1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlb.h> 38 #include <asm/mmu_context.h> 39 40 #include "internal.h" 41 42 #ifndef arch_mmap_check 43 #define arch_mmap_check(addr, len, flags) (0) 44 #endif 45 46 #ifndef arch_rebalance_pgtables 47 #define arch_rebalance_pgtables(addr, len) (addr) 48 #endif 49 50 static void unmap_region(struct mm_struct *mm, 51 struct vm_area_struct *vma, struct vm_area_struct *prev, 52 unsigned long start, unsigned long end); 53 54 /* description of effects of mapping type and prot in current implementation. 55 * this is due to the limited x86 page protection hardware. The expected 56 * behavior is in parens: 57 * 58 * map_type prot 59 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 60 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 61 * w: (no) no w: (no) no w: (yes) yes w: (no) no 62 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 63 * 64 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (copy) copy w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 */ 69 pgprot_t protection_map[16] = { 70 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 71 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 72 }; 73 74 pgprot_t vm_get_page_prot(unsigned long vm_flags) 75 { 76 return __pgprot(pgprot_val(protection_map[vm_flags & 77 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 78 pgprot_val(arch_vm_get_page_prot(vm_flags))); 79 } 80 EXPORT_SYMBOL(vm_get_page_prot); 81 82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 85 /* 86 * Make sure vm_committed_as in one cacheline and not cacheline shared with 87 * other variables. It can be updated by several CPUs frequently. 88 */ 89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 free = global_page_state(NR_FREE_PAGES); 121 free += global_page_state(NR_FILE_PAGES); 122 123 /* 124 * shmem pages shouldn't be counted as free in this 125 * case, they can't be purged, only swapped out, and 126 * that won't affect the overall amount of available 127 * memory in the system. 128 */ 129 free -= global_page_state(NR_SHMEM); 130 131 free += nr_swap_pages; 132 133 /* 134 * Any slabs which are created with the 135 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 136 * which are reclaimable, under pressure. The dentry 137 * cache and most inode caches should fall into this 138 */ 139 free += global_page_state(NR_SLAB_RECLAIMABLE); 140 141 /* 142 * Leave reserved pages. The pages are not for anonymous pages. 143 */ 144 if (free <= totalreserve_pages) 145 goto error; 146 else 147 free -= totalreserve_pages; 148 149 /* 150 * Leave the last 3% for root 151 */ 152 if (!cap_sys_admin) 153 free -= free / 32; 154 155 if (free > pages) 156 return 0; 157 158 goto error; 159 } 160 161 allowed = (totalram_pages - hugetlb_total_pages()) 162 * sysctl_overcommit_ratio / 100; 163 /* 164 * Leave the last 3% for root 165 */ 166 if (!cap_sys_admin) 167 allowed -= allowed / 32; 168 allowed += total_swap_pages; 169 170 /* Don't let a single process grow too big: 171 leave 3% of the size of this process for other processes */ 172 if (mm) 173 allowed -= mm->total_vm / 32; 174 175 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 176 return 0; 177 error: 178 vm_unacct_memory(pages); 179 180 return -ENOMEM; 181 } 182 183 /* 184 * Requires inode->i_mapping->i_mmap_mutex 185 */ 186 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 187 struct file *file, struct address_space *mapping) 188 { 189 if (vma->vm_flags & VM_DENYWRITE) 190 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 191 if (vma->vm_flags & VM_SHARED) 192 mapping->i_mmap_writable--; 193 194 flush_dcache_mmap_lock(mapping); 195 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 196 list_del_init(&vma->shared.nonlinear); 197 else 198 vma_interval_tree_remove(vma, &mapping->i_mmap); 199 flush_dcache_mmap_unlock(mapping); 200 } 201 202 /* 203 * Unlink a file-based vm structure from its interval tree, to hide 204 * vma from rmap and vmtruncate before freeing its page tables. 205 */ 206 void unlink_file_vma(struct vm_area_struct *vma) 207 { 208 struct file *file = vma->vm_file; 209 210 if (file) { 211 struct address_space *mapping = file->f_mapping; 212 mutex_lock(&mapping->i_mmap_mutex); 213 __remove_shared_vm_struct(vma, file, mapping); 214 mutex_unlock(&mapping->i_mmap_mutex); 215 } 216 } 217 218 /* 219 * Close a vm structure and free it, returning the next. 220 */ 221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 222 { 223 struct vm_area_struct *next = vma->vm_next; 224 225 might_sleep(); 226 if (vma->vm_ops && vma->vm_ops->close) 227 vma->vm_ops->close(vma); 228 if (vma->vm_file) 229 fput(vma->vm_file); 230 mpol_put(vma_policy(vma)); 231 kmem_cache_free(vm_area_cachep, vma); 232 return next; 233 } 234 235 static unsigned long do_brk(unsigned long addr, unsigned long len); 236 237 SYSCALL_DEFINE1(brk, unsigned long, brk) 238 { 239 unsigned long rlim, retval; 240 unsigned long newbrk, oldbrk; 241 struct mm_struct *mm = current->mm; 242 unsigned long min_brk; 243 244 down_write(&mm->mmap_sem); 245 246 #ifdef CONFIG_COMPAT_BRK 247 /* 248 * CONFIG_COMPAT_BRK can still be overridden by setting 249 * randomize_va_space to 2, which will still cause mm->start_brk 250 * to be arbitrarily shifted 251 */ 252 if (current->brk_randomized) 253 min_brk = mm->start_brk; 254 else 255 min_brk = mm->end_data; 256 #else 257 min_brk = mm->start_brk; 258 #endif 259 if (brk < min_brk) 260 goto out; 261 262 /* 263 * Check against rlimit here. If this check is done later after the test 264 * of oldbrk with newbrk then it can escape the test and let the data 265 * segment grow beyond its set limit the in case where the limit is 266 * not page aligned -Ram Gupta 267 */ 268 rlim = rlimit(RLIMIT_DATA); 269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 270 (mm->end_data - mm->start_data) > rlim) 271 goto out; 272 273 newbrk = PAGE_ALIGN(brk); 274 oldbrk = PAGE_ALIGN(mm->brk); 275 if (oldbrk == newbrk) 276 goto set_brk; 277 278 /* Always allow shrinking brk. */ 279 if (brk <= mm->brk) { 280 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 281 goto set_brk; 282 goto out; 283 } 284 285 /* Check against existing mmap mappings. */ 286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 287 goto out; 288 289 /* Ok, looks good - let it rip. */ 290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 291 goto out; 292 set_brk: 293 mm->brk = brk; 294 out: 295 retval = mm->brk; 296 up_write(&mm->mmap_sem); 297 return retval; 298 } 299 300 #ifdef CONFIG_DEBUG_VM_RB 301 static int browse_rb(struct rb_root *root) 302 { 303 int i = 0, j; 304 struct rb_node *nd, *pn = NULL; 305 unsigned long prev = 0, pend = 0; 306 307 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 308 struct vm_area_struct *vma; 309 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 310 if (vma->vm_start < prev) 311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 312 if (vma->vm_start < pend) 313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 314 if (vma->vm_start > vma->vm_end) 315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 316 i++; 317 pn = nd; 318 prev = vma->vm_start; 319 pend = vma->vm_end; 320 } 321 j = 0; 322 for (nd = pn; nd; nd = rb_prev(nd)) { 323 j++; 324 } 325 if (i != j) 326 printk("backwards %d, forwards %d\n", j, i), i = 0; 327 return i; 328 } 329 330 void validate_mm(struct mm_struct *mm) 331 { 332 int bug = 0; 333 int i = 0; 334 struct vm_area_struct *vma = mm->mmap; 335 while (vma) { 336 struct anon_vma_chain *avc; 337 vma_lock_anon_vma(vma); 338 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 339 anon_vma_interval_tree_verify(avc); 340 vma_unlock_anon_vma(vma); 341 vma = vma->vm_next; 342 i++; 343 } 344 if (i != mm->map_count) 345 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 346 i = browse_rb(&mm->mm_rb); 347 if (i != mm->map_count) 348 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 349 BUG_ON(bug); 350 } 351 #else 352 #define validate_mm(mm) do { } while (0) 353 #endif 354 355 /* 356 * vma has some anon_vma assigned, and is already inserted on that 357 * anon_vma's interval trees. 358 * 359 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 360 * vma must be removed from the anon_vma's interval trees using 361 * anon_vma_interval_tree_pre_update_vma(). 362 * 363 * After the update, the vma will be reinserted using 364 * anon_vma_interval_tree_post_update_vma(). 365 * 366 * The entire update must be protected by exclusive mmap_sem and by 367 * the root anon_vma's mutex. 368 */ 369 static inline void 370 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 371 { 372 struct anon_vma_chain *avc; 373 374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 375 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 376 } 377 378 static inline void 379 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 380 { 381 struct anon_vma_chain *avc; 382 383 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 384 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 385 } 386 387 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 388 unsigned long end, struct vm_area_struct **pprev, 389 struct rb_node ***rb_link, struct rb_node **rb_parent) 390 { 391 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 392 393 __rb_link = &mm->mm_rb.rb_node; 394 rb_prev = __rb_parent = NULL; 395 396 while (*__rb_link) { 397 struct vm_area_struct *vma_tmp; 398 399 __rb_parent = *__rb_link; 400 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 401 402 if (vma_tmp->vm_end > addr) { 403 /* Fail if an existing vma overlaps the area */ 404 if (vma_tmp->vm_start < end) 405 return -ENOMEM; 406 __rb_link = &__rb_parent->rb_left; 407 } else { 408 rb_prev = __rb_parent; 409 __rb_link = &__rb_parent->rb_right; 410 } 411 } 412 413 *pprev = NULL; 414 if (rb_prev) 415 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 416 *rb_link = __rb_link; 417 *rb_parent = __rb_parent; 418 return 0; 419 } 420 421 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 422 struct rb_node **rb_link, struct rb_node *rb_parent) 423 { 424 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 425 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 426 } 427 428 static void __vma_link_file(struct vm_area_struct *vma) 429 { 430 struct file *file; 431 432 file = vma->vm_file; 433 if (file) { 434 struct address_space *mapping = file->f_mapping; 435 436 if (vma->vm_flags & VM_DENYWRITE) 437 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 438 if (vma->vm_flags & VM_SHARED) 439 mapping->i_mmap_writable++; 440 441 flush_dcache_mmap_lock(mapping); 442 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 443 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 444 else 445 vma_interval_tree_insert(vma, &mapping->i_mmap); 446 flush_dcache_mmap_unlock(mapping); 447 } 448 } 449 450 static void 451 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 452 struct vm_area_struct *prev, struct rb_node **rb_link, 453 struct rb_node *rb_parent) 454 { 455 __vma_link_list(mm, vma, prev, rb_parent); 456 __vma_link_rb(mm, vma, rb_link, rb_parent); 457 } 458 459 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 460 struct vm_area_struct *prev, struct rb_node **rb_link, 461 struct rb_node *rb_parent) 462 { 463 struct address_space *mapping = NULL; 464 465 if (vma->vm_file) 466 mapping = vma->vm_file->f_mapping; 467 468 if (mapping) 469 mutex_lock(&mapping->i_mmap_mutex); 470 471 __vma_link(mm, vma, prev, rb_link, rb_parent); 472 __vma_link_file(vma); 473 474 if (mapping) 475 mutex_unlock(&mapping->i_mmap_mutex); 476 477 mm->map_count++; 478 validate_mm(mm); 479 } 480 481 /* 482 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 483 * mm's list and rbtree. It has already been inserted into the interval tree. 484 */ 485 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 486 { 487 struct vm_area_struct *prev; 488 struct rb_node **rb_link, *rb_parent; 489 490 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 491 &prev, &rb_link, &rb_parent)) 492 BUG(); 493 __vma_link(mm, vma, prev, rb_link, rb_parent); 494 mm->map_count++; 495 } 496 497 static inline void 498 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 499 struct vm_area_struct *prev) 500 { 501 struct vm_area_struct *next = vma->vm_next; 502 503 prev->vm_next = next; 504 if (next) 505 next->vm_prev = prev; 506 rb_erase(&vma->vm_rb, &mm->mm_rb); 507 if (mm->mmap_cache == vma) 508 mm->mmap_cache = prev; 509 } 510 511 /* 512 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 513 * is already present in an i_mmap tree without adjusting the tree. 514 * The following helper function should be used when such adjustments 515 * are necessary. The "insert" vma (if any) is to be inserted 516 * before we drop the necessary locks. 517 */ 518 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 519 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 520 { 521 struct mm_struct *mm = vma->vm_mm; 522 struct vm_area_struct *next = vma->vm_next; 523 struct vm_area_struct *importer = NULL; 524 struct address_space *mapping = NULL; 525 struct rb_root *root = NULL; 526 struct anon_vma *anon_vma = NULL; 527 struct file *file = vma->vm_file; 528 long adjust_next = 0; 529 int remove_next = 0; 530 531 if (next && !insert) { 532 struct vm_area_struct *exporter = NULL; 533 534 if (end >= next->vm_end) { 535 /* 536 * vma expands, overlapping all the next, and 537 * perhaps the one after too (mprotect case 6). 538 */ 539 again: remove_next = 1 + (end > next->vm_end); 540 end = next->vm_end; 541 exporter = next; 542 importer = vma; 543 } else if (end > next->vm_start) { 544 /* 545 * vma expands, overlapping part of the next: 546 * mprotect case 5 shifting the boundary up. 547 */ 548 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 549 exporter = next; 550 importer = vma; 551 } else if (end < vma->vm_end) { 552 /* 553 * vma shrinks, and !insert tells it's not 554 * split_vma inserting another: so it must be 555 * mprotect case 4 shifting the boundary down. 556 */ 557 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 558 exporter = vma; 559 importer = next; 560 } 561 562 /* 563 * Easily overlooked: when mprotect shifts the boundary, 564 * make sure the expanding vma has anon_vma set if the 565 * shrinking vma had, to cover any anon pages imported. 566 */ 567 if (exporter && exporter->anon_vma && !importer->anon_vma) { 568 if (anon_vma_clone(importer, exporter)) 569 return -ENOMEM; 570 importer->anon_vma = exporter->anon_vma; 571 } 572 } 573 574 if (file) { 575 mapping = file->f_mapping; 576 if (!(vma->vm_flags & VM_NONLINEAR)) { 577 root = &mapping->i_mmap; 578 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 579 580 if (adjust_next) 581 uprobe_munmap(next, next->vm_start, 582 next->vm_end); 583 } 584 585 mutex_lock(&mapping->i_mmap_mutex); 586 if (insert) { 587 /* 588 * Put into interval tree now, so instantiated pages 589 * are visible to arm/parisc __flush_dcache_page 590 * throughout; but we cannot insert into address 591 * space until vma start or end is updated. 592 */ 593 __vma_link_file(insert); 594 } 595 } 596 597 vma_adjust_trans_huge(vma, start, end, adjust_next); 598 599 anon_vma = vma->anon_vma; 600 if (!anon_vma && adjust_next) 601 anon_vma = next->anon_vma; 602 if (anon_vma) { 603 VM_BUG_ON(adjust_next && next->anon_vma && 604 anon_vma != next->anon_vma); 605 anon_vma_lock(anon_vma); 606 anon_vma_interval_tree_pre_update_vma(vma); 607 if (adjust_next) 608 anon_vma_interval_tree_pre_update_vma(next); 609 } 610 611 if (root) { 612 flush_dcache_mmap_lock(mapping); 613 vma_interval_tree_remove(vma, root); 614 if (adjust_next) 615 vma_interval_tree_remove(next, root); 616 } 617 618 vma->vm_start = start; 619 vma->vm_end = end; 620 vma->vm_pgoff = pgoff; 621 if (adjust_next) { 622 next->vm_start += adjust_next << PAGE_SHIFT; 623 next->vm_pgoff += adjust_next; 624 } 625 626 if (root) { 627 if (adjust_next) 628 vma_interval_tree_insert(next, root); 629 vma_interval_tree_insert(vma, root); 630 flush_dcache_mmap_unlock(mapping); 631 } 632 633 if (remove_next) { 634 /* 635 * vma_merge has merged next into vma, and needs 636 * us to remove next before dropping the locks. 637 */ 638 __vma_unlink(mm, next, vma); 639 if (file) 640 __remove_shared_vm_struct(next, file, mapping); 641 } else if (insert) { 642 /* 643 * split_vma has split insert from vma, and needs 644 * us to insert it before dropping the locks 645 * (it may either follow vma or precede it). 646 */ 647 __insert_vm_struct(mm, insert); 648 } 649 650 if (anon_vma) { 651 anon_vma_interval_tree_post_update_vma(vma); 652 if (adjust_next) 653 anon_vma_interval_tree_post_update_vma(next); 654 anon_vma_unlock(anon_vma); 655 } 656 if (mapping) 657 mutex_unlock(&mapping->i_mmap_mutex); 658 659 if (root) { 660 uprobe_mmap(vma); 661 662 if (adjust_next) 663 uprobe_mmap(next); 664 } 665 666 if (remove_next) { 667 if (file) { 668 uprobe_munmap(next, next->vm_start, next->vm_end); 669 fput(file); 670 } 671 if (next->anon_vma) 672 anon_vma_merge(vma, next); 673 mm->map_count--; 674 mpol_put(vma_policy(next)); 675 kmem_cache_free(vm_area_cachep, next); 676 /* 677 * In mprotect's case 6 (see comments on vma_merge), 678 * we must remove another next too. It would clutter 679 * up the code too much to do both in one go. 680 */ 681 if (remove_next == 2) { 682 next = vma->vm_next; 683 goto again; 684 } 685 } 686 if (insert && file) 687 uprobe_mmap(insert); 688 689 validate_mm(mm); 690 691 return 0; 692 } 693 694 /* 695 * If the vma has a ->close operation then the driver probably needs to release 696 * per-vma resources, so we don't attempt to merge those. 697 */ 698 static inline int is_mergeable_vma(struct vm_area_struct *vma, 699 struct file *file, unsigned long vm_flags) 700 { 701 if (vma->vm_flags ^ vm_flags) 702 return 0; 703 if (vma->vm_file != file) 704 return 0; 705 if (vma->vm_ops && vma->vm_ops->close) 706 return 0; 707 return 1; 708 } 709 710 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 711 struct anon_vma *anon_vma2, 712 struct vm_area_struct *vma) 713 { 714 /* 715 * The list_is_singular() test is to avoid merging VMA cloned from 716 * parents. This can improve scalability caused by anon_vma lock. 717 */ 718 if ((!anon_vma1 || !anon_vma2) && (!vma || 719 list_is_singular(&vma->anon_vma_chain))) 720 return 1; 721 return anon_vma1 == anon_vma2; 722 } 723 724 /* 725 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 726 * in front of (at a lower virtual address and file offset than) the vma. 727 * 728 * We cannot merge two vmas if they have differently assigned (non-NULL) 729 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 730 * 731 * We don't check here for the merged mmap wrapping around the end of pagecache 732 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 733 * wrap, nor mmaps which cover the final page at index -1UL. 734 */ 735 static int 736 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 737 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 738 { 739 if (is_mergeable_vma(vma, file, vm_flags) && 740 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 741 if (vma->vm_pgoff == vm_pgoff) 742 return 1; 743 } 744 return 0; 745 } 746 747 /* 748 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 749 * beyond (at a higher virtual address and file offset than) the vma. 750 * 751 * We cannot merge two vmas if they have differently assigned (non-NULL) 752 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 753 */ 754 static int 755 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 756 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 757 { 758 if (is_mergeable_vma(vma, file, vm_flags) && 759 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 760 pgoff_t vm_pglen; 761 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 762 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 763 return 1; 764 } 765 return 0; 766 } 767 768 /* 769 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 770 * whether that can be merged with its predecessor or its successor. 771 * Or both (it neatly fills a hole). 772 * 773 * In most cases - when called for mmap, brk or mremap - [addr,end) is 774 * certain not to be mapped by the time vma_merge is called; but when 775 * called for mprotect, it is certain to be already mapped (either at 776 * an offset within prev, or at the start of next), and the flags of 777 * this area are about to be changed to vm_flags - and the no-change 778 * case has already been eliminated. 779 * 780 * The following mprotect cases have to be considered, where AAAA is 781 * the area passed down from mprotect_fixup, never extending beyond one 782 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 783 * 784 * AAAA AAAA AAAA AAAA 785 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 786 * cannot merge might become might become might become 787 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 788 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 789 * mremap move: PPPPNNNNNNNN 8 790 * AAAA 791 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 792 * might become case 1 below case 2 below case 3 below 793 * 794 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 795 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 796 */ 797 struct vm_area_struct *vma_merge(struct mm_struct *mm, 798 struct vm_area_struct *prev, unsigned long addr, 799 unsigned long end, unsigned long vm_flags, 800 struct anon_vma *anon_vma, struct file *file, 801 pgoff_t pgoff, struct mempolicy *policy) 802 { 803 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 804 struct vm_area_struct *area, *next; 805 int err; 806 807 /* 808 * We later require that vma->vm_flags == vm_flags, 809 * so this tests vma->vm_flags & VM_SPECIAL, too. 810 */ 811 if (vm_flags & VM_SPECIAL) 812 return NULL; 813 814 if (prev) 815 next = prev->vm_next; 816 else 817 next = mm->mmap; 818 area = next; 819 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 820 next = next->vm_next; 821 822 /* 823 * Can it merge with the predecessor? 824 */ 825 if (prev && prev->vm_end == addr && 826 mpol_equal(vma_policy(prev), policy) && 827 can_vma_merge_after(prev, vm_flags, 828 anon_vma, file, pgoff)) { 829 /* 830 * OK, it can. Can we now merge in the successor as well? 831 */ 832 if (next && end == next->vm_start && 833 mpol_equal(policy, vma_policy(next)) && 834 can_vma_merge_before(next, vm_flags, 835 anon_vma, file, pgoff+pglen) && 836 is_mergeable_anon_vma(prev->anon_vma, 837 next->anon_vma, NULL)) { 838 /* cases 1, 6 */ 839 err = vma_adjust(prev, prev->vm_start, 840 next->vm_end, prev->vm_pgoff, NULL); 841 } else /* cases 2, 5, 7 */ 842 err = vma_adjust(prev, prev->vm_start, 843 end, prev->vm_pgoff, NULL); 844 if (err) 845 return NULL; 846 khugepaged_enter_vma_merge(prev); 847 return prev; 848 } 849 850 /* 851 * Can this new request be merged in front of next? 852 */ 853 if (next && end == next->vm_start && 854 mpol_equal(policy, vma_policy(next)) && 855 can_vma_merge_before(next, vm_flags, 856 anon_vma, file, pgoff+pglen)) { 857 if (prev && addr < prev->vm_end) /* case 4 */ 858 err = vma_adjust(prev, prev->vm_start, 859 addr, prev->vm_pgoff, NULL); 860 else /* cases 3, 8 */ 861 err = vma_adjust(area, addr, next->vm_end, 862 next->vm_pgoff - pglen, NULL); 863 if (err) 864 return NULL; 865 khugepaged_enter_vma_merge(area); 866 return area; 867 } 868 869 return NULL; 870 } 871 872 /* 873 * Rough compatbility check to quickly see if it's even worth looking 874 * at sharing an anon_vma. 875 * 876 * They need to have the same vm_file, and the flags can only differ 877 * in things that mprotect may change. 878 * 879 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 880 * we can merge the two vma's. For example, we refuse to merge a vma if 881 * there is a vm_ops->close() function, because that indicates that the 882 * driver is doing some kind of reference counting. But that doesn't 883 * really matter for the anon_vma sharing case. 884 */ 885 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 886 { 887 return a->vm_end == b->vm_start && 888 mpol_equal(vma_policy(a), vma_policy(b)) && 889 a->vm_file == b->vm_file && 890 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 891 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 892 } 893 894 /* 895 * Do some basic sanity checking to see if we can re-use the anon_vma 896 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 897 * the same as 'old', the other will be the new one that is trying 898 * to share the anon_vma. 899 * 900 * NOTE! This runs with mm_sem held for reading, so it is possible that 901 * the anon_vma of 'old' is concurrently in the process of being set up 902 * by another page fault trying to merge _that_. But that's ok: if it 903 * is being set up, that automatically means that it will be a singleton 904 * acceptable for merging, so we can do all of this optimistically. But 905 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 906 * 907 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 908 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 909 * is to return an anon_vma that is "complex" due to having gone through 910 * a fork). 911 * 912 * We also make sure that the two vma's are compatible (adjacent, 913 * and with the same memory policies). That's all stable, even with just 914 * a read lock on the mm_sem. 915 */ 916 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 917 { 918 if (anon_vma_compatible(a, b)) { 919 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 920 921 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 922 return anon_vma; 923 } 924 return NULL; 925 } 926 927 /* 928 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 929 * neighbouring vmas for a suitable anon_vma, before it goes off 930 * to allocate a new anon_vma. It checks because a repetitive 931 * sequence of mprotects and faults may otherwise lead to distinct 932 * anon_vmas being allocated, preventing vma merge in subsequent 933 * mprotect. 934 */ 935 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 936 { 937 struct anon_vma *anon_vma; 938 struct vm_area_struct *near; 939 940 near = vma->vm_next; 941 if (!near) 942 goto try_prev; 943 944 anon_vma = reusable_anon_vma(near, vma, near); 945 if (anon_vma) 946 return anon_vma; 947 try_prev: 948 near = vma->vm_prev; 949 if (!near) 950 goto none; 951 952 anon_vma = reusable_anon_vma(near, near, vma); 953 if (anon_vma) 954 return anon_vma; 955 none: 956 /* 957 * There's no absolute need to look only at touching neighbours: 958 * we could search further afield for "compatible" anon_vmas. 959 * But it would probably just be a waste of time searching, 960 * or lead to too many vmas hanging off the same anon_vma. 961 * We're trying to allow mprotect remerging later on, 962 * not trying to minimize memory used for anon_vmas. 963 */ 964 return NULL; 965 } 966 967 #ifdef CONFIG_PROC_FS 968 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 969 struct file *file, long pages) 970 { 971 const unsigned long stack_flags 972 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 973 974 mm->total_vm += pages; 975 976 if (file) { 977 mm->shared_vm += pages; 978 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 979 mm->exec_vm += pages; 980 } else if (flags & stack_flags) 981 mm->stack_vm += pages; 982 } 983 #endif /* CONFIG_PROC_FS */ 984 985 /* 986 * If a hint addr is less than mmap_min_addr change hint to be as 987 * low as possible but still greater than mmap_min_addr 988 */ 989 static inline unsigned long round_hint_to_min(unsigned long hint) 990 { 991 hint &= PAGE_MASK; 992 if (((void *)hint != NULL) && 993 (hint < mmap_min_addr)) 994 return PAGE_ALIGN(mmap_min_addr); 995 return hint; 996 } 997 998 /* 999 * The caller must hold down_write(¤t->mm->mmap_sem). 1000 */ 1001 1002 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1003 unsigned long len, unsigned long prot, 1004 unsigned long flags, unsigned long pgoff) 1005 { 1006 struct mm_struct * mm = current->mm; 1007 struct inode *inode; 1008 vm_flags_t vm_flags; 1009 1010 /* 1011 * Does the application expect PROT_READ to imply PROT_EXEC? 1012 * 1013 * (the exception is when the underlying filesystem is noexec 1014 * mounted, in which case we dont add PROT_EXEC.) 1015 */ 1016 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1017 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1018 prot |= PROT_EXEC; 1019 1020 if (!len) 1021 return -EINVAL; 1022 1023 if (!(flags & MAP_FIXED)) 1024 addr = round_hint_to_min(addr); 1025 1026 /* Careful about overflows.. */ 1027 len = PAGE_ALIGN(len); 1028 if (!len) 1029 return -ENOMEM; 1030 1031 /* offset overflow? */ 1032 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1033 return -EOVERFLOW; 1034 1035 /* Too many mappings? */ 1036 if (mm->map_count > sysctl_max_map_count) 1037 return -ENOMEM; 1038 1039 /* Obtain the address to map to. we verify (or select) it and ensure 1040 * that it represents a valid section of the address space. 1041 */ 1042 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1043 if (addr & ~PAGE_MASK) 1044 return addr; 1045 1046 /* Do simple checking here so the lower-level routines won't have 1047 * to. we assume access permissions have been handled by the open 1048 * of the memory object, so we don't do any here. 1049 */ 1050 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1051 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1052 1053 if (flags & MAP_LOCKED) 1054 if (!can_do_mlock()) 1055 return -EPERM; 1056 1057 /* mlock MCL_FUTURE? */ 1058 if (vm_flags & VM_LOCKED) { 1059 unsigned long locked, lock_limit; 1060 locked = len >> PAGE_SHIFT; 1061 locked += mm->locked_vm; 1062 lock_limit = rlimit(RLIMIT_MEMLOCK); 1063 lock_limit >>= PAGE_SHIFT; 1064 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1065 return -EAGAIN; 1066 } 1067 1068 inode = file ? file->f_path.dentry->d_inode : NULL; 1069 1070 if (file) { 1071 switch (flags & MAP_TYPE) { 1072 case MAP_SHARED: 1073 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1074 return -EACCES; 1075 1076 /* 1077 * Make sure we don't allow writing to an append-only 1078 * file.. 1079 */ 1080 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1081 return -EACCES; 1082 1083 /* 1084 * Make sure there are no mandatory locks on the file. 1085 */ 1086 if (locks_verify_locked(inode)) 1087 return -EAGAIN; 1088 1089 vm_flags |= VM_SHARED | VM_MAYSHARE; 1090 if (!(file->f_mode & FMODE_WRITE)) 1091 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1092 1093 /* fall through */ 1094 case MAP_PRIVATE: 1095 if (!(file->f_mode & FMODE_READ)) 1096 return -EACCES; 1097 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1098 if (vm_flags & VM_EXEC) 1099 return -EPERM; 1100 vm_flags &= ~VM_MAYEXEC; 1101 } 1102 1103 if (!file->f_op || !file->f_op->mmap) 1104 return -ENODEV; 1105 break; 1106 1107 default: 1108 return -EINVAL; 1109 } 1110 } else { 1111 switch (flags & MAP_TYPE) { 1112 case MAP_SHARED: 1113 /* 1114 * Ignore pgoff. 1115 */ 1116 pgoff = 0; 1117 vm_flags |= VM_SHARED | VM_MAYSHARE; 1118 break; 1119 case MAP_PRIVATE: 1120 /* 1121 * Set pgoff according to addr for anon_vma. 1122 */ 1123 pgoff = addr >> PAGE_SHIFT; 1124 break; 1125 default: 1126 return -EINVAL; 1127 } 1128 } 1129 1130 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1131 } 1132 1133 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1134 unsigned long, prot, unsigned long, flags, 1135 unsigned long, fd, unsigned long, pgoff) 1136 { 1137 struct file *file = NULL; 1138 unsigned long retval = -EBADF; 1139 1140 if (!(flags & MAP_ANONYMOUS)) { 1141 audit_mmap_fd(fd, flags); 1142 if (unlikely(flags & MAP_HUGETLB)) 1143 return -EINVAL; 1144 file = fget(fd); 1145 if (!file) 1146 goto out; 1147 } else if (flags & MAP_HUGETLB) { 1148 struct user_struct *user = NULL; 1149 /* 1150 * VM_NORESERVE is used because the reservations will be 1151 * taken when vm_ops->mmap() is called 1152 * A dummy user value is used because we are not locking 1153 * memory so no accounting is necessary 1154 */ 1155 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1156 VM_NORESERVE, &user, 1157 HUGETLB_ANONHUGE_INODE); 1158 if (IS_ERR(file)) 1159 return PTR_ERR(file); 1160 } 1161 1162 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1163 1164 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1165 if (file) 1166 fput(file); 1167 out: 1168 return retval; 1169 } 1170 1171 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1172 struct mmap_arg_struct { 1173 unsigned long addr; 1174 unsigned long len; 1175 unsigned long prot; 1176 unsigned long flags; 1177 unsigned long fd; 1178 unsigned long offset; 1179 }; 1180 1181 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1182 { 1183 struct mmap_arg_struct a; 1184 1185 if (copy_from_user(&a, arg, sizeof(a))) 1186 return -EFAULT; 1187 if (a.offset & ~PAGE_MASK) 1188 return -EINVAL; 1189 1190 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1191 a.offset >> PAGE_SHIFT); 1192 } 1193 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1194 1195 /* 1196 * Some shared mappigns will want the pages marked read-only 1197 * to track write events. If so, we'll downgrade vm_page_prot 1198 * to the private version (using protection_map[] without the 1199 * VM_SHARED bit). 1200 */ 1201 int vma_wants_writenotify(struct vm_area_struct *vma) 1202 { 1203 vm_flags_t vm_flags = vma->vm_flags; 1204 1205 /* If it was private or non-writable, the write bit is already clear */ 1206 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1207 return 0; 1208 1209 /* The backer wishes to know when pages are first written to? */ 1210 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1211 return 1; 1212 1213 /* The open routine did something to the protections already? */ 1214 if (pgprot_val(vma->vm_page_prot) != 1215 pgprot_val(vm_get_page_prot(vm_flags))) 1216 return 0; 1217 1218 /* Specialty mapping? */ 1219 if (vm_flags & VM_PFNMAP) 1220 return 0; 1221 1222 /* Can the mapping track the dirty pages? */ 1223 return vma->vm_file && vma->vm_file->f_mapping && 1224 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1225 } 1226 1227 /* 1228 * We account for memory if it's a private writeable mapping, 1229 * not hugepages and VM_NORESERVE wasn't set. 1230 */ 1231 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1232 { 1233 /* 1234 * hugetlb has its own accounting separate from the core VM 1235 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1236 */ 1237 if (file && is_file_hugepages(file)) 1238 return 0; 1239 1240 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1241 } 1242 1243 unsigned long mmap_region(struct file *file, unsigned long addr, 1244 unsigned long len, unsigned long flags, 1245 vm_flags_t vm_flags, unsigned long pgoff) 1246 { 1247 struct mm_struct *mm = current->mm; 1248 struct vm_area_struct *vma, *prev; 1249 int correct_wcount = 0; 1250 int error; 1251 struct rb_node **rb_link, *rb_parent; 1252 unsigned long charged = 0; 1253 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1254 1255 /* Clear old maps */ 1256 error = -ENOMEM; 1257 munmap_back: 1258 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1259 if (do_munmap(mm, addr, len)) 1260 return -ENOMEM; 1261 goto munmap_back; 1262 } 1263 1264 /* Check against address space limit. */ 1265 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1266 return -ENOMEM; 1267 1268 /* 1269 * Set 'VM_NORESERVE' if we should not account for the 1270 * memory use of this mapping. 1271 */ 1272 if ((flags & MAP_NORESERVE)) { 1273 /* We honor MAP_NORESERVE if allowed to overcommit */ 1274 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1275 vm_flags |= VM_NORESERVE; 1276 1277 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1278 if (file && is_file_hugepages(file)) 1279 vm_flags |= VM_NORESERVE; 1280 } 1281 1282 /* 1283 * Private writable mapping: check memory availability 1284 */ 1285 if (accountable_mapping(file, vm_flags)) { 1286 charged = len >> PAGE_SHIFT; 1287 if (security_vm_enough_memory_mm(mm, charged)) 1288 return -ENOMEM; 1289 vm_flags |= VM_ACCOUNT; 1290 } 1291 1292 /* 1293 * Can we just expand an old mapping? 1294 */ 1295 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1296 if (vma) 1297 goto out; 1298 1299 /* 1300 * Determine the object being mapped and call the appropriate 1301 * specific mapper. the address has already been validated, but 1302 * not unmapped, but the maps are removed from the list. 1303 */ 1304 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1305 if (!vma) { 1306 error = -ENOMEM; 1307 goto unacct_error; 1308 } 1309 1310 vma->vm_mm = mm; 1311 vma->vm_start = addr; 1312 vma->vm_end = addr + len; 1313 vma->vm_flags = vm_flags; 1314 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1315 vma->vm_pgoff = pgoff; 1316 INIT_LIST_HEAD(&vma->anon_vma_chain); 1317 1318 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1319 1320 if (file) { 1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1322 goto free_vma; 1323 if (vm_flags & VM_DENYWRITE) { 1324 error = deny_write_access(file); 1325 if (error) 1326 goto free_vma; 1327 correct_wcount = 1; 1328 } 1329 vma->vm_file = get_file(file); 1330 error = file->f_op->mmap(file, vma); 1331 if (error) 1332 goto unmap_and_free_vma; 1333 1334 /* Can addr have changed?? 1335 * 1336 * Answer: Yes, several device drivers can do it in their 1337 * f_op->mmap method. -DaveM 1338 */ 1339 addr = vma->vm_start; 1340 pgoff = vma->vm_pgoff; 1341 vm_flags = vma->vm_flags; 1342 } else if (vm_flags & VM_SHARED) { 1343 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1344 goto free_vma; 1345 error = shmem_zero_setup(vma); 1346 if (error) 1347 goto free_vma; 1348 } 1349 1350 if (vma_wants_writenotify(vma)) { 1351 pgprot_t pprot = vma->vm_page_prot; 1352 1353 /* Can vma->vm_page_prot have changed?? 1354 * 1355 * Answer: Yes, drivers may have changed it in their 1356 * f_op->mmap method. 1357 * 1358 * Ensures that vmas marked as uncached stay that way. 1359 */ 1360 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1361 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1362 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1363 } 1364 1365 vma_link(mm, vma, prev, rb_link, rb_parent); 1366 file = vma->vm_file; 1367 1368 /* Once vma denies write, undo our temporary denial count */ 1369 if (correct_wcount) 1370 atomic_inc(&inode->i_writecount); 1371 out: 1372 perf_event_mmap(vma); 1373 1374 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1375 if (vm_flags & VM_LOCKED) { 1376 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1377 mm->locked_vm += (len >> PAGE_SHIFT); 1378 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1379 make_pages_present(addr, addr + len); 1380 1381 if (file) 1382 uprobe_mmap(vma); 1383 1384 return addr; 1385 1386 unmap_and_free_vma: 1387 if (correct_wcount) 1388 atomic_inc(&inode->i_writecount); 1389 vma->vm_file = NULL; 1390 fput(file); 1391 1392 /* Undo any partial mapping done by a device driver. */ 1393 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1394 charged = 0; 1395 free_vma: 1396 kmem_cache_free(vm_area_cachep, vma); 1397 unacct_error: 1398 if (charged) 1399 vm_unacct_memory(charged); 1400 return error; 1401 } 1402 1403 /* Get an address range which is currently unmapped. 1404 * For shmat() with addr=0. 1405 * 1406 * Ugly calling convention alert: 1407 * Return value with the low bits set means error value, 1408 * ie 1409 * if (ret & ~PAGE_MASK) 1410 * error = ret; 1411 * 1412 * This function "knows" that -ENOMEM has the bits set. 1413 */ 1414 #ifndef HAVE_ARCH_UNMAPPED_AREA 1415 unsigned long 1416 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1417 unsigned long len, unsigned long pgoff, unsigned long flags) 1418 { 1419 struct mm_struct *mm = current->mm; 1420 struct vm_area_struct *vma; 1421 unsigned long start_addr; 1422 1423 if (len > TASK_SIZE) 1424 return -ENOMEM; 1425 1426 if (flags & MAP_FIXED) 1427 return addr; 1428 1429 if (addr) { 1430 addr = PAGE_ALIGN(addr); 1431 vma = find_vma(mm, addr); 1432 if (TASK_SIZE - len >= addr && 1433 (!vma || addr + len <= vma->vm_start)) 1434 return addr; 1435 } 1436 if (len > mm->cached_hole_size) { 1437 start_addr = addr = mm->free_area_cache; 1438 } else { 1439 start_addr = addr = TASK_UNMAPPED_BASE; 1440 mm->cached_hole_size = 0; 1441 } 1442 1443 full_search: 1444 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1445 /* At this point: (!vma || addr < vma->vm_end). */ 1446 if (TASK_SIZE - len < addr) { 1447 /* 1448 * Start a new search - just in case we missed 1449 * some holes. 1450 */ 1451 if (start_addr != TASK_UNMAPPED_BASE) { 1452 addr = TASK_UNMAPPED_BASE; 1453 start_addr = addr; 1454 mm->cached_hole_size = 0; 1455 goto full_search; 1456 } 1457 return -ENOMEM; 1458 } 1459 if (!vma || addr + len <= vma->vm_start) { 1460 /* 1461 * Remember the place where we stopped the search: 1462 */ 1463 mm->free_area_cache = addr + len; 1464 return addr; 1465 } 1466 if (addr + mm->cached_hole_size < vma->vm_start) 1467 mm->cached_hole_size = vma->vm_start - addr; 1468 addr = vma->vm_end; 1469 } 1470 } 1471 #endif 1472 1473 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1474 { 1475 /* 1476 * Is this a new hole at the lowest possible address? 1477 */ 1478 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1479 mm->free_area_cache = addr; 1480 } 1481 1482 /* 1483 * This mmap-allocator allocates new areas top-down from below the 1484 * stack's low limit (the base): 1485 */ 1486 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1487 unsigned long 1488 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1489 const unsigned long len, const unsigned long pgoff, 1490 const unsigned long flags) 1491 { 1492 struct vm_area_struct *vma; 1493 struct mm_struct *mm = current->mm; 1494 unsigned long addr = addr0, start_addr; 1495 1496 /* requested length too big for entire address space */ 1497 if (len > TASK_SIZE) 1498 return -ENOMEM; 1499 1500 if (flags & MAP_FIXED) 1501 return addr; 1502 1503 /* requesting a specific address */ 1504 if (addr) { 1505 addr = PAGE_ALIGN(addr); 1506 vma = find_vma(mm, addr); 1507 if (TASK_SIZE - len >= addr && 1508 (!vma || addr + len <= vma->vm_start)) 1509 return addr; 1510 } 1511 1512 /* check if free_area_cache is useful for us */ 1513 if (len <= mm->cached_hole_size) { 1514 mm->cached_hole_size = 0; 1515 mm->free_area_cache = mm->mmap_base; 1516 } 1517 1518 try_again: 1519 /* either no address requested or can't fit in requested address hole */ 1520 start_addr = addr = mm->free_area_cache; 1521 1522 if (addr < len) 1523 goto fail; 1524 1525 addr -= len; 1526 do { 1527 /* 1528 * Lookup failure means no vma is above this address, 1529 * else if new region fits below vma->vm_start, 1530 * return with success: 1531 */ 1532 vma = find_vma(mm, addr); 1533 if (!vma || addr+len <= vma->vm_start) 1534 /* remember the address as a hint for next time */ 1535 return (mm->free_area_cache = addr); 1536 1537 /* remember the largest hole we saw so far */ 1538 if (addr + mm->cached_hole_size < vma->vm_start) 1539 mm->cached_hole_size = vma->vm_start - addr; 1540 1541 /* try just below the current vma->vm_start */ 1542 addr = vma->vm_start-len; 1543 } while (len < vma->vm_start); 1544 1545 fail: 1546 /* 1547 * if hint left us with no space for the requested 1548 * mapping then try again: 1549 * 1550 * Note: this is different with the case of bottomup 1551 * which does the fully line-search, but we use find_vma 1552 * here that causes some holes skipped. 1553 */ 1554 if (start_addr != mm->mmap_base) { 1555 mm->free_area_cache = mm->mmap_base; 1556 mm->cached_hole_size = 0; 1557 goto try_again; 1558 } 1559 1560 /* 1561 * A failed mmap() very likely causes application failure, 1562 * so fall back to the bottom-up function here. This scenario 1563 * can happen with large stack limits and large mmap() 1564 * allocations. 1565 */ 1566 mm->cached_hole_size = ~0UL; 1567 mm->free_area_cache = TASK_UNMAPPED_BASE; 1568 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1569 /* 1570 * Restore the topdown base: 1571 */ 1572 mm->free_area_cache = mm->mmap_base; 1573 mm->cached_hole_size = ~0UL; 1574 1575 return addr; 1576 } 1577 #endif 1578 1579 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1580 { 1581 /* 1582 * Is this a new hole at the highest possible address? 1583 */ 1584 if (addr > mm->free_area_cache) 1585 mm->free_area_cache = addr; 1586 1587 /* dont allow allocations above current base */ 1588 if (mm->free_area_cache > mm->mmap_base) 1589 mm->free_area_cache = mm->mmap_base; 1590 } 1591 1592 unsigned long 1593 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1594 unsigned long pgoff, unsigned long flags) 1595 { 1596 unsigned long (*get_area)(struct file *, unsigned long, 1597 unsigned long, unsigned long, unsigned long); 1598 1599 unsigned long error = arch_mmap_check(addr, len, flags); 1600 if (error) 1601 return error; 1602 1603 /* Careful about overflows.. */ 1604 if (len > TASK_SIZE) 1605 return -ENOMEM; 1606 1607 get_area = current->mm->get_unmapped_area; 1608 if (file && file->f_op && file->f_op->get_unmapped_area) 1609 get_area = file->f_op->get_unmapped_area; 1610 addr = get_area(file, addr, len, pgoff, flags); 1611 if (IS_ERR_VALUE(addr)) 1612 return addr; 1613 1614 if (addr > TASK_SIZE - len) 1615 return -ENOMEM; 1616 if (addr & ~PAGE_MASK) 1617 return -EINVAL; 1618 1619 addr = arch_rebalance_pgtables(addr, len); 1620 error = security_mmap_addr(addr); 1621 return error ? error : addr; 1622 } 1623 1624 EXPORT_SYMBOL(get_unmapped_area); 1625 1626 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1627 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1628 { 1629 struct vm_area_struct *vma = NULL; 1630 1631 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1632 return NULL; 1633 1634 /* Check the cache first. */ 1635 /* (Cache hit rate is typically around 35%.) */ 1636 vma = mm->mmap_cache; 1637 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1638 struct rb_node *rb_node; 1639 1640 rb_node = mm->mm_rb.rb_node; 1641 vma = NULL; 1642 1643 while (rb_node) { 1644 struct vm_area_struct *vma_tmp; 1645 1646 vma_tmp = rb_entry(rb_node, 1647 struct vm_area_struct, vm_rb); 1648 1649 if (vma_tmp->vm_end > addr) { 1650 vma = vma_tmp; 1651 if (vma_tmp->vm_start <= addr) 1652 break; 1653 rb_node = rb_node->rb_left; 1654 } else 1655 rb_node = rb_node->rb_right; 1656 } 1657 if (vma) 1658 mm->mmap_cache = vma; 1659 } 1660 return vma; 1661 } 1662 1663 EXPORT_SYMBOL(find_vma); 1664 1665 /* 1666 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1667 */ 1668 struct vm_area_struct * 1669 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1670 struct vm_area_struct **pprev) 1671 { 1672 struct vm_area_struct *vma; 1673 1674 vma = find_vma(mm, addr); 1675 if (vma) { 1676 *pprev = vma->vm_prev; 1677 } else { 1678 struct rb_node *rb_node = mm->mm_rb.rb_node; 1679 *pprev = NULL; 1680 while (rb_node) { 1681 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1682 rb_node = rb_node->rb_right; 1683 } 1684 } 1685 return vma; 1686 } 1687 1688 /* 1689 * Verify that the stack growth is acceptable and 1690 * update accounting. This is shared with both the 1691 * grow-up and grow-down cases. 1692 */ 1693 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1694 { 1695 struct mm_struct *mm = vma->vm_mm; 1696 struct rlimit *rlim = current->signal->rlim; 1697 unsigned long new_start; 1698 1699 /* address space limit tests */ 1700 if (!may_expand_vm(mm, grow)) 1701 return -ENOMEM; 1702 1703 /* Stack limit test */ 1704 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1705 return -ENOMEM; 1706 1707 /* mlock limit tests */ 1708 if (vma->vm_flags & VM_LOCKED) { 1709 unsigned long locked; 1710 unsigned long limit; 1711 locked = mm->locked_vm + grow; 1712 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1713 limit >>= PAGE_SHIFT; 1714 if (locked > limit && !capable(CAP_IPC_LOCK)) 1715 return -ENOMEM; 1716 } 1717 1718 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1719 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1720 vma->vm_end - size; 1721 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1722 return -EFAULT; 1723 1724 /* 1725 * Overcommit.. This must be the final test, as it will 1726 * update security statistics. 1727 */ 1728 if (security_vm_enough_memory_mm(mm, grow)) 1729 return -ENOMEM; 1730 1731 /* Ok, everything looks good - let it rip */ 1732 if (vma->vm_flags & VM_LOCKED) 1733 mm->locked_vm += grow; 1734 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1735 return 0; 1736 } 1737 1738 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1739 /* 1740 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1741 * vma is the last one with address > vma->vm_end. Have to extend vma. 1742 */ 1743 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1744 { 1745 int error; 1746 1747 if (!(vma->vm_flags & VM_GROWSUP)) 1748 return -EFAULT; 1749 1750 /* 1751 * We must make sure the anon_vma is allocated 1752 * so that the anon_vma locking is not a noop. 1753 */ 1754 if (unlikely(anon_vma_prepare(vma))) 1755 return -ENOMEM; 1756 vma_lock_anon_vma(vma); 1757 1758 /* 1759 * vma->vm_start/vm_end cannot change under us because the caller 1760 * is required to hold the mmap_sem in read mode. We need the 1761 * anon_vma lock to serialize against concurrent expand_stacks. 1762 * Also guard against wrapping around to address 0. 1763 */ 1764 if (address < PAGE_ALIGN(address+4)) 1765 address = PAGE_ALIGN(address+4); 1766 else { 1767 vma_unlock_anon_vma(vma); 1768 return -ENOMEM; 1769 } 1770 error = 0; 1771 1772 /* Somebody else might have raced and expanded it already */ 1773 if (address > vma->vm_end) { 1774 unsigned long size, grow; 1775 1776 size = address - vma->vm_start; 1777 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1778 1779 error = -ENOMEM; 1780 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1781 error = acct_stack_growth(vma, size, grow); 1782 if (!error) { 1783 anon_vma_interval_tree_pre_update_vma(vma); 1784 vma->vm_end = address; 1785 anon_vma_interval_tree_post_update_vma(vma); 1786 perf_event_mmap(vma); 1787 } 1788 } 1789 } 1790 vma_unlock_anon_vma(vma); 1791 khugepaged_enter_vma_merge(vma); 1792 validate_mm(vma->vm_mm); 1793 return error; 1794 } 1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1796 1797 /* 1798 * vma is the first one with address < vma->vm_start. Have to extend vma. 1799 */ 1800 int expand_downwards(struct vm_area_struct *vma, 1801 unsigned long address) 1802 { 1803 int error; 1804 1805 /* 1806 * We must make sure the anon_vma is allocated 1807 * so that the anon_vma locking is not a noop. 1808 */ 1809 if (unlikely(anon_vma_prepare(vma))) 1810 return -ENOMEM; 1811 1812 address &= PAGE_MASK; 1813 error = security_mmap_addr(address); 1814 if (error) 1815 return error; 1816 1817 vma_lock_anon_vma(vma); 1818 1819 /* 1820 * vma->vm_start/vm_end cannot change under us because the caller 1821 * is required to hold the mmap_sem in read mode. We need the 1822 * anon_vma lock to serialize against concurrent expand_stacks. 1823 */ 1824 1825 /* Somebody else might have raced and expanded it already */ 1826 if (address < vma->vm_start) { 1827 unsigned long size, grow; 1828 1829 size = vma->vm_end - address; 1830 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1831 1832 error = -ENOMEM; 1833 if (grow <= vma->vm_pgoff) { 1834 error = acct_stack_growth(vma, size, grow); 1835 if (!error) { 1836 anon_vma_interval_tree_pre_update_vma(vma); 1837 vma->vm_start = address; 1838 vma->vm_pgoff -= grow; 1839 anon_vma_interval_tree_post_update_vma(vma); 1840 perf_event_mmap(vma); 1841 } 1842 } 1843 } 1844 vma_unlock_anon_vma(vma); 1845 khugepaged_enter_vma_merge(vma); 1846 validate_mm(vma->vm_mm); 1847 return error; 1848 } 1849 1850 #ifdef CONFIG_STACK_GROWSUP 1851 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1852 { 1853 return expand_upwards(vma, address); 1854 } 1855 1856 struct vm_area_struct * 1857 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1858 { 1859 struct vm_area_struct *vma, *prev; 1860 1861 addr &= PAGE_MASK; 1862 vma = find_vma_prev(mm, addr, &prev); 1863 if (vma && (vma->vm_start <= addr)) 1864 return vma; 1865 if (!prev || expand_stack(prev, addr)) 1866 return NULL; 1867 if (prev->vm_flags & VM_LOCKED) { 1868 mlock_vma_pages_range(prev, addr, prev->vm_end); 1869 } 1870 return prev; 1871 } 1872 #else 1873 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1874 { 1875 return expand_downwards(vma, address); 1876 } 1877 1878 struct vm_area_struct * 1879 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1880 { 1881 struct vm_area_struct * vma; 1882 unsigned long start; 1883 1884 addr &= PAGE_MASK; 1885 vma = find_vma(mm,addr); 1886 if (!vma) 1887 return NULL; 1888 if (vma->vm_start <= addr) 1889 return vma; 1890 if (!(vma->vm_flags & VM_GROWSDOWN)) 1891 return NULL; 1892 start = vma->vm_start; 1893 if (expand_stack(vma, addr)) 1894 return NULL; 1895 if (vma->vm_flags & VM_LOCKED) { 1896 mlock_vma_pages_range(vma, addr, start); 1897 } 1898 return vma; 1899 } 1900 #endif 1901 1902 /* 1903 * Ok - we have the memory areas we should free on the vma list, 1904 * so release them, and do the vma updates. 1905 * 1906 * Called with the mm semaphore held. 1907 */ 1908 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1909 { 1910 unsigned long nr_accounted = 0; 1911 1912 /* Update high watermark before we lower total_vm */ 1913 update_hiwater_vm(mm); 1914 do { 1915 long nrpages = vma_pages(vma); 1916 1917 if (vma->vm_flags & VM_ACCOUNT) 1918 nr_accounted += nrpages; 1919 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1920 vma = remove_vma(vma); 1921 } while (vma); 1922 vm_unacct_memory(nr_accounted); 1923 validate_mm(mm); 1924 } 1925 1926 /* 1927 * Get rid of page table information in the indicated region. 1928 * 1929 * Called with the mm semaphore held. 1930 */ 1931 static void unmap_region(struct mm_struct *mm, 1932 struct vm_area_struct *vma, struct vm_area_struct *prev, 1933 unsigned long start, unsigned long end) 1934 { 1935 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1936 struct mmu_gather tlb; 1937 1938 lru_add_drain(); 1939 tlb_gather_mmu(&tlb, mm, 0); 1940 update_hiwater_rss(mm); 1941 unmap_vmas(&tlb, vma, start, end); 1942 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1943 next ? next->vm_start : 0); 1944 tlb_finish_mmu(&tlb, start, end); 1945 } 1946 1947 /* 1948 * Create a list of vma's touched by the unmap, removing them from the mm's 1949 * vma list as we go.. 1950 */ 1951 static void 1952 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1953 struct vm_area_struct *prev, unsigned long end) 1954 { 1955 struct vm_area_struct **insertion_point; 1956 struct vm_area_struct *tail_vma = NULL; 1957 unsigned long addr; 1958 1959 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1960 vma->vm_prev = NULL; 1961 do { 1962 rb_erase(&vma->vm_rb, &mm->mm_rb); 1963 mm->map_count--; 1964 tail_vma = vma; 1965 vma = vma->vm_next; 1966 } while (vma && vma->vm_start < end); 1967 *insertion_point = vma; 1968 if (vma) 1969 vma->vm_prev = prev; 1970 tail_vma->vm_next = NULL; 1971 if (mm->unmap_area == arch_unmap_area) 1972 addr = prev ? prev->vm_end : mm->mmap_base; 1973 else 1974 addr = vma ? vma->vm_start : mm->mmap_base; 1975 mm->unmap_area(mm, addr); 1976 mm->mmap_cache = NULL; /* Kill the cache. */ 1977 } 1978 1979 /* 1980 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1981 * munmap path where it doesn't make sense to fail. 1982 */ 1983 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1984 unsigned long addr, int new_below) 1985 { 1986 struct mempolicy *pol; 1987 struct vm_area_struct *new; 1988 int err = -ENOMEM; 1989 1990 if (is_vm_hugetlb_page(vma) && (addr & 1991 ~(huge_page_mask(hstate_vma(vma))))) 1992 return -EINVAL; 1993 1994 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1995 if (!new) 1996 goto out_err; 1997 1998 /* most fields are the same, copy all, and then fixup */ 1999 *new = *vma; 2000 2001 INIT_LIST_HEAD(&new->anon_vma_chain); 2002 2003 if (new_below) 2004 new->vm_end = addr; 2005 else { 2006 new->vm_start = addr; 2007 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2008 } 2009 2010 pol = mpol_dup(vma_policy(vma)); 2011 if (IS_ERR(pol)) { 2012 err = PTR_ERR(pol); 2013 goto out_free_vma; 2014 } 2015 vma_set_policy(new, pol); 2016 2017 if (anon_vma_clone(new, vma)) 2018 goto out_free_mpol; 2019 2020 if (new->vm_file) 2021 get_file(new->vm_file); 2022 2023 if (new->vm_ops && new->vm_ops->open) 2024 new->vm_ops->open(new); 2025 2026 if (new_below) 2027 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2028 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2029 else 2030 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2031 2032 /* Success. */ 2033 if (!err) 2034 return 0; 2035 2036 /* Clean everything up if vma_adjust failed. */ 2037 if (new->vm_ops && new->vm_ops->close) 2038 new->vm_ops->close(new); 2039 if (new->vm_file) 2040 fput(new->vm_file); 2041 unlink_anon_vmas(new); 2042 out_free_mpol: 2043 mpol_put(pol); 2044 out_free_vma: 2045 kmem_cache_free(vm_area_cachep, new); 2046 out_err: 2047 return err; 2048 } 2049 2050 /* 2051 * Split a vma into two pieces at address 'addr', a new vma is allocated 2052 * either for the first part or the tail. 2053 */ 2054 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2055 unsigned long addr, int new_below) 2056 { 2057 if (mm->map_count >= sysctl_max_map_count) 2058 return -ENOMEM; 2059 2060 return __split_vma(mm, vma, addr, new_below); 2061 } 2062 2063 /* Munmap is split into 2 main parts -- this part which finds 2064 * what needs doing, and the areas themselves, which do the 2065 * work. This now handles partial unmappings. 2066 * Jeremy Fitzhardinge <jeremy@goop.org> 2067 */ 2068 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2069 { 2070 unsigned long end; 2071 struct vm_area_struct *vma, *prev, *last; 2072 2073 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2074 return -EINVAL; 2075 2076 if ((len = PAGE_ALIGN(len)) == 0) 2077 return -EINVAL; 2078 2079 /* Find the first overlapping VMA */ 2080 vma = find_vma(mm, start); 2081 if (!vma) 2082 return 0; 2083 prev = vma->vm_prev; 2084 /* we have start < vma->vm_end */ 2085 2086 /* if it doesn't overlap, we have nothing.. */ 2087 end = start + len; 2088 if (vma->vm_start >= end) 2089 return 0; 2090 2091 /* 2092 * If we need to split any vma, do it now to save pain later. 2093 * 2094 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2095 * unmapped vm_area_struct will remain in use: so lower split_vma 2096 * places tmp vma above, and higher split_vma places tmp vma below. 2097 */ 2098 if (start > vma->vm_start) { 2099 int error; 2100 2101 /* 2102 * Make sure that map_count on return from munmap() will 2103 * not exceed its limit; but let map_count go just above 2104 * its limit temporarily, to help free resources as expected. 2105 */ 2106 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2107 return -ENOMEM; 2108 2109 error = __split_vma(mm, vma, start, 0); 2110 if (error) 2111 return error; 2112 prev = vma; 2113 } 2114 2115 /* Does it split the last one? */ 2116 last = find_vma(mm, end); 2117 if (last && end > last->vm_start) { 2118 int error = __split_vma(mm, last, end, 1); 2119 if (error) 2120 return error; 2121 } 2122 vma = prev? prev->vm_next: mm->mmap; 2123 2124 /* 2125 * unlock any mlock()ed ranges before detaching vmas 2126 */ 2127 if (mm->locked_vm) { 2128 struct vm_area_struct *tmp = vma; 2129 while (tmp && tmp->vm_start < end) { 2130 if (tmp->vm_flags & VM_LOCKED) { 2131 mm->locked_vm -= vma_pages(tmp); 2132 munlock_vma_pages_all(tmp); 2133 } 2134 tmp = tmp->vm_next; 2135 } 2136 } 2137 2138 /* 2139 * Remove the vma's, and unmap the actual pages 2140 */ 2141 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2142 unmap_region(mm, vma, prev, start, end); 2143 2144 /* Fix up all other VM information */ 2145 remove_vma_list(mm, vma); 2146 2147 return 0; 2148 } 2149 2150 int vm_munmap(unsigned long start, size_t len) 2151 { 2152 int ret; 2153 struct mm_struct *mm = current->mm; 2154 2155 down_write(&mm->mmap_sem); 2156 ret = do_munmap(mm, start, len); 2157 up_write(&mm->mmap_sem); 2158 return ret; 2159 } 2160 EXPORT_SYMBOL(vm_munmap); 2161 2162 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2163 { 2164 profile_munmap(addr); 2165 return vm_munmap(addr, len); 2166 } 2167 2168 static inline void verify_mm_writelocked(struct mm_struct *mm) 2169 { 2170 #ifdef CONFIG_DEBUG_VM 2171 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2172 WARN_ON(1); 2173 up_read(&mm->mmap_sem); 2174 } 2175 #endif 2176 } 2177 2178 /* 2179 * this is really a simplified "do_mmap". it only handles 2180 * anonymous maps. eventually we may be able to do some 2181 * brk-specific accounting here. 2182 */ 2183 static unsigned long do_brk(unsigned long addr, unsigned long len) 2184 { 2185 struct mm_struct * mm = current->mm; 2186 struct vm_area_struct * vma, * prev; 2187 unsigned long flags; 2188 struct rb_node ** rb_link, * rb_parent; 2189 pgoff_t pgoff = addr >> PAGE_SHIFT; 2190 int error; 2191 2192 len = PAGE_ALIGN(len); 2193 if (!len) 2194 return addr; 2195 2196 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2197 2198 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2199 if (error & ~PAGE_MASK) 2200 return error; 2201 2202 /* 2203 * mlock MCL_FUTURE? 2204 */ 2205 if (mm->def_flags & VM_LOCKED) { 2206 unsigned long locked, lock_limit; 2207 locked = len >> PAGE_SHIFT; 2208 locked += mm->locked_vm; 2209 lock_limit = rlimit(RLIMIT_MEMLOCK); 2210 lock_limit >>= PAGE_SHIFT; 2211 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2212 return -EAGAIN; 2213 } 2214 2215 /* 2216 * mm->mmap_sem is required to protect against another thread 2217 * changing the mappings in case we sleep. 2218 */ 2219 verify_mm_writelocked(mm); 2220 2221 /* 2222 * Clear old maps. this also does some error checking for us 2223 */ 2224 munmap_back: 2225 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2226 if (do_munmap(mm, addr, len)) 2227 return -ENOMEM; 2228 goto munmap_back; 2229 } 2230 2231 /* Check against address space limits *after* clearing old maps... */ 2232 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2233 return -ENOMEM; 2234 2235 if (mm->map_count > sysctl_max_map_count) 2236 return -ENOMEM; 2237 2238 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2239 return -ENOMEM; 2240 2241 /* Can we just expand an old private anonymous mapping? */ 2242 vma = vma_merge(mm, prev, addr, addr + len, flags, 2243 NULL, NULL, pgoff, NULL); 2244 if (vma) 2245 goto out; 2246 2247 /* 2248 * create a vma struct for an anonymous mapping 2249 */ 2250 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2251 if (!vma) { 2252 vm_unacct_memory(len >> PAGE_SHIFT); 2253 return -ENOMEM; 2254 } 2255 2256 INIT_LIST_HEAD(&vma->anon_vma_chain); 2257 vma->vm_mm = mm; 2258 vma->vm_start = addr; 2259 vma->vm_end = addr + len; 2260 vma->vm_pgoff = pgoff; 2261 vma->vm_flags = flags; 2262 vma->vm_page_prot = vm_get_page_prot(flags); 2263 vma_link(mm, vma, prev, rb_link, rb_parent); 2264 out: 2265 perf_event_mmap(vma); 2266 mm->total_vm += len >> PAGE_SHIFT; 2267 if (flags & VM_LOCKED) { 2268 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2269 mm->locked_vm += (len >> PAGE_SHIFT); 2270 } 2271 return addr; 2272 } 2273 2274 unsigned long vm_brk(unsigned long addr, unsigned long len) 2275 { 2276 struct mm_struct *mm = current->mm; 2277 unsigned long ret; 2278 2279 down_write(&mm->mmap_sem); 2280 ret = do_brk(addr, len); 2281 up_write(&mm->mmap_sem); 2282 return ret; 2283 } 2284 EXPORT_SYMBOL(vm_brk); 2285 2286 /* Release all mmaps. */ 2287 void exit_mmap(struct mm_struct *mm) 2288 { 2289 struct mmu_gather tlb; 2290 struct vm_area_struct *vma; 2291 unsigned long nr_accounted = 0; 2292 2293 /* mm's last user has gone, and its about to be pulled down */ 2294 mmu_notifier_release(mm); 2295 2296 if (mm->locked_vm) { 2297 vma = mm->mmap; 2298 while (vma) { 2299 if (vma->vm_flags & VM_LOCKED) 2300 munlock_vma_pages_all(vma); 2301 vma = vma->vm_next; 2302 } 2303 } 2304 2305 arch_exit_mmap(mm); 2306 2307 vma = mm->mmap; 2308 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2309 return; 2310 2311 lru_add_drain(); 2312 flush_cache_mm(mm); 2313 tlb_gather_mmu(&tlb, mm, 1); 2314 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2315 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2316 unmap_vmas(&tlb, vma, 0, -1); 2317 2318 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2319 tlb_finish_mmu(&tlb, 0, -1); 2320 2321 /* 2322 * Walk the list again, actually closing and freeing it, 2323 * with preemption enabled, without holding any MM locks. 2324 */ 2325 while (vma) { 2326 if (vma->vm_flags & VM_ACCOUNT) 2327 nr_accounted += vma_pages(vma); 2328 vma = remove_vma(vma); 2329 } 2330 vm_unacct_memory(nr_accounted); 2331 2332 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2333 } 2334 2335 /* Insert vm structure into process list sorted by address 2336 * and into the inode's i_mmap tree. If vm_file is non-NULL 2337 * then i_mmap_mutex is taken here. 2338 */ 2339 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2340 { 2341 struct vm_area_struct *prev; 2342 struct rb_node **rb_link, *rb_parent; 2343 2344 /* 2345 * The vm_pgoff of a purely anonymous vma should be irrelevant 2346 * until its first write fault, when page's anon_vma and index 2347 * are set. But now set the vm_pgoff it will almost certainly 2348 * end up with (unless mremap moves it elsewhere before that 2349 * first wfault), so /proc/pid/maps tells a consistent story. 2350 * 2351 * By setting it to reflect the virtual start address of the 2352 * vma, merges and splits can happen in a seamless way, just 2353 * using the existing file pgoff checks and manipulations. 2354 * Similarly in do_mmap_pgoff and in do_brk. 2355 */ 2356 if (!vma->vm_file) { 2357 BUG_ON(vma->anon_vma); 2358 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2359 } 2360 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2361 &prev, &rb_link, &rb_parent)) 2362 return -ENOMEM; 2363 if ((vma->vm_flags & VM_ACCOUNT) && 2364 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2365 return -ENOMEM; 2366 2367 vma_link(mm, vma, prev, rb_link, rb_parent); 2368 return 0; 2369 } 2370 2371 /* 2372 * Copy the vma structure to a new location in the same mm, 2373 * prior to moving page table entries, to effect an mremap move. 2374 */ 2375 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2376 unsigned long addr, unsigned long len, pgoff_t pgoff, 2377 bool *need_rmap_locks) 2378 { 2379 struct vm_area_struct *vma = *vmap; 2380 unsigned long vma_start = vma->vm_start; 2381 struct mm_struct *mm = vma->vm_mm; 2382 struct vm_area_struct *new_vma, *prev; 2383 struct rb_node **rb_link, *rb_parent; 2384 struct mempolicy *pol; 2385 bool faulted_in_anon_vma = true; 2386 2387 /* 2388 * If anonymous vma has not yet been faulted, update new pgoff 2389 * to match new location, to increase its chance of merging. 2390 */ 2391 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2392 pgoff = addr >> PAGE_SHIFT; 2393 faulted_in_anon_vma = false; 2394 } 2395 2396 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2397 return NULL; /* should never get here */ 2398 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2399 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2400 if (new_vma) { 2401 /* 2402 * Source vma may have been merged into new_vma 2403 */ 2404 if (unlikely(vma_start >= new_vma->vm_start && 2405 vma_start < new_vma->vm_end)) { 2406 /* 2407 * The only way we can get a vma_merge with 2408 * self during an mremap is if the vma hasn't 2409 * been faulted in yet and we were allowed to 2410 * reset the dst vma->vm_pgoff to the 2411 * destination address of the mremap to allow 2412 * the merge to happen. mremap must change the 2413 * vm_pgoff linearity between src and dst vmas 2414 * (in turn preventing a vma_merge) to be 2415 * safe. It is only safe to keep the vm_pgoff 2416 * linear if there are no pages mapped yet. 2417 */ 2418 VM_BUG_ON(faulted_in_anon_vma); 2419 *vmap = vma = new_vma; 2420 } 2421 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2422 } else { 2423 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2424 if (new_vma) { 2425 *new_vma = *vma; 2426 new_vma->vm_start = addr; 2427 new_vma->vm_end = addr + len; 2428 new_vma->vm_pgoff = pgoff; 2429 pol = mpol_dup(vma_policy(vma)); 2430 if (IS_ERR(pol)) 2431 goto out_free_vma; 2432 vma_set_policy(new_vma, pol); 2433 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2434 if (anon_vma_clone(new_vma, vma)) 2435 goto out_free_mempol; 2436 if (new_vma->vm_file) 2437 get_file(new_vma->vm_file); 2438 if (new_vma->vm_ops && new_vma->vm_ops->open) 2439 new_vma->vm_ops->open(new_vma); 2440 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2441 *need_rmap_locks = false; 2442 } 2443 } 2444 return new_vma; 2445 2446 out_free_mempol: 2447 mpol_put(pol); 2448 out_free_vma: 2449 kmem_cache_free(vm_area_cachep, new_vma); 2450 return NULL; 2451 } 2452 2453 /* 2454 * Return true if the calling process may expand its vm space by the passed 2455 * number of pages 2456 */ 2457 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2458 { 2459 unsigned long cur = mm->total_vm; /* pages */ 2460 unsigned long lim; 2461 2462 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2463 2464 if (cur + npages > lim) 2465 return 0; 2466 return 1; 2467 } 2468 2469 2470 static int special_mapping_fault(struct vm_area_struct *vma, 2471 struct vm_fault *vmf) 2472 { 2473 pgoff_t pgoff; 2474 struct page **pages; 2475 2476 /* 2477 * special mappings have no vm_file, and in that case, the mm 2478 * uses vm_pgoff internally. So we have to subtract it from here. 2479 * We are allowed to do this because we are the mm; do not copy 2480 * this code into drivers! 2481 */ 2482 pgoff = vmf->pgoff - vma->vm_pgoff; 2483 2484 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2485 pgoff--; 2486 2487 if (*pages) { 2488 struct page *page = *pages; 2489 get_page(page); 2490 vmf->page = page; 2491 return 0; 2492 } 2493 2494 return VM_FAULT_SIGBUS; 2495 } 2496 2497 /* 2498 * Having a close hook prevents vma merging regardless of flags. 2499 */ 2500 static void special_mapping_close(struct vm_area_struct *vma) 2501 { 2502 } 2503 2504 static const struct vm_operations_struct special_mapping_vmops = { 2505 .close = special_mapping_close, 2506 .fault = special_mapping_fault, 2507 }; 2508 2509 /* 2510 * Called with mm->mmap_sem held for writing. 2511 * Insert a new vma covering the given region, with the given flags. 2512 * Its pages are supplied by the given array of struct page *. 2513 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2514 * The region past the last page supplied will always produce SIGBUS. 2515 * The array pointer and the pages it points to are assumed to stay alive 2516 * for as long as this mapping might exist. 2517 */ 2518 int install_special_mapping(struct mm_struct *mm, 2519 unsigned long addr, unsigned long len, 2520 unsigned long vm_flags, struct page **pages) 2521 { 2522 int ret; 2523 struct vm_area_struct *vma; 2524 2525 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2526 if (unlikely(vma == NULL)) 2527 return -ENOMEM; 2528 2529 INIT_LIST_HEAD(&vma->anon_vma_chain); 2530 vma->vm_mm = mm; 2531 vma->vm_start = addr; 2532 vma->vm_end = addr + len; 2533 2534 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2535 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2536 2537 vma->vm_ops = &special_mapping_vmops; 2538 vma->vm_private_data = pages; 2539 2540 ret = insert_vm_struct(mm, vma); 2541 if (ret) 2542 goto out; 2543 2544 mm->total_vm += len >> PAGE_SHIFT; 2545 2546 perf_event_mmap(vma); 2547 2548 return 0; 2549 2550 out: 2551 kmem_cache_free(vm_area_cachep, vma); 2552 return ret; 2553 } 2554 2555 static DEFINE_MUTEX(mm_all_locks_mutex); 2556 2557 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2558 { 2559 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2560 /* 2561 * The LSB of head.next can't change from under us 2562 * because we hold the mm_all_locks_mutex. 2563 */ 2564 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2565 /* 2566 * We can safely modify head.next after taking the 2567 * anon_vma->root->mutex. If some other vma in this mm shares 2568 * the same anon_vma we won't take it again. 2569 * 2570 * No need of atomic instructions here, head.next 2571 * can't change from under us thanks to the 2572 * anon_vma->root->mutex. 2573 */ 2574 if (__test_and_set_bit(0, (unsigned long *) 2575 &anon_vma->root->rb_root.rb_node)) 2576 BUG(); 2577 } 2578 } 2579 2580 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2581 { 2582 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2583 /* 2584 * AS_MM_ALL_LOCKS can't change from under us because 2585 * we hold the mm_all_locks_mutex. 2586 * 2587 * Operations on ->flags have to be atomic because 2588 * even if AS_MM_ALL_LOCKS is stable thanks to the 2589 * mm_all_locks_mutex, there may be other cpus 2590 * changing other bitflags in parallel to us. 2591 */ 2592 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2593 BUG(); 2594 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2595 } 2596 } 2597 2598 /* 2599 * This operation locks against the VM for all pte/vma/mm related 2600 * operations that could ever happen on a certain mm. This includes 2601 * vmtruncate, try_to_unmap, and all page faults. 2602 * 2603 * The caller must take the mmap_sem in write mode before calling 2604 * mm_take_all_locks(). The caller isn't allowed to release the 2605 * mmap_sem until mm_drop_all_locks() returns. 2606 * 2607 * mmap_sem in write mode is required in order to block all operations 2608 * that could modify pagetables and free pages without need of 2609 * altering the vma layout (for example populate_range() with 2610 * nonlinear vmas). It's also needed in write mode to avoid new 2611 * anon_vmas to be associated with existing vmas. 2612 * 2613 * A single task can't take more than one mm_take_all_locks() in a row 2614 * or it would deadlock. 2615 * 2616 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2617 * mapping->flags avoid to take the same lock twice, if more than one 2618 * vma in this mm is backed by the same anon_vma or address_space. 2619 * 2620 * We can take all the locks in random order because the VM code 2621 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2622 * takes more than one of them in a row. Secondly we're protected 2623 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2624 * 2625 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2626 * that may have to take thousand of locks. 2627 * 2628 * mm_take_all_locks() can fail if it's interrupted by signals. 2629 */ 2630 int mm_take_all_locks(struct mm_struct *mm) 2631 { 2632 struct vm_area_struct *vma; 2633 struct anon_vma_chain *avc; 2634 2635 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2636 2637 mutex_lock(&mm_all_locks_mutex); 2638 2639 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2640 if (signal_pending(current)) 2641 goto out_unlock; 2642 if (vma->vm_file && vma->vm_file->f_mapping) 2643 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2644 } 2645 2646 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2647 if (signal_pending(current)) 2648 goto out_unlock; 2649 if (vma->anon_vma) 2650 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2651 vm_lock_anon_vma(mm, avc->anon_vma); 2652 } 2653 2654 return 0; 2655 2656 out_unlock: 2657 mm_drop_all_locks(mm); 2658 return -EINTR; 2659 } 2660 2661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2662 { 2663 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 2664 /* 2665 * The LSB of head.next can't change to 0 from under 2666 * us because we hold the mm_all_locks_mutex. 2667 * 2668 * We must however clear the bitflag before unlocking 2669 * the vma so the users using the anon_vma->rb_root will 2670 * never see our bitflag. 2671 * 2672 * No need of atomic instructions here, head.next 2673 * can't change from under us until we release the 2674 * anon_vma->root->mutex. 2675 */ 2676 if (!__test_and_clear_bit(0, (unsigned long *) 2677 &anon_vma->root->rb_root.rb_node)) 2678 BUG(); 2679 anon_vma_unlock(anon_vma); 2680 } 2681 } 2682 2683 static void vm_unlock_mapping(struct address_space *mapping) 2684 { 2685 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2686 /* 2687 * AS_MM_ALL_LOCKS can't change to 0 from under us 2688 * because we hold the mm_all_locks_mutex. 2689 */ 2690 mutex_unlock(&mapping->i_mmap_mutex); 2691 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2692 &mapping->flags)) 2693 BUG(); 2694 } 2695 } 2696 2697 /* 2698 * The mmap_sem cannot be released by the caller until 2699 * mm_drop_all_locks() returns. 2700 */ 2701 void mm_drop_all_locks(struct mm_struct *mm) 2702 { 2703 struct vm_area_struct *vma; 2704 struct anon_vma_chain *avc; 2705 2706 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2707 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2708 2709 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2710 if (vma->anon_vma) 2711 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2712 vm_unlock_anon_vma(avc->anon_vma); 2713 if (vma->vm_file && vma->vm_file->f_mapping) 2714 vm_unlock_mapping(vma->vm_file->f_mapping); 2715 } 2716 2717 mutex_unlock(&mm_all_locks_mutex); 2718 } 2719 2720 /* 2721 * initialise the VMA slab 2722 */ 2723 void __init mmap_init(void) 2724 { 2725 int ret; 2726 2727 ret = percpu_counter_init(&vm_committed_as, 0); 2728 VM_BUG_ON(ret); 2729 } 2730