xref: /openbmc/linux/mm/mmap.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53 
54 #include "internal.h"
55 
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags)	(0)
58 #endif
59 
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70 
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73 
74 static void unmap_region(struct mm_struct *mm,
75 		struct vm_area_struct *vma, struct vm_area_struct *prev,
76 		unsigned long start, unsigned long end);
77 
78 /* description of effects of mapping type and prot in current implementation.
79  * this is due to the limited x86 page protection hardware.  The expected
80  * behavior is in parens:
81  *
82  * map_type	prot
83  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
84  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
85  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
86  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
87  *
88  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
89  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
90  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
91  *
92  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93  * MAP_PRIVATE:
94  *								r: (no) no
95  *								w: (no) no
96  *								x: (yes) yes
97  */
98 pgprot_t protection_map[16] __ro_after_init = {
99 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102 
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 	return prot;
107 }
108 #endif
109 
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
115 
116 	return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119 
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124 
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 	unsigned long vm_flags = vma->vm_flags;
129 	pgprot_t vm_page_prot;
130 
131 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 	if (vma_wants_writenotify(vma, vm_page_prot)) {
133 		vm_flags &= ~VM_SHARED;
134 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 	}
136 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139 
140 /*
141  * Requires inode->i_mapping->i_mmap_rwsem
142  */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 		struct file *file, struct address_space *mapping)
145 {
146 	if (vma->vm_flags & VM_DENYWRITE)
147 		atomic_inc(&file_inode(file)->i_writecount);
148 	if (vma->vm_flags & VM_SHARED)
149 		mapping_unmap_writable(mapping);
150 
151 	flush_dcache_mmap_lock(mapping);
152 	vma_interval_tree_remove(vma, &mapping->i_mmap);
153 	flush_dcache_mmap_unlock(mapping);
154 }
155 
156 /*
157  * Unlink a file-based vm structure from its interval tree, to hide
158  * vma from rmap and vmtruncate before freeing its page tables.
159  */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 	struct file *file = vma->vm_file;
163 
164 	if (file) {
165 		struct address_space *mapping = file->f_mapping;
166 		i_mmap_lock_write(mapping);
167 		__remove_shared_vm_struct(vma, file, mapping);
168 		i_mmap_unlock_write(mapping);
169 	}
170 }
171 
172 /*
173  * Close a vm structure and free it, returning the next.
174  */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 	struct vm_area_struct *next = vma->vm_next;
178 
179 	might_sleep();
180 	if (vma->vm_ops && vma->vm_ops->close)
181 		vma->vm_ops->close(vma);
182 	if (vma->vm_file)
183 		fput(vma->vm_file);
184 	mpol_put(vma_policy(vma));
185 	vm_area_free(vma);
186 	return next;
187 }
188 
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 		struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 	unsigned long retval;
194 	unsigned long newbrk, oldbrk, origbrk;
195 	struct mm_struct *mm = current->mm;
196 	struct vm_area_struct *next;
197 	unsigned long min_brk;
198 	bool populate;
199 	bool downgraded = false;
200 	LIST_HEAD(uf);
201 
202 	if (down_write_killable(&mm->mmap_sem))
203 		return -EINTR;
204 
205 	origbrk = mm->brk;
206 
207 #ifdef CONFIG_COMPAT_BRK
208 	/*
209 	 * CONFIG_COMPAT_BRK can still be overridden by setting
210 	 * randomize_va_space to 2, which will still cause mm->start_brk
211 	 * to be arbitrarily shifted
212 	 */
213 	if (current->brk_randomized)
214 		min_brk = mm->start_brk;
215 	else
216 		min_brk = mm->end_data;
217 #else
218 	min_brk = mm->start_brk;
219 #endif
220 	if (brk < min_brk)
221 		goto out;
222 
223 	/*
224 	 * Check against rlimit here. If this check is done later after the test
225 	 * of oldbrk with newbrk then it can escape the test and let the data
226 	 * segment grow beyond its set limit the in case where the limit is
227 	 * not page aligned -Ram Gupta
228 	 */
229 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
230 			      mm->end_data, mm->start_data))
231 		goto out;
232 
233 	newbrk = PAGE_ALIGN(brk);
234 	oldbrk = PAGE_ALIGN(mm->brk);
235 	if (oldbrk == newbrk) {
236 		mm->brk = brk;
237 		goto success;
238 	}
239 
240 	/*
241 	 * Always allow shrinking brk.
242 	 * __do_munmap() may downgrade mmap_sem to read.
243 	 */
244 	if (brk <= mm->brk) {
245 		int ret;
246 
247 		/*
248 		 * mm->brk must to be protected by write mmap_sem so update it
249 		 * before downgrading mmap_sem. When __do_munmap() fails,
250 		 * mm->brk will be restored from origbrk.
251 		 */
252 		mm->brk = brk;
253 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
254 		if (ret < 0) {
255 			mm->brk = origbrk;
256 			goto out;
257 		} else if (ret == 1) {
258 			downgraded = true;
259 		}
260 		goto success;
261 	}
262 
263 	/* Check against existing mmap mappings. */
264 	next = find_vma(mm, oldbrk);
265 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
266 		goto out;
267 
268 	/* Ok, looks good - let it rip. */
269 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
270 		goto out;
271 	mm->brk = brk;
272 
273 success:
274 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
275 	if (downgraded)
276 		up_read(&mm->mmap_sem);
277 	else
278 		up_write(&mm->mmap_sem);
279 	userfaultfd_unmap_complete(mm, &uf);
280 	if (populate)
281 		mm_populate(oldbrk, newbrk - oldbrk);
282 	return brk;
283 
284 out:
285 	retval = origbrk;
286 	up_write(&mm->mmap_sem);
287 	return retval;
288 }
289 
290 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
291 {
292 	unsigned long max, prev_end, subtree_gap;
293 
294 	/*
295 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
296 	 * allow two stack_guard_gaps between them here, and when choosing
297 	 * an unmapped area; whereas when expanding we only require one.
298 	 * That's a little inconsistent, but keeps the code here simpler.
299 	 */
300 	max = vm_start_gap(vma);
301 	if (vma->vm_prev) {
302 		prev_end = vm_end_gap(vma->vm_prev);
303 		if (max > prev_end)
304 			max -= prev_end;
305 		else
306 			max = 0;
307 	}
308 	if (vma->vm_rb.rb_left) {
309 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
310 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
311 		if (subtree_gap > max)
312 			max = subtree_gap;
313 	}
314 	if (vma->vm_rb.rb_right) {
315 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
316 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 		if (subtree_gap > max)
318 			max = subtree_gap;
319 	}
320 	return max;
321 }
322 
323 #ifdef CONFIG_DEBUG_VM_RB
324 static int browse_rb(struct mm_struct *mm)
325 {
326 	struct rb_root *root = &mm->mm_rb;
327 	int i = 0, j, bug = 0;
328 	struct rb_node *nd, *pn = NULL;
329 	unsigned long prev = 0, pend = 0;
330 
331 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
332 		struct vm_area_struct *vma;
333 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
334 		if (vma->vm_start < prev) {
335 			pr_emerg("vm_start %lx < prev %lx\n",
336 				  vma->vm_start, prev);
337 			bug = 1;
338 		}
339 		if (vma->vm_start < pend) {
340 			pr_emerg("vm_start %lx < pend %lx\n",
341 				  vma->vm_start, pend);
342 			bug = 1;
343 		}
344 		if (vma->vm_start > vma->vm_end) {
345 			pr_emerg("vm_start %lx > vm_end %lx\n",
346 				  vma->vm_start, vma->vm_end);
347 			bug = 1;
348 		}
349 		spin_lock(&mm->page_table_lock);
350 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
351 			pr_emerg("free gap %lx, correct %lx\n",
352 			       vma->rb_subtree_gap,
353 			       vma_compute_subtree_gap(vma));
354 			bug = 1;
355 		}
356 		spin_unlock(&mm->page_table_lock);
357 		i++;
358 		pn = nd;
359 		prev = vma->vm_start;
360 		pend = vma->vm_end;
361 	}
362 	j = 0;
363 	for (nd = pn; nd; nd = rb_prev(nd))
364 		j++;
365 	if (i != j) {
366 		pr_emerg("backwards %d, forwards %d\n", j, i);
367 		bug = 1;
368 	}
369 	return bug ? -1 : i;
370 }
371 
372 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
373 {
374 	struct rb_node *nd;
375 
376 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
377 		struct vm_area_struct *vma;
378 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
379 		VM_BUG_ON_VMA(vma != ignore &&
380 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
381 			vma);
382 	}
383 }
384 
385 static void validate_mm(struct mm_struct *mm)
386 {
387 	int bug = 0;
388 	int i = 0;
389 	unsigned long highest_address = 0;
390 	struct vm_area_struct *vma = mm->mmap;
391 
392 	while (vma) {
393 		struct anon_vma *anon_vma = vma->anon_vma;
394 		struct anon_vma_chain *avc;
395 
396 		if (anon_vma) {
397 			anon_vma_lock_read(anon_vma);
398 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399 				anon_vma_interval_tree_verify(avc);
400 			anon_vma_unlock_read(anon_vma);
401 		}
402 
403 		highest_address = vm_end_gap(vma);
404 		vma = vma->vm_next;
405 		i++;
406 	}
407 	if (i != mm->map_count) {
408 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
409 		bug = 1;
410 	}
411 	if (highest_address != mm->highest_vm_end) {
412 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
413 			  mm->highest_vm_end, highest_address);
414 		bug = 1;
415 	}
416 	i = browse_rb(mm);
417 	if (i != mm->map_count) {
418 		if (i != -1)
419 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
420 		bug = 1;
421 	}
422 	VM_BUG_ON_MM(bug, mm);
423 }
424 #else
425 #define validate_mm_rb(root, ignore) do { } while (0)
426 #define validate_mm(mm) do { } while (0)
427 #endif
428 
429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
430 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
431 
432 /*
433  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
434  * vma->vm_prev->vm_end values changed, without modifying the vma's position
435  * in the rbtree.
436  */
437 static void vma_gap_update(struct vm_area_struct *vma)
438 {
439 	/*
440 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
441 	 * function that does exactly what we want.
442 	 */
443 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
444 }
445 
446 static inline void vma_rb_insert(struct vm_area_struct *vma,
447 				 struct rb_root *root)
448 {
449 	/* All rb_subtree_gap values must be consistent prior to insertion */
450 	validate_mm_rb(root, NULL);
451 
452 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
453 }
454 
455 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
456 {
457 	/*
458 	 * Note rb_erase_augmented is a fairly large inline function,
459 	 * so make sure we instantiate it only once with our desired
460 	 * augmented rbtree callbacks.
461 	 */
462 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
465 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
466 						struct rb_root *root,
467 						struct vm_area_struct *ignore)
468 {
469 	/*
470 	 * All rb_subtree_gap values must be consistent prior to erase,
471 	 * with the possible exception of the "next" vma being erased if
472 	 * next->vm_start was reduced.
473 	 */
474 	validate_mm_rb(root, ignore);
475 
476 	__vma_rb_erase(vma, root);
477 }
478 
479 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
480 					 struct rb_root *root)
481 {
482 	/*
483 	 * All rb_subtree_gap values must be consistent prior to erase,
484 	 * with the possible exception of the vma being erased.
485 	 */
486 	validate_mm_rb(root, vma);
487 
488 	__vma_rb_erase(vma, root);
489 }
490 
491 /*
492  * vma has some anon_vma assigned, and is already inserted on that
493  * anon_vma's interval trees.
494  *
495  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496  * vma must be removed from the anon_vma's interval trees using
497  * anon_vma_interval_tree_pre_update_vma().
498  *
499  * After the update, the vma will be reinserted using
500  * anon_vma_interval_tree_post_update_vma().
501  *
502  * The entire update must be protected by exclusive mmap_sem and by
503  * the root anon_vma's mutex.
504  */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508 	struct anon_vma_chain *avc;
509 
510 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513 
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517 	struct anon_vma_chain *avc;
518 
519 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522 
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524 		unsigned long end, struct vm_area_struct **pprev,
525 		struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528 
529 	__rb_link = &mm->mm_rb.rb_node;
530 	rb_prev = __rb_parent = NULL;
531 
532 	while (*__rb_link) {
533 		struct vm_area_struct *vma_tmp;
534 
535 		__rb_parent = *__rb_link;
536 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537 
538 		if (vma_tmp->vm_end > addr) {
539 			/* Fail if an existing vma overlaps the area */
540 			if (vma_tmp->vm_start < end)
541 				return -ENOMEM;
542 			__rb_link = &__rb_parent->rb_left;
543 		} else {
544 			rb_prev = __rb_parent;
545 			__rb_link = &__rb_parent->rb_right;
546 		}
547 	}
548 
549 	*pprev = NULL;
550 	if (rb_prev)
551 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552 	*rb_link = __rb_link;
553 	*rb_parent = __rb_parent;
554 	return 0;
555 }
556 
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558 		unsigned long addr, unsigned long end)
559 {
560 	unsigned long nr_pages = 0;
561 	struct vm_area_struct *vma;
562 
563 	/* Find first overlaping mapping */
564 	vma = find_vma_intersection(mm, addr, end);
565 	if (!vma)
566 		return 0;
567 
568 	nr_pages = (min(end, vma->vm_end) -
569 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
570 
571 	/* Iterate over the rest of the overlaps */
572 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573 		unsigned long overlap_len;
574 
575 		if (vma->vm_start > end)
576 			break;
577 
578 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
579 		nr_pages += overlap_len >> PAGE_SHIFT;
580 	}
581 
582 	return nr_pages;
583 }
584 
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586 		struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588 	/* Update tracking information for the gap following the new vma. */
589 	if (vma->vm_next)
590 		vma_gap_update(vma->vm_next);
591 	else
592 		mm->highest_vm_end = vm_end_gap(vma);
593 
594 	/*
595 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 	 * correct insertion point for that vma. As a result, we could not
597 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 	 * So, we first insert the vma with a zero rb_subtree_gap value
599 	 * (to be consistent with what we did on the way down), and then
600 	 * immediately update the gap to the correct value. Finally we
601 	 * rebalance the rbtree after all augmented values have been set.
602 	 */
603 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604 	vma->rb_subtree_gap = 0;
605 	vma_gap_update(vma);
606 	vma_rb_insert(vma, &mm->mm_rb);
607 }
608 
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611 	struct file *file;
612 
613 	file = vma->vm_file;
614 	if (file) {
615 		struct address_space *mapping = file->f_mapping;
616 
617 		if (vma->vm_flags & VM_DENYWRITE)
618 			atomic_dec(&file_inode(file)->i_writecount);
619 		if (vma->vm_flags & VM_SHARED)
620 			atomic_inc(&mapping->i_mmap_writable);
621 
622 		flush_dcache_mmap_lock(mapping);
623 		vma_interval_tree_insert(vma, &mapping->i_mmap);
624 		flush_dcache_mmap_unlock(mapping);
625 	}
626 }
627 
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 	struct vm_area_struct *prev, struct rb_node **rb_link,
631 	struct rb_node *rb_parent)
632 {
633 	__vma_link_list(mm, vma, prev, rb_parent);
634 	__vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636 
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 			struct vm_area_struct *prev, struct rb_node **rb_link,
639 			struct rb_node *rb_parent)
640 {
641 	struct address_space *mapping = NULL;
642 
643 	if (vma->vm_file) {
644 		mapping = vma->vm_file->f_mapping;
645 		i_mmap_lock_write(mapping);
646 	}
647 
648 	__vma_link(mm, vma, prev, rb_link, rb_parent);
649 	__vma_link_file(vma);
650 
651 	if (mapping)
652 		i_mmap_unlock_write(mapping);
653 
654 	mm->map_count++;
655 	validate_mm(mm);
656 }
657 
658 /*
659  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660  * mm's list and rbtree.  It has already been inserted into the interval tree.
661  */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664 	struct vm_area_struct *prev;
665 	struct rb_node **rb_link, *rb_parent;
666 
667 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 			   &prev, &rb_link, &rb_parent))
669 		BUG();
670 	__vma_link(mm, vma, prev, rb_link, rb_parent);
671 	mm->map_count++;
672 }
673 
674 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
675 						struct vm_area_struct *vma,
676 						struct vm_area_struct *prev,
677 						bool has_prev,
678 						struct vm_area_struct *ignore)
679 {
680 	struct vm_area_struct *next;
681 
682 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
683 	next = vma->vm_next;
684 	if (has_prev)
685 		prev->vm_next = next;
686 	else {
687 		prev = vma->vm_prev;
688 		if (prev)
689 			prev->vm_next = next;
690 		else
691 			mm->mmap = next;
692 	}
693 	if (next)
694 		next->vm_prev = prev;
695 
696 	/* Kill the cache */
697 	vmacache_invalidate(mm);
698 }
699 
700 static inline void __vma_unlink_prev(struct mm_struct *mm,
701 				     struct vm_area_struct *vma,
702 				     struct vm_area_struct *prev)
703 {
704 	__vma_unlink_common(mm, vma, prev, true, vma);
705 }
706 
707 /*
708  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
709  * is already present in an i_mmap tree without adjusting the tree.
710  * The following helper function should be used when such adjustments
711  * are necessary.  The "insert" vma (if any) is to be inserted
712  * before we drop the necessary locks.
713  */
714 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
715 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
716 	struct vm_area_struct *expand)
717 {
718 	struct mm_struct *mm = vma->vm_mm;
719 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
720 	struct address_space *mapping = NULL;
721 	struct rb_root_cached *root = NULL;
722 	struct anon_vma *anon_vma = NULL;
723 	struct file *file = vma->vm_file;
724 	bool start_changed = false, end_changed = false;
725 	long adjust_next = 0;
726 	int remove_next = 0;
727 
728 	if (next && !insert) {
729 		struct vm_area_struct *exporter = NULL, *importer = NULL;
730 
731 		if (end >= next->vm_end) {
732 			/*
733 			 * vma expands, overlapping all the next, and
734 			 * perhaps the one after too (mprotect case 6).
735 			 * The only other cases that gets here are
736 			 * case 1, case 7 and case 8.
737 			 */
738 			if (next == expand) {
739 				/*
740 				 * The only case where we don't expand "vma"
741 				 * and we expand "next" instead is case 8.
742 				 */
743 				VM_WARN_ON(end != next->vm_end);
744 				/*
745 				 * remove_next == 3 means we're
746 				 * removing "vma" and that to do so we
747 				 * swapped "vma" and "next".
748 				 */
749 				remove_next = 3;
750 				VM_WARN_ON(file != next->vm_file);
751 				swap(vma, next);
752 			} else {
753 				VM_WARN_ON(expand != vma);
754 				/*
755 				 * case 1, 6, 7, remove_next == 2 is case 6,
756 				 * remove_next == 1 is case 1 or 7.
757 				 */
758 				remove_next = 1 + (end > next->vm_end);
759 				VM_WARN_ON(remove_next == 2 &&
760 					   end != next->vm_next->vm_end);
761 				VM_WARN_ON(remove_next == 1 &&
762 					   end != next->vm_end);
763 				/* trim end to next, for case 6 first pass */
764 				end = next->vm_end;
765 			}
766 
767 			exporter = next;
768 			importer = vma;
769 
770 			/*
771 			 * If next doesn't have anon_vma, import from vma after
772 			 * next, if the vma overlaps with it.
773 			 */
774 			if (remove_next == 2 && !next->anon_vma)
775 				exporter = next->vm_next;
776 
777 		} else if (end > next->vm_start) {
778 			/*
779 			 * vma expands, overlapping part of the next:
780 			 * mprotect case 5 shifting the boundary up.
781 			 */
782 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
783 			exporter = next;
784 			importer = vma;
785 			VM_WARN_ON(expand != importer);
786 		} else if (end < vma->vm_end) {
787 			/*
788 			 * vma shrinks, and !insert tells it's not
789 			 * split_vma inserting another: so it must be
790 			 * mprotect case 4 shifting the boundary down.
791 			 */
792 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
793 			exporter = vma;
794 			importer = next;
795 			VM_WARN_ON(expand != importer);
796 		}
797 
798 		/*
799 		 * Easily overlooked: when mprotect shifts the boundary,
800 		 * make sure the expanding vma has anon_vma set if the
801 		 * shrinking vma had, to cover any anon pages imported.
802 		 */
803 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
804 			int error;
805 
806 			importer->anon_vma = exporter->anon_vma;
807 			error = anon_vma_clone(importer, exporter);
808 			if (error)
809 				return error;
810 		}
811 	}
812 again:
813 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
814 
815 	if (file) {
816 		mapping = file->f_mapping;
817 		root = &mapping->i_mmap;
818 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
819 
820 		if (adjust_next)
821 			uprobe_munmap(next, next->vm_start, next->vm_end);
822 
823 		i_mmap_lock_write(mapping);
824 		if (insert) {
825 			/*
826 			 * Put into interval tree now, so instantiated pages
827 			 * are visible to arm/parisc __flush_dcache_page
828 			 * throughout; but we cannot insert into address
829 			 * space until vma start or end is updated.
830 			 */
831 			__vma_link_file(insert);
832 		}
833 	}
834 
835 	anon_vma = vma->anon_vma;
836 	if (!anon_vma && adjust_next)
837 		anon_vma = next->anon_vma;
838 	if (anon_vma) {
839 		VM_WARN_ON(adjust_next && next->anon_vma &&
840 			   anon_vma != next->anon_vma);
841 		anon_vma_lock_write(anon_vma);
842 		anon_vma_interval_tree_pre_update_vma(vma);
843 		if (adjust_next)
844 			anon_vma_interval_tree_pre_update_vma(next);
845 	}
846 
847 	if (root) {
848 		flush_dcache_mmap_lock(mapping);
849 		vma_interval_tree_remove(vma, root);
850 		if (adjust_next)
851 			vma_interval_tree_remove(next, root);
852 	}
853 
854 	if (start != vma->vm_start) {
855 		vma->vm_start = start;
856 		start_changed = true;
857 	}
858 	if (end != vma->vm_end) {
859 		vma->vm_end = end;
860 		end_changed = true;
861 	}
862 	vma->vm_pgoff = pgoff;
863 	if (adjust_next) {
864 		next->vm_start += adjust_next << PAGE_SHIFT;
865 		next->vm_pgoff += adjust_next;
866 	}
867 
868 	if (root) {
869 		if (adjust_next)
870 			vma_interval_tree_insert(next, root);
871 		vma_interval_tree_insert(vma, root);
872 		flush_dcache_mmap_unlock(mapping);
873 	}
874 
875 	if (remove_next) {
876 		/*
877 		 * vma_merge has merged next into vma, and needs
878 		 * us to remove next before dropping the locks.
879 		 */
880 		if (remove_next != 3)
881 			__vma_unlink_prev(mm, next, vma);
882 		else
883 			/*
884 			 * vma is not before next if they've been
885 			 * swapped.
886 			 *
887 			 * pre-swap() next->vm_start was reduced so
888 			 * tell validate_mm_rb to ignore pre-swap()
889 			 * "next" (which is stored in post-swap()
890 			 * "vma").
891 			 */
892 			__vma_unlink_common(mm, next, NULL, false, vma);
893 		if (file)
894 			__remove_shared_vm_struct(next, file, mapping);
895 	} else if (insert) {
896 		/*
897 		 * split_vma has split insert from vma, and needs
898 		 * us to insert it before dropping the locks
899 		 * (it may either follow vma or precede it).
900 		 */
901 		__insert_vm_struct(mm, insert);
902 	} else {
903 		if (start_changed)
904 			vma_gap_update(vma);
905 		if (end_changed) {
906 			if (!next)
907 				mm->highest_vm_end = vm_end_gap(vma);
908 			else if (!adjust_next)
909 				vma_gap_update(next);
910 		}
911 	}
912 
913 	if (anon_vma) {
914 		anon_vma_interval_tree_post_update_vma(vma);
915 		if (adjust_next)
916 			anon_vma_interval_tree_post_update_vma(next);
917 		anon_vma_unlock_write(anon_vma);
918 	}
919 	if (mapping)
920 		i_mmap_unlock_write(mapping);
921 
922 	if (root) {
923 		uprobe_mmap(vma);
924 
925 		if (adjust_next)
926 			uprobe_mmap(next);
927 	}
928 
929 	if (remove_next) {
930 		if (file) {
931 			uprobe_munmap(next, next->vm_start, next->vm_end);
932 			fput(file);
933 		}
934 		if (next->anon_vma)
935 			anon_vma_merge(vma, next);
936 		mm->map_count--;
937 		mpol_put(vma_policy(next));
938 		vm_area_free(next);
939 		/*
940 		 * In mprotect's case 6 (see comments on vma_merge),
941 		 * we must remove another next too. It would clutter
942 		 * up the code too much to do both in one go.
943 		 */
944 		if (remove_next != 3) {
945 			/*
946 			 * If "next" was removed and vma->vm_end was
947 			 * expanded (up) over it, in turn
948 			 * "next->vm_prev->vm_end" changed and the
949 			 * "vma->vm_next" gap must be updated.
950 			 */
951 			next = vma->vm_next;
952 		} else {
953 			/*
954 			 * For the scope of the comment "next" and
955 			 * "vma" considered pre-swap(): if "vma" was
956 			 * removed, next->vm_start was expanded (down)
957 			 * over it and the "next" gap must be updated.
958 			 * Because of the swap() the post-swap() "vma"
959 			 * actually points to pre-swap() "next"
960 			 * (post-swap() "next" as opposed is now a
961 			 * dangling pointer).
962 			 */
963 			next = vma;
964 		}
965 		if (remove_next == 2) {
966 			remove_next = 1;
967 			end = next->vm_end;
968 			goto again;
969 		}
970 		else if (next)
971 			vma_gap_update(next);
972 		else {
973 			/*
974 			 * If remove_next == 2 we obviously can't
975 			 * reach this path.
976 			 *
977 			 * If remove_next == 3 we can't reach this
978 			 * path because pre-swap() next is always not
979 			 * NULL. pre-swap() "next" is not being
980 			 * removed and its next->vm_end is not altered
981 			 * (and furthermore "end" already matches
982 			 * next->vm_end in remove_next == 3).
983 			 *
984 			 * We reach this only in the remove_next == 1
985 			 * case if the "next" vma that was removed was
986 			 * the highest vma of the mm. However in such
987 			 * case next->vm_end == "end" and the extended
988 			 * "vma" has vma->vm_end == next->vm_end so
989 			 * mm->highest_vm_end doesn't need any update
990 			 * in remove_next == 1 case.
991 			 */
992 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
993 		}
994 	}
995 	if (insert && file)
996 		uprobe_mmap(insert);
997 
998 	validate_mm(mm);
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * If the vma has a ->close operation then the driver probably needs to release
1005  * per-vma resources, so we don't attempt to merge those.
1006  */
1007 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1008 				struct file *file, unsigned long vm_flags,
1009 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010 {
1011 	/*
1012 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1013 	 * match the flags but dirty bit -- the caller should mark
1014 	 * merged VMA as dirty. If dirty bit won't be excluded from
1015 	 * comparison, we increase pressure on the memory system forcing
1016 	 * the kernel to generate new VMAs when old one could be
1017 	 * extended instead.
1018 	 */
1019 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1020 		return 0;
1021 	if (vma->vm_file != file)
1022 		return 0;
1023 	if (vma->vm_ops && vma->vm_ops->close)
1024 		return 0;
1025 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1026 		return 0;
1027 	return 1;
1028 }
1029 
1030 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1031 					struct anon_vma *anon_vma2,
1032 					struct vm_area_struct *vma)
1033 {
1034 	/*
1035 	 * The list_is_singular() test is to avoid merging VMA cloned from
1036 	 * parents. This can improve scalability caused by anon_vma lock.
1037 	 */
1038 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1039 		list_is_singular(&vma->anon_vma_chain)))
1040 		return 1;
1041 	return anon_vma1 == anon_vma2;
1042 }
1043 
1044 /*
1045  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1046  * in front of (at a lower virtual address and file offset than) the vma.
1047  *
1048  * We cannot merge two vmas if they have differently assigned (non-NULL)
1049  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1050  *
1051  * We don't check here for the merged mmap wrapping around the end of pagecache
1052  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1053  * wrap, nor mmaps which cover the final page at index -1UL.
1054  */
1055 static int
1056 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1057 		     struct anon_vma *anon_vma, struct file *file,
1058 		     pgoff_t vm_pgoff,
1059 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1060 {
1061 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1062 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1063 		if (vma->vm_pgoff == vm_pgoff)
1064 			return 1;
1065 	}
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071  * beyond (at a higher virtual address and file offset than) the vma.
1072  *
1073  * We cannot merge two vmas if they have differently assigned (non-NULL)
1074  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075  */
1076 static int
1077 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1078 		    struct anon_vma *anon_vma, struct file *file,
1079 		    pgoff_t vm_pgoff,
1080 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1081 {
1082 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1083 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1084 		pgoff_t vm_pglen;
1085 		vm_pglen = vma_pages(vma);
1086 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1087 			return 1;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1094  * whether that can be merged with its predecessor or its successor.
1095  * Or both (it neatly fills a hole).
1096  *
1097  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1098  * certain not to be mapped by the time vma_merge is called; but when
1099  * called for mprotect, it is certain to be already mapped (either at
1100  * an offset within prev, or at the start of next), and the flags of
1101  * this area are about to be changed to vm_flags - and the no-change
1102  * case has already been eliminated.
1103  *
1104  * The following mprotect cases have to be considered, where AAAA is
1105  * the area passed down from mprotect_fixup, never extending beyond one
1106  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1107  *
1108  *     AAAA             AAAA                AAAA          AAAA
1109  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1110  *    cannot merge    might become    might become    might become
1111  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1112  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1113  *    mremap move:                                    PPPPXXXXXXXX 8
1114  *        AAAA
1115  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1116  *    might become    case 1 below    case 2 below    case 3 below
1117  *
1118  * It is important for case 8 that the vma NNNN overlapping the
1119  * region AAAA is never going to extended over XXXX. Instead XXXX must
1120  * be extended in region AAAA and NNNN must be removed. This way in
1121  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1122  * rmap_locks, the properties of the merged vma will be already
1123  * correct for the whole merged range. Some of those properties like
1124  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1125  * be correct for the whole merged range immediately after the
1126  * rmap_locks are released. Otherwise if XXXX would be removed and
1127  * NNNN would be extended over the XXXX range, remove_migration_ptes
1128  * or other rmap walkers (if working on addresses beyond the "end"
1129  * parameter) may establish ptes with the wrong permissions of NNNN
1130  * instead of the right permissions of XXXX.
1131  */
1132 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1133 			struct vm_area_struct *prev, unsigned long addr,
1134 			unsigned long end, unsigned long vm_flags,
1135 			struct anon_vma *anon_vma, struct file *file,
1136 			pgoff_t pgoff, struct mempolicy *policy,
1137 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1138 {
1139 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1140 	struct vm_area_struct *area, *next;
1141 	int err;
1142 
1143 	/*
1144 	 * We later require that vma->vm_flags == vm_flags,
1145 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1146 	 */
1147 	if (vm_flags & VM_SPECIAL)
1148 		return NULL;
1149 
1150 	if (prev)
1151 		next = prev->vm_next;
1152 	else
1153 		next = mm->mmap;
1154 	area = next;
1155 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1156 		next = next->vm_next;
1157 
1158 	/* verify some invariant that must be enforced by the caller */
1159 	VM_WARN_ON(prev && addr <= prev->vm_start);
1160 	VM_WARN_ON(area && end > area->vm_end);
1161 	VM_WARN_ON(addr >= end);
1162 
1163 	/*
1164 	 * Can it merge with the predecessor?
1165 	 */
1166 	if (prev && prev->vm_end == addr &&
1167 			mpol_equal(vma_policy(prev), policy) &&
1168 			can_vma_merge_after(prev, vm_flags,
1169 					    anon_vma, file, pgoff,
1170 					    vm_userfaultfd_ctx)) {
1171 		/*
1172 		 * OK, it can.  Can we now merge in the successor as well?
1173 		 */
1174 		if (next && end == next->vm_start &&
1175 				mpol_equal(policy, vma_policy(next)) &&
1176 				can_vma_merge_before(next, vm_flags,
1177 						     anon_vma, file,
1178 						     pgoff+pglen,
1179 						     vm_userfaultfd_ctx) &&
1180 				is_mergeable_anon_vma(prev->anon_vma,
1181 						      next->anon_vma, NULL)) {
1182 							/* cases 1, 6 */
1183 			err = __vma_adjust(prev, prev->vm_start,
1184 					 next->vm_end, prev->vm_pgoff, NULL,
1185 					 prev);
1186 		} else					/* cases 2, 5, 7 */
1187 			err = __vma_adjust(prev, prev->vm_start,
1188 					 end, prev->vm_pgoff, NULL, prev);
1189 		if (err)
1190 			return NULL;
1191 		khugepaged_enter_vma_merge(prev, vm_flags);
1192 		return prev;
1193 	}
1194 
1195 	/*
1196 	 * Can this new request be merged in front of next?
1197 	 */
1198 	if (next && end == next->vm_start &&
1199 			mpol_equal(policy, vma_policy(next)) &&
1200 			can_vma_merge_before(next, vm_flags,
1201 					     anon_vma, file, pgoff+pglen,
1202 					     vm_userfaultfd_ctx)) {
1203 		if (prev && addr < prev->vm_end)	/* case 4 */
1204 			err = __vma_adjust(prev, prev->vm_start,
1205 					 addr, prev->vm_pgoff, NULL, next);
1206 		else {					/* cases 3, 8 */
1207 			err = __vma_adjust(area, addr, next->vm_end,
1208 					 next->vm_pgoff - pglen, NULL, next);
1209 			/*
1210 			 * In case 3 area is already equal to next and
1211 			 * this is a noop, but in case 8 "area" has
1212 			 * been removed and next was expanded over it.
1213 			 */
1214 			area = next;
1215 		}
1216 		if (err)
1217 			return NULL;
1218 		khugepaged_enter_vma_merge(area, vm_flags);
1219 		return area;
1220 	}
1221 
1222 	return NULL;
1223 }
1224 
1225 /*
1226  * Rough compatbility check to quickly see if it's even worth looking
1227  * at sharing an anon_vma.
1228  *
1229  * They need to have the same vm_file, and the flags can only differ
1230  * in things that mprotect may change.
1231  *
1232  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1233  * we can merge the two vma's. For example, we refuse to merge a vma if
1234  * there is a vm_ops->close() function, because that indicates that the
1235  * driver is doing some kind of reference counting. But that doesn't
1236  * really matter for the anon_vma sharing case.
1237  */
1238 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1239 {
1240 	return a->vm_end == b->vm_start &&
1241 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1242 		a->vm_file == b->vm_file &&
1243 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1244 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1245 }
1246 
1247 /*
1248  * Do some basic sanity checking to see if we can re-use the anon_vma
1249  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1250  * the same as 'old', the other will be the new one that is trying
1251  * to share the anon_vma.
1252  *
1253  * NOTE! This runs with mm_sem held for reading, so it is possible that
1254  * the anon_vma of 'old' is concurrently in the process of being set up
1255  * by another page fault trying to merge _that_. But that's ok: if it
1256  * is being set up, that automatically means that it will be a singleton
1257  * acceptable for merging, so we can do all of this optimistically. But
1258  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1259  *
1260  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1261  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1262  * is to return an anon_vma that is "complex" due to having gone through
1263  * a fork).
1264  *
1265  * We also make sure that the two vma's are compatible (adjacent,
1266  * and with the same memory policies). That's all stable, even with just
1267  * a read lock on the mm_sem.
1268  */
1269 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1270 {
1271 	if (anon_vma_compatible(a, b)) {
1272 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1273 
1274 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1275 			return anon_vma;
1276 	}
1277 	return NULL;
1278 }
1279 
1280 /*
1281  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1282  * neighbouring vmas for a suitable anon_vma, before it goes off
1283  * to allocate a new anon_vma.  It checks because a repetitive
1284  * sequence of mprotects and faults may otherwise lead to distinct
1285  * anon_vmas being allocated, preventing vma merge in subsequent
1286  * mprotect.
1287  */
1288 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1289 {
1290 	struct anon_vma *anon_vma;
1291 	struct vm_area_struct *near;
1292 
1293 	near = vma->vm_next;
1294 	if (!near)
1295 		goto try_prev;
1296 
1297 	anon_vma = reusable_anon_vma(near, vma, near);
1298 	if (anon_vma)
1299 		return anon_vma;
1300 try_prev:
1301 	near = vma->vm_prev;
1302 	if (!near)
1303 		goto none;
1304 
1305 	anon_vma = reusable_anon_vma(near, near, vma);
1306 	if (anon_vma)
1307 		return anon_vma;
1308 none:
1309 	/*
1310 	 * There's no absolute need to look only at touching neighbours:
1311 	 * we could search further afield for "compatible" anon_vmas.
1312 	 * But it would probably just be a waste of time searching,
1313 	 * or lead to too many vmas hanging off the same anon_vma.
1314 	 * We're trying to allow mprotect remerging later on,
1315 	 * not trying to minimize memory used for anon_vmas.
1316 	 */
1317 	return NULL;
1318 }
1319 
1320 /*
1321  * If a hint addr is less than mmap_min_addr change hint to be as
1322  * low as possible but still greater than mmap_min_addr
1323  */
1324 static inline unsigned long round_hint_to_min(unsigned long hint)
1325 {
1326 	hint &= PAGE_MASK;
1327 	if (((void *)hint != NULL) &&
1328 	    (hint < mmap_min_addr))
1329 		return PAGE_ALIGN(mmap_min_addr);
1330 	return hint;
1331 }
1332 
1333 static inline int mlock_future_check(struct mm_struct *mm,
1334 				     unsigned long flags,
1335 				     unsigned long len)
1336 {
1337 	unsigned long locked, lock_limit;
1338 
1339 	/*  mlock MCL_FUTURE? */
1340 	if (flags & VM_LOCKED) {
1341 		locked = len >> PAGE_SHIFT;
1342 		locked += mm->locked_vm;
1343 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1344 		lock_limit >>= PAGE_SHIFT;
1345 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1346 			return -EAGAIN;
1347 	}
1348 	return 0;
1349 }
1350 
1351 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1352 {
1353 	if (S_ISREG(inode->i_mode))
1354 		return MAX_LFS_FILESIZE;
1355 
1356 	if (S_ISBLK(inode->i_mode))
1357 		return MAX_LFS_FILESIZE;
1358 
1359 	/* Special "we do even unsigned file positions" case */
1360 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1361 		return 0;
1362 
1363 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1364 	return ULONG_MAX;
1365 }
1366 
1367 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1368 				unsigned long pgoff, unsigned long len)
1369 {
1370 	u64 maxsize = file_mmap_size_max(file, inode);
1371 
1372 	if (maxsize && len > maxsize)
1373 		return false;
1374 	maxsize -= len;
1375 	if (pgoff > maxsize >> PAGE_SHIFT)
1376 		return false;
1377 	return true;
1378 }
1379 
1380 /*
1381  * The caller must hold down_write(&current->mm->mmap_sem).
1382  */
1383 unsigned long do_mmap(struct file *file, unsigned long addr,
1384 			unsigned long len, unsigned long prot,
1385 			unsigned long flags, vm_flags_t vm_flags,
1386 			unsigned long pgoff, unsigned long *populate,
1387 			struct list_head *uf)
1388 {
1389 	struct mm_struct *mm = current->mm;
1390 	int pkey = 0;
1391 
1392 	*populate = 0;
1393 
1394 	if (!len)
1395 		return -EINVAL;
1396 
1397 	/*
1398 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1399 	 *
1400 	 * (the exception is when the underlying filesystem is noexec
1401 	 *  mounted, in which case we dont add PROT_EXEC.)
1402 	 */
1403 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1404 		if (!(file && path_noexec(&file->f_path)))
1405 			prot |= PROT_EXEC;
1406 
1407 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1408 	if (flags & MAP_FIXED_NOREPLACE)
1409 		flags |= MAP_FIXED;
1410 
1411 	if (!(flags & MAP_FIXED))
1412 		addr = round_hint_to_min(addr);
1413 
1414 	/* Careful about overflows.. */
1415 	len = PAGE_ALIGN(len);
1416 	if (!len)
1417 		return -ENOMEM;
1418 
1419 	/* offset overflow? */
1420 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1421 		return -EOVERFLOW;
1422 
1423 	/* Too many mappings? */
1424 	if (mm->map_count > sysctl_max_map_count)
1425 		return -ENOMEM;
1426 
1427 	/* Obtain the address to map to. we verify (or select) it and ensure
1428 	 * that it represents a valid section of the address space.
1429 	 */
1430 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1431 	if (offset_in_page(addr))
1432 		return addr;
1433 
1434 	if (flags & MAP_FIXED_NOREPLACE) {
1435 		struct vm_area_struct *vma = find_vma(mm, addr);
1436 
1437 		if (vma && vma->vm_start < addr + len)
1438 			return -EEXIST;
1439 	}
1440 
1441 	if (prot == PROT_EXEC) {
1442 		pkey = execute_only_pkey(mm);
1443 		if (pkey < 0)
1444 			pkey = 0;
1445 	}
1446 
1447 	/* Do simple checking here so the lower-level routines won't have
1448 	 * to. we assume access permissions have been handled by the open
1449 	 * of the memory object, so we don't do any here.
1450 	 */
1451 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1452 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1453 
1454 	if (flags & MAP_LOCKED)
1455 		if (!can_do_mlock())
1456 			return -EPERM;
1457 
1458 	if (mlock_future_check(mm, vm_flags, len))
1459 		return -EAGAIN;
1460 
1461 	if (file) {
1462 		struct inode *inode = file_inode(file);
1463 		unsigned long flags_mask;
1464 
1465 		if (!file_mmap_ok(file, inode, pgoff, len))
1466 			return -EOVERFLOW;
1467 
1468 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1469 
1470 		switch (flags & MAP_TYPE) {
1471 		case MAP_SHARED:
1472 			/*
1473 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1474 			 * flags. E.g. MAP_SYNC is dangerous to use with
1475 			 * MAP_SHARED as you don't know which consistency model
1476 			 * you will get. We silently ignore unsupported flags
1477 			 * with MAP_SHARED to preserve backward compatibility.
1478 			 */
1479 			flags &= LEGACY_MAP_MASK;
1480 			/* fall through */
1481 		case MAP_SHARED_VALIDATE:
1482 			if (flags & ~flags_mask)
1483 				return -EOPNOTSUPP;
1484 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1485 				return -EACCES;
1486 
1487 			/*
1488 			 * Make sure we don't allow writing to an append-only
1489 			 * file..
1490 			 */
1491 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1492 				return -EACCES;
1493 
1494 			/*
1495 			 * Make sure there are no mandatory locks on the file.
1496 			 */
1497 			if (locks_verify_locked(file))
1498 				return -EAGAIN;
1499 
1500 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1501 			if (!(file->f_mode & FMODE_WRITE))
1502 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1503 
1504 			/* fall through */
1505 		case MAP_PRIVATE:
1506 			if (!(file->f_mode & FMODE_READ))
1507 				return -EACCES;
1508 			if (path_noexec(&file->f_path)) {
1509 				if (vm_flags & VM_EXEC)
1510 					return -EPERM;
1511 				vm_flags &= ~VM_MAYEXEC;
1512 			}
1513 
1514 			if (!file->f_op->mmap)
1515 				return -ENODEV;
1516 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1517 				return -EINVAL;
1518 			break;
1519 
1520 		default:
1521 			return -EINVAL;
1522 		}
1523 	} else {
1524 		switch (flags & MAP_TYPE) {
1525 		case MAP_SHARED:
1526 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1527 				return -EINVAL;
1528 			/*
1529 			 * Ignore pgoff.
1530 			 */
1531 			pgoff = 0;
1532 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1533 			break;
1534 		case MAP_PRIVATE:
1535 			/*
1536 			 * Set pgoff according to addr for anon_vma.
1537 			 */
1538 			pgoff = addr >> PAGE_SHIFT;
1539 			break;
1540 		default:
1541 			return -EINVAL;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Set 'VM_NORESERVE' if we should not account for the
1547 	 * memory use of this mapping.
1548 	 */
1549 	if (flags & MAP_NORESERVE) {
1550 		/* We honor MAP_NORESERVE if allowed to overcommit */
1551 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1552 			vm_flags |= VM_NORESERVE;
1553 
1554 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1555 		if (file && is_file_hugepages(file))
1556 			vm_flags |= VM_NORESERVE;
1557 	}
1558 
1559 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1560 	if (!IS_ERR_VALUE(addr) &&
1561 	    ((vm_flags & VM_LOCKED) ||
1562 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1563 		*populate = len;
1564 	return addr;
1565 }
1566 
1567 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1568 			      unsigned long prot, unsigned long flags,
1569 			      unsigned long fd, unsigned long pgoff)
1570 {
1571 	struct file *file = NULL;
1572 	unsigned long retval;
1573 
1574 	if (!(flags & MAP_ANONYMOUS)) {
1575 		audit_mmap_fd(fd, flags);
1576 		file = fget(fd);
1577 		if (!file)
1578 			return -EBADF;
1579 		if (is_file_hugepages(file))
1580 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1581 		retval = -EINVAL;
1582 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1583 			goto out_fput;
1584 	} else if (flags & MAP_HUGETLB) {
1585 		struct user_struct *user = NULL;
1586 		struct hstate *hs;
1587 
1588 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1589 		if (!hs)
1590 			return -EINVAL;
1591 
1592 		len = ALIGN(len, huge_page_size(hs));
1593 		/*
1594 		 * VM_NORESERVE is used because the reservations will be
1595 		 * taken when vm_ops->mmap() is called
1596 		 * A dummy user value is used because we are not locking
1597 		 * memory so no accounting is necessary
1598 		 */
1599 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1600 				VM_NORESERVE,
1601 				&user, HUGETLB_ANONHUGE_INODE,
1602 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1603 		if (IS_ERR(file))
1604 			return PTR_ERR(file);
1605 	}
1606 
1607 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1608 
1609 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1610 out_fput:
1611 	if (file)
1612 		fput(file);
1613 	return retval;
1614 }
1615 
1616 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1617 		unsigned long, prot, unsigned long, flags,
1618 		unsigned long, fd, unsigned long, pgoff)
1619 {
1620 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1621 }
1622 
1623 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1624 struct mmap_arg_struct {
1625 	unsigned long addr;
1626 	unsigned long len;
1627 	unsigned long prot;
1628 	unsigned long flags;
1629 	unsigned long fd;
1630 	unsigned long offset;
1631 };
1632 
1633 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1634 {
1635 	struct mmap_arg_struct a;
1636 
1637 	if (copy_from_user(&a, arg, sizeof(a)))
1638 		return -EFAULT;
1639 	if (offset_in_page(a.offset))
1640 		return -EINVAL;
1641 
1642 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1643 			       a.offset >> PAGE_SHIFT);
1644 }
1645 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1646 
1647 /*
1648  * Some shared mappings will want the pages marked read-only
1649  * to track write events. If so, we'll downgrade vm_page_prot
1650  * to the private version (using protection_map[] without the
1651  * VM_SHARED bit).
1652  */
1653 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1654 {
1655 	vm_flags_t vm_flags = vma->vm_flags;
1656 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1657 
1658 	/* If it was private or non-writable, the write bit is already clear */
1659 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1660 		return 0;
1661 
1662 	/* The backer wishes to know when pages are first written to? */
1663 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1664 		return 1;
1665 
1666 	/* The open routine did something to the protections that pgprot_modify
1667 	 * won't preserve? */
1668 	if (pgprot_val(vm_page_prot) !=
1669 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1670 		return 0;
1671 
1672 	/* Do we need to track softdirty? */
1673 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1674 		return 1;
1675 
1676 	/* Specialty mapping? */
1677 	if (vm_flags & VM_PFNMAP)
1678 		return 0;
1679 
1680 	/* Can the mapping track the dirty pages? */
1681 	return vma->vm_file && vma->vm_file->f_mapping &&
1682 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1683 }
1684 
1685 /*
1686  * We account for memory if it's a private writeable mapping,
1687  * not hugepages and VM_NORESERVE wasn't set.
1688  */
1689 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1690 {
1691 	/*
1692 	 * hugetlb has its own accounting separate from the core VM
1693 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1694 	 */
1695 	if (file && is_file_hugepages(file))
1696 		return 0;
1697 
1698 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1699 }
1700 
1701 unsigned long mmap_region(struct file *file, unsigned long addr,
1702 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1703 		struct list_head *uf)
1704 {
1705 	struct mm_struct *mm = current->mm;
1706 	struct vm_area_struct *vma, *prev;
1707 	int error;
1708 	struct rb_node **rb_link, *rb_parent;
1709 	unsigned long charged = 0;
1710 
1711 	/* Check against address space limit. */
1712 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1713 		unsigned long nr_pages;
1714 
1715 		/*
1716 		 * MAP_FIXED may remove pages of mappings that intersects with
1717 		 * requested mapping. Account for the pages it would unmap.
1718 		 */
1719 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1720 
1721 		if (!may_expand_vm(mm, vm_flags,
1722 					(len >> PAGE_SHIFT) - nr_pages))
1723 			return -ENOMEM;
1724 	}
1725 
1726 	/* Clear old maps */
1727 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1728 			      &rb_parent)) {
1729 		if (do_munmap(mm, addr, len, uf))
1730 			return -ENOMEM;
1731 	}
1732 
1733 	/*
1734 	 * Private writable mapping: check memory availability
1735 	 */
1736 	if (accountable_mapping(file, vm_flags)) {
1737 		charged = len >> PAGE_SHIFT;
1738 		if (security_vm_enough_memory_mm(mm, charged))
1739 			return -ENOMEM;
1740 		vm_flags |= VM_ACCOUNT;
1741 	}
1742 
1743 	/*
1744 	 * Can we just expand an old mapping?
1745 	 */
1746 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1747 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1748 	if (vma)
1749 		goto out;
1750 
1751 	/*
1752 	 * Determine the object being mapped and call the appropriate
1753 	 * specific mapper. the address has already been validated, but
1754 	 * not unmapped, but the maps are removed from the list.
1755 	 */
1756 	vma = vm_area_alloc(mm);
1757 	if (!vma) {
1758 		error = -ENOMEM;
1759 		goto unacct_error;
1760 	}
1761 
1762 	vma->vm_start = addr;
1763 	vma->vm_end = addr + len;
1764 	vma->vm_flags = vm_flags;
1765 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1766 	vma->vm_pgoff = pgoff;
1767 
1768 	if (file) {
1769 		if (vm_flags & VM_DENYWRITE) {
1770 			error = deny_write_access(file);
1771 			if (error)
1772 				goto free_vma;
1773 		}
1774 		if (vm_flags & VM_SHARED) {
1775 			error = mapping_map_writable(file->f_mapping);
1776 			if (error)
1777 				goto allow_write_and_free_vma;
1778 		}
1779 
1780 		/* ->mmap() can change vma->vm_file, but must guarantee that
1781 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1782 		 * and map writably if VM_SHARED is set. This usually means the
1783 		 * new file must not have been exposed to user-space, yet.
1784 		 */
1785 		vma->vm_file = get_file(file);
1786 		error = call_mmap(file, vma);
1787 		if (error)
1788 			goto unmap_and_free_vma;
1789 
1790 		/* Can addr have changed??
1791 		 *
1792 		 * Answer: Yes, several device drivers can do it in their
1793 		 *         f_op->mmap method. -DaveM
1794 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1795 		 *      be updated for vma_link()
1796 		 */
1797 		WARN_ON_ONCE(addr != vma->vm_start);
1798 
1799 		addr = vma->vm_start;
1800 		vm_flags = vma->vm_flags;
1801 	} else if (vm_flags & VM_SHARED) {
1802 		error = shmem_zero_setup(vma);
1803 		if (error)
1804 			goto free_vma;
1805 	} else {
1806 		vma_set_anonymous(vma);
1807 	}
1808 
1809 	vma_link(mm, vma, prev, rb_link, rb_parent);
1810 	/* Once vma denies write, undo our temporary denial count */
1811 	if (file) {
1812 		if (vm_flags & VM_SHARED)
1813 			mapping_unmap_writable(file->f_mapping);
1814 		if (vm_flags & VM_DENYWRITE)
1815 			allow_write_access(file);
1816 	}
1817 	file = vma->vm_file;
1818 out:
1819 	perf_event_mmap(vma);
1820 
1821 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1822 	if (vm_flags & VM_LOCKED) {
1823 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1824 					is_vm_hugetlb_page(vma) ||
1825 					vma == get_gate_vma(current->mm))
1826 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1827 		else
1828 			mm->locked_vm += (len >> PAGE_SHIFT);
1829 	}
1830 
1831 	if (file)
1832 		uprobe_mmap(vma);
1833 
1834 	/*
1835 	 * New (or expanded) vma always get soft dirty status.
1836 	 * Otherwise user-space soft-dirty page tracker won't
1837 	 * be able to distinguish situation when vma area unmapped,
1838 	 * then new mapped in-place (which must be aimed as
1839 	 * a completely new data area).
1840 	 */
1841 	vma->vm_flags |= VM_SOFTDIRTY;
1842 
1843 	vma_set_page_prot(vma);
1844 
1845 	return addr;
1846 
1847 unmap_and_free_vma:
1848 	vma->vm_file = NULL;
1849 	fput(file);
1850 
1851 	/* Undo any partial mapping done by a device driver. */
1852 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1853 	charged = 0;
1854 	if (vm_flags & VM_SHARED)
1855 		mapping_unmap_writable(file->f_mapping);
1856 allow_write_and_free_vma:
1857 	if (vm_flags & VM_DENYWRITE)
1858 		allow_write_access(file);
1859 free_vma:
1860 	vm_area_free(vma);
1861 unacct_error:
1862 	if (charged)
1863 		vm_unacct_memory(charged);
1864 	return error;
1865 }
1866 
1867 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1868 {
1869 	/*
1870 	 * We implement the search by looking for an rbtree node that
1871 	 * immediately follows a suitable gap. That is,
1872 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1873 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1874 	 * - gap_end - gap_start >= length
1875 	 */
1876 
1877 	struct mm_struct *mm = current->mm;
1878 	struct vm_area_struct *vma;
1879 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1880 
1881 	/* Adjust search length to account for worst case alignment overhead */
1882 	length = info->length + info->align_mask;
1883 	if (length < info->length)
1884 		return -ENOMEM;
1885 
1886 	/* Adjust search limits by the desired length */
1887 	if (info->high_limit < length)
1888 		return -ENOMEM;
1889 	high_limit = info->high_limit - length;
1890 
1891 	if (info->low_limit > high_limit)
1892 		return -ENOMEM;
1893 	low_limit = info->low_limit + length;
1894 
1895 	/* Check if rbtree root looks promising */
1896 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1897 		goto check_highest;
1898 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1899 	if (vma->rb_subtree_gap < length)
1900 		goto check_highest;
1901 
1902 	while (true) {
1903 		/* Visit left subtree if it looks promising */
1904 		gap_end = vm_start_gap(vma);
1905 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1906 			struct vm_area_struct *left =
1907 				rb_entry(vma->vm_rb.rb_left,
1908 					 struct vm_area_struct, vm_rb);
1909 			if (left->rb_subtree_gap >= length) {
1910 				vma = left;
1911 				continue;
1912 			}
1913 		}
1914 
1915 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1916 check_current:
1917 		/* Check if current node has a suitable gap */
1918 		if (gap_start > high_limit)
1919 			return -ENOMEM;
1920 		if (gap_end >= low_limit &&
1921 		    gap_end > gap_start && gap_end - gap_start >= length)
1922 			goto found;
1923 
1924 		/* Visit right subtree if it looks promising */
1925 		if (vma->vm_rb.rb_right) {
1926 			struct vm_area_struct *right =
1927 				rb_entry(vma->vm_rb.rb_right,
1928 					 struct vm_area_struct, vm_rb);
1929 			if (right->rb_subtree_gap >= length) {
1930 				vma = right;
1931 				continue;
1932 			}
1933 		}
1934 
1935 		/* Go back up the rbtree to find next candidate node */
1936 		while (true) {
1937 			struct rb_node *prev = &vma->vm_rb;
1938 			if (!rb_parent(prev))
1939 				goto check_highest;
1940 			vma = rb_entry(rb_parent(prev),
1941 				       struct vm_area_struct, vm_rb);
1942 			if (prev == vma->vm_rb.rb_left) {
1943 				gap_start = vm_end_gap(vma->vm_prev);
1944 				gap_end = vm_start_gap(vma);
1945 				goto check_current;
1946 			}
1947 		}
1948 	}
1949 
1950 check_highest:
1951 	/* Check highest gap, which does not precede any rbtree node */
1952 	gap_start = mm->highest_vm_end;
1953 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1954 	if (gap_start > high_limit)
1955 		return -ENOMEM;
1956 
1957 found:
1958 	/* We found a suitable gap. Clip it with the original low_limit. */
1959 	if (gap_start < info->low_limit)
1960 		gap_start = info->low_limit;
1961 
1962 	/* Adjust gap address to the desired alignment */
1963 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1964 
1965 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1966 	VM_BUG_ON(gap_start + info->length > gap_end);
1967 	return gap_start;
1968 }
1969 
1970 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1971 {
1972 	struct mm_struct *mm = current->mm;
1973 	struct vm_area_struct *vma;
1974 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1975 
1976 	/* Adjust search length to account for worst case alignment overhead */
1977 	length = info->length + info->align_mask;
1978 	if (length < info->length)
1979 		return -ENOMEM;
1980 
1981 	/*
1982 	 * Adjust search limits by the desired length.
1983 	 * See implementation comment at top of unmapped_area().
1984 	 */
1985 	gap_end = info->high_limit;
1986 	if (gap_end < length)
1987 		return -ENOMEM;
1988 	high_limit = gap_end - length;
1989 
1990 	if (info->low_limit > high_limit)
1991 		return -ENOMEM;
1992 	low_limit = info->low_limit + length;
1993 
1994 	/* Check highest gap, which does not precede any rbtree node */
1995 	gap_start = mm->highest_vm_end;
1996 	if (gap_start <= high_limit)
1997 		goto found_highest;
1998 
1999 	/* Check if rbtree root looks promising */
2000 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2001 		return -ENOMEM;
2002 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2003 	if (vma->rb_subtree_gap < length)
2004 		return -ENOMEM;
2005 
2006 	while (true) {
2007 		/* Visit right subtree if it looks promising */
2008 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2009 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2010 			struct vm_area_struct *right =
2011 				rb_entry(vma->vm_rb.rb_right,
2012 					 struct vm_area_struct, vm_rb);
2013 			if (right->rb_subtree_gap >= length) {
2014 				vma = right;
2015 				continue;
2016 			}
2017 		}
2018 
2019 check_current:
2020 		/* Check if current node has a suitable gap */
2021 		gap_end = vm_start_gap(vma);
2022 		if (gap_end < low_limit)
2023 			return -ENOMEM;
2024 		if (gap_start <= high_limit &&
2025 		    gap_end > gap_start && gap_end - gap_start >= length)
2026 			goto found;
2027 
2028 		/* Visit left subtree if it looks promising */
2029 		if (vma->vm_rb.rb_left) {
2030 			struct vm_area_struct *left =
2031 				rb_entry(vma->vm_rb.rb_left,
2032 					 struct vm_area_struct, vm_rb);
2033 			if (left->rb_subtree_gap >= length) {
2034 				vma = left;
2035 				continue;
2036 			}
2037 		}
2038 
2039 		/* Go back up the rbtree to find next candidate node */
2040 		while (true) {
2041 			struct rb_node *prev = &vma->vm_rb;
2042 			if (!rb_parent(prev))
2043 				return -ENOMEM;
2044 			vma = rb_entry(rb_parent(prev),
2045 				       struct vm_area_struct, vm_rb);
2046 			if (prev == vma->vm_rb.rb_right) {
2047 				gap_start = vma->vm_prev ?
2048 					vm_end_gap(vma->vm_prev) : 0;
2049 				goto check_current;
2050 			}
2051 		}
2052 	}
2053 
2054 found:
2055 	/* We found a suitable gap. Clip it with the original high_limit. */
2056 	if (gap_end > info->high_limit)
2057 		gap_end = info->high_limit;
2058 
2059 found_highest:
2060 	/* Compute highest gap address at the desired alignment */
2061 	gap_end -= info->length;
2062 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2063 
2064 	VM_BUG_ON(gap_end < info->low_limit);
2065 	VM_BUG_ON(gap_end < gap_start);
2066 	return gap_end;
2067 }
2068 
2069 
2070 #ifndef arch_get_mmap_end
2071 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2072 #endif
2073 
2074 #ifndef arch_get_mmap_base
2075 #define arch_get_mmap_base(addr, base) (base)
2076 #endif
2077 
2078 /* Get an address range which is currently unmapped.
2079  * For shmat() with addr=0.
2080  *
2081  * Ugly calling convention alert:
2082  * Return value with the low bits set means error value,
2083  * ie
2084  *	if (ret & ~PAGE_MASK)
2085  *		error = ret;
2086  *
2087  * This function "knows" that -ENOMEM has the bits set.
2088  */
2089 #ifndef HAVE_ARCH_UNMAPPED_AREA
2090 unsigned long
2091 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2092 		unsigned long len, unsigned long pgoff, unsigned long flags)
2093 {
2094 	struct mm_struct *mm = current->mm;
2095 	struct vm_area_struct *vma, *prev;
2096 	struct vm_unmapped_area_info info;
2097 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2098 
2099 	if (len > mmap_end - mmap_min_addr)
2100 		return -ENOMEM;
2101 
2102 	if (flags & MAP_FIXED)
2103 		return addr;
2104 
2105 	if (addr) {
2106 		addr = PAGE_ALIGN(addr);
2107 		vma = find_vma_prev(mm, addr, &prev);
2108 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2109 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2110 		    (!prev || addr >= vm_end_gap(prev)))
2111 			return addr;
2112 	}
2113 
2114 	info.flags = 0;
2115 	info.length = len;
2116 	info.low_limit = mm->mmap_base;
2117 	info.high_limit = mmap_end;
2118 	info.align_mask = 0;
2119 	return vm_unmapped_area(&info);
2120 }
2121 #endif
2122 
2123 /*
2124  * This mmap-allocator allocates new areas top-down from below the
2125  * stack's low limit (the base):
2126  */
2127 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2128 unsigned long
2129 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2130 			  unsigned long len, unsigned long pgoff,
2131 			  unsigned long flags)
2132 {
2133 	struct vm_area_struct *vma, *prev;
2134 	struct mm_struct *mm = current->mm;
2135 	struct vm_unmapped_area_info info;
2136 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2137 
2138 	/* requested length too big for entire address space */
2139 	if (len > mmap_end - mmap_min_addr)
2140 		return -ENOMEM;
2141 
2142 	if (flags & MAP_FIXED)
2143 		return addr;
2144 
2145 	/* requesting a specific address */
2146 	if (addr) {
2147 		addr = PAGE_ALIGN(addr);
2148 		vma = find_vma_prev(mm, addr, &prev);
2149 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2150 				(!vma || addr + len <= vm_start_gap(vma)) &&
2151 				(!prev || addr >= vm_end_gap(prev)))
2152 			return addr;
2153 	}
2154 
2155 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2156 	info.length = len;
2157 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2158 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2159 	info.align_mask = 0;
2160 	addr = vm_unmapped_area(&info);
2161 
2162 	/*
2163 	 * A failed mmap() very likely causes application failure,
2164 	 * so fall back to the bottom-up function here. This scenario
2165 	 * can happen with large stack limits and large mmap()
2166 	 * allocations.
2167 	 */
2168 	if (offset_in_page(addr)) {
2169 		VM_BUG_ON(addr != -ENOMEM);
2170 		info.flags = 0;
2171 		info.low_limit = TASK_UNMAPPED_BASE;
2172 		info.high_limit = mmap_end;
2173 		addr = vm_unmapped_area(&info);
2174 	}
2175 
2176 	return addr;
2177 }
2178 #endif
2179 
2180 unsigned long
2181 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2182 		unsigned long pgoff, unsigned long flags)
2183 {
2184 	unsigned long (*get_area)(struct file *, unsigned long,
2185 				  unsigned long, unsigned long, unsigned long);
2186 
2187 	unsigned long error = arch_mmap_check(addr, len, flags);
2188 	if (error)
2189 		return error;
2190 
2191 	/* Careful about overflows.. */
2192 	if (len > TASK_SIZE)
2193 		return -ENOMEM;
2194 
2195 	get_area = current->mm->get_unmapped_area;
2196 	if (file) {
2197 		if (file->f_op->get_unmapped_area)
2198 			get_area = file->f_op->get_unmapped_area;
2199 	} else if (flags & MAP_SHARED) {
2200 		/*
2201 		 * mmap_region() will call shmem_zero_setup() to create a file,
2202 		 * so use shmem's get_unmapped_area in case it can be huge.
2203 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2204 		 */
2205 		pgoff = 0;
2206 		get_area = shmem_get_unmapped_area;
2207 	}
2208 
2209 	addr = get_area(file, addr, len, pgoff, flags);
2210 	if (IS_ERR_VALUE(addr))
2211 		return addr;
2212 
2213 	if (addr > TASK_SIZE - len)
2214 		return -ENOMEM;
2215 	if (offset_in_page(addr))
2216 		return -EINVAL;
2217 
2218 	error = security_mmap_addr(addr);
2219 	return error ? error : addr;
2220 }
2221 
2222 EXPORT_SYMBOL(get_unmapped_area);
2223 
2224 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2225 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2226 {
2227 	struct rb_node *rb_node;
2228 	struct vm_area_struct *vma;
2229 
2230 	/* Check the cache first. */
2231 	vma = vmacache_find(mm, addr);
2232 	if (likely(vma))
2233 		return vma;
2234 
2235 	rb_node = mm->mm_rb.rb_node;
2236 
2237 	while (rb_node) {
2238 		struct vm_area_struct *tmp;
2239 
2240 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2241 
2242 		if (tmp->vm_end > addr) {
2243 			vma = tmp;
2244 			if (tmp->vm_start <= addr)
2245 				break;
2246 			rb_node = rb_node->rb_left;
2247 		} else
2248 			rb_node = rb_node->rb_right;
2249 	}
2250 
2251 	if (vma)
2252 		vmacache_update(addr, vma);
2253 	return vma;
2254 }
2255 
2256 EXPORT_SYMBOL(find_vma);
2257 
2258 /*
2259  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2260  */
2261 struct vm_area_struct *
2262 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2263 			struct vm_area_struct **pprev)
2264 {
2265 	struct vm_area_struct *vma;
2266 
2267 	vma = find_vma(mm, addr);
2268 	if (vma) {
2269 		*pprev = vma->vm_prev;
2270 	} else {
2271 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2272 		*pprev = NULL;
2273 		while (rb_node) {
2274 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2275 			rb_node = rb_node->rb_right;
2276 		}
2277 	}
2278 	return vma;
2279 }
2280 
2281 /*
2282  * Verify that the stack growth is acceptable and
2283  * update accounting. This is shared with both the
2284  * grow-up and grow-down cases.
2285  */
2286 static int acct_stack_growth(struct vm_area_struct *vma,
2287 			     unsigned long size, unsigned long grow)
2288 {
2289 	struct mm_struct *mm = vma->vm_mm;
2290 	unsigned long new_start;
2291 
2292 	/* address space limit tests */
2293 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2294 		return -ENOMEM;
2295 
2296 	/* Stack limit test */
2297 	if (size > rlimit(RLIMIT_STACK))
2298 		return -ENOMEM;
2299 
2300 	/* mlock limit tests */
2301 	if (vma->vm_flags & VM_LOCKED) {
2302 		unsigned long locked;
2303 		unsigned long limit;
2304 		locked = mm->locked_vm + grow;
2305 		limit = rlimit(RLIMIT_MEMLOCK);
2306 		limit >>= PAGE_SHIFT;
2307 		if (locked > limit && !capable(CAP_IPC_LOCK))
2308 			return -ENOMEM;
2309 	}
2310 
2311 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2312 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2313 			vma->vm_end - size;
2314 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2315 		return -EFAULT;
2316 
2317 	/*
2318 	 * Overcommit..  This must be the final test, as it will
2319 	 * update security statistics.
2320 	 */
2321 	if (security_vm_enough_memory_mm(mm, grow))
2322 		return -ENOMEM;
2323 
2324 	return 0;
2325 }
2326 
2327 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2328 /*
2329  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2330  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2331  */
2332 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2333 {
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	struct vm_area_struct *next;
2336 	unsigned long gap_addr;
2337 	int error = 0;
2338 
2339 	if (!(vma->vm_flags & VM_GROWSUP))
2340 		return -EFAULT;
2341 
2342 	/* Guard against exceeding limits of the address space. */
2343 	address &= PAGE_MASK;
2344 	if (address >= (TASK_SIZE & PAGE_MASK))
2345 		return -ENOMEM;
2346 	address += PAGE_SIZE;
2347 
2348 	/* Enforce stack_guard_gap */
2349 	gap_addr = address + stack_guard_gap;
2350 
2351 	/* Guard against overflow */
2352 	if (gap_addr < address || gap_addr > TASK_SIZE)
2353 		gap_addr = TASK_SIZE;
2354 
2355 	next = vma->vm_next;
2356 	if (next && next->vm_start < gap_addr &&
2357 			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2358 		if (!(next->vm_flags & VM_GROWSUP))
2359 			return -ENOMEM;
2360 		/* Check that both stack segments have the same anon_vma? */
2361 	}
2362 
2363 	/* We must make sure the anon_vma is allocated. */
2364 	if (unlikely(anon_vma_prepare(vma)))
2365 		return -ENOMEM;
2366 
2367 	/*
2368 	 * vma->vm_start/vm_end cannot change under us because the caller
2369 	 * is required to hold the mmap_sem in read mode.  We need the
2370 	 * anon_vma lock to serialize against concurrent expand_stacks.
2371 	 */
2372 	anon_vma_lock_write(vma->anon_vma);
2373 
2374 	/* Somebody else might have raced and expanded it already */
2375 	if (address > vma->vm_end) {
2376 		unsigned long size, grow;
2377 
2378 		size = address - vma->vm_start;
2379 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2380 
2381 		error = -ENOMEM;
2382 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2383 			error = acct_stack_growth(vma, size, grow);
2384 			if (!error) {
2385 				/*
2386 				 * vma_gap_update() doesn't support concurrent
2387 				 * updates, but we only hold a shared mmap_sem
2388 				 * lock here, so we need to protect against
2389 				 * concurrent vma expansions.
2390 				 * anon_vma_lock_write() doesn't help here, as
2391 				 * we don't guarantee that all growable vmas
2392 				 * in a mm share the same root anon vma.
2393 				 * So, we reuse mm->page_table_lock to guard
2394 				 * against concurrent vma expansions.
2395 				 */
2396 				spin_lock(&mm->page_table_lock);
2397 				if (vma->vm_flags & VM_LOCKED)
2398 					mm->locked_vm += grow;
2399 				vm_stat_account(mm, vma->vm_flags, grow);
2400 				anon_vma_interval_tree_pre_update_vma(vma);
2401 				vma->vm_end = address;
2402 				anon_vma_interval_tree_post_update_vma(vma);
2403 				if (vma->vm_next)
2404 					vma_gap_update(vma->vm_next);
2405 				else
2406 					mm->highest_vm_end = vm_end_gap(vma);
2407 				spin_unlock(&mm->page_table_lock);
2408 
2409 				perf_event_mmap(vma);
2410 			}
2411 		}
2412 	}
2413 	anon_vma_unlock_write(vma->anon_vma);
2414 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2415 	validate_mm(mm);
2416 	return error;
2417 }
2418 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2419 
2420 /*
2421  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2422  */
2423 int expand_downwards(struct vm_area_struct *vma,
2424 				   unsigned long address)
2425 {
2426 	struct mm_struct *mm = vma->vm_mm;
2427 	struct vm_area_struct *prev;
2428 	int error = 0;
2429 
2430 	address &= PAGE_MASK;
2431 	if (address < mmap_min_addr)
2432 		return -EPERM;
2433 
2434 	/* Enforce stack_guard_gap */
2435 	prev = vma->vm_prev;
2436 	/* Check that both stack segments have the same anon_vma? */
2437 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2438 			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2439 		if (address - prev->vm_end < stack_guard_gap)
2440 			return -ENOMEM;
2441 	}
2442 
2443 	/* We must make sure the anon_vma is allocated. */
2444 	if (unlikely(anon_vma_prepare(vma)))
2445 		return -ENOMEM;
2446 
2447 	/*
2448 	 * vma->vm_start/vm_end cannot change under us because the caller
2449 	 * is required to hold the mmap_sem in read mode.  We need the
2450 	 * anon_vma lock to serialize against concurrent expand_stacks.
2451 	 */
2452 	anon_vma_lock_write(vma->anon_vma);
2453 
2454 	/* Somebody else might have raced and expanded it already */
2455 	if (address < vma->vm_start) {
2456 		unsigned long size, grow;
2457 
2458 		size = vma->vm_end - address;
2459 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2460 
2461 		error = -ENOMEM;
2462 		if (grow <= vma->vm_pgoff) {
2463 			error = acct_stack_growth(vma, size, grow);
2464 			if (!error) {
2465 				/*
2466 				 * vma_gap_update() doesn't support concurrent
2467 				 * updates, but we only hold a shared mmap_sem
2468 				 * lock here, so we need to protect against
2469 				 * concurrent vma expansions.
2470 				 * anon_vma_lock_write() doesn't help here, as
2471 				 * we don't guarantee that all growable vmas
2472 				 * in a mm share the same root anon vma.
2473 				 * So, we reuse mm->page_table_lock to guard
2474 				 * against concurrent vma expansions.
2475 				 */
2476 				spin_lock(&mm->page_table_lock);
2477 				if (vma->vm_flags & VM_LOCKED)
2478 					mm->locked_vm += grow;
2479 				vm_stat_account(mm, vma->vm_flags, grow);
2480 				anon_vma_interval_tree_pre_update_vma(vma);
2481 				vma->vm_start = address;
2482 				vma->vm_pgoff -= grow;
2483 				anon_vma_interval_tree_post_update_vma(vma);
2484 				vma_gap_update(vma);
2485 				spin_unlock(&mm->page_table_lock);
2486 
2487 				perf_event_mmap(vma);
2488 			}
2489 		}
2490 	}
2491 	anon_vma_unlock_write(vma->anon_vma);
2492 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2493 	validate_mm(mm);
2494 	return error;
2495 }
2496 
2497 /* enforced gap between the expanding stack and other mappings. */
2498 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2499 
2500 static int __init cmdline_parse_stack_guard_gap(char *p)
2501 {
2502 	unsigned long val;
2503 	char *endptr;
2504 
2505 	val = simple_strtoul(p, &endptr, 10);
2506 	if (!*endptr)
2507 		stack_guard_gap = val << PAGE_SHIFT;
2508 
2509 	return 0;
2510 }
2511 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2512 
2513 #ifdef CONFIG_STACK_GROWSUP
2514 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2515 {
2516 	return expand_upwards(vma, address);
2517 }
2518 
2519 struct vm_area_struct *
2520 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2521 {
2522 	struct vm_area_struct *vma, *prev;
2523 
2524 	addr &= PAGE_MASK;
2525 	vma = find_vma_prev(mm, addr, &prev);
2526 	if (vma && (vma->vm_start <= addr))
2527 		return vma;
2528 	if (!prev || expand_stack(prev, addr))
2529 		return NULL;
2530 	if (prev->vm_flags & VM_LOCKED)
2531 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2532 	return prev;
2533 }
2534 #else
2535 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2536 {
2537 	return expand_downwards(vma, address);
2538 }
2539 
2540 struct vm_area_struct *
2541 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2542 {
2543 	struct vm_area_struct *vma;
2544 	unsigned long start;
2545 
2546 	addr &= PAGE_MASK;
2547 	vma = find_vma(mm, addr);
2548 	if (!vma)
2549 		return NULL;
2550 	if (vma->vm_start <= addr)
2551 		return vma;
2552 	if (!(vma->vm_flags & VM_GROWSDOWN))
2553 		return NULL;
2554 	start = vma->vm_start;
2555 	if (expand_stack(vma, addr))
2556 		return NULL;
2557 	if (vma->vm_flags & VM_LOCKED)
2558 		populate_vma_page_range(vma, addr, start, NULL);
2559 	return vma;
2560 }
2561 #endif
2562 
2563 EXPORT_SYMBOL_GPL(find_extend_vma);
2564 
2565 /*
2566  * Ok - we have the memory areas we should free on the vma list,
2567  * so release them, and do the vma updates.
2568  *
2569  * Called with the mm semaphore held.
2570  */
2571 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2572 {
2573 	unsigned long nr_accounted = 0;
2574 
2575 	/* Update high watermark before we lower total_vm */
2576 	update_hiwater_vm(mm);
2577 	do {
2578 		long nrpages = vma_pages(vma);
2579 
2580 		if (vma->vm_flags & VM_ACCOUNT)
2581 			nr_accounted += nrpages;
2582 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2583 		vma = remove_vma(vma);
2584 	} while (vma);
2585 	vm_unacct_memory(nr_accounted);
2586 	validate_mm(mm);
2587 }
2588 
2589 /*
2590  * Get rid of page table information in the indicated region.
2591  *
2592  * Called with the mm semaphore held.
2593  */
2594 static void unmap_region(struct mm_struct *mm,
2595 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2596 		unsigned long start, unsigned long end)
2597 {
2598 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2599 	struct mmu_gather tlb;
2600 
2601 	lru_add_drain();
2602 	tlb_gather_mmu(&tlb, mm, start, end);
2603 	update_hiwater_rss(mm);
2604 	unmap_vmas(&tlb, vma, start, end);
2605 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2606 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2607 	tlb_finish_mmu(&tlb, start, end);
2608 }
2609 
2610 /*
2611  * Create a list of vma's touched by the unmap, removing them from the mm's
2612  * vma list as we go..
2613  */
2614 static void
2615 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2616 	struct vm_area_struct *prev, unsigned long end)
2617 {
2618 	struct vm_area_struct **insertion_point;
2619 	struct vm_area_struct *tail_vma = NULL;
2620 
2621 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2622 	vma->vm_prev = NULL;
2623 	do {
2624 		vma_rb_erase(vma, &mm->mm_rb);
2625 		mm->map_count--;
2626 		tail_vma = vma;
2627 		vma = vma->vm_next;
2628 	} while (vma && vma->vm_start < end);
2629 	*insertion_point = vma;
2630 	if (vma) {
2631 		vma->vm_prev = prev;
2632 		vma_gap_update(vma);
2633 	} else
2634 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2635 	tail_vma->vm_next = NULL;
2636 
2637 	/* Kill the cache */
2638 	vmacache_invalidate(mm);
2639 }
2640 
2641 /*
2642  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2643  * has already been checked or doesn't make sense to fail.
2644  */
2645 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2646 		unsigned long addr, int new_below)
2647 {
2648 	struct vm_area_struct *new;
2649 	int err;
2650 
2651 	if (vma->vm_ops && vma->vm_ops->split) {
2652 		err = vma->vm_ops->split(vma, addr);
2653 		if (err)
2654 			return err;
2655 	}
2656 
2657 	new = vm_area_dup(vma);
2658 	if (!new)
2659 		return -ENOMEM;
2660 
2661 	if (new_below)
2662 		new->vm_end = addr;
2663 	else {
2664 		new->vm_start = addr;
2665 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2666 	}
2667 
2668 	err = vma_dup_policy(vma, new);
2669 	if (err)
2670 		goto out_free_vma;
2671 
2672 	err = anon_vma_clone(new, vma);
2673 	if (err)
2674 		goto out_free_mpol;
2675 
2676 	if (new->vm_file)
2677 		get_file(new->vm_file);
2678 
2679 	if (new->vm_ops && new->vm_ops->open)
2680 		new->vm_ops->open(new);
2681 
2682 	if (new_below)
2683 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2684 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2685 	else
2686 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2687 
2688 	/* Success. */
2689 	if (!err)
2690 		return 0;
2691 
2692 	/* Clean everything up if vma_adjust failed. */
2693 	if (new->vm_ops && new->vm_ops->close)
2694 		new->vm_ops->close(new);
2695 	if (new->vm_file)
2696 		fput(new->vm_file);
2697 	unlink_anon_vmas(new);
2698  out_free_mpol:
2699 	mpol_put(vma_policy(new));
2700  out_free_vma:
2701 	vm_area_free(new);
2702 	return err;
2703 }
2704 
2705 /*
2706  * Split a vma into two pieces at address 'addr', a new vma is allocated
2707  * either for the first part or the tail.
2708  */
2709 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2710 	      unsigned long addr, int new_below)
2711 {
2712 	if (mm->map_count >= sysctl_max_map_count)
2713 		return -ENOMEM;
2714 
2715 	return __split_vma(mm, vma, addr, new_below);
2716 }
2717 
2718 /* Munmap is split into 2 main parts -- this part which finds
2719  * what needs doing, and the areas themselves, which do the
2720  * work.  This now handles partial unmappings.
2721  * Jeremy Fitzhardinge <jeremy@goop.org>
2722  */
2723 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2724 		struct list_head *uf, bool downgrade)
2725 {
2726 	unsigned long end;
2727 	struct vm_area_struct *vma, *prev, *last;
2728 
2729 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2730 		return -EINVAL;
2731 
2732 	len = PAGE_ALIGN(len);
2733 	if (len == 0)
2734 		return -EINVAL;
2735 
2736 	/* Find the first overlapping VMA */
2737 	vma = find_vma(mm, start);
2738 	if (!vma)
2739 		return 0;
2740 	prev = vma->vm_prev;
2741 	/* we have  start < vma->vm_end  */
2742 
2743 	/* if it doesn't overlap, we have nothing.. */
2744 	end = start + len;
2745 	if (vma->vm_start >= end)
2746 		return 0;
2747 
2748 	/*
2749 	 * If we need to split any vma, do it now to save pain later.
2750 	 *
2751 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2752 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2753 	 * places tmp vma above, and higher split_vma places tmp vma below.
2754 	 */
2755 	if (start > vma->vm_start) {
2756 		int error;
2757 
2758 		/*
2759 		 * Make sure that map_count on return from munmap() will
2760 		 * not exceed its limit; but let map_count go just above
2761 		 * its limit temporarily, to help free resources as expected.
2762 		 */
2763 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2764 			return -ENOMEM;
2765 
2766 		error = __split_vma(mm, vma, start, 0);
2767 		if (error)
2768 			return error;
2769 		prev = vma;
2770 	}
2771 
2772 	/* Does it split the last one? */
2773 	last = find_vma(mm, end);
2774 	if (last && end > last->vm_start) {
2775 		int error = __split_vma(mm, last, end, 1);
2776 		if (error)
2777 			return error;
2778 	}
2779 	vma = prev ? prev->vm_next : mm->mmap;
2780 
2781 	if (unlikely(uf)) {
2782 		/*
2783 		 * If userfaultfd_unmap_prep returns an error the vmas
2784 		 * will remain splitted, but userland will get a
2785 		 * highly unexpected error anyway. This is no
2786 		 * different than the case where the first of the two
2787 		 * __split_vma fails, but we don't undo the first
2788 		 * split, despite we could. This is unlikely enough
2789 		 * failure that it's not worth optimizing it for.
2790 		 */
2791 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2792 		if (error)
2793 			return error;
2794 	}
2795 
2796 	/*
2797 	 * unlock any mlock()ed ranges before detaching vmas
2798 	 */
2799 	if (mm->locked_vm) {
2800 		struct vm_area_struct *tmp = vma;
2801 		while (tmp && tmp->vm_start < end) {
2802 			if (tmp->vm_flags & VM_LOCKED) {
2803 				mm->locked_vm -= vma_pages(tmp);
2804 				munlock_vma_pages_all(tmp);
2805 			}
2806 
2807 			tmp = tmp->vm_next;
2808 		}
2809 	}
2810 
2811 	/* Detach vmas from rbtree */
2812 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2813 
2814 	/*
2815 	 * mpx unmap needs to be called with mmap_sem held for write.
2816 	 * It is safe to call it before unmap_region().
2817 	 */
2818 	arch_unmap(mm, vma, start, end);
2819 
2820 	if (downgrade)
2821 		downgrade_write(&mm->mmap_sem);
2822 
2823 	unmap_region(mm, vma, prev, start, end);
2824 
2825 	/* Fix up all other VM information */
2826 	remove_vma_list(mm, vma);
2827 
2828 	return downgrade ? 1 : 0;
2829 }
2830 
2831 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2832 	      struct list_head *uf)
2833 {
2834 	return __do_munmap(mm, start, len, uf, false);
2835 }
2836 
2837 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2838 {
2839 	int ret;
2840 	struct mm_struct *mm = current->mm;
2841 	LIST_HEAD(uf);
2842 
2843 	if (down_write_killable(&mm->mmap_sem))
2844 		return -EINTR;
2845 
2846 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2847 	/*
2848 	 * Returning 1 indicates mmap_sem is downgraded.
2849 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2850 	 * it to 0 before return.
2851 	 */
2852 	if (ret == 1) {
2853 		up_read(&mm->mmap_sem);
2854 		ret = 0;
2855 	} else
2856 		up_write(&mm->mmap_sem);
2857 
2858 	userfaultfd_unmap_complete(mm, &uf);
2859 	return ret;
2860 }
2861 
2862 int vm_munmap(unsigned long start, size_t len)
2863 {
2864 	return __vm_munmap(start, len, false);
2865 }
2866 EXPORT_SYMBOL(vm_munmap);
2867 
2868 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2869 {
2870 	profile_munmap(addr);
2871 	return __vm_munmap(addr, len, true);
2872 }
2873 
2874 
2875 /*
2876  * Emulation of deprecated remap_file_pages() syscall.
2877  */
2878 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2879 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2880 {
2881 
2882 	struct mm_struct *mm = current->mm;
2883 	struct vm_area_struct *vma;
2884 	unsigned long populate = 0;
2885 	unsigned long ret = -EINVAL;
2886 	struct file *file;
2887 
2888 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2889 		     current->comm, current->pid);
2890 
2891 	if (prot)
2892 		return ret;
2893 	start = start & PAGE_MASK;
2894 	size = size & PAGE_MASK;
2895 
2896 	if (start + size <= start)
2897 		return ret;
2898 
2899 	/* Does pgoff wrap? */
2900 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2901 		return ret;
2902 
2903 	if (down_write_killable(&mm->mmap_sem))
2904 		return -EINTR;
2905 
2906 	vma = find_vma(mm, start);
2907 
2908 	if (!vma || !(vma->vm_flags & VM_SHARED))
2909 		goto out;
2910 
2911 	if (start < vma->vm_start)
2912 		goto out;
2913 
2914 	if (start + size > vma->vm_end) {
2915 		struct vm_area_struct *next;
2916 
2917 		for (next = vma->vm_next; next; next = next->vm_next) {
2918 			/* hole between vmas ? */
2919 			if (next->vm_start != next->vm_prev->vm_end)
2920 				goto out;
2921 
2922 			if (next->vm_file != vma->vm_file)
2923 				goto out;
2924 
2925 			if (next->vm_flags != vma->vm_flags)
2926 				goto out;
2927 
2928 			if (start + size <= next->vm_end)
2929 				break;
2930 		}
2931 
2932 		if (!next)
2933 			goto out;
2934 	}
2935 
2936 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2937 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2938 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2939 
2940 	flags &= MAP_NONBLOCK;
2941 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2942 	if (vma->vm_flags & VM_LOCKED) {
2943 		struct vm_area_struct *tmp;
2944 		flags |= MAP_LOCKED;
2945 
2946 		/* drop PG_Mlocked flag for over-mapped range */
2947 		for (tmp = vma; tmp->vm_start >= start + size;
2948 				tmp = tmp->vm_next) {
2949 			/*
2950 			 * Split pmd and munlock page on the border
2951 			 * of the range.
2952 			 */
2953 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2954 
2955 			munlock_vma_pages_range(tmp,
2956 					max(tmp->vm_start, start),
2957 					min(tmp->vm_end, start + size));
2958 		}
2959 	}
2960 
2961 	file = get_file(vma->vm_file);
2962 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2963 			prot, flags, pgoff, &populate, NULL);
2964 	fput(file);
2965 out:
2966 	up_write(&mm->mmap_sem);
2967 	if (populate)
2968 		mm_populate(ret, populate);
2969 	if (!IS_ERR_VALUE(ret))
2970 		ret = 0;
2971 	return ret;
2972 }
2973 
2974 /*
2975  *  this is really a simplified "do_mmap".  it only handles
2976  *  anonymous maps.  eventually we may be able to do some
2977  *  brk-specific accounting here.
2978  */
2979 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2980 {
2981 	struct mm_struct *mm = current->mm;
2982 	struct vm_area_struct *vma, *prev;
2983 	struct rb_node **rb_link, *rb_parent;
2984 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2985 	int error;
2986 
2987 	/* Until we need other flags, refuse anything except VM_EXEC. */
2988 	if ((flags & (~VM_EXEC)) != 0)
2989 		return -EINVAL;
2990 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2991 
2992 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2993 	if (offset_in_page(error))
2994 		return error;
2995 
2996 	error = mlock_future_check(mm, mm->def_flags, len);
2997 	if (error)
2998 		return error;
2999 
3000 	/*
3001 	 * Clear old maps.  this also does some error checking for us
3002 	 */
3003 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3004 			      &rb_parent)) {
3005 		if (do_munmap(mm, addr, len, uf))
3006 			return -ENOMEM;
3007 	}
3008 
3009 	/* Check against address space limits *after* clearing old maps... */
3010 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3011 		return -ENOMEM;
3012 
3013 	if (mm->map_count > sysctl_max_map_count)
3014 		return -ENOMEM;
3015 
3016 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3017 		return -ENOMEM;
3018 
3019 	/* Can we just expand an old private anonymous mapping? */
3020 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3021 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3022 	if (vma)
3023 		goto out;
3024 
3025 	/*
3026 	 * create a vma struct for an anonymous mapping
3027 	 */
3028 	vma = vm_area_alloc(mm);
3029 	if (!vma) {
3030 		vm_unacct_memory(len >> PAGE_SHIFT);
3031 		return -ENOMEM;
3032 	}
3033 
3034 	vma_set_anonymous(vma);
3035 	vma->vm_start = addr;
3036 	vma->vm_end = addr + len;
3037 	vma->vm_pgoff = pgoff;
3038 	vma->vm_flags = flags;
3039 	vma->vm_page_prot = vm_get_page_prot(flags);
3040 	vma_link(mm, vma, prev, rb_link, rb_parent);
3041 out:
3042 	perf_event_mmap(vma);
3043 	mm->total_vm += len >> PAGE_SHIFT;
3044 	mm->data_vm += len >> PAGE_SHIFT;
3045 	if (flags & VM_LOCKED)
3046 		mm->locked_vm += (len >> PAGE_SHIFT);
3047 	vma->vm_flags |= VM_SOFTDIRTY;
3048 	return 0;
3049 }
3050 
3051 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3052 {
3053 	struct mm_struct *mm = current->mm;
3054 	unsigned long len;
3055 	int ret;
3056 	bool populate;
3057 	LIST_HEAD(uf);
3058 
3059 	len = PAGE_ALIGN(request);
3060 	if (len < request)
3061 		return -ENOMEM;
3062 	if (!len)
3063 		return 0;
3064 
3065 	if (down_write_killable(&mm->mmap_sem))
3066 		return -EINTR;
3067 
3068 	ret = do_brk_flags(addr, len, flags, &uf);
3069 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3070 	up_write(&mm->mmap_sem);
3071 	userfaultfd_unmap_complete(mm, &uf);
3072 	if (populate && !ret)
3073 		mm_populate(addr, len);
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL(vm_brk_flags);
3077 
3078 int vm_brk(unsigned long addr, unsigned long len)
3079 {
3080 	return vm_brk_flags(addr, len, 0);
3081 }
3082 EXPORT_SYMBOL(vm_brk);
3083 
3084 /* Release all mmaps. */
3085 void exit_mmap(struct mm_struct *mm)
3086 {
3087 	struct mmu_gather tlb;
3088 	struct vm_area_struct *vma;
3089 	unsigned long nr_accounted = 0;
3090 
3091 	/* mm's last user has gone, and its about to be pulled down */
3092 	mmu_notifier_release(mm);
3093 
3094 	if (unlikely(mm_is_oom_victim(mm))) {
3095 		/*
3096 		 * Manually reap the mm to free as much memory as possible.
3097 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3098 		 * this mm from further consideration.  Taking mm->mmap_sem for
3099 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3100 		 * reaper will not run on this mm again after mmap_sem is
3101 		 * dropped.
3102 		 *
3103 		 * Nothing can be holding mm->mmap_sem here and the above call
3104 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3105 		 * __oom_reap_task_mm() will not block.
3106 		 *
3107 		 * This needs to be done before calling munlock_vma_pages_all(),
3108 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3109 		 * reliably test it.
3110 		 */
3111 		(void)__oom_reap_task_mm(mm);
3112 
3113 		set_bit(MMF_OOM_SKIP, &mm->flags);
3114 		down_write(&mm->mmap_sem);
3115 		up_write(&mm->mmap_sem);
3116 	}
3117 
3118 	if (mm->locked_vm) {
3119 		vma = mm->mmap;
3120 		while (vma) {
3121 			if (vma->vm_flags & VM_LOCKED)
3122 				munlock_vma_pages_all(vma);
3123 			vma = vma->vm_next;
3124 		}
3125 	}
3126 
3127 	arch_exit_mmap(mm);
3128 
3129 	vma = mm->mmap;
3130 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3131 		return;
3132 
3133 	lru_add_drain();
3134 	flush_cache_mm(mm);
3135 	tlb_gather_mmu(&tlb, mm, 0, -1);
3136 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3137 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3138 	unmap_vmas(&tlb, vma, 0, -1);
3139 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3140 	tlb_finish_mmu(&tlb, 0, -1);
3141 
3142 	/*
3143 	 * Walk the list again, actually closing and freeing it,
3144 	 * with preemption enabled, without holding any MM locks.
3145 	 */
3146 	while (vma) {
3147 		if (vma->vm_flags & VM_ACCOUNT)
3148 			nr_accounted += vma_pages(vma);
3149 		vma = remove_vma(vma);
3150 	}
3151 	vm_unacct_memory(nr_accounted);
3152 }
3153 
3154 /* Insert vm structure into process list sorted by address
3155  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3156  * then i_mmap_rwsem is taken here.
3157  */
3158 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3159 {
3160 	struct vm_area_struct *prev;
3161 	struct rb_node **rb_link, *rb_parent;
3162 
3163 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3164 			   &prev, &rb_link, &rb_parent))
3165 		return -ENOMEM;
3166 	if ((vma->vm_flags & VM_ACCOUNT) &&
3167 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3168 		return -ENOMEM;
3169 
3170 	/*
3171 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3172 	 * until its first write fault, when page's anon_vma and index
3173 	 * are set.  But now set the vm_pgoff it will almost certainly
3174 	 * end up with (unless mremap moves it elsewhere before that
3175 	 * first wfault), so /proc/pid/maps tells a consistent story.
3176 	 *
3177 	 * By setting it to reflect the virtual start address of the
3178 	 * vma, merges and splits can happen in a seamless way, just
3179 	 * using the existing file pgoff checks and manipulations.
3180 	 * Similarly in do_mmap_pgoff and in do_brk.
3181 	 */
3182 	if (vma_is_anonymous(vma)) {
3183 		BUG_ON(vma->anon_vma);
3184 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3185 	}
3186 
3187 	vma_link(mm, vma, prev, rb_link, rb_parent);
3188 	return 0;
3189 }
3190 
3191 /*
3192  * Copy the vma structure to a new location in the same mm,
3193  * prior to moving page table entries, to effect an mremap move.
3194  */
3195 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3196 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3197 	bool *need_rmap_locks)
3198 {
3199 	struct vm_area_struct *vma = *vmap;
3200 	unsigned long vma_start = vma->vm_start;
3201 	struct mm_struct *mm = vma->vm_mm;
3202 	struct vm_area_struct *new_vma, *prev;
3203 	struct rb_node **rb_link, *rb_parent;
3204 	bool faulted_in_anon_vma = true;
3205 
3206 	/*
3207 	 * If anonymous vma has not yet been faulted, update new pgoff
3208 	 * to match new location, to increase its chance of merging.
3209 	 */
3210 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3211 		pgoff = addr >> PAGE_SHIFT;
3212 		faulted_in_anon_vma = false;
3213 	}
3214 
3215 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3216 		return NULL;	/* should never get here */
3217 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3218 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3219 			    vma->vm_userfaultfd_ctx);
3220 	if (new_vma) {
3221 		/*
3222 		 * Source vma may have been merged into new_vma
3223 		 */
3224 		if (unlikely(vma_start >= new_vma->vm_start &&
3225 			     vma_start < new_vma->vm_end)) {
3226 			/*
3227 			 * The only way we can get a vma_merge with
3228 			 * self during an mremap is if the vma hasn't
3229 			 * been faulted in yet and we were allowed to
3230 			 * reset the dst vma->vm_pgoff to the
3231 			 * destination address of the mremap to allow
3232 			 * the merge to happen. mremap must change the
3233 			 * vm_pgoff linearity between src and dst vmas
3234 			 * (in turn preventing a vma_merge) to be
3235 			 * safe. It is only safe to keep the vm_pgoff
3236 			 * linear if there are no pages mapped yet.
3237 			 */
3238 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3239 			*vmap = vma = new_vma;
3240 		}
3241 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3242 	} else {
3243 		new_vma = vm_area_dup(vma);
3244 		if (!new_vma)
3245 			goto out;
3246 		new_vma->vm_start = addr;
3247 		new_vma->vm_end = addr + len;
3248 		new_vma->vm_pgoff = pgoff;
3249 		if (vma_dup_policy(vma, new_vma))
3250 			goto out_free_vma;
3251 		if (anon_vma_clone(new_vma, vma))
3252 			goto out_free_mempol;
3253 		if (new_vma->vm_file)
3254 			get_file(new_vma->vm_file);
3255 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3256 			new_vma->vm_ops->open(new_vma);
3257 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3258 		*need_rmap_locks = false;
3259 	}
3260 	return new_vma;
3261 
3262 out_free_mempol:
3263 	mpol_put(vma_policy(new_vma));
3264 out_free_vma:
3265 	vm_area_free(new_vma);
3266 out:
3267 	return NULL;
3268 }
3269 
3270 /*
3271  * Return true if the calling process may expand its vm space by the passed
3272  * number of pages
3273  */
3274 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3275 {
3276 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3277 		return false;
3278 
3279 	if (is_data_mapping(flags) &&
3280 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3281 		/* Workaround for Valgrind */
3282 		if (rlimit(RLIMIT_DATA) == 0 &&
3283 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3284 			return true;
3285 
3286 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3287 			     current->comm, current->pid,
3288 			     (mm->data_vm + npages) << PAGE_SHIFT,
3289 			     rlimit(RLIMIT_DATA),
3290 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3291 
3292 		if (!ignore_rlimit_data)
3293 			return false;
3294 	}
3295 
3296 	return true;
3297 }
3298 
3299 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3300 {
3301 	mm->total_vm += npages;
3302 
3303 	if (is_exec_mapping(flags))
3304 		mm->exec_vm += npages;
3305 	else if (is_stack_mapping(flags))
3306 		mm->stack_vm += npages;
3307 	else if (is_data_mapping(flags))
3308 		mm->data_vm += npages;
3309 }
3310 
3311 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3312 
3313 /*
3314  * Having a close hook prevents vma merging regardless of flags.
3315  */
3316 static void special_mapping_close(struct vm_area_struct *vma)
3317 {
3318 }
3319 
3320 static const char *special_mapping_name(struct vm_area_struct *vma)
3321 {
3322 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3323 }
3324 
3325 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3326 {
3327 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3328 
3329 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3330 		return -EFAULT;
3331 
3332 	if (sm->mremap)
3333 		return sm->mremap(sm, new_vma);
3334 
3335 	return 0;
3336 }
3337 
3338 static const struct vm_operations_struct special_mapping_vmops = {
3339 	.close = special_mapping_close,
3340 	.fault = special_mapping_fault,
3341 	.mremap = special_mapping_mremap,
3342 	.name = special_mapping_name,
3343 };
3344 
3345 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3346 	.close = special_mapping_close,
3347 	.fault = special_mapping_fault,
3348 };
3349 
3350 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3351 {
3352 	struct vm_area_struct *vma = vmf->vma;
3353 	pgoff_t pgoff;
3354 	struct page **pages;
3355 
3356 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3357 		pages = vma->vm_private_data;
3358 	} else {
3359 		struct vm_special_mapping *sm = vma->vm_private_data;
3360 
3361 		if (sm->fault)
3362 			return sm->fault(sm, vmf->vma, vmf);
3363 
3364 		pages = sm->pages;
3365 	}
3366 
3367 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3368 		pgoff--;
3369 
3370 	if (*pages) {
3371 		struct page *page = *pages;
3372 		get_page(page);
3373 		vmf->page = page;
3374 		return 0;
3375 	}
3376 
3377 	return VM_FAULT_SIGBUS;
3378 }
3379 
3380 static struct vm_area_struct *__install_special_mapping(
3381 	struct mm_struct *mm,
3382 	unsigned long addr, unsigned long len,
3383 	unsigned long vm_flags, void *priv,
3384 	const struct vm_operations_struct *ops)
3385 {
3386 	int ret;
3387 	struct vm_area_struct *vma;
3388 
3389 	vma = vm_area_alloc(mm);
3390 	if (unlikely(vma == NULL))
3391 		return ERR_PTR(-ENOMEM);
3392 
3393 	vma->vm_start = addr;
3394 	vma->vm_end = addr + len;
3395 
3396 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3397 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3398 
3399 	vma->vm_ops = ops;
3400 	vma->vm_private_data = priv;
3401 
3402 	ret = insert_vm_struct(mm, vma);
3403 	if (ret)
3404 		goto out;
3405 
3406 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3407 
3408 	perf_event_mmap(vma);
3409 
3410 	return vma;
3411 
3412 out:
3413 	vm_area_free(vma);
3414 	return ERR_PTR(ret);
3415 }
3416 
3417 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3418 	const struct vm_special_mapping *sm)
3419 {
3420 	return vma->vm_private_data == sm &&
3421 		(vma->vm_ops == &special_mapping_vmops ||
3422 		 vma->vm_ops == &legacy_special_mapping_vmops);
3423 }
3424 
3425 /*
3426  * Called with mm->mmap_sem held for writing.
3427  * Insert a new vma covering the given region, with the given flags.
3428  * Its pages are supplied by the given array of struct page *.
3429  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3430  * The region past the last page supplied will always produce SIGBUS.
3431  * The array pointer and the pages it points to are assumed to stay alive
3432  * for as long as this mapping might exist.
3433  */
3434 struct vm_area_struct *_install_special_mapping(
3435 	struct mm_struct *mm,
3436 	unsigned long addr, unsigned long len,
3437 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3438 {
3439 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3440 					&special_mapping_vmops);
3441 }
3442 
3443 int install_special_mapping(struct mm_struct *mm,
3444 			    unsigned long addr, unsigned long len,
3445 			    unsigned long vm_flags, struct page **pages)
3446 {
3447 	struct vm_area_struct *vma = __install_special_mapping(
3448 		mm, addr, len, vm_flags, (void *)pages,
3449 		&legacy_special_mapping_vmops);
3450 
3451 	return PTR_ERR_OR_ZERO(vma);
3452 }
3453 
3454 static DEFINE_MUTEX(mm_all_locks_mutex);
3455 
3456 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3457 {
3458 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3459 		/*
3460 		 * The LSB of head.next can't change from under us
3461 		 * because we hold the mm_all_locks_mutex.
3462 		 */
3463 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3464 		/*
3465 		 * We can safely modify head.next after taking the
3466 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3467 		 * the same anon_vma we won't take it again.
3468 		 *
3469 		 * No need of atomic instructions here, head.next
3470 		 * can't change from under us thanks to the
3471 		 * anon_vma->root->rwsem.
3472 		 */
3473 		if (__test_and_set_bit(0, (unsigned long *)
3474 				       &anon_vma->root->rb_root.rb_root.rb_node))
3475 			BUG();
3476 	}
3477 }
3478 
3479 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3480 {
3481 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3482 		/*
3483 		 * AS_MM_ALL_LOCKS can't change from under us because
3484 		 * we hold the mm_all_locks_mutex.
3485 		 *
3486 		 * Operations on ->flags have to be atomic because
3487 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3488 		 * mm_all_locks_mutex, there may be other cpus
3489 		 * changing other bitflags in parallel to us.
3490 		 */
3491 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3492 			BUG();
3493 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3494 	}
3495 }
3496 
3497 /*
3498  * This operation locks against the VM for all pte/vma/mm related
3499  * operations that could ever happen on a certain mm. This includes
3500  * vmtruncate, try_to_unmap, and all page faults.
3501  *
3502  * The caller must take the mmap_sem in write mode before calling
3503  * mm_take_all_locks(). The caller isn't allowed to release the
3504  * mmap_sem until mm_drop_all_locks() returns.
3505  *
3506  * mmap_sem in write mode is required in order to block all operations
3507  * that could modify pagetables and free pages without need of
3508  * altering the vma layout. It's also needed in write mode to avoid new
3509  * anon_vmas to be associated with existing vmas.
3510  *
3511  * A single task can't take more than one mm_take_all_locks() in a row
3512  * or it would deadlock.
3513  *
3514  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3515  * mapping->flags avoid to take the same lock twice, if more than one
3516  * vma in this mm is backed by the same anon_vma or address_space.
3517  *
3518  * We take locks in following order, accordingly to comment at beginning
3519  * of mm/rmap.c:
3520  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3521  *     hugetlb mapping);
3522  *   - all i_mmap_rwsem locks;
3523  *   - all anon_vma->rwseml
3524  *
3525  * We can take all locks within these types randomly because the VM code
3526  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3527  * mm_all_locks_mutex.
3528  *
3529  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3530  * that may have to take thousand of locks.
3531  *
3532  * mm_take_all_locks() can fail if it's interrupted by signals.
3533  */
3534 int mm_take_all_locks(struct mm_struct *mm)
3535 {
3536 	struct vm_area_struct *vma;
3537 	struct anon_vma_chain *avc;
3538 
3539 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3540 
3541 	mutex_lock(&mm_all_locks_mutex);
3542 
3543 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3544 		if (signal_pending(current))
3545 			goto out_unlock;
3546 		if (vma->vm_file && vma->vm_file->f_mapping &&
3547 				is_vm_hugetlb_page(vma))
3548 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3549 	}
3550 
3551 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3552 		if (signal_pending(current))
3553 			goto out_unlock;
3554 		if (vma->vm_file && vma->vm_file->f_mapping &&
3555 				!is_vm_hugetlb_page(vma))
3556 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3557 	}
3558 
3559 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3560 		if (signal_pending(current))
3561 			goto out_unlock;
3562 		if (vma->anon_vma)
3563 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3564 				vm_lock_anon_vma(mm, avc->anon_vma);
3565 	}
3566 
3567 	return 0;
3568 
3569 out_unlock:
3570 	mm_drop_all_locks(mm);
3571 	return -EINTR;
3572 }
3573 
3574 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3575 {
3576 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3577 		/*
3578 		 * The LSB of head.next can't change to 0 from under
3579 		 * us because we hold the mm_all_locks_mutex.
3580 		 *
3581 		 * We must however clear the bitflag before unlocking
3582 		 * the vma so the users using the anon_vma->rb_root will
3583 		 * never see our bitflag.
3584 		 *
3585 		 * No need of atomic instructions here, head.next
3586 		 * can't change from under us until we release the
3587 		 * anon_vma->root->rwsem.
3588 		 */
3589 		if (!__test_and_clear_bit(0, (unsigned long *)
3590 					  &anon_vma->root->rb_root.rb_root.rb_node))
3591 			BUG();
3592 		anon_vma_unlock_write(anon_vma);
3593 	}
3594 }
3595 
3596 static void vm_unlock_mapping(struct address_space *mapping)
3597 {
3598 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3599 		/*
3600 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3601 		 * because we hold the mm_all_locks_mutex.
3602 		 */
3603 		i_mmap_unlock_write(mapping);
3604 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3605 					&mapping->flags))
3606 			BUG();
3607 	}
3608 }
3609 
3610 /*
3611  * The mmap_sem cannot be released by the caller until
3612  * mm_drop_all_locks() returns.
3613  */
3614 void mm_drop_all_locks(struct mm_struct *mm)
3615 {
3616 	struct vm_area_struct *vma;
3617 	struct anon_vma_chain *avc;
3618 
3619 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3620 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3621 
3622 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623 		if (vma->anon_vma)
3624 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3625 				vm_unlock_anon_vma(avc->anon_vma);
3626 		if (vma->vm_file && vma->vm_file->f_mapping)
3627 			vm_unlock_mapping(vma->vm_file->f_mapping);
3628 	}
3629 
3630 	mutex_unlock(&mm_all_locks_mutex);
3631 }
3632 
3633 /*
3634  * initialise the percpu counter for VM
3635  */
3636 void __init mmap_init(void)
3637 {
3638 	int ret;
3639 
3640 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3641 	VM_BUG_ON(ret);
3642 }
3643 
3644 /*
3645  * Initialise sysctl_user_reserve_kbytes.
3646  *
3647  * This is intended to prevent a user from starting a single memory hogging
3648  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3649  * mode.
3650  *
3651  * The default value is min(3% of free memory, 128MB)
3652  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3653  */
3654 static int init_user_reserve(void)
3655 {
3656 	unsigned long free_kbytes;
3657 
3658 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3659 
3660 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3661 	return 0;
3662 }
3663 subsys_initcall(init_user_reserve);
3664 
3665 /*
3666  * Initialise sysctl_admin_reserve_kbytes.
3667  *
3668  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3669  * to log in and kill a memory hogging process.
3670  *
3671  * Systems with more than 256MB will reserve 8MB, enough to recover
3672  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3673  * only reserve 3% of free pages by default.
3674  */
3675 static int init_admin_reserve(void)
3676 {
3677 	unsigned long free_kbytes;
3678 
3679 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680 
3681 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3682 	return 0;
3683 }
3684 subsys_initcall(init_admin_reserve);
3685 
3686 /*
3687  * Reinititalise user and admin reserves if memory is added or removed.
3688  *
3689  * The default user reserve max is 128MB, and the default max for the
3690  * admin reserve is 8MB. These are usually, but not always, enough to
3691  * enable recovery from a memory hogging process using login/sshd, a shell,
3692  * and tools like top. It may make sense to increase or even disable the
3693  * reserve depending on the existence of swap or variations in the recovery
3694  * tools. So, the admin may have changed them.
3695  *
3696  * If memory is added and the reserves have been eliminated or increased above
3697  * the default max, then we'll trust the admin.
3698  *
3699  * If memory is removed and there isn't enough free memory, then we
3700  * need to reset the reserves.
3701  *
3702  * Otherwise keep the reserve set by the admin.
3703  */
3704 static int reserve_mem_notifier(struct notifier_block *nb,
3705 			     unsigned long action, void *data)
3706 {
3707 	unsigned long tmp, free_kbytes;
3708 
3709 	switch (action) {
3710 	case MEM_ONLINE:
3711 		/* Default max is 128MB. Leave alone if modified by operator. */
3712 		tmp = sysctl_user_reserve_kbytes;
3713 		if (0 < tmp && tmp < (1UL << 17))
3714 			init_user_reserve();
3715 
3716 		/* Default max is 8MB.  Leave alone if modified by operator. */
3717 		tmp = sysctl_admin_reserve_kbytes;
3718 		if (0 < tmp && tmp < (1UL << 13))
3719 			init_admin_reserve();
3720 
3721 		break;
3722 	case MEM_OFFLINE:
3723 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3724 
3725 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3726 			init_user_reserve();
3727 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3728 				sysctl_user_reserve_kbytes);
3729 		}
3730 
3731 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3732 			init_admin_reserve();
3733 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3734 				sysctl_admin_reserve_kbytes);
3735 		}
3736 		break;
3737 	default:
3738 		break;
3739 	}
3740 	return NOTIFY_OK;
3741 }
3742 
3743 static struct notifier_block reserve_mem_nb = {
3744 	.notifier_call = reserve_mem_notifier,
3745 };
3746 
3747 static int __meminit init_reserve_notifier(void)
3748 {
3749 	if (register_hotmemory_notifier(&reserve_mem_nb))
3750 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3751 
3752 	return 0;
3753 }
3754 subsys_initcall(init_reserve_notifier);
3755