 	if (mm->map_count > sysctl_max_map_count)
1180 		return -ENOMEM;
1181 
1182 	/* Obtain the address to map to. we verify (or select) it and ensure
1183 	 * that it represents a valid section of the address space.
1184 	 */
1185 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186 	if (offset_in_page(addr))
1187 		return addr;
1188 
1189 	if (prot == PROT_EXEC) {
1190 		pkey = execute_only_pkey(mm);
1191 		if (pkey < 0)
1192 			pkey = 0;
1193 	}
1194 
1195 	/* Do simple checking here so the lower-level routines won't have
1196 	 * to. we assume access permissions have been handled by the open
1197 	 * of the memory object, so we don't do any here.
1198 	 */
1199 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201 
1202 	if (flags & MAP_LOCKED)
1203 		if (!can_do_mlock())
1204 			return -EPERM;
1205 
1206 	if (mlock_future_check(mm, vm_flags, len))
1207 		return -EAGAIN;
1208 
1209 	if (file) {
1210 		struct inode *inode = file_inode(file);
1211 
1212 		switch (flags & MAP_TYPE) {
1213 		case MAP_SHARED:
1214 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215 				return -EACCES;
1216 
1217 			/*
1218 			 * Make sure we don't allow writing to an append-only
1219 			 * file..
1220 			 */
1221 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222 				return -EACCES;
1223 
1224 			/*
1225 			 * Make sure there are no mandatory locks on the file.
1226 			 */
1227 			if (locks_verify_locked(file))
1228 				return -EAGAIN;
1229 
1230 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231 			if (!(file->f_mode & FMODE_WRITE))
1232 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233 
1234 			/* fall through */
1235 		case MAP_PRIVATE:
1236 			if (!(file->f_mode & FMODE_READ))
1237 				return -EACCES;
1238 			if (path_noexec(&file->f_path)) {
1239 				if (vm_flags & VM_EXEC)
1240 					return -EPERM;
1241 				vm_flags &= ~VM_MAYEXEC;
1242 			}
1243 
1244 			if (!file->f_op->mmap)
1245 				return -ENODEV;
1246 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247 				return -EINVAL;
1248 			break;
1249 
1250 		default:
1251 			return -EINVAL;
1252 		}
1253 	} else {
1254 		switch (flags & MAP_TYPE) {
1255 		case MAP_SHARED:
1256 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257 				return -EINVAL;
1258 			/*
1259 			 * Ignore pgoff.
1260 			 */
1261 			pgoff = 0;
1262 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263 			break;
1264 		case MAP_PRIVATE:
1265 			/*
1266 			 * Set pgoff according to addr for anon_vma.
1267 			 */
1268 			pgoff = addr >> PAGE_SHIFT;
1269 			break;
1270 		default:
1271 			return -EINVAL;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Set 'VM_NORESERVE' if we should not account for the
1277 	 * memory use of this mapping.
1278 	 */
1279 	if (flags & MAP_NORESERVE) {
1280 		/* We honor MAP_NORESERVE if allowed to overcommit */
1281 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282 			vm_flags |= VM_NORESERVE;
1283 
1284 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285 		if (file && is_file_hugepages(file))
1286 			vm_flags |= VM_NORESERVE;
1287 	}
1288 
1289 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290 	if (!IS_ERR_VALUE(addr) &&
1291 	    ((vm_flags & VM_LOCKED) ||
1292 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293 		*populate = len;
1294 	return addr;
1295 }
1296 
1297 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298 		unsigned long, prot, unsigned long, flags,
1299 		unsigned long, fd, unsigned long, pgoff)
1300 {
1301 	struct file *file = NULL;
1302 	unsigned long retval;
1303 
1304 	if (!(flags & MAP_ANONYMOUS)) {
1305 		audit_mmap_fd(fd, flags);
1306 		file = fget(fd);
1307 		if (!file)
1308 			return -EBADF;
1309 		if (is_file_hugepages(file))
1310 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311 		retval = -EINVAL;
1312 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313 			goto out_fput;
1314 	} else if (flags & MAP_HUGETLB) {
1315 		struct user_struct *user = NULL;
1316 		struct hstate *hs;
1317 
1318 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319 		if (!hs)
1320 			return -EINVAL;
1321 
1322 		len = ALIGN(len, huge_page_size(hs));
1323 		/*
1324 		 * VM_NORESERVE is used because the reservations will be
1325 		 * taken when vm_ops->mmap() is called
1326 		 * A dummy user value is used because we are not locking
1327 		 * memory so no accounting is necessary
1328 		 */
1329 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330 				VM_NORESERVE,
1331 				&user, HUGETLB_ANONHUGE_INODE,
1332 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333 		if (IS_ERR(file))
1334 			return PTR_ERR(file);
1335 	}
1336 
1337 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338 
1339 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340 out_fput:
1341 	if (file)
1342 		fput(file);
1343 	return retval;
1344 }
1345 
1346 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1347 struct mmap_arg_struct {
1348 	unsigned long addr;
1349 	unsigned long len;
1350 	unsigned long prot;
1351 	unsigned long flags;
1352 	unsigned long fd;
1353 	unsigned long offset;
1354 };
1355 
1356 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357 {
1358 	struct mmap_arg_struct a;
1359 
1360 	if (copy_from_user(&a, arg, sizeof(a)))
1361 		return -EFAULT;
1362 	if (offset_in_page(a.offset))
1363 		return -EINVAL;
1364 
1365 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366 			      a.offset >> PAGE_SHIFT);
1367 }
1368 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369 
1370 /*
1371  * Some shared mappigns will want the pages marked read-only
1372  * to track write events. If so, we'll downgrade vm_page_prot
1373  * to the private version (using protection_map[] without the
1374  * VM_SHARED bit).
1375  */
1376 int vma_wants_writenotify(struct vm_area_struct *vma)
1377 {
1378 	vm_flags_t vm_flags = vma->vm_flags;
1379 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380 
1381 	/* If it was private or non-writable, the write bit is already clear */
1382 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383 		return 0;
1384 
1385 	/* The backer wishes to know when pages are first written to? */
1386 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387 		return 1;
1388 
1389 	/* The open routine did something to the protections that pgprot_modify
1390 	 * won't preserve? */
1391 	if (pgprot_val(vma->vm_page_prot) !=
1392 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393 		return 0;
1394 
1395 	/* Do we need to track softdirty? */
1396 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397 		return 1;
1398 
1399 	/* Specialty mapping? */
1400 	if (vm_flags & VM_PFNMAP)
1401 		return 0;
1402 
1403 	/* Can the mapping track the dirty pages? */
1404 	return vma->vm_file && vma->vm_file->f_mapping &&
1405 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406 }
1407 
1408 /*
1409  * We account for memory if it's a private writeable mapping,
1410  * not hugepages and VM_NORESERVE wasn't set.
1411  */
1412 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413 {
1414 	/*
1415 	 * hugetlb has its own accounting separate from the core VM
1416 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417 	 */
1418 	if (file && is_file_hugepages(file))
1419 		return 0;
1420 
1421 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422 }
1423 
1424 unsigned long mmap_region(struct file *file, unsigned long addr,
1425 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1426 {
1427 	struct mm_struct *mm = current->mm;
1428 	struct vm_area_struct *vma, *prev;
1429 	int error;
1430 	struct rb_node **rb_link, *rb_parent;
1431 	unsigned long charged = 0;
1432 
1433 	/* Check against address space limit. */
1434 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435 		unsigned long nr_pages;
1436 
1437 		/*
1438 		 * MAP_FIXED may remove pages of mappings that intersects with
1439 		 * requested mapping. Account for the pages it would unmap.
1440 		 */
1441 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442 
1443 		if (!may_expand_vm(mm, vm_flags,
1444 					(len >> PAGE_SHIFT) - nr_pages))
1445 			return -ENOMEM;
1446 	}
1447 
1448 	/* Clear old maps */
1449 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450 			      &rb_parent)) {
1451 		if (do_munmap(mm, addr, len))
1452 			return -ENOMEM;
1453 	}
1454 
1455 	/*
1456 	 * Private writable mapping: check memory availability
1457 	 */
1458 	if (accountable_mapping(file, vm_flags)) {
1459 		charged = len >> PAGE_SHIFT;
1460 		if (security_vm_enough_memory_mm(mm, charged))
1461 			return -ENOMEM;
1462 		vm_flags |= VM_ACCOUNT;
1463 	}
1464 
1465 	/*
1466 	 * Can we just expand an old mapping?
1467 	 */
1468 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470 	if (vma)
1471 		goto out;
1472 
1473 	/*
1474 	 * Determine the object being mapped and call the appropriate
1475 	 * specific mapper. the address has already been validated, but
1476 	 * not unmapped, but the maps are removed from the list.
1477 	 */
1478 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479 	if (!vma) {
1480 		error = -ENOMEM;
1481 		goto unacct_error;
1482 	}
1483 
1484 	vma->vm_mm = mm;
1485 	vma->vm_start = addr;
1486 	vma->vm_end = addr + len;
1487 	vma->vm_flags = vm_flags;
1488 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489 	vma->vm_pgoff = pgoff;
1490 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491 
1492 	if (file) {
1493 		if (vm_flags & VM_DENYWRITE) {
1494 			error = deny_write_access(file);
1495 			if (error)
1496 				goto free_vma;
1497 		}
1498 		if (vm_flags & VM_SHARED) {
1499 			error = mapping_map_writable(file->f_mapping);
1500 			if (error)
1501 				goto allow_write_and_free_vma;
1502 		}
1503 
1504 		/* ->mmap() can change vma->vm_file, but must guarantee that
1505 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506 		 * and map writably if VM_SHARED is set. This usually means the
1507 		 * new file must not have been exposed to user-space, yet.
1508 		 */
1509 		vma->vm_file = get_file(file);
1510 		error = file->f_op->mmap(file, vma);
1511 		if (error)
1512 			goto unmap_and_free_vma;
1513 
1514 		/* Can addr have changed??
1515 		 *
1516 		 * Answer: Yes, several device drivers can do it in their
1517 		 *         f_op->mmap method. -DaveM
1518 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519 		 *      be updated for vma_link()
1520 		 */
1521 		WARN_ON_ONCE(addr != vma->vm_start);
1522 
1523 		addr = vma->vm_start;
1524 		vm_flags = vma->vm_flags;
1525 	} else if (vm_flags & VM_SHARED) {
1526 		error = shmem_zero_setup(vma);
1527 		if (error)
1528 			goto free_vma;
1529 	}
1530 
1531 	vma_link(mm, vma, prev, rb_link, rb_parent);
1532 	/* Once vma denies write, undo our temporary denial count */
1533 	if (file) {
1534 		if (vm_flags & VM_SHARED)
1535 			mapping_unmap_writable(file->f_mapping);
1536 		if (vm_flags & VM_DENYWRITE)
1537 			allow_write_access(file);
1538 	}
1539 	file = vma->vm_file;
1540 out:
1541 	perf_event_mmap(vma);
1542 
1543 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1544 	if (vm_flags & VM_LOCKED) {
1545 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546 					vma == get_gate_vma(current->mm)))
1547 			mm->locked_vm += (len >> PAGE_SHIFT);
1548 		else
1549 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550 	}
1551 
1552 	if (file)
1553 		uprobe_mmap(vma);
1554 
1555 	/*
1556 	 * New (or expanded) vma always get soft dirty status.
1557 	 * Otherwise user-space soft-dirty page tracker won't
1558 	 * be able to distinguish situation when vma area unmapped,
1559 	 * then new mapped in-place (which must be aimed as
1560 	 * a completely new data area).
1561 	 */
1562 	vma->vm_flags |= VM_SOFTDIRTY;
1563 
1564 	vma_set_page_prot(vma);
1565 
1566 	return addr;
1567 
1568 unmap_and_free_vma:
1569 	vma->vm_file = NULL;
1570 	fput(file);
1571 
1572 	/* Undo any partial mapping done by a device driver. */
1573 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574 	charged = 0;
1575 	if (vm_flags & VM_SHARED)
1576 		mapping_unmap_writable(file->f_mapping);
1577 allow_write_and_free_vma:
1578 	if (vm_flags & VM_DENYWRITE)
1579 		allow_write_access(file);
1580 free_vma:
1581 	kmem_cache_free(vm_area_cachep, vma);
1582 unacct_error:
1583 	if (charged)
1584 		vm_unacct_memory(charged);
1585 	return error;
1586 }
1587 
1588 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1589 {
1590 	/*
1591 	 * We implement the search by looking for an rbtree node that
1592 	 * immediately follows a suitable gap. That is,
1593 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595 	 * - gap_end - gap_start >= length
1596 	 */
1597 
1598 	struct mm_struct *mm = current->mm;
1599 	struct vm_area_struct *vma;
1600 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601 
1602 	/* Adjust search length to account for worst case alignment overhead */
1603 	length = info->length + info->align_mask;
1604 	if (length < info->length)
1605 		return -ENOMEM;
1606 
1607 	/* Adjust search limits by the desired length */
1608 	if (info->high_limit < length)
1609 		return -ENOMEM;
1610 	high_limit = info->high_limit - length;
1611 
1612 	if (info->low_limit > high_limit)
1613 		return -ENOMEM;
1614 	low_limit = info->low_limit + length;
1615 
1616 	/* Check if rbtree root looks promising */
1617 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618 		goto check_highest;
1619 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620 	if (vma->rb_subtree_gap < length)
1621 		goto check_highest;
1622 
1623 	while (true) {
1624 		/* Visit left subtree if it looks promising */
1625 		gap_end = vma->vm_start;
1626 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627 			struct vm_area_struct *left =
1628 				rb_entry(vma->vm_rb.rb_left,
1629 					 struct vm_area_struct, vm_rb);
1630 			if (left->rb_subtree_gap >= length) {
1631 				vma = left;
1632 				continue;
1633 			}
1634 		}
1635 
1636 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637 check_current:
1638 		/* Check if current node has a suitable gap */
1639 		if (gap_start > high_limit)
1640 			return -ENOMEM;
1641 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1642 			goto found;
1643 
1644 		/* Visit right subtree if it looks promising */
1645 		if (vma->vm_rb.rb_right) {
1646 			struct vm_area_struct *right =
1647 				rb_entry(vma->vm_rb.rb_right,
1648 					 struct vm_area_struct, vm_rb);
1649 			if (right->rb_subtree_gap >= length) {
1650 				vma = right;
1651 				continue;
1652 			}
1653 		}
1654 
1655 		/* Go back up the rbtree to find next candidate node */
1656 		while (true) {
1657 			struct rb_node *prev = &vma->vm_rb;
1658 			if (!rb_parent(prev))
1659 				goto check_highest;
1660 			vma = rb_entry(rb_parent(prev),
1661 				       struct vm_area_struct, vm_rb);
1662 			if (prev == vma->vm_rb.rb_left) {
1663 				gap_start = vma->vm_prev->vm_end;
1664 				gap_end = vma->vm_start;
1665 				goto check_current;
1666 			}
1667 		}
1668 	}
1669 
1670 check_highest:
1671 	/* Check highest gap, which does not precede any rbtree node */
1672 	gap_start = mm->highest_vm_end;
1673 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674 	if (gap_start > high_limit)
1675 		return -ENOMEM;
1676 
1677 found:
1678 	/* We found a suitable gap. Clip it with the original low_limit. */
1679 	if (gap_start < info->low_limit)
1680 		gap_start = info->low_limit;
1681 
1682 	/* Adjust gap address to the desired alignment */
1683 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684 
1685 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686 	VM_BUG_ON(gap_start + info->length > gap_end);
1687 	return gap_start;
1688 }
1689 
1690 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1691 {
1692 	struct mm_struct *mm = current->mm;
1693 	struct vm_area_struct *vma;
1694 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695 
1696 	/* Adjust search length to account for worst case alignment overhead */
1697 	length = info->length + info->align_mask;
1698 	if (length < info->length)
1699 		return -ENOMEM;
1700 
1701 	/*
1702 	 * Adjust search limits by the desired length.
1703 	 * See implementation comment at top of unmapped_area().
1704 	 */
1705 	gap_end = info->high_limit;
1706 	if (gap_end < length)
1707 		return -ENOMEM;
1708 	high_limit = gap_end - length;
1709 
1710 	if (info->low_limit > high_limit)
1711 		return -ENOMEM;
1712 	low_limit = info->low_limit + length;
1713 
1714 	/* Check highest gap, which does not precede any rbtree node */
1715 	gap_start = mm->highest_vm_end;
1716 	if (gap_start <= high_limit)
1717 		goto found_highest;
1718 
1719 	/* Check if rbtree root looks promising */
1720 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721 		return -ENOMEM;
1722 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723 	if (vma->rb_subtree_gap < length)
1724 		return -ENOMEM;
1725 
1726 	while (true) {
1727 		/* Visit right subtree if it looks promising */
1728 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730 			struct vm_area_struct *right =
1731 				rb_entry(vma->vm_rb.rb_right,
1732 					 struct vm_area_struct, vm_rb);
1733 			if (right->rb_subtree_gap >= length) {
1734 				vma = right;
1735 				continue;
1736 			}
1737 		}
1738 
1739 check_current:
1740 		/* Check if current node has a suitable gap */
1741 		gap_end = vma->vm_start;
1742 		if (gap_end < low_limit)
1743 			return -ENOMEM;
1744 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1745 			goto found;
1746 
1747 		/* Visit left subtree if it looks promising */
1748 		if (vma->vm_rb.rb_left) {
1749 			struct vm_area_struct *left =
1750 				rb_entry(vma->vm_rb.rb_left,
1751 					 struct vm_area_struct, vm_rb);
1752 			if (left->rb_subtree_gap >= length) {
1753 				vma = left;
1754 				continue;
1755 			}
1756 		}
1757 
1758 		/* Go back up the rbtree to find next candidate node */
1759 		while (true) {
1760 			struct rb_node *prev = &vma->vm_rb;
1761 			if (!rb_parent(prev))
1762 				return -ENOMEM;
1763 			vma = rb_entry(rb_parent(prev),
1764 				       struct vm_area_struct, vm_rb);
1765 			if (prev == vma->vm_rb.rb_right) {
1766 				gap_start = vma->vm_prev ?
1767 					vma->vm_prev->vm_end : 0;
1768 				goto check_current;
1769 			}
1770 		}
1771 	}
1772 
1773 found:
1774 	/* We found a suitable gap. Clip it with the original high_limit. */
1775 	if (gap_end > info->high_limit)
1776 		gap_end = info->high_limit;
1777 
1778 found_highest:
1779 	/* Compute highest gap address at the desired alignment */
1780 	gap_end -= info->length;
1781 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782 
1783 	VM_BUG_ON(gap_end < info->low_limit);
1784 	VM_BUG_ON(gap_end < gap_start);
1785 	return gap_end;
1786 }
1787 
1788 /* Get an address range which is currently unmapped.
1789  * For shmat() with addr=0.
1790  *
1791  * Ugly calling convention alert:
1792  * Return value with the low bits set means error value,
1793  * ie
1794  *	if (ret & ~PAGE_MASK)
1795  *		error = ret;
1796  *
1797  * This function "knows" that -ENOMEM has the bits set.
1798  */
1799 #ifndef HAVE_ARCH_UNMAPPED_AREA
1800 unsigned long
1801 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802 		unsigned long len, unsigned long pgoff, unsigned long flags)
1803 {
1804 	struct mm_struct *mm = current->mm;
1805 	struct vm_area_struct *vma;
1806 	struct vm_unmapped_area_info info;
1807 
1808 	if (len > TASK_SIZE - mmap_min_addr)
1809 		return -ENOMEM;
1810 
1811 	if (flags & MAP_FIXED)
1812 		return addr;
1813 
1814 	if (addr) {
1815 		addr = PAGE_ALIGN(addr);
1816 		vma = find_vma(mm, addr);
1817 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818 		    (!vma || addr + len <= vma->vm_start))
1819 			return addr;
1820 	}
1821 
1822 	info.flags = 0;
1823 	info.length = len;
1824 	info.low_limit = mm->mmap_base;
1825 	info.high_limit = TASK_SIZE;
1826 	info.align_mask = 0;
1827 	return vm_unmapped_area(&info);
1828 }
1829 #endif
1830 
1831 /*
1832  * This mmap-allocator allocates new areas top-down from below the
1833  * stack's low limit (the base):
1834  */
1835 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836 unsigned long
1837 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838 			  const unsigned long len, const unsigned long pgoff,
1839 			  const unsigned long flags)
1840 {
1841 	struct vm_area_struct *vma;
1842 	struct mm_struct *mm = current->mm;
1843 	unsigned long addr = addr0;
1844 	struct vm_unmapped_area_info info;
1845 
1846 	/* requested length too big for entire address space */
1847 	if (len > TASK_SIZE - mmap_min_addr)
1848 		return -ENOMEM;
1849 
1850 	if (flags & MAP_FIXED)
1851 		return addr;
1852 
1853 	/* requesting a specific address */
1854 	if (addr) {
1855 		addr = PAGE_ALIGN(addr);
1856 		vma = find_vma(mm, addr);
1857 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858 				(!vma || addr + len <= vma->vm_start))
1859 			return addr;
1860 	}
1861 
1862 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863 	info.length = len;
1864 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865 	info.high_limit = mm->mmap_base;
1866 	info.align_mask = 0;
1867 	addr = vm_unmapped_area(&info);
1868 
1869 	/*
1870 	 * A failed mmap() very likely causes application failure,
1871 	 * so fall back to the bottom-up function here. This scenario
1872 	 * can happen with large stack limits and large mmap()
1873 	 * allocations.
1874 	 */
1875 	if (offset_in_page(addr)) {
1876 		VM_BUG_ON(addr != -ENOMEM);
1877 		info.flags = 0;
1878 		info.low_limit = TASK_UNMAPPED_BASE;
1879 		info.high_limit = TASK_SIZE;
1880 		addr = vm_unmapped_area(&info);
1881 	}
1882 
1883 	return addr;
1884 }
1885 #endif
1886 
1887 unsigned long
1888 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889 		unsigned long pgoff, unsigned long flags)
1890 {
1891 	unsigned long (*get_area)(struct file *, unsigned long,
1892 				  unsigned long, unsigned long, unsigned long);
1893 
1894 	unsigned long error = arch_mmap_check(addr, len, flags);
1895 	if (error)
1896 		return error;
1897 
1898 	/* Careful about overflows.. */
1899 	if (len > TASK_SIZE)
1900 		return -ENOMEM;
1901 
1902 	get_area = current->mm->get_unmapped_area;
1903 	if (file && file->f_op->get_unmapped_area)
1904 		get_area = file->f_op->get_unmapped_area;
1905 	addr = get_area(file, addr, len, pgoff, flags);
1906 	if (IS_ERR_VALUE(addr))
1907 		return addr;
1908 
1909 	if (addr > TASK_SIZE - len)
1910 		return -ENOMEM;
1911 	if (offset_in_page(addr))
1912 		return -EINVAL;
1913 
1914 	addr = arch_rebalance_pgtables(addr, len);
1915 	error = security_mmap_addr(addr);
1916 	return error ? error : addr;
1917 }
1918 
1919 EXPORT_SYMBOL(get_unmapped_area);
1920 
1921 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923 {
1924 	struct rb_node *rb_node;
1925 	struct vm_area_struct *vma;
1926 
1927 	/* Check the cache first. */
1928 	vma = vmacache_find(mm, addr);
1929 	if (likely(vma))
1930 		return vma;
1931 
1932 	rb_node = mm->mm_rb.rb_node;
1933 
1934 	while (rb_node) {
1935 		struct vm_area_struct *tmp;
1936 
1937 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1938 
1939 		if (tmp->vm_end > addr) {
1940 			vma = tmp;
1941 			if (tmp->vm_start <= addr)
1942 				break;
1943 			rb_node = rb_node->rb_left;
1944 		} else
1945 			rb_node = rb_node->rb_right;
1946 	}
1947 
1948 	if (vma)
1949 		vmacache_update(addr, vma);
1950 	return vma;
1951 }
1952 
1953 EXPORT_SYMBOL(find_vma);
1954 
1955 /*
1956  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1957  */
1958 struct vm_area_struct *
1959 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960 			struct vm_area_struct **pprev)
1961 {
1962 	struct vm_area_struct *vma;
1963 
1964 	vma = find_vma(mm, addr);
1965 	if (vma) {
1966 		*pprev = vma->vm_prev;
1967 	} else {
1968 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969 		*pprev = NULL;
1970 		while (rb_node) {
1971 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972 			rb_node = rb_node->rb_right;
1973 		}
1974 	}
1975 	return vma;
1976 }
1977 
1978 /*
1979  * Verify that the stack growth is acceptable and
1980  * update accounting. This is shared with both the
1981  * grow-up and grow-down cases.
1982  */
1983 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1984 {
1985 	struct mm_struct *mm = vma->vm_mm;
1986 	struct rlimit *rlim = current->signal->rlim;
1987 	unsigned long new_start, actual_size;
1988 
1989 	/* address space limit tests */
1990 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991 		return -ENOMEM;
1992 
1993 	/* Stack limit test */
1994 	actual_size = size;
1995 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996 		actual_size -= PAGE_SIZE;
1997 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998 		return -ENOMEM;
1999 
2000 	/* mlock limit tests */
2001 	if (vma->vm_flags & VM_LOCKED) {
2002 		unsigned long locked;
2003 		unsigned long limit;
2004 		locked = mm->locked_vm + grow;
2005 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006 		limit >>= PAGE_SHIFT;
2007 		if (locked > limit && !capable(CAP_IPC_LOCK))
2008 			return -ENOMEM;
2009 	}
2010 
2011 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013 			vma->vm_end - size;
2014 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015 		return -EFAULT;
2016 
2017 	/*
2018 	 * Overcommit..  This must be the final test, as it will
2019 	 * update security statistics.
2020 	 */
2021 	if (security_vm_enough_memory_mm(mm, grow))
2022 		return -ENOMEM;
2023 
2024 	return 0;
2025 }
2026 
2027 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028 /*
2029  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031  */
2032 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033 {
2034 	struct mm_struct *mm = vma->vm_mm;
2035 	int error = 0;
2036 
2037 	if (!(vma->vm_flags & VM_GROWSUP))
2038 		return -EFAULT;
2039 
2040 	/* Guard against wrapping around to address 0. */
2041 	if (address < PAGE_ALIGN(address+4))
2042 		address = PAGE_ALIGN(address+4);
2043 	else
2044 		return -ENOMEM;
2045 
2046 	/* We must make sure the anon_vma is allocated. */
2047 	if (unlikely(anon_vma_prepare(vma)))
2048 		return -ENOMEM;
2049 
2050 	/*
2051 	 * vma->vm_start/vm_end cannot change under us because the caller
2052 	 * is required to hold the mmap_sem in read mode.  We need the
2053 	 * anon_vma lock to serialize against concurrent expand_stacks.
2054 	 */
2055 	anon_vma_lock_write(vma->anon_vma);
2056 
2057 	/* Somebody else might have raced and expanded it already */
2058 	if (address > vma->vm_end) {
2059 		unsigned long size, grow;
2060 
2061 		size = address - vma->vm_start;
2062 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063 
2064 		error = -ENOMEM;
2065 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066 			error = acct_stack_growth(vma, size, grow);
2067 			if (!error) {
2068 				/*
2069 				 * vma_gap_update() doesn't support concurrent
2070 				 * updates, but we only hold a shared mmap_sem
2071 				 * lock here, so we need to protect against
2072 				 * concurrent vma expansions.
2073 				 * anon_vma_lock_write() doesn't help here, as
2074 				 * we don't guarantee that all growable vmas
2075 				 * in a mm share the same root anon vma.
2076 				 * So, we reuse mm->page_table_lock to guard
2077 				 * against concurrent vma expansions.
2078 				 */
2079 				spin_lock(&mm->page_table_lock);
2080 				if (vma->vm_flags & VM_LOCKED)
2081 					mm->locked_vm += grow;
2082 				vm_stat_account(mm, vma->vm_flags, grow);
2083 				anon_vma_interval_tree_pre_update_vma(vma);
2084 				vma->vm_end = address;
2085 				anon_vma_interval_tree_post_update_vma(vma);
2086 				if (vma->vm_next)
2087 					vma_gap_update(vma->vm_next);
2088 				else
2089 					mm->highest_vm_end = address;
2090 				spin_unlock(&mm->page_table_lock);
2091 
2092 				perf_event_mmap(vma);
2093 			}
2094 		}
2095 	}
2096 	anon_vma_unlock_write(vma->anon_vma);
2097 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098 	validate_mm(mm);
2099 	return error;
2100 }
2101 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102 
2103 /*
2104  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2105  */
2106 int expand_downwards(struct vm_area_struct *vma,
2107 				   unsigned long address)
2108 {
2109 	struct mm_struct *mm = vma->vm_mm;
2110 	int error;
2111 
2112 	address &= PAGE_MASK;
2113 	error = security_mmap_addr(address);
2114 	if (error)
2115 		return error;
2116 
2117 	/* We must make sure the anon_vma is allocated. */
2118 	if (unlikely(anon_vma_prepare(vma)))
2119 		return -ENOMEM;
2120 
2121 	/*
2122 	 * vma->vm_start/vm_end cannot change under us because the caller
2123 	 * is required to hold the mmap_sem in read mode.  We need the
2124 	 * anon_vma lock to serialize against concurrent expand_stacks.
2125 	 */
2126 	anon_vma_lock_write(vma->anon_vma);
2127 
2128 	/* Somebody else might have raced and expanded it already */
2129 	if (address < vma->vm_start) {
2130 		unsigned long size, grow;
2131 
2132 		size = vma->vm_end - address;
2133 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134 
2135 		error = -ENOMEM;
2136 		if (grow <= vma->vm_pgoff) {
2137 			error = acct_stack_growth(vma, size, grow);
2138 			if (!error) {
2139 				/*
2140 				 * vma_gap_update() doesn't support concurrent
2141 				 * updates, but we only hold a shared mmap_sem
2142 				 * lock here, so we need to protect against
2143 				 * concurrent vma expansions.
2144 				 * anon_vma_lock_write() doesn't help here, as
2145 				 * we don't guarantee that all growable vmas
2146 				 * in a mm share the same root anon vma.
2147 				 * So, we reuse mm->page_table_lock to guard
2148 				 * against concurrent vma expansions.
2149 				 */
2150 				spin_lock(&mm->page_table_lock);
2151 				if (vma->vm_flags & VM_LOCKED)
2152 					mm->locked_vm += grow;
2153 				vm_stat_account(mm, vma->vm_flags, grow);
2154 				anon_vma_interval_tree_pre_update_vma(vma);
2155 				vma->vm_start = address;
2156 				vma->vm_pgoff -= grow;
2157 				anon_vma_interval_tree_post_update_vma(vma);
2158 				vma_gap_update(vma);
2159 				spin_unlock(&mm->page_table_lock);
2160 
2161 				perf_event_mmap(vma);
2162 			}
2163 		}
2164 	}
2165 	anon_vma_unlock_write(vma->anon_vma);
2166 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167 	validate_mm(mm);
2168 	return error;
2169 }
2170 
2171 /*
2172  * Note how expand_stack() refuses to expand the stack all the way to
2173  * abut the next virtual mapping, *unless* that mapping itself is also
2174  * a stack mapping. We want to leave room for a guard page, after all
2175  * (the guard page itself is not added here, that is done by the
2176  * actual page faulting logic)
2177  *
2178  * This matches the behavior of the guard page logic (see mm/memory.c:
2179  * check_stack_guard_page()), which only allows the guard page to be
2180  * removed under these circumstances.
2181  */
2182 #ifdef CONFIG_STACK_GROWSUP
2183 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184 {
2185 	struct vm_area_struct *next;
2186 
2187 	address &= PAGE_MASK;
2188 	next = vma->vm_next;
2189 	if (next && next->vm_start == address + PAGE_SIZE) {
2190 		if (!(next->vm_flags & VM_GROWSUP))
2191 			return -ENOMEM;
2192 	}
2193 	return expand_upwards(vma, address);
2194 }
2195 
2196 struct vm_area_struct *
2197 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198 {
2199 	struct vm_area_struct *vma, *prev;
2200 
2201 	addr &= PAGE_MASK;
2202 	vma = find_vma_prev(mm, addr, &prev);
2203 	if (vma && (vma->vm_start <= addr))
2204 		return vma;
2205 	if (!prev || expand_stack(prev, addr))
2206 		return NULL;
2207 	if (prev->vm_flags & VM_LOCKED)
2208 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2209 	return prev;
2210 }
2211 #else
2212 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213 {
2214 	struct vm_area_struct *prev;
2215 
2216 	address &= PAGE_MASK;
2217 	prev = vma->vm_prev;
2218 	if (prev && prev->vm_end == address) {
2219 		if (!(prev->vm_flags & VM_GROWSDOWN))
2220 			return -ENOMEM;
2221 	}
2222 	return expand_downwards(vma, address);
2223 }
2224 
2225 struct vm_area_struct *
2226 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227 {
2228 	struct vm_area_struct *vma;
2229 	unsigned long start;
2230 
2231 	addr &= PAGE_MASK;
2232 	vma = find_vma(mm, addr);
2233 	if (!vma)
2234 		return NULL;
2235 	if (vma->vm_start <= addr)
2236 		return vma;
2237 	if (!(vma->vm_flags & VM_GROWSDOWN))
2238 		return NULL;
2239 	start = vma->vm_start;
2240 	if (expand_stack(vma, addr))
2241 		return NULL;
2242 	if (vma->vm_flags & VM_LOCKED)
2243 		populate_vma_page_range(vma, addr, start, NULL);
2244 	return vma;
2245 }
2246 #endif
2247 
2248 EXPORT_SYMBOL_GPL(find_extend_vma);
2249 
2250 /*
2251  * Ok - we have the memory areas we should free on the vma list,
2252  * so release them, and do the vma updates.
2253  *
2254  * Called with the mm semaphore held.
2255  */
2256 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257 {
2258 	unsigned long nr_accounted = 0;
2259 
2260 	/* Update high watermark before we lower total_vm */
2261 	update_hiwater_vm(mm);
2262 	do {
2263 		long nrpages = vma_pages(vma);
2264 
2265 		if (vma->vm_flags & VM_ACCOUNT)
2266 			nr_accounted += nrpages;
2267 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2268 		vma = remove_vma(vma);
2269 	} while (vma);
2270 	vm_unacct_memory(nr_accounted);
2271 	validate_mm(mm);
2272 }
2273 
2274 /*
2275  * Get rid of page table information in the indicated region.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static void unmap_region(struct mm_struct *mm,
2280 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281 		unsigned long start, unsigned long end)
2282 {
2283 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284 	struct mmu_gather tlb;
2285 
2286 	lru_add_drain();
2287 	tlb_gather_mmu(&tlb, mm, start, end);
2288 	update_hiwater_rss(mm);
2289 	unmap_vmas(&tlb, vma, start, end);
2290 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292 	tlb_finish_mmu(&tlb, start, end);
2293 }
2294 
2295 /*
2296  * Create a list of vma's touched by the unmap, removing them from the mm's
2297  * vma list as we go..
2298  */
2299 static void
2300 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301 	struct vm_area_struct *prev, unsigned long end)
2302 {
2303 	struct vm_area_struct **insertion_point;
2304 	struct vm_area_struct *tail_vma = NULL;
2305 
2306 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307 	vma->vm_prev = NULL;
2308 	do {
2309 		vma_rb_erase(vma, &mm->mm_rb);
2310 		mm->map_count--;
2311 		tail_vma = vma;
2312 		vma = vma->vm_next;
2313 	} while (vma && vma->vm_start < end);
2314 	*insertion_point = vma;
2315 	if (vma) {
2316 		vma->vm_prev = prev;
2317 		vma_gap_update(vma);
2318 	} else
2319 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320 	tail_vma->vm_next = NULL;
2321 
2322 	/* Kill the cache */
2323 	vmacache_invalidate(mm);
2324 }
2325 
2326 /*
2327  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328  * munmap path where it doesn't make sense to fail.
2329  */
2330 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331 	      unsigned long addr, int new_below)
2332 {
2333 	struct vm_area_struct *new;
2334 	int err;
2335 
2336 	if (is_vm_hugetlb_page(vma) && (addr &
2337 					~(huge_page_mask(hstate_vma(vma)))))
2338 		return -EINVAL;
2339 
2340 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341 	if (!new)
2342 		return -ENOMEM;
2343 
2344 	/* most fields are the same, copy all, and then fixup */
2345 	*new = *vma;
2346 
2347 	INIT_LIST_HEAD(&new->anon_vma_chain);
2348 
2349 	if (new_below)
2350 		new->vm_end = addr;
2351 	else {
2352 		new->vm_start = addr;
2353 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354 	}
2355 
2356 	err = vma_dup_policy(vma, new);
2357 	if (err)
2358 		goto out_free_vma;
2359 
2360 	err = anon_vma_clone(new, vma);
2361 	if (err)
2362 		goto out_free_mpol;
2363 
2364 	if (new->vm_file)
2365 		get_file(new->vm_file);
2366 
2367 	if (new->vm_ops && new->vm_ops->open)
2368 		new->vm_ops->open(new);
2369 
2370 	if (new_below)
2371 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373 	else
2374 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375 
2376 	/* Success. */
2377 	if (!err)
2378 		return 0;
2379 
2380 	/* Clean everything up if vma_adjust failed. */
2381 	if (new->vm_ops && new->vm_ops->close)
2382 		new->vm_ops->close(new);
2383 	if (new->vm_file)
2384 		fput(new->vm_file);
2385 	unlink_anon_vmas(new);
2386  out_free_mpol:
2387 	mpol_put(vma_policy(new));
2388  out_free_vma:
2389 	kmem_cache_free(vm_area_cachep, new);
2390 	return err;
2391 }
2392 
2393 /*
2394  * Split a vma into two pieces at address 'addr', a new vma is allocated
2395  * either for the first part or the tail.
2396  */
2397 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398 	      unsigned long addr, int new_below)
2399 {
2400 	if (mm->map_count >= sysctl_max_map_count)
2401 		return -ENOMEM;
2402 
2403 	return __split_vma(mm, vma, addr, new_below);
2404 }
2405 
2406 /* Munmap is split into 2 main parts -- this part which finds
2407  * what needs doing, and the areas themselves, which do the
2408  * work.  This now handles partial unmappings.
2409  * Jeremy Fitzhardinge <jeremy@goop.org>
2410  */
2411 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2412 {
2413 	unsigned long end;
2414 	struct vm_area_struct *vma, *prev, *last;
2415 
2416 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417 		return -EINVAL;
2418 
2419 	len = PAGE_ALIGN(len);
2420 	if (len == 0)
2421 		return -EINVAL;
2422 
2423 	/* Find the first overlapping VMA */
2424 	vma = find_vma(mm, start);
2425 	if (!vma)
2426 		return 0;
2427 	prev = vma->vm_prev;
2428 	/* we have  start < vma->vm_end  */
2429 
2430 	/* if it doesn't overlap, we have nothing.. */
2431 	end = start + len;
2432 	if (vma->vm_start >= end)
2433 		return 0;
2434 
2435 	/*
2436 	 * If we need to split any vma, do it now to save pain later.
2437 	 *
2438 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440 	 * places tmp vma above, and higher split_vma places tmp vma below.
2441 	 */
2442 	if (start > vma->vm_start) {
2443 		int error;
2444 
2445 		/*
2446 		 * Make sure that map_count on return from munmap() will
2447 		 * not exceed its limit; but let map_count go just above
2448 		 * its limit temporarily, to help free resources as expected.
2449 		 */
2450 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451 			return -ENOMEM;
2452 
2453 		error = __split_vma(mm, vma, start, 0);
2454 		if (error)
2455 			return error;
2456 		prev = vma;
2457 	}
2458 
2459 	/* Does it split the last one? */
2460 	last = find_vma(mm, end);
2461 	if (last && end > last->vm_start) {
2462 		int error = __split_vma(mm, last, end, 1);
2463 		if (error)
2464 			return error;
2465 	}
2466 	vma = prev ? prev->vm_next : mm->mmap;
2467 
2468 	/*
2469 	 * unlock any mlock()ed ranges before detaching vmas
2470 	 */
2471 	if (mm->locked_vm) {
2472 		struct vm_area_struct *tmp = vma;
2473 		while (tmp && tmp->vm_start < end) {
2474 			if (tmp->vm_flags & VM_LOCKED) {
2475 				mm->locked_vm -= vma_pages(tmp);
2476 				munlock_vma_pages_all(tmp);
2477 			}
2478 			tmp = tmp->vm_next;
2479 		}
2480 	}
2481 
2482 	/*
2483 	 * Remove the vma's, and unmap the actual pages
2484 	 */
2485 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486 	unmap_region(mm, vma, prev, start, end);
2487 
2488 	arch_unmap(mm, vma, start, end);
2489 
2490 	/* Fix up all other VM information */
2491 	remove_vma_list(mm, vma);
2492 
2493 	return 0;
2494 }
2495 
2496 int vm_munmap(unsigned long start, size_t len)
2497 {
2498 	int ret;
2499 	struct mm_struct *mm = current->mm;
2500 
2501 	down_write(&mm->mmap_sem);
2502 	ret = do_munmap(mm, start, len);
2503 	up_write(&mm->mmap_sem);
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL(vm_munmap);
2507 
2508 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509 {
2510 	profile_munmap(addr);
2511 	return vm_munmap(addr, len);
2512 }
2513 
2514 
2515 /*
2516  * Emulation of deprecated remap_file_pages() syscall.
2517  */
2518 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520 {
2521 
2522 	struct mm_struct *mm = current->mm;
2523 	struct vm_area_struct *vma;
2524 	unsigned long populate = 0;
2525 	unsigned long ret = -EINVAL;
2526 	struct file *file;
2527 
2528 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529 		     current->comm, current->pid);
2530 
2531 	if (prot)
2532 		return ret;
2533 	start = start & PAGE_MASK;
2534 	size = size & PAGE_MASK;
2535 
2536 	if (start + size <= start)
2537 		return ret;
2538 
2539 	/* Does pgoff wrap? */
2540 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541 		return ret;
2542 
2543 	down_write(&mm->mmap_sem);
2544 	vma = find_vma(mm, start);
2545 
2546 	if (!vma || !(vma->vm_flags & VM_SHARED))
2547 		goto out;
2548 
2549 	if (start < vma->vm_start)
2550 		goto out;
2551 
2552 	if (start + size > vma->vm_end) {
2553 		struct vm_area_struct *next;
2554 
2555 		for (next = vma->vm_next; next; next = next->vm_next) {
2556 			/* hole between vmas ? */
2557 			if (next->vm_start != next->vm_prev->vm_end)
2558 				goto out;
2559 
2560 			if (next->vm_file != vma->vm_file)
2561 				goto out;
2562 
2563 			if (next->vm_flags != vma->vm_flags)
2564 				goto out;
2565 
2566 			if (start + size <= next->vm_end)
2567 				break;
2568 		}
2569 
2570 		if (!next)
2571 			goto out;
2572 	}
2573 
2574 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577 
2578 	flags &= MAP_NONBLOCK;
2579 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580 	if (vma->vm_flags & VM_LOCKED) {
2581 		struct vm_area_struct *tmp;
2582 		flags |= MAP_LOCKED;
2583 
2584 		/* drop PG_Mlocked flag for over-mapped range */
2585 		for (tmp = vma; tmp->vm_start >= start + size;
2586 				tmp = tmp->vm_next) {
2587 			munlock_vma_pages_range(tmp,
2588 					max(tmp->vm_start, start),
2589 					min(tmp->vm_end, start + size));
2590 		}
2591 	}
2592 
2593 	file = get_file(vma->vm_file);
2594 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595 			prot, flags, pgoff, &populate);
2596 	fput(file);
2597 out:
2598 	up_write(&mm->mmap_sem);
2599 	if (populate)
2600 		mm_populate(ret, populate);
2601 	if (!IS_ERR_VALUE(ret))
2602 		ret = 0;
2603 	return ret;
2604 }
2605 
2606 static inline void verify_mm_writelocked(struct mm_struct *mm)
2607 {
2608 #ifdef CONFIG_DEBUG_VM
2609 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610 		WARN_ON(1);
2611 		up_read(&mm->mmap_sem);
2612 	}
2613 #endif
2614 }
2615 
2616 /*
2617  *  this is really a simplified "do_mmap".  it only handles
2618  *  anonymous maps.  eventually we may be able to do some
2619  *  brk-specific accounting here.
2620  */
2621 static unsigned long do_brk(unsigned long addr, unsigned long len)
2622 {
2623 	struct mm_struct *mm = current->mm;
2624 	struct vm_area_struct *vma, *prev;
2625 	unsigned long flags;
2626 	struct rb_node **rb_link, *rb_parent;
2627 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628 	int error;
2629 
2630 	len = PAGE_ALIGN(len);
2631 	if (!len)
2632 		return addr;
2633 
2634 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635 
2636 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637 	if (offset_in_page(error))
2638 		return error;
2639 
2640 	error = mlock_future_check(mm, mm->def_flags, len);
2641 	if (error)
2642 		return error;
2643 
2644 	/*
2645 	 * mm->mmap_sem is required to protect against another thread
2646 	 * changing the mappings in case we sleep.
2647 	 */
2648 	verify_mm_writelocked(mm);
2649 
2650 	/*
2651 	 * Clear old maps.  this also does some error checking for us
2652 	 */
2653 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654 			      &rb_parent)) {
2655 		if (do_munmap(mm, addr, len))
2656 			return -ENOMEM;
2657 	}
2658 
2659 	/* Check against address space limits *after* clearing old maps... */
2660 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661 		return -ENOMEM;
2662 
2663 	if (mm->map_count > sysctl_max_map_count)
2664 		return -ENOMEM;
2665 
2666 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667 		return -ENOMEM;
2668 
2669 	/* Can we just expand an old private anonymous mapping? */
2670 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672 	if (vma)
2673 		goto out;
2674 
2675 	/*
2676 	 * create a vma struct for an anonymous mapping
2677 	 */
2678 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679 	if (!vma) {
2680 		vm_unacct_memory(len >> PAGE_SHIFT);
2681 		return -ENOMEM;
2682 	}
2683 
2684 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685 	vma->vm_mm = mm;
2686 	vma->vm_start = addr;
2687 	vma->vm_end = addr + len;
2688 	vma->vm_pgoff = pgoff;
2689 	vma->vm_flags = flags;
2690 	vma->vm_page_prot = vm_get_page_prot(flags);
2691 	vma_link(mm, vma, prev, rb_link, rb_parent);
2692 out:
2693 	perf_event_mmap(vma);
2694 	mm->total_vm += len >> PAGE_SHIFT;
2695 	mm->data_vm += len >> PAGE_SHIFT;
2696 	if (flags & VM_LOCKED)
2697 		mm->locked_vm += (len >> PAGE_SHIFT);
2698 	vma->vm_flags |= VM_SOFTDIRTY;
2699 	return addr;
2700 }
2701 
2702 unsigned long vm_brk(unsigned long addr, unsigned long len)
2703 {
2704 	struct mm_struct *mm = current->mm;
2705 	unsigned long ret;
2706 	bool populate;
2707 
2708 	down_write(&mm->mmap_sem);
2709 	ret = do_brk(addr, len);
2710 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711 	up_write(&mm->mmap_sem);
2712 	if (populate)
2713 		mm_populate(addr, len);
2714 	return ret;
2715 }
2716 EXPORT_SYMBOL(vm_brk);
2717 
2718 /* Release all mmaps. */
2719 void exit_mmap(struct mm_struct *mm)
2720 {
2721 	struct mmu_gather tlb;
2722 	struct vm_area_struct *vma;
2723 	unsigned long nr_accounted = 0;
2724 
2725 	/* mm's last user has gone, and its about to be pulled down */
2726 	mmu_notifier_release(mm);
2727 
2728 	if (mm->locked_vm) {
2729 		vma = mm->mmap;
2730 		while (vma) {
2731 			if (vma->vm_flags & VM_LOCKED)
2732 				munlock_vma_pages_all(vma);
2733 			vma = vma->vm_next;
2734 		}
2735 	}
2736 
2737 	arch_exit_mmap(mm);
2738 
2739 	vma = mm->mmap;
2740 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741 		return;
2742 
2743 	lru_add_drain();
2744 	flush_cache_mm(mm);
2745 	tlb_gather_mmu(&tlb, mm, 0, -1);
2746 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748 	unmap_vmas(&tlb, vma, 0, -1);
2749 
2750 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751 	tlb_finish_mmu(&tlb, 0, -1);
2752 
2753 	/*
2754 	 * Walk the list again, actually closing and freeing it,
2755 	 * with preemption enabled, without holding any MM locks.
2756 	 */
2757 	while (vma) {
2758 		if (vma->vm_flags & VM_ACCOUNT)
2759 			nr_accounted += vma_pages(vma);
2760 		vma = remove_vma(vma);
2761 	}
2762 	vm_unacct_memory(nr_accounted);
2763 }
2764 
2765 /* Insert vm structure into process list sorted by address
2766  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767  * then i_mmap_rwsem is taken here.
2768  */
2769 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770 {
2771 	struct vm_area_struct *prev;
2772 	struct rb_node **rb_link, *rb_parent;
2773 
2774 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775 			   &prev, &rb_link, &rb_parent))
2776 		return -ENOMEM;
2777 	if ((vma->vm_flags & VM_ACCOUNT) &&
2778 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779 		return -ENOMEM;
2780 
2781 	/*
2782 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783 	 * until its first write fault, when page's anon_vma and index
2784 	 * are set.  But now set the vm_pgoff it will almost certainly
2785 	 * end up with (unless mremap moves it elsewhere before that
2786 	 * first wfault), so /proc/pid/maps tells a consistent story.
2787 	 *
2788 	 * By setting it to reflect the virtual start address of the
2789 	 * vma, merges and splits can happen in a seamless way, just
2790 	 * using the existing file pgoff checks and manipulations.
2791 	 * Similarly in do_mmap_pgoff and in do_brk.
2792 	 */
2793 	if (vma_is_anonymous(vma)) {
2794 		BUG_ON(vma->anon_vma);
2795 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796 	}
2797 
2798 	vma_link(mm, vma, prev, rb_link, rb_parent);
2799 	return 0;
2800 }
2801 
2802 /*
2803  * Copy the vma structure to a new location in the same mm,
2804  * prior to moving page table entries, to effect an mremap move.
2805  */
2806 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808 	bool *need_rmap_locks)
2809 {
2810 	struct vm_area_struct *vma = *vmap;
2811 	unsigned long vma_start = vma->vm_start;
2812 	struct mm_struct *mm = vma->vm_mm;
2813 	struct vm_area_struct *new_vma, *prev;
2814 	struct rb_node **rb_link, *rb_parent;
2815 	bool faulted_in_anon_vma = true;
2816 
2817 	/*
2818 	 * If anonymous vma has not yet been faulted, update new pgoff
2819 	 * to match new location, to increase its chance of merging.
2820 	 */
2821 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822 		pgoff = addr >> PAGE_SHIFT;
2823 		faulted_in_anon_vma = false;
2824 	}
2825 
2826 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827 		return NULL;	/* should never get here */
2828 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830 			    vma->vm_userfaultfd_ctx);
2831 	if (new_vma) {
2832 		/*
2833 		 * Source vma may have been merged into new_vma
2834 		 */
2835 		if (unlikely(vma_start >= new_vma->vm_start &&
2836 			     vma_start < new_vma->vm_end)) {
2837 			/*
2838 			 * The only way we can get a vma_merge with
2839 			 * self during an mremap is if the vma hasn't
2840 			 * been faulted in yet and we were allowed to
2841 			 * reset the dst vma->vm_pgoff to the
2842 			 * destination address of the mremap to allow
2843 			 * the merge to happen. mremap must change the
2844 			 * vm_pgoff linearity between src and dst vmas
2845 			 * (in turn preventing a vma_merge) to be
2846 			 * safe. It is only safe to keep the vm_pgoff
2847 			 * linear if there are no pages mapped yet.
2848 			 */
2849 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850 			*vmap = vma = new_vma;
2851 		}
2852 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853 	} else {
2854 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855 		if (!new_vma)
2856 			goto out;
2857 		*new_vma = *vma;
2858 		new_vma->vm_start = addr;
2859 		new_vma->vm_end = addr + len;
2860 		new_vma->vm_pgoff = pgoff;
2861 		if (vma_dup_policy(vma, new_vma))
2862 			goto out_free_vma;
2863 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864 		if (anon_vma_clone(new_vma, vma))
2865 			goto out_free_mempol;
2866 		if (new_vma->vm_file)
2867 			get_file(new_vma->vm_file);
2868 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869 			new_vma->vm_ops->open(new_vma);
2870 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871 		*need_rmap_locks = false;
2872 	}
2873 	return new_vma;
2874 
2875 out_free_mempol:
2876 	mpol_put(vma_policy(new_vma));
2877 out_free_vma:
2878 	kmem_cache_free(vm_area_cachep, new_vma);
2879 out:
2880 	return NULL;
2881 }
2882 
2883 /*
2884  * Return true if the calling process may expand its vm space by the passed
2885  * number of pages
2886  */
2887 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888 {
2889 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890 		return false;
2891 
2892 	if (is_data_mapping(flags) &&
2893 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894 		if (ignore_rlimit_data)
2895 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896 				     current->comm, current->pid,
2897 				     (mm->data_vm + npages) << PAGE_SHIFT,
2898 				     rlimit(RLIMIT_DATA));
2899 		else
2900 			return false;
2901 	}
2902 
2903 	return true;
2904 }
2905 
2906 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907 {
2908 	mm->total_vm += npages;
2909 
2910 	if (is_exec_mapping(flags))
2911 		mm->exec_vm += npages;
2912 	else if (is_stack_mapping(flags))
2913 		mm->stack_vm += npages;
2914 	else if (is_data_mapping(flags))
2915 		mm->data_vm += npages;
2916 }
2917 
2918 static int special_mapping_fault(struct vm_area_struct *vma,
2919 				 struct vm_fault *vmf);
2920 
2921 /*
2922  * Having a close hook prevents vma merging regardless of flags.
2923  */
2924 static void special_mapping_close(struct vm_area_struct *vma)
2925 {
2926 }
2927 
2928 static const char *special_mapping_name(struct vm_area_struct *vma)
2929 {
2930 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931 }
2932 
2933 static const struct vm_operations_struct special_mapping_vmops = {
2934 	.close = special_mapping_close,
2935 	.fault = special_mapping_fault,
2936 	.name = special_mapping_name,
2937 };
2938 
2939 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940 	.close = special_mapping_close,
2941 	.fault = special_mapping_fault,
2942 };
2943 
2944 static int special_mapping_fault(struct vm_area_struct *vma,
2945 				struct vm_fault *vmf)
2946 {
2947 	pgoff_t pgoff;
2948 	struct page **pages;
2949 
2950 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951 		pages = vma->vm_private_data;
2952 	} else {
2953 		struct vm_special_mapping *sm = vma->vm_private_data;
2954 
2955 		if (sm->fault)
2956 			return sm->fault(sm, vma, vmf);
2957 
2958 		pages = sm->pages;
2959 	}
2960 
2961 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962 		pgoff--;
2963 
2964 	if (*pages) {
2965 		struct page *page = *pages;
2966 		get_page(page);
2967 		vmf->page = page;
2968 		return 0;
2969 	}
2970 
2971 	return VM_FAULT_SIGBUS;
2972 }
2973 
2974 static struct vm_area_struct *__install_special_mapping(
2975 	struct mm_struct *mm,
2976 	unsigned long addr, unsigned long len,
2977 	unsigned long vm_flags, void *priv,
2978 	const struct vm_operations_struct *ops)
2979 {
2980 	int ret;
2981 	struct vm_area_struct *vma;
2982 
2983 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984 	if (unlikely(vma == NULL))
2985 		return ERR_PTR(-ENOMEM);
2986 
2987 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988 	vma->vm_mm = mm;
2989 	vma->vm_start = addr;
2990 	vma->vm_end = addr + len;
2991 
2992 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994 
2995 	vma->vm_ops = ops;
2996 	vma->vm_private_data = priv;
2997 
2998 	ret = insert_vm_struct(mm, vma);
2999 	if (ret)
3000 		goto out;
3001 
3002 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003 
3004 	perf_event_mmap(vma);
3005 
3006 	return vma;
3007 
3008 out:
3009 	kmem_cache_free(vm_area_cachep, vma);
3010 	return ERR_PTR(ret);
3011 }
3012 
3013 /*
3014  * Called with mm->mmap_sem held for writing.
3015  * Insert a new vma covering the given region, with the given flags.
3016  * Its pages are supplied by the given array of struct page *.
3017  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018  * The region past the last page supplied will always produce SIGBUS.
3019  * The array pointer and the pages it points to are assumed to stay alive
3020  * for as long as this mapping might exist.
3021  */
3022 struct vm_area_struct *_install_special_mapping(
3023 	struct mm_struct *mm,
3024 	unsigned long addr, unsigned long len,
3025 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026 {
3027 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028 					&special_mapping_vmops);
3029 }
3030 
3031 int install_special_mapping(struct mm_struct *mm,
3032 			    unsigned long addr, unsigned long len,
3033 			    unsigned long vm_flags, struct page **pages)
3034 {
3035 	struct vm_area_struct *vma = __install_special_mapping(
3036 		mm, addr, len, vm_flags, (void *)pages,
3037 		&legacy_special_mapping_vmops);
3038 
3039 	return PTR_ERR_OR_ZERO(vma);
3040 }
3041 
3042 static DEFINE_MUTEX(mm_all_locks_mutex);
3043 
3044 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045 {
3046 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047 		/*
3048 		 * The LSB of head.next can't change from under us
3049 		 * because we hold the mm_all_locks_mutex.
3050 		 */
3051 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052 		/*
3053 		 * We can safely modify head.next after taking the
3054 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055 		 * the same anon_vma we won't take it again.
3056 		 *
3057 		 * No need of atomic instructions here, head.next
3058 		 * can't change from under us thanks to the
3059 		 * anon_vma->root->rwsem.
3060 		 */
3061 		if (__test_and_set_bit(0, (unsigned long *)
3062 				       &anon_vma->root->rb_root.rb_node))
3063 			BUG();
3064 	}
3065 }
3066 
3067 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068 {
3069 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070 		/*
3071 		 * AS_MM_ALL_LOCKS can't change from under us because
3072 		 * we hold the mm_all_locks_mutex.
3073 		 *
3074 		 * Operations on ->flags have to be atomic because
3075 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076 		 * mm_all_locks_mutex, there may be other cpus
3077 		 * changing other bitflags in parallel to us.
3078 		 */
3079 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080 			BUG();
3081 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082 	}
3083 }
3084 
3085 /*
3086  * This operation locks against the VM for all pte/vma/mm related
3087  * operations that could ever happen on a certain mm. This includes
3088  * vmtruncate, try_to_unmap, and all page faults.
3089  *
3090  * The caller must take the mmap_sem in write mode before calling
3091  * mm_take_all_locks(). The caller isn't allowed to release the
3092  * mmap_sem until mm_drop_all_locks() returns.
3093  *
3094  * mmap_sem in write mode is required in order to block all operations
3095  * that could modify pagetables and free pages without need of
3096  * altering the vma layout. It's also needed in write mode to avoid new
3097  * anon_vmas to be associated with existing vmas.
3098  *
3099  * A single task can't take more than one mm_take_all_locks() in a row
3100  * or it would deadlock.
3101  *
3102  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103  * mapping->flags avoid to take the same lock twice, if more than one
3104  * vma in this mm is backed by the same anon_vma or address_space.
3105  *
3106  * We take locks in following order, accordingly to comment at beginning
3107  * of mm/rmap.c:
3108  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109  *     hugetlb mapping);
3110  *   - all i_mmap_rwsem locks;
3111  *   - all anon_vma->rwseml
3112  *
3113  * We can take all locks within these types randomly because the VM code
3114  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115  * mm_all_locks_mutex.
3116  *
3117  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118  * that may have to take thousand of locks.
3119  *
3120  * mm_take_all_locks() can fail if it's interrupted by signals.
3121  */
3122 int mm_take_all_locks(struct mm_struct *mm)
3123 {
3124 	struct vm_area_struct *vma;
3125 	struct anon_vma_chain *avc;
3126 
3127 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128 
3129 	mutex_lock(&mm_all_locks_mutex);
3130 
3131 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132 		if (signal_pending(current))
3133 			goto out_unlock;
3134 		if (vma->vm_file && vma->vm_file->f_mapping &&
3135 				is_vm_hugetlb_page(vma))
3136 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137 	}
3138 
3139 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140 		if (signal_pending(current))
3141 			goto out_unlock;
3142 		if (vma->vm_file && vma->vm_file->f_mapping &&
3143 				!is_vm_hugetlb_page(vma))
3144 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145 	}
3146 
3147 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148 		if (signal_pending(current))
3149 			goto out_unlock;
3150 		if (vma->anon_vma)
3151 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152 				vm_lock_anon_vma(mm, avc->anon_vma);
3153 	}
3154 
3155 	return 0;
3156 
3157 out_unlock:
3158 	mm_drop_all_locks(mm);
3159 	return -EINTR;
3160 }
3161 
3162 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163 {
3164 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165 		/*
3166 		 * The LSB of head.next can't change to 0 from under
3167 		 * us because we hold the mm_all_locks_mutex.
3168 		 *
3169 		 * We must however clear the bitflag before unlocking
3170 		 * the vma so the users using the anon_vma->rb_root will
3171 		 * never see our bitflag.
3172 		 *
3173 		 * No need of atomic instructions here, head.next
3174 		 * can't change from under us until we release the
3175 		 * anon_vma->root->rwsem.
3176 		 */
3177 		if (!__test_and_clear_bit(0, (unsigned long *)
3178 					  &anon_vma->root->rb_root.rb_node))
3179 			BUG();
3180 		anon_vma_unlock_write(anon_vma);
3181 	}
3182 }
3183 
3184 static void vm_unlock_mapping(struct address_space *mapping)
3185 {
3186 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187 		/*
3188 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189 		 * because we hold the mm_all_locks_mutex.
3190 		 */
3191 		i_mmap_unlock_write(mapping);
3192 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193 					&mapping->flags))
3194 			BUG();
3195 	}
3196 }
3197 
3198 /*
3199  * The mmap_sem cannot be released by the caller until
3200  * mm_drop_all_locks() returns.
3201  */
3202 void mm_drop_all_locks(struct mm_struct *mm)
3203 {
3204 	struct vm_area_struct *vma;
3205 	struct anon_vma_chain *avc;
3206 
3207 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209 
3210 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211 		if (vma->anon_vma)
3212 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213 				vm_unlock_anon_vma(avc->anon_vma);
3214 		if (vma->vm_file && vma->vm_file->f_mapping)
3215 			vm_unlock_mapping(vma->vm_file->f_mapping);
3216 	}
3217 
3218 	mutex_unlock(&mm_all_locks_mutex);
3219 }
3220 
3221 /*
3222  * initialise the VMA slab
3223  */
3224 void __init mmap_init(void)
3225 {
3226 	int ret;
3227 
3228 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229 	VM_BUG_ON(ret);
3230 }
3231 
3232 /*
3233  * Initialise sysctl_user_reserve_kbytes.
3234  *
3235  * This is intended to prevent a user from starting a single memory hogging
3236  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237  * mode.
3238  *
3239  * The default value is min(3% of free memory, 128MB)
3240  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241  */
3242 static int init_user_reserve(void)
3243 {
3244 	unsigned long free_kbytes;
3245 
3246 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247 
3248 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249 	return 0;
3250 }
3251 subsys_initcall(init_user_reserve);
3252 
3253 /*
3254  * Initialise sysctl_admin_reserve_kbytes.
3255  *
3256  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257  * to log in and kill a memory hogging process.
3258  *
3259  * Systems with more than 256MB will reserve 8MB, enough to recover
3260  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261  * only reserve 3% of free pages by default.
3262  */
3263 static int init_admin_reserve(void)
3264 {
3265 	unsigned long free_kbytes;
3266 
3267 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268 
3269 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270 	return 0;
3271 }
3272 subsys_initcall(init_admin_reserve);
3273 
3274 /*
3275  * Reinititalise user and admin reserves if memory is added or removed.
3276  *
3277  * The default user reserve max is 128MB, and the default max for the
3278  * admin reserve is 8MB. These are usually, but not always, enough to
3279  * enable recovery from a memory hogging process using login/sshd, a shell,
3280  * and tools like top. It may make sense to increase or even disable the
3281  * reserve depending on the existence of swap or variations in the recovery
3282  * tools. So, the admin may have changed them.
3283  *
3284  * If memory is added and the reserves have been eliminated or increased above
3285  * the default max, then we'll trust the admin.
3286  *
3287  * If memory is removed and there isn't enough free memory, then we
3288  * need to reset the reserves.
3289  *
3290  * Otherwise keep the reserve set by the admin.
3291  */
3292 static int reserve_mem_notifier(struct notifier_block *nb,
3293 			     unsigned long action, void *data)
3294 {
3295 	unsigned long tmp, free_kbytes;
3296 
3297 	switch (action) {
3298 	case MEM_ONLINE:
3299 		/* Default max is 128MB. Leave alone if modified by operator. */
3300 		tmp = sysctl_user_reserve_kbytes;
3301 		if (0 < tmp && tmp < (1UL << 17))
3302 			init_user_reserve();
3303 
3304 		/* Default max is 8MB.  Leave alone if modified by operator. */
3305 		tmp = sysctl_admin_reserve_kbytes;
3306 		if (0 < tmp && tmp < (1UL << 13))
3307 			init_admin_reserve();
3308 
3309 		break;
3310 	case MEM_OFFLINE:
3311 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312 
3313 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314 			init_user_reserve();
3315 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316 				sysctl_user_reserve_kbytes);
3317 		}
3318 
3319 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320 			init_admin_reserve();
3321 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322 				sysctl_admin_reserve_kbytes);
3323 		}
3324 		break;
3325 	default:
3326 		break;
3327 	}
3328 	return NOTIFY_OK;
3329 }
3330 
3331 static struct notifier_block reserve_mem_nb = {
3332 	.notifier_call = reserve_mem_notifier,
3333 };
3334 
3335 static int __meminit init_reserve_notifier(void)
3336 {
3337 	if (register_hotmemory_notifier(&reserve_mem_nb))
3338 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339 
3340 	return 0;
3341 }
3342 subsys_initcall(init_reserve_notifier);
3343