1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/swap.h> 28 #include <linux/cma.h> 29 #include "internal.h" 30 #include "slab.h" 31 #include "shuffle.h" 32 33 #include <asm/setup.h> 34 35 #ifdef CONFIG_DEBUG_MEMORY_INIT 36 int __meminitdata mminit_loglevel; 37 38 /* The zonelists are simply reported, validation is manual. */ 39 void __init mminit_verify_zonelist(void) 40 { 41 int nid; 42 43 if (mminit_loglevel < MMINIT_VERIFY) 44 return; 45 46 for_each_online_node(nid) { 47 pg_data_t *pgdat = NODE_DATA(nid); 48 struct zone *zone; 49 struct zoneref *z; 50 struct zonelist *zonelist; 51 int i, listid, zoneid; 52 53 BUILD_BUG_ON(MAX_ZONELISTS > 2); 54 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 55 56 /* Identify the zone and nodelist */ 57 zoneid = i % MAX_NR_ZONES; 58 listid = i / MAX_NR_ZONES; 59 zonelist = &pgdat->node_zonelists[listid]; 60 zone = &pgdat->node_zones[zoneid]; 61 if (!populated_zone(zone)) 62 continue; 63 64 /* Print information about the zonelist */ 65 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 66 listid > 0 ? "thisnode" : "general", nid, 67 zone->name); 68 69 /* Iterate the zonelist */ 70 for_each_zone_zonelist(zone, z, zonelist, zoneid) 71 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 72 pr_cont("\n"); 73 } 74 } 75 } 76 77 void __init mminit_verify_pageflags_layout(void) 78 { 79 int shift, width; 80 unsigned long or_mask, add_mask; 81 82 shift = 8 * sizeof(unsigned long); 83 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 84 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 85 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 86 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 87 SECTIONS_WIDTH, 88 NODES_WIDTH, 89 ZONES_WIDTH, 90 LAST_CPUPID_WIDTH, 91 KASAN_TAG_WIDTH, 92 LRU_GEN_WIDTH, 93 LRU_REFS_WIDTH, 94 NR_PAGEFLAGS); 95 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 96 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 97 SECTIONS_SHIFT, 98 NODES_SHIFT, 99 ZONES_SHIFT, 100 LAST_CPUPID_SHIFT, 101 KASAN_TAG_WIDTH); 102 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 103 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 104 (unsigned long)SECTIONS_PGSHIFT, 105 (unsigned long)NODES_PGSHIFT, 106 (unsigned long)ZONES_PGSHIFT, 107 (unsigned long)LAST_CPUPID_PGSHIFT, 108 (unsigned long)KASAN_TAG_PGSHIFT); 109 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 110 "Node/Zone ID: %lu -> %lu\n", 111 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 112 (unsigned long)ZONEID_PGOFF); 113 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 114 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 115 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 116 #ifdef NODE_NOT_IN_PAGE_FLAGS 117 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 118 "Node not in page flags"); 119 #endif 120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 122 "Last cpupid not in page flags"); 123 #endif 124 125 if (SECTIONS_WIDTH) { 126 shift -= SECTIONS_WIDTH; 127 BUG_ON(shift != SECTIONS_PGSHIFT); 128 } 129 if (NODES_WIDTH) { 130 shift -= NODES_WIDTH; 131 BUG_ON(shift != NODES_PGSHIFT); 132 } 133 if (ZONES_WIDTH) { 134 shift -= ZONES_WIDTH; 135 BUG_ON(shift != ZONES_PGSHIFT); 136 } 137 138 /* Check for bitmask overlaps */ 139 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 140 (NODES_MASK << NODES_PGSHIFT) | 141 (SECTIONS_MASK << SECTIONS_PGSHIFT); 142 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 143 (NODES_MASK << NODES_PGSHIFT) + 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 BUG_ON(or_mask != add_mask); 146 } 147 148 static __init int set_mminit_loglevel(char *str) 149 { 150 get_option(&str, &mminit_loglevel); 151 return 0; 152 } 153 early_param("mminit_loglevel", set_mminit_loglevel); 154 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 155 156 struct kobject *mm_kobj; 157 EXPORT_SYMBOL_GPL(mm_kobj); 158 159 #ifdef CONFIG_SMP 160 s32 vm_committed_as_batch = 32; 161 162 void mm_compute_batch(int overcommit_policy) 163 { 164 u64 memsized_batch; 165 s32 nr = num_present_cpus(); 166 s32 batch = max_t(s32, nr*2, 32); 167 unsigned long ram_pages = totalram_pages(); 168 169 /* 170 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 171 * (total memory/#cpus), and lift it to 25% for other policies 172 * to easy the possible lock contention for percpu_counter 173 * vm_committed_as, while the max limit is INT_MAX 174 */ 175 if (overcommit_policy == OVERCOMMIT_NEVER) 176 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 177 else 178 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 179 180 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 181 } 182 183 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 184 unsigned long action, void *arg) 185 { 186 switch (action) { 187 case MEM_ONLINE: 188 case MEM_OFFLINE: 189 mm_compute_batch(sysctl_overcommit_memory); 190 break; 191 default: 192 break; 193 } 194 return NOTIFY_OK; 195 } 196 197 static int __init mm_compute_batch_init(void) 198 { 199 mm_compute_batch(sysctl_overcommit_memory); 200 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 201 return 0; 202 } 203 204 __initcall(mm_compute_batch_init); 205 206 #endif 207 208 static int __init mm_sysfs_init(void) 209 { 210 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 211 if (!mm_kobj) 212 return -ENOMEM; 213 214 return 0; 215 } 216 postcore_initcall(mm_sysfs_init); 217 218 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 219 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 220 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 221 222 static unsigned long required_kernelcore __initdata; 223 static unsigned long required_kernelcore_percent __initdata; 224 static unsigned long required_movablecore __initdata; 225 static unsigned long required_movablecore_percent __initdata; 226 227 static unsigned long nr_kernel_pages __initdata; 228 static unsigned long nr_all_pages __initdata; 229 static unsigned long dma_reserve __initdata; 230 231 static bool deferred_struct_pages __meminitdata; 232 233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 234 235 static int __init cmdline_parse_core(char *p, unsigned long *core, 236 unsigned long *percent) 237 { 238 unsigned long long coremem; 239 char *endptr; 240 241 if (!p) 242 return -EINVAL; 243 244 /* Value may be a percentage of total memory, otherwise bytes */ 245 coremem = simple_strtoull(p, &endptr, 0); 246 if (*endptr == '%') { 247 /* Paranoid check for percent values greater than 100 */ 248 WARN_ON(coremem > 100); 249 250 *percent = coremem; 251 } else { 252 coremem = memparse(p, &p); 253 /* Paranoid check that UL is enough for the coremem value */ 254 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 255 256 *core = coremem >> PAGE_SHIFT; 257 *percent = 0UL; 258 } 259 return 0; 260 } 261 262 /* 263 * kernelcore=size sets the amount of memory for use for allocations that 264 * cannot be reclaimed or migrated. 265 */ 266 static int __init cmdline_parse_kernelcore(char *p) 267 { 268 /* parse kernelcore=mirror */ 269 if (parse_option_str(p, "mirror")) { 270 mirrored_kernelcore = true; 271 return 0; 272 } 273 274 return cmdline_parse_core(p, &required_kernelcore, 275 &required_kernelcore_percent); 276 } 277 early_param("kernelcore", cmdline_parse_kernelcore); 278 279 /* 280 * movablecore=size sets the amount of memory for use for allocations that 281 * can be reclaimed or migrated. 282 */ 283 static int __init cmdline_parse_movablecore(char *p) 284 { 285 return cmdline_parse_core(p, &required_movablecore, 286 &required_movablecore_percent); 287 } 288 early_param("movablecore", cmdline_parse_movablecore); 289 290 /* 291 * early_calculate_totalpages() 292 * Sum pages in active regions for movable zone. 293 * Populate N_MEMORY for calculating usable_nodes. 294 */ 295 static unsigned long __init early_calculate_totalpages(void) 296 { 297 unsigned long totalpages = 0; 298 unsigned long start_pfn, end_pfn; 299 int i, nid; 300 301 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 302 unsigned long pages = end_pfn - start_pfn; 303 304 totalpages += pages; 305 if (pages) 306 node_set_state(nid, N_MEMORY); 307 } 308 return totalpages; 309 } 310 311 /* 312 * This finds a zone that can be used for ZONE_MOVABLE pages. The 313 * assumption is made that zones within a node are ordered in monotonic 314 * increasing memory addresses so that the "highest" populated zone is used 315 */ 316 static void __init find_usable_zone_for_movable(void) 317 { 318 int zone_index; 319 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 320 if (zone_index == ZONE_MOVABLE) 321 continue; 322 323 if (arch_zone_highest_possible_pfn[zone_index] > 324 arch_zone_lowest_possible_pfn[zone_index]) 325 break; 326 } 327 328 VM_BUG_ON(zone_index == -1); 329 movable_zone = zone_index; 330 } 331 332 /* 333 * Find the PFN the Movable zone begins in each node. Kernel memory 334 * is spread evenly between nodes as long as the nodes have enough 335 * memory. When they don't, some nodes will have more kernelcore than 336 * others 337 */ 338 static void __init find_zone_movable_pfns_for_nodes(void) 339 { 340 int i, nid; 341 unsigned long usable_startpfn; 342 unsigned long kernelcore_node, kernelcore_remaining; 343 /* save the state before borrow the nodemask */ 344 nodemask_t saved_node_state = node_states[N_MEMORY]; 345 unsigned long totalpages = early_calculate_totalpages(); 346 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 347 struct memblock_region *r; 348 349 /* Need to find movable_zone earlier when movable_node is specified. */ 350 find_usable_zone_for_movable(); 351 352 /* 353 * If movable_node is specified, ignore kernelcore and movablecore 354 * options. 355 */ 356 if (movable_node_is_enabled()) { 357 for_each_mem_region(r) { 358 if (!memblock_is_hotpluggable(r)) 359 continue; 360 361 nid = memblock_get_region_node(r); 362 363 usable_startpfn = PFN_DOWN(r->base); 364 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 365 min(usable_startpfn, zone_movable_pfn[nid]) : 366 usable_startpfn; 367 } 368 369 goto out2; 370 } 371 372 /* 373 * If kernelcore=mirror is specified, ignore movablecore option 374 */ 375 if (mirrored_kernelcore) { 376 bool mem_below_4gb_not_mirrored = false; 377 378 for_each_mem_region(r) { 379 if (memblock_is_mirror(r)) 380 continue; 381 382 nid = memblock_get_region_node(r); 383 384 usable_startpfn = memblock_region_memory_base_pfn(r); 385 386 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 387 mem_below_4gb_not_mirrored = true; 388 continue; 389 } 390 391 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 392 min(usable_startpfn, zone_movable_pfn[nid]) : 393 usable_startpfn; 394 } 395 396 if (mem_below_4gb_not_mirrored) 397 pr_warn("This configuration results in unmirrored kernel memory.\n"); 398 399 goto out2; 400 } 401 402 /* 403 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 404 * amount of necessary memory. 405 */ 406 if (required_kernelcore_percent) 407 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 408 10000UL; 409 if (required_movablecore_percent) 410 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 411 10000UL; 412 413 /* 414 * If movablecore= was specified, calculate what size of 415 * kernelcore that corresponds so that memory usable for 416 * any allocation type is evenly spread. If both kernelcore 417 * and movablecore are specified, then the value of kernelcore 418 * will be used for required_kernelcore if it's greater than 419 * what movablecore would have allowed. 420 */ 421 if (required_movablecore) { 422 unsigned long corepages; 423 424 /* 425 * Round-up so that ZONE_MOVABLE is at least as large as what 426 * was requested by the user 427 */ 428 required_movablecore = 429 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 430 required_movablecore = min(totalpages, required_movablecore); 431 corepages = totalpages - required_movablecore; 432 433 required_kernelcore = max(required_kernelcore, corepages); 434 } 435 436 /* 437 * If kernelcore was not specified or kernelcore size is larger 438 * than totalpages, there is no ZONE_MOVABLE. 439 */ 440 if (!required_kernelcore || required_kernelcore >= totalpages) 441 goto out; 442 443 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 444 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 445 446 restart: 447 /* Spread kernelcore memory as evenly as possible throughout nodes */ 448 kernelcore_node = required_kernelcore / usable_nodes; 449 for_each_node_state(nid, N_MEMORY) { 450 unsigned long start_pfn, end_pfn; 451 452 /* 453 * Recalculate kernelcore_node if the division per node 454 * now exceeds what is necessary to satisfy the requested 455 * amount of memory for the kernel 456 */ 457 if (required_kernelcore < kernelcore_node) 458 kernelcore_node = required_kernelcore / usable_nodes; 459 460 /* 461 * As the map is walked, we track how much memory is usable 462 * by the kernel using kernelcore_remaining. When it is 463 * 0, the rest of the node is usable by ZONE_MOVABLE 464 */ 465 kernelcore_remaining = kernelcore_node; 466 467 /* Go through each range of PFNs within this node */ 468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 469 unsigned long size_pages; 470 471 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 472 if (start_pfn >= end_pfn) 473 continue; 474 475 /* Account for what is only usable for kernelcore */ 476 if (start_pfn < usable_startpfn) { 477 unsigned long kernel_pages; 478 kernel_pages = min(end_pfn, usable_startpfn) 479 - start_pfn; 480 481 kernelcore_remaining -= min(kernel_pages, 482 kernelcore_remaining); 483 required_kernelcore -= min(kernel_pages, 484 required_kernelcore); 485 486 /* Continue if range is now fully accounted */ 487 if (end_pfn <= usable_startpfn) { 488 489 /* 490 * Push zone_movable_pfn to the end so 491 * that if we have to rebalance 492 * kernelcore across nodes, we will 493 * not double account here 494 */ 495 zone_movable_pfn[nid] = end_pfn; 496 continue; 497 } 498 start_pfn = usable_startpfn; 499 } 500 501 /* 502 * The usable PFN range for ZONE_MOVABLE is from 503 * start_pfn->end_pfn. Calculate size_pages as the 504 * number of pages used as kernelcore 505 */ 506 size_pages = end_pfn - start_pfn; 507 if (size_pages > kernelcore_remaining) 508 size_pages = kernelcore_remaining; 509 zone_movable_pfn[nid] = start_pfn + size_pages; 510 511 /* 512 * Some kernelcore has been met, update counts and 513 * break if the kernelcore for this node has been 514 * satisfied 515 */ 516 required_kernelcore -= min(required_kernelcore, 517 size_pages); 518 kernelcore_remaining -= size_pages; 519 if (!kernelcore_remaining) 520 break; 521 } 522 } 523 524 /* 525 * If there is still required_kernelcore, we do another pass with one 526 * less node in the count. This will push zone_movable_pfn[nid] further 527 * along on the nodes that still have memory until kernelcore is 528 * satisfied 529 */ 530 usable_nodes--; 531 if (usable_nodes && required_kernelcore > usable_nodes) 532 goto restart; 533 534 out2: 535 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 536 for (nid = 0; nid < MAX_NUMNODES; nid++) { 537 unsigned long start_pfn, end_pfn; 538 539 zone_movable_pfn[nid] = 540 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 541 542 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 543 if (zone_movable_pfn[nid] >= end_pfn) 544 zone_movable_pfn[nid] = 0; 545 } 546 547 out: 548 /* restore the node_state */ 549 node_states[N_MEMORY] = saved_node_state; 550 } 551 552 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 553 unsigned long zone, int nid) 554 { 555 mm_zero_struct_page(page); 556 set_page_links(page, zone, nid, pfn); 557 init_page_count(page); 558 page_mapcount_reset(page); 559 page_cpupid_reset_last(page); 560 page_kasan_tag_reset(page); 561 562 INIT_LIST_HEAD(&page->lru); 563 #ifdef WANT_PAGE_VIRTUAL 564 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 565 if (!is_highmem_idx(zone)) 566 set_page_address(page, __va(pfn << PAGE_SHIFT)); 567 #endif 568 } 569 570 #ifdef CONFIG_NUMA 571 /* 572 * During memory init memblocks map pfns to nids. The search is expensive and 573 * this caches recent lookups. The implementation of __early_pfn_to_nid 574 * treats start/end as pfns. 575 */ 576 struct mminit_pfnnid_cache { 577 unsigned long last_start; 578 unsigned long last_end; 579 int last_nid; 580 }; 581 582 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 583 584 /* 585 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 586 */ 587 static int __meminit __early_pfn_to_nid(unsigned long pfn, 588 struct mminit_pfnnid_cache *state) 589 { 590 unsigned long start_pfn, end_pfn; 591 int nid; 592 593 if (state->last_start <= pfn && pfn < state->last_end) 594 return state->last_nid; 595 596 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 597 if (nid != NUMA_NO_NODE) { 598 state->last_start = start_pfn; 599 state->last_end = end_pfn; 600 state->last_nid = nid; 601 } 602 603 return nid; 604 } 605 606 int __meminit early_pfn_to_nid(unsigned long pfn) 607 { 608 static DEFINE_SPINLOCK(early_pfn_lock); 609 int nid; 610 611 spin_lock(&early_pfn_lock); 612 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 613 if (nid < 0) 614 nid = first_online_node; 615 spin_unlock(&early_pfn_lock); 616 617 return nid; 618 } 619 620 int hashdist = HASHDIST_DEFAULT; 621 622 static int __init set_hashdist(char *str) 623 { 624 if (!str) 625 return 0; 626 hashdist = simple_strtoul(str, &str, 0); 627 return 1; 628 } 629 __setup("hashdist=", set_hashdist); 630 631 static inline void fixup_hashdist(void) 632 { 633 if (num_node_state(N_MEMORY) == 1) 634 hashdist = 0; 635 } 636 #else 637 static inline void fixup_hashdist(void) {} 638 #endif /* CONFIG_NUMA */ 639 640 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 641 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 642 { 643 pgdat->first_deferred_pfn = ULONG_MAX; 644 } 645 646 /* Returns true if the struct page for the pfn is initialised */ 647 static inline bool __meminit early_page_initialised(unsigned long pfn) 648 { 649 int nid = early_pfn_to_nid(pfn); 650 651 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 652 return false; 653 654 return true; 655 } 656 657 /* 658 * Returns true when the remaining initialisation should be deferred until 659 * later in the boot cycle when it can be parallelised. 660 */ 661 static bool __meminit 662 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 663 { 664 static unsigned long prev_end_pfn, nr_initialised; 665 666 if (early_page_ext_enabled()) 667 return false; 668 /* 669 * prev_end_pfn static that contains the end of previous zone 670 * No need to protect because called very early in boot before smp_init. 671 */ 672 if (prev_end_pfn != end_pfn) { 673 prev_end_pfn = end_pfn; 674 nr_initialised = 0; 675 } 676 677 /* Always populate low zones for address-constrained allocations */ 678 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 679 return false; 680 681 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 682 return true; 683 /* 684 * We start only with one section of pages, more pages are added as 685 * needed until the rest of deferred pages are initialized. 686 */ 687 nr_initialised++; 688 if ((nr_initialised > PAGES_PER_SECTION) && 689 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 690 NODE_DATA(nid)->first_deferred_pfn = pfn; 691 return true; 692 } 693 return false; 694 } 695 696 static void __meminit init_reserved_page(unsigned long pfn) 697 { 698 pg_data_t *pgdat; 699 int nid, zid; 700 701 if (early_page_initialised(pfn)) 702 return; 703 704 nid = early_pfn_to_nid(pfn); 705 pgdat = NODE_DATA(nid); 706 707 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 708 struct zone *zone = &pgdat->node_zones[zid]; 709 710 if (zone_spans_pfn(zone, pfn)) 711 break; 712 } 713 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 714 } 715 #else 716 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 717 718 static inline bool early_page_initialised(unsigned long pfn) 719 { 720 return true; 721 } 722 723 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 724 { 725 return false; 726 } 727 728 static inline void init_reserved_page(unsigned long pfn) 729 { 730 } 731 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 732 733 /* 734 * Initialised pages do not have PageReserved set. This function is 735 * called for each range allocated by the bootmem allocator and 736 * marks the pages PageReserved. The remaining valid pages are later 737 * sent to the buddy page allocator. 738 */ 739 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 740 { 741 unsigned long start_pfn = PFN_DOWN(start); 742 unsigned long end_pfn = PFN_UP(end); 743 744 for (; start_pfn < end_pfn; start_pfn++) { 745 if (pfn_valid(start_pfn)) { 746 struct page *page = pfn_to_page(start_pfn); 747 748 init_reserved_page(start_pfn); 749 750 /* Avoid false-positive PageTail() */ 751 INIT_LIST_HEAD(&page->lru); 752 753 /* 754 * no need for atomic set_bit because the struct 755 * page is not visible yet so nobody should 756 * access it yet. 757 */ 758 __SetPageReserved(page); 759 } 760 } 761 } 762 763 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 764 static bool __meminit 765 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 766 { 767 static struct memblock_region *r; 768 769 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 770 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 771 for_each_mem_region(r) { 772 if (*pfn < memblock_region_memory_end_pfn(r)) 773 break; 774 } 775 } 776 if (*pfn >= memblock_region_memory_base_pfn(r) && 777 memblock_is_mirror(r)) { 778 *pfn = memblock_region_memory_end_pfn(r); 779 return true; 780 } 781 } 782 return false; 783 } 784 785 /* 786 * Only struct pages that correspond to ranges defined by memblock.memory 787 * are zeroed and initialized by going through __init_single_page() during 788 * memmap_init_zone_range(). 789 * 790 * But, there could be struct pages that correspond to holes in 791 * memblock.memory. This can happen because of the following reasons: 792 * - physical memory bank size is not necessarily the exact multiple of the 793 * arbitrary section size 794 * - early reserved memory may not be listed in memblock.memory 795 * - memory layouts defined with memmap= kernel parameter may not align 796 * nicely with memmap sections 797 * 798 * Explicitly initialize those struct pages so that: 799 * - PG_Reserved is set 800 * - zone and node links point to zone and node that span the page if the 801 * hole is in the middle of a zone 802 * - zone and node links point to adjacent zone/node if the hole falls on 803 * the zone boundary; the pages in such holes will be prepended to the 804 * zone/node above the hole except for the trailing pages in the last 805 * section that will be appended to the zone/node below. 806 */ 807 static void __init init_unavailable_range(unsigned long spfn, 808 unsigned long epfn, 809 int zone, int node) 810 { 811 unsigned long pfn; 812 u64 pgcnt = 0; 813 814 for (pfn = spfn; pfn < epfn; pfn++) { 815 if (!pfn_valid(pageblock_start_pfn(pfn))) { 816 pfn = pageblock_end_pfn(pfn) - 1; 817 continue; 818 } 819 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 820 __SetPageReserved(pfn_to_page(pfn)); 821 pgcnt++; 822 } 823 824 if (pgcnt) 825 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 826 node, zone_names[zone], pgcnt); 827 } 828 829 /* 830 * Initially all pages are reserved - free ones are freed 831 * up by memblock_free_all() once the early boot process is 832 * done. Non-atomic initialization, single-pass. 833 * 834 * All aligned pageblocks are initialized to the specified migratetype 835 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 836 * zone stats (e.g., nr_isolate_pageblock) are touched. 837 */ 838 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 839 unsigned long start_pfn, unsigned long zone_end_pfn, 840 enum meminit_context context, 841 struct vmem_altmap *altmap, int migratetype) 842 { 843 unsigned long pfn, end_pfn = start_pfn + size; 844 struct page *page; 845 846 if (highest_memmap_pfn < end_pfn - 1) 847 highest_memmap_pfn = end_pfn - 1; 848 849 #ifdef CONFIG_ZONE_DEVICE 850 /* 851 * Honor reservation requested by the driver for this ZONE_DEVICE 852 * memory. We limit the total number of pages to initialize to just 853 * those that might contain the memory mapping. We will defer the 854 * ZONE_DEVICE page initialization until after we have released 855 * the hotplug lock. 856 */ 857 if (zone == ZONE_DEVICE) { 858 if (!altmap) 859 return; 860 861 if (start_pfn == altmap->base_pfn) 862 start_pfn += altmap->reserve; 863 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 864 } 865 #endif 866 867 for (pfn = start_pfn; pfn < end_pfn; ) { 868 /* 869 * There can be holes in boot-time mem_map[]s handed to this 870 * function. They do not exist on hotplugged memory. 871 */ 872 if (context == MEMINIT_EARLY) { 873 if (overlap_memmap_init(zone, &pfn)) 874 continue; 875 if (defer_init(nid, pfn, zone_end_pfn)) { 876 deferred_struct_pages = true; 877 break; 878 } 879 } 880 881 page = pfn_to_page(pfn); 882 __init_single_page(page, pfn, zone, nid); 883 if (context == MEMINIT_HOTPLUG) 884 __SetPageReserved(page); 885 886 /* 887 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 888 * such that unmovable allocations won't be scattered all 889 * over the place during system boot. 890 */ 891 if (pageblock_aligned(pfn)) { 892 set_pageblock_migratetype(page, migratetype); 893 cond_resched(); 894 } 895 pfn++; 896 } 897 } 898 899 static void __init memmap_init_zone_range(struct zone *zone, 900 unsigned long start_pfn, 901 unsigned long end_pfn, 902 unsigned long *hole_pfn) 903 { 904 unsigned long zone_start_pfn = zone->zone_start_pfn; 905 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 906 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 907 908 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 909 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 910 911 if (start_pfn >= end_pfn) 912 return; 913 914 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 915 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 916 917 if (*hole_pfn < start_pfn) 918 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 919 920 *hole_pfn = end_pfn; 921 } 922 923 static void __init memmap_init(void) 924 { 925 unsigned long start_pfn, end_pfn; 926 unsigned long hole_pfn = 0; 927 int i, j, zone_id = 0, nid; 928 929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 930 struct pglist_data *node = NODE_DATA(nid); 931 932 for (j = 0; j < MAX_NR_ZONES; j++) { 933 struct zone *zone = node->node_zones + j; 934 935 if (!populated_zone(zone)) 936 continue; 937 938 memmap_init_zone_range(zone, start_pfn, end_pfn, 939 &hole_pfn); 940 zone_id = j; 941 } 942 } 943 944 #ifdef CONFIG_SPARSEMEM 945 /* 946 * Initialize the memory map for hole in the range [memory_end, 947 * section_end]. 948 * Append the pages in this hole to the highest zone in the last 949 * node. 950 * The call to init_unavailable_range() is outside the ifdef to 951 * silence the compiler warining about zone_id set but not used; 952 * for FLATMEM it is a nop anyway 953 */ 954 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 955 if (hole_pfn < end_pfn) 956 #endif 957 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 958 } 959 960 #ifdef CONFIG_ZONE_DEVICE 961 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 962 unsigned long zone_idx, int nid, 963 struct dev_pagemap *pgmap) 964 { 965 966 __init_single_page(page, pfn, zone_idx, nid); 967 968 /* 969 * Mark page reserved as it will need to wait for onlining 970 * phase for it to be fully associated with a zone. 971 * 972 * We can use the non-atomic __set_bit operation for setting 973 * the flag as we are still initializing the pages. 974 */ 975 __SetPageReserved(page); 976 977 /* 978 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 979 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 980 * ever freed or placed on a driver-private list. 981 */ 982 page->pgmap = pgmap; 983 page->zone_device_data = NULL; 984 985 /* 986 * Mark the block movable so that blocks are reserved for 987 * movable at startup. This will force kernel allocations 988 * to reserve their blocks rather than leaking throughout 989 * the address space during boot when many long-lived 990 * kernel allocations are made. 991 * 992 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 993 * because this is done early in section_activate() 994 */ 995 if (pageblock_aligned(pfn)) { 996 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 997 cond_resched(); 998 } 999 1000 /* 1001 * ZONE_DEVICE pages are released directly to the driver page allocator 1002 * which will set the page count to 1 when allocating the page. 1003 */ 1004 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1005 pgmap->type == MEMORY_DEVICE_COHERENT) 1006 set_page_count(page, 0); 1007 } 1008 1009 /* 1010 * With compound page geometry and when struct pages are stored in ram most 1011 * tail pages are reused. Consequently, the amount of unique struct pages to 1012 * initialize is a lot smaller that the total amount of struct pages being 1013 * mapped. This is a paired / mild layering violation with explicit knowledge 1014 * of how the sparse_vmemmap internals handle compound pages in the lack 1015 * of an altmap. See vmemmap_populate_compound_pages(). 1016 */ 1017 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1018 unsigned long nr_pages) 1019 { 1020 return is_power_of_2(sizeof(struct page)) && 1021 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 1022 } 1023 1024 static void __ref memmap_init_compound(struct page *head, 1025 unsigned long head_pfn, 1026 unsigned long zone_idx, int nid, 1027 struct dev_pagemap *pgmap, 1028 unsigned long nr_pages) 1029 { 1030 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1031 unsigned int order = pgmap->vmemmap_shift; 1032 1033 __SetPageHead(head); 1034 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1035 struct page *page = pfn_to_page(pfn); 1036 1037 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1038 prep_compound_tail(head, pfn - head_pfn); 1039 set_page_count(page, 0); 1040 1041 /* 1042 * The first tail page stores important compound page info. 1043 * Call prep_compound_head() after the first tail page has 1044 * been initialized, to not have the data overwritten. 1045 */ 1046 if (pfn == head_pfn + 1) 1047 prep_compound_head(head, order); 1048 } 1049 } 1050 1051 void __ref memmap_init_zone_device(struct zone *zone, 1052 unsigned long start_pfn, 1053 unsigned long nr_pages, 1054 struct dev_pagemap *pgmap) 1055 { 1056 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1057 struct pglist_data *pgdat = zone->zone_pgdat; 1058 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1059 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1060 unsigned long zone_idx = zone_idx(zone); 1061 unsigned long start = jiffies; 1062 int nid = pgdat->node_id; 1063 1064 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1065 return; 1066 1067 /* 1068 * The call to memmap_init should have already taken care 1069 * of the pages reserved for the memmap, so we can just jump to 1070 * the end of that region and start processing the device pages. 1071 */ 1072 if (altmap) { 1073 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1074 nr_pages = end_pfn - start_pfn; 1075 } 1076 1077 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1078 struct page *page = pfn_to_page(pfn); 1079 1080 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1081 1082 if (pfns_per_compound == 1) 1083 continue; 1084 1085 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1086 compound_nr_pages(altmap, pfns_per_compound)); 1087 } 1088 1089 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1090 nr_pages, jiffies_to_msecs(jiffies - start)); 1091 } 1092 #endif 1093 1094 /* 1095 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1096 * because it is sized independent of architecture. Unlike the other zones, 1097 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1098 * in each node depending on the size of each node and how evenly kernelcore 1099 * is distributed. This helper function adjusts the zone ranges 1100 * provided by the architecture for a given node by using the end of the 1101 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1102 * zones within a node are in order of monotonic increases memory addresses 1103 */ 1104 static void __init adjust_zone_range_for_zone_movable(int nid, 1105 unsigned long zone_type, 1106 unsigned long node_start_pfn, 1107 unsigned long node_end_pfn, 1108 unsigned long *zone_start_pfn, 1109 unsigned long *zone_end_pfn) 1110 { 1111 /* Only adjust if ZONE_MOVABLE is on this node */ 1112 if (zone_movable_pfn[nid]) { 1113 /* Size ZONE_MOVABLE */ 1114 if (zone_type == ZONE_MOVABLE) { 1115 *zone_start_pfn = zone_movable_pfn[nid]; 1116 *zone_end_pfn = min(node_end_pfn, 1117 arch_zone_highest_possible_pfn[movable_zone]); 1118 1119 /* Adjust for ZONE_MOVABLE starting within this range */ 1120 } else if (!mirrored_kernelcore && 1121 *zone_start_pfn < zone_movable_pfn[nid] && 1122 *zone_end_pfn > zone_movable_pfn[nid]) { 1123 *zone_end_pfn = zone_movable_pfn[nid]; 1124 1125 /* Check if this whole range is within ZONE_MOVABLE */ 1126 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1127 *zone_start_pfn = *zone_end_pfn; 1128 } 1129 } 1130 1131 /* 1132 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1133 * then all holes in the requested range will be accounted for. 1134 */ 1135 unsigned long __init __absent_pages_in_range(int nid, 1136 unsigned long range_start_pfn, 1137 unsigned long range_end_pfn) 1138 { 1139 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1140 unsigned long start_pfn, end_pfn; 1141 int i; 1142 1143 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1144 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1145 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1146 nr_absent -= end_pfn - start_pfn; 1147 } 1148 return nr_absent; 1149 } 1150 1151 /** 1152 * absent_pages_in_range - Return number of page frames in holes within a range 1153 * @start_pfn: The start PFN to start searching for holes 1154 * @end_pfn: The end PFN to stop searching for holes 1155 * 1156 * Return: the number of pages frames in memory holes within a range. 1157 */ 1158 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1159 unsigned long end_pfn) 1160 { 1161 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1162 } 1163 1164 /* Return the number of page frames in holes in a zone on a node */ 1165 static unsigned long __init zone_absent_pages_in_node(int nid, 1166 unsigned long zone_type, 1167 unsigned long node_start_pfn, 1168 unsigned long node_end_pfn) 1169 { 1170 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1171 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1172 unsigned long zone_start_pfn, zone_end_pfn; 1173 unsigned long nr_absent; 1174 1175 /* When hotadd a new node from cpu_up(), the node should be empty */ 1176 if (!node_start_pfn && !node_end_pfn) 1177 return 0; 1178 1179 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1180 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1181 1182 adjust_zone_range_for_zone_movable(nid, zone_type, 1183 node_start_pfn, node_end_pfn, 1184 &zone_start_pfn, &zone_end_pfn); 1185 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1186 1187 /* 1188 * ZONE_MOVABLE handling. 1189 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1190 * and vice versa. 1191 */ 1192 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1193 unsigned long start_pfn, end_pfn; 1194 struct memblock_region *r; 1195 1196 for_each_mem_region(r) { 1197 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1198 zone_start_pfn, zone_end_pfn); 1199 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1200 zone_start_pfn, zone_end_pfn); 1201 1202 if (zone_type == ZONE_MOVABLE && 1203 memblock_is_mirror(r)) 1204 nr_absent += end_pfn - start_pfn; 1205 1206 if (zone_type == ZONE_NORMAL && 1207 !memblock_is_mirror(r)) 1208 nr_absent += end_pfn - start_pfn; 1209 } 1210 } 1211 1212 return nr_absent; 1213 } 1214 1215 /* 1216 * Return the number of pages a zone spans in a node, including holes 1217 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1218 */ 1219 static unsigned long __init zone_spanned_pages_in_node(int nid, 1220 unsigned long zone_type, 1221 unsigned long node_start_pfn, 1222 unsigned long node_end_pfn, 1223 unsigned long *zone_start_pfn, 1224 unsigned long *zone_end_pfn) 1225 { 1226 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1227 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1228 /* When hotadd a new node from cpu_up(), the node should be empty */ 1229 if (!node_start_pfn && !node_end_pfn) 1230 return 0; 1231 1232 /* Get the start and end of the zone */ 1233 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1234 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1235 adjust_zone_range_for_zone_movable(nid, zone_type, 1236 node_start_pfn, node_end_pfn, 1237 zone_start_pfn, zone_end_pfn); 1238 1239 /* Check that this node has pages within the zone's required range */ 1240 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1241 return 0; 1242 1243 /* Move the zone boundaries inside the node if necessary */ 1244 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1245 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1246 1247 /* Return the spanned pages */ 1248 return *zone_end_pfn - *zone_start_pfn; 1249 } 1250 1251 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1252 unsigned long node_start_pfn, 1253 unsigned long node_end_pfn) 1254 { 1255 unsigned long realtotalpages = 0, totalpages = 0; 1256 enum zone_type i; 1257 1258 for (i = 0; i < MAX_NR_ZONES; i++) { 1259 struct zone *zone = pgdat->node_zones + i; 1260 unsigned long zone_start_pfn, zone_end_pfn; 1261 unsigned long spanned, absent; 1262 unsigned long size, real_size; 1263 1264 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1265 node_start_pfn, 1266 node_end_pfn, 1267 &zone_start_pfn, 1268 &zone_end_pfn); 1269 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1270 node_start_pfn, 1271 node_end_pfn); 1272 1273 size = spanned; 1274 real_size = size - absent; 1275 1276 if (size) 1277 zone->zone_start_pfn = zone_start_pfn; 1278 else 1279 zone->zone_start_pfn = 0; 1280 zone->spanned_pages = size; 1281 zone->present_pages = real_size; 1282 #if defined(CONFIG_MEMORY_HOTPLUG) 1283 zone->present_early_pages = real_size; 1284 #endif 1285 1286 totalpages += size; 1287 realtotalpages += real_size; 1288 } 1289 1290 pgdat->node_spanned_pages = totalpages; 1291 pgdat->node_present_pages = realtotalpages; 1292 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1293 } 1294 1295 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 1296 unsigned long present_pages) 1297 { 1298 unsigned long pages = spanned_pages; 1299 1300 /* 1301 * Provide a more accurate estimation if there are holes within 1302 * the zone and SPARSEMEM is in use. If there are holes within the 1303 * zone, each populated memory region may cost us one or two extra 1304 * memmap pages due to alignment because memmap pages for each 1305 * populated regions may not be naturally aligned on page boundary. 1306 * So the (present_pages >> 4) heuristic is a tradeoff for that. 1307 */ 1308 if (spanned_pages > present_pages + (present_pages >> 4) && 1309 IS_ENABLED(CONFIG_SPARSEMEM)) 1310 pages = present_pages; 1311 1312 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 1313 } 1314 1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1316 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1317 { 1318 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1319 1320 spin_lock_init(&ds_queue->split_queue_lock); 1321 INIT_LIST_HEAD(&ds_queue->split_queue); 1322 ds_queue->split_queue_len = 0; 1323 } 1324 #else 1325 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1326 #endif 1327 1328 #ifdef CONFIG_COMPACTION 1329 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1330 { 1331 init_waitqueue_head(&pgdat->kcompactd_wait); 1332 } 1333 #else 1334 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1335 #endif 1336 1337 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1338 { 1339 int i; 1340 1341 pgdat_resize_init(pgdat); 1342 pgdat_kswapd_lock_init(pgdat); 1343 1344 pgdat_init_split_queue(pgdat); 1345 pgdat_init_kcompactd(pgdat); 1346 1347 init_waitqueue_head(&pgdat->kswapd_wait); 1348 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1349 1350 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1351 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1352 1353 pgdat_page_ext_init(pgdat); 1354 lruvec_init(&pgdat->__lruvec); 1355 } 1356 1357 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1358 unsigned long remaining_pages) 1359 { 1360 atomic_long_set(&zone->managed_pages, remaining_pages); 1361 zone_set_nid(zone, nid); 1362 zone->name = zone_names[idx]; 1363 zone->zone_pgdat = NODE_DATA(nid); 1364 spin_lock_init(&zone->lock); 1365 zone_seqlock_init(zone); 1366 zone_pcp_init(zone); 1367 } 1368 1369 static void __meminit zone_init_free_lists(struct zone *zone) 1370 { 1371 unsigned int order, t; 1372 for_each_migratetype_order(order, t) { 1373 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1374 zone->free_area[order].nr_free = 0; 1375 } 1376 } 1377 1378 void __meminit init_currently_empty_zone(struct zone *zone, 1379 unsigned long zone_start_pfn, 1380 unsigned long size) 1381 { 1382 struct pglist_data *pgdat = zone->zone_pgdat; 1383 int zone_idx = zone_idx(zone) + 1; 1384 1385 if (zone_idx > pgdat->nr_zones) 1386 pgdat->nr_zones = zone_idx; 1387 1388 zone->zone_start_pfn = zone_start_pfn; 1389 1390 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1391 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1392 pgdat->node_id, 1393 (unsigned long)zone_idx(zone), 1394 zone_start_pfn, (zone_start_pfn + size)); 1395 1396 zone_init_free_lists(zone); 1397 zone->initialized = 1; 1398 } 1399 1400 #ifndef CONFIG_SPARSEMEM 1401 /* 1402 * Calculate the size of the zone->blockflags rounded to an unsigned long 1403 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1404 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1405 * round what is now in bits to nearest long in bits, then return it in 1406 * bytes. 1407 */ 1408 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1409 { 1410 unsigned long usemapsize; 1411 1412 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1413 usemapsize = roundup(zonesize, pageblock_nr_pages); 1414 usemapsize = usemapsize >> pageblock_order; 1415 usemapsize *= NR_PAGEBLOCK_BITS; 1416 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 1417 1418 return usemapsize / 8; 1419 } 1420 1421 static void __ref setup_usemap(struct zone *zone) 1422 { 1423 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1424 zone->spanned_pages); 1425 zone->pageblock_flags = NULL; 1426 if (usemapsize) { 1427 zone->pageblock_flags = 1428 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1429 zone_to_nid(zone)); 1430 if (!zone->pageblock_flags) 1431 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1432 usemapsize, zone->name, zone_to_nid(zone)); 1433 } 1434 } 1435 #else 1436 static inline void setup_usemap(struct zone *zone) {} 1437 #endif /* CONFIG_SPARSEMEM */ 1438 1439 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1440 1441 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1442 void __init set_pageblock_order(void) 1443 { 1444 unsigned int order = MAX_ORDER; 1445 1446 /* Check that pageblock_nr_pages has not already been setup */ 1447 if (pageblock_order) 1448 return; 1449 1450 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1451 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1452 order = HUGETLB_PAGE_ORDER; 1453 1454 /* 1455 * Assume the largest contiguous order of interest is a huge page. 1456 * This value may be variable depending on boot parameters on IA64 and 1457 * powerpc. 1458 */ 1459 pageblock_order = order; 1460 } 1461 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1462 1463 /* 1464 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1465 * is unused as pageblock_order is set at compile-time. See 1466 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1467 * the kernel config 1468 */ 1469 void __init set_pageblock_order(void) 1470 { 1471 } 1472 1473 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1474 1475 /* 1476 * Set up the zone data structures 1477 * - init pgdat internals 1478 * - init all zones belonging to this node 1479 * 1480 * NOTE: this function is only called during memory hotplug 1481 */ 1482 #ifdef CONFIG_MEMORY_HOTPLUG 1483 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1484 { 1485 int nid = pgdat->node_id; 1486 enum zone_type z; 1487 int cpu; 1488 1489 pgdat_init_internals(pgdat); 1490 1491 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1492 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1493 1494 /* 1495 * Reset the nr_zones, order and highest_zoneidx before reuse. 1496 * Note that kswapd will init kswapd_highest_zoneidx properly 1497 * when it starts in the near future. 1498 */ 1499 pgdat->nr_zones = 0; 1500 pgdat->kswapd_order = 0; 1501 pgdat->kswapd_highest_zoneidx = 0; 1502 pgdat->node_start_pfn = 0; 1503 for_each_online_cpu(cpu) { 1504 struct per_cpu_nodestat *p; 1505 1506 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1507 memset(p, 0, sizeof(*p)); 1508 } 1509 1510 for (z = 0; z < MAX_NR_ZONES; z++) 1511 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 1512 } 1513 #endif 1514 1515 /* 1516 * Set up the zone data structures: 1517 * - mark all pages reserved 1518 * - mark all memory queues empty 1519 * - clear the memory bitmaps 1520 * 1521 * NOTE: pgdat should get zeroed by caller. 1522 * NOTE: this function is only called during early init. 1523 */ 1524 static void __init free_area_init_core(struct pglist_data *pgdat) 1525 { 1526 enum zone_type j; 1527 int nid = pgdat->node_id; 1528 1529 pgdat_init_internals(pgdat); 1530 pgdat->per_cpu_nodestats = &boot_nodestats; 1531 1532 for (j = 0; j < MAX_NR_ZONES; j++) { 1533 struct zone *zone = pgdat->node_zones + j; 1534 unsigned long size, freesize, memmap_pages; 1535 1536 size = zone->spanned_pages; 1537 freesize = zone->present_pages; 1538 1539 /* 1540 * Adjust freesize so that it accounts for how much memory 1541 * is used by this zone for memmap. This affects the watermark 1542 * and per-cpu initialisations 1543 */ 1544 memmap_pages = calc_memmap_size(size, freesize); 1545 if (!is_highmem_idx(j)) { 1546 if (freesize >= memmap_pages) { 1547 freesize -= memmap_pages; 1548 if (memmap_pages) 1549 pr_debug(" %s zone: %lu pages used for memmap\n", 1550 zone_names[j], memmap_pages); 1551 } else 1552 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 1553 zone_names[j], memmap_pages, freesize); 1554 } 1555 1556 /* Account for reserved pages */ 1557 if (j == 0 && freesize > dma_reserve) { 1558 freesize -= dma_reserve; 1559 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 1560 } 1561 1562 if (!is_highmem_idx(j)) 1563 nr_kernel_pages += freesize; 1564 /* Charge for highmem memmap if there are enough kernel pages */ 1565 else if (nr_kernel_pages > memmap_pages * 2) 1566 nr_kernel_pages -= memmap_pages; 1567 nr_all_pages += freesize; 1568 1569 /* 1570 * Set an approximate value for lowmem here, it will be adjusted 1571 * when the bootmem allocator frees pages into the buddy system. 1572 * And all highmem pages will be managed by the buddy system. 1573 */ 1574 zone_init_internals(zone, j, nid, freesize); 1575 1576 if (!size) 1577 continue; 1578 1579 set_pageblock_order(); 1580 setup_usemap(zone); 1581 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1582 } 1583 } 1584 1585 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1586 phys_addr_t min_addr, int nid, bool exact_nid) 1587 { 1588 void *ptr; 1589 1590 if (exact_nid) 1591 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1592 MEMBLOCK_ALLOC_ACCESSIBLE, 1593 nid); 1594 else 1595 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1596 MEMBLOCK_ALLOC_ACCESSIBLE, 1597 nid); 1598 1599 if (ptr && size > 0) 1600 page_init_poison(ptr, size); 1601 1602 return ptr; 1603 } 1604 1605 #ifdef CONFIG_FLATMEM 1606 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1607 { 1608 unsigned long __maybe_unused start = 0; 1609 unsigned long __maybe_unused offset = 0; 1610 1611 /* Skip empty nodes */ 1612 if (!pgdat->node_spanned_pages) 1613 return; 1614 1615 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1616 offset = pgdat->node_start_pfn - start; 1617 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1618 if (!pgdat->node_mem_map) { 1619 unsigned long size, end; 1620 struct page *map; 1621 1622 /* 1623 * The zone's endpoints aren't required to be MAX_ORDER 1624 * aligned but the node_mem_map endpoints must be in order 1625 * for the buddy allocator to function correctly. 1626 */ 1627 end = pgdat_end_pfn(pgdat); 1628 end = ALIGN(end, MAX_ORDER_NR_PAGES); 1629 size = (end - start) * sizeof(struct page); 1630 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1631 pgdat->node_id, false); 1632 if (!map) 1633 panic("Failed to allocate %ld bytes for node %d memory map\n", 1634 size, pgdat->node_id); 1635 pgdat->node_mem_map = map + offset; 1636 } 1637 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1638 __func__, pgdat->node_id, (unsigned long)pgdat, 1639 (unsigned long)pgdat->node_mem_map); 1640 #ifndef CONFIG_NUMA 1641 /* 1642 * With no DISCONTIG, the global mem_map is just set as node 0's 1643 */ 1644 if (pgdat == NODE_DATA(0)) { 1645 mem_map = NODE_DATA(0)->node_mem_map; 1646 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1647 mem_map -= offset; 1648 } 1649 #endif 1650 } 1651 #else 1652 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1653 #endif /* CONFIG_FLATMEM */ 1654 1655 /** 1656 * get_pfn_range_for_nid - Return the start and end page frames for a node 1657 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1658 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1659 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1660 * 1661 * It returns the start and end page frame of a node based on information 1662 * provided by memblock_set_node(). If called for a node 1663 * with no available memory, a warning is printed and the start and end 1664 * PFNs will be 0. 1665 */ 1666 void __init get_pfn_range_for_nid(unsigned int nid, 1667 unsigned long *start_pfn, unsigned long *end_pfn) 1668 { 1669 unsigned long this_start_pfn, this_end_pfn; 1670 int i; 1671 1672 *start_pfn = -1UL; 1673 *end_pfn = 0; 1674 1675 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1676 *start_pfn = min(*start_pfn, this_start_pfn); 1677 *end_pfn = max(*end_pfn, this_end_pfn); 1678 } 1679 1680 if (*start_pfn == -1UL) 1681 *start_pfn = 0; 1682 } 1683 1684 static void __init free_area_init_node(int nid) 1685 { 1686 pg_data_t *pgdat = NODE_DATA(nid); 1687 unsigned long start_pfn = 0; 1688 unsigned long end_pfn = 0; 1689 1690 /* pg_data_t should be reset to zero when it's allocated */ 1691 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1692 1693 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1694 1695 pgdat->node_id = nid; 1696 pgdat->node_start_pfn = start_pfn; 1697 pgdat->per_cpu_nodestats = NULL; 1698 1699 if (start_pfn != end_pfn) { 1700 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1701 (u64)start_pfn << PAGE_SHIFT, 1702 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1703 } else { 1704 pr_info("Initmem setup node %d as memoryless\n", nid); 1705 } 1706 1707 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1708 1709 alloc_node_mem_map(pgdat); 1710 pgdat_set_deferred_range(pgdat); 1711 1712 free_area_init_core(pgdat); 1713 lru_gen_init_pgdat(pgdat); 1714 } 1715 1716 /* Any regular or high memory on that node ? */ 1717 static void check_for_memory(pg_data_t *pgdat, int nid) 1718 { 1719 enum zone_type zone_type; 1720 1721 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1722 struct zone *zone = &pgdat->node_zones[zone_type]; 1723 if (populated_zone(zone)) { 1724 if (IS_ENABLED(CONFIG_HIGHMEM)) 1725 node_set_state(nid, N_HIGH_MEMORY); 1726 if (zone_type <= ZONE_NORMAL) 1727 node_set_state(nid, N_NORMAL_MEMORY); 1728 break; 1729 } 1730 } 1731 } 1732 1733 #if MAX_NUMNODES > 1 1734 /* 1735 * Figure out the number of possible node ids. 1736 */ 1737 void __init setup_nr_node_ids(void) 1738 { 1739 unsigned int highest; 1740 1741 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1742 nr_node_ids = highest + 1; 1743 } 1744 #endif 1745 1746 static void __init free_area_init_memoryless_node(int nid) 1747 { 1748 free_area_init_node(nid); 1749 } 1750 1751 /* 1752 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1753 * such cases we allow max_zone_pfn sorted in the descending order 1754 */ 1755 static bool arch_has_descending_max_zone_pfns(void) 1756 { 1757 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1758 } 1759 1760 /** 1761 * free_area_init - Initialise all pg_data_t and zone data 1762 * @max_zone_pfn: an array of max PFNs for each zone 1763 * 1764 * This will call free_area_init_node() for each active node in the system. 1765 * Using the page ranges provided by memblock_set_node(), the size of each 1766 * zone in each node and their holes is calculated. If the maximum PFN 1767 * between two adjacent zones match, it is assumed that the zone is empty. 1768 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1769 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1770 * starts where the previous one ended. For example, ZONE_DMA32 starts 1771 * at arch_max_dma_pfn. 1772 */ 1773 void __init free_area_init(unsigned long *max_zone_pfn) 1774 { 1775 unsigned long start_pfn, end_pfn; 1776 int i, nid, zone; 1777 bool descending; 1778 1779 /* Record where the zone boundaries are */ 1780 memset(arch_zone_lowest_possible_pfn, 0, 1781 sizeof(arch_zone_lowest_possible_pfn)); 1782 memset(arch_zone_highest_possible_pfn, 0, 1783 sizeof(arch_zone_highest_possible_pfn)); 1784 1785 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1786 descending = arch_has_descending_max_zone_pfns(); 1787 1788 for (i = 0; i < MAX_NR_ZONES; i++) { 1789 if (descending) 1790 zone = MAX_NR_ZONES - i - 1; 1791 else 1792 zone = i; 1793 1794 if (zone == ZONE_MOVABLE) 1795 continue; 1796 1797 end_pfn = max(max_zone_pfn[zone], start_pfn); 1798 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1799 arch_zone_highest_possible_pfn[zone] = end_pfn; 1800 1801 start_pfn = end_pfn; 1802 } 1803 1804 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1805 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1806 find_zone_movable_pfns_for_nodes(); 1807 1808 /* Print out the zone ranges */ 1809 pr_info("Zone ranges:\n"); 1810 for (i = 0; i < MAX_NR_ZONES; i++) { 1811 if (i == ZONE_MOVABLE) 1812 continue; 1813 pr_info(" %-8s ", zone_names[i]); 1814 if (arch_zone_lowest_possible_pfn[i] == 1815 arch_zone_highest_possible_pfn[i]) 1816 pr_cont("empty\n"); 1817 else 1818 pr_cont("[mem %#018Lx-%#018Lx]\n", 1819 (u64)arch_zone_lowest_possible_pfn[i] 1820 << PAGE_SHIFT, 1821 ((u64)arch_zone_highest_possible_pfn[i] 1822 << PAGE_SHIFT) - 1); 1823 } 1824 1825 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1826 pr_info("Movable zone start for each node\n"); 1827 for (i = 0; i < MAX_NUMNODES; i++) { 1828 if (zone_movable_pfn[i]) 1829 pr_info(" Node %d: %#018Lx\n", i, 1830 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1831 } 1832 1833 /* 1834 * Print out the early node map, and initialize the 1835 * subsection-map relative to active online memory ranges to 1836 * enable future "sub-section" extensions of the memory map. 1837 */ 1838 pr_info("Early memory node ranges\n"); 1839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1840 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1841 (u64)start_pfn << PAGE_SHIFT, 1842 ((u64)end_pfn << PAGE_SHIFT) - 1); 1843 subsection_map_init(start_pfn, end_pfn - start_pfn); 1844 } 1845 1846 /* Initialise every node */ 1847 mminit_verify_pageflags_layout(); 1848 setup_nr_node_ids(); 1849 for_each_node(nid) { 1850 pg_data_t *pgdat; 1851 1852 if (!node_online(nid)) { 1853 pr_info("Initializing node %d as memoryless\n", nid); 1854 1855 /* Allocator not initialized yet */ 1856 pgdat = arch_alloc_nodedata(nid); 1857 if (!pgdat) 1858 panic("Cannot allocate %zuB for node %d.\n", 1859 sizeof(*pgdat), nid); 1860 arch_refresh_nodedata(nid, pgdat); 1861 free_area_init_memoryless_node(nid); 1862 1863 /* 1864 * We do not want to confuse userspace by sysfs 1865 * files/directories for node without any memory 1866 * attached to it, so this node is not marked as 1867 * N_MEMORY and not marked online so that no sysfs 1868 * hierarchy will be created via register_one_node for 1869 * it. The pgdat will get fully initialized by 1870 * hotadd_init_pgdat() when memory is hotplugged into 1871 * this node. 1872 */ 1873 continue; 1874 } 1875 1876 pgdat = NODE_DATA(nid); 1877 free_area_init_node(nid); 1878 1879 /* Any memory on that node */ 1880 if (pgdat->node_present_pages) 1881 node_set_state(nid, N_MEMORY); 1882 check_for_memory(pgdat, nid); 1883 } 1884 1885 memmap_init(); 1886 1887 /* disable hash distribution for systems with a single node */ 1888 fixup_hashdist(); 1889 } 1890 1891 /** 1892 * node_map_pfn_alignment - determine the maximum internode alignment 1893 * 1894 * This function should be called after node map is populated and sorted. 1895 * It calculates the maximum power of two alignment which can distinguish 1896 * all the nodes. 1897 * 1898 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1899 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1900 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1901 * shifted, 1GiB is enough and this function will indicate so. 1902 * 1903 * This is used to test whether pfn -> nid mapping of the chosen memory 1904 * model has fine enough granularity to avoid incorrect mapping for the 1905 * populated node map. 1906 * 1907 * Return: the determined alignment in pfn's. 0 if there is no alignment 1908 * requirement (single node). 1909 */ 1910 unsigned long __init node_map_pfn_alignment(void) 1911 { 1912 unsigned long accl_mask = 0, last_end = 0; 1913 unsigned long start, end, mask; 1914 int last_nid = NUMA_NO_NODE; 1915 int i, nid; 1916 1917 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1918 if (!start || last_nid < 0 || last_nid == nid) { 1919 last_nid = nid; 1920 last_end = end; 1921 continue; 1922 } 1923 1924 /* 1925 * Start with a mask granular enough to pin-point to the 1926 * start pfn and tick off bits one-by-one until it becomes 1927 * too coarse to separate the current node from the last. 1928 */ 1929 mask = ~((1 << __ffs(start)) - 1); 1930 while (mask && last_end <= (start & (mask << 1))) 1931 mask <<= 1; 1932 1933 /* accumulate all internode masks */ 1934 accl_mask |= mask; 1935 } 1936 1937 /* convert mask to number of pages */ 1938 return ~accl_mask + 1; 1939 } 1940 1941 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1942 static void __init deferred_free_range(unsigned long pfn, 1943 unsigned long nr_pages) 1944 { 1945 struct page *page; 1946 unsigned long i; 1947 1948 if (!nr_pages) 1949 return; 1950 1951 page = pfn_to_page(pfn); 1952 1953 /* Free a large naturally-aligned chunk if possible */ 1954 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1955 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1956 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1957 __free_pages_core(page, MAX_ORDER); 1958 return; 1959 } 1960 1961 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1962 if (pageblock_aligned(pfn)) 1963 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1964 __free_pages_core(page, 0); 1965 } 1966 } 1967 1968 /* Completion tracking for deferred_init_memmap() threads */ 1969 static atomic_t pgdat_init_n_undone __initdata; 1970 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1971 1972 static inline void __init pgdat_init_report_one_done(void) 1973 { 1974 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1975 complete(&pgdat_init_all_done_comp); 1976 } 1977 1978 /* 1979 * Returns true if page needs to be initialized or freed to buddy allocator. 1980 * 1981 * We check if a current MAX_ORDER block is valid by only checking the validity 1982 * of the head pfn. 1983 */ 1984 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1985 { 1986 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) 1987 return false; 1988 return true; 1989 } 1990 1991 /* 1992 * Free pages to buddy allocator. Try to free aligned pages in 1993 * MAX_ORDER_NR_PAGES sizes. 1994 */ 1995 static void __init deferred_free_pages(unsigned long pfn, 1996 unsigned long end_pfn) 1997 { 1998 unsigned long nr_free = 0; 1999 2000 for (; pfn < end_pfn; pfn++) { 2001 if (!deferred_pfn_valid(pfn)) { 2002 deferred_free_range(pfn - nr_free, nr_free); 2003 nr_free = 0; 2004 } else if (IS_MAX_ORDER_ALIGNED(pfn)) { 2005 deferred_free_range(pfn - nr_free, nr_free); 2006 nr_free = 1; 2007 } else { 2008 nr_free++; 2009 } 2010 } 2011 /* Free the last block of pages to allocator */ 2012 deferred_free_range(pfn - nr_free, nr_free); 2013 } 2014 2015 /* 2016 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 2017 * by performing it only once every MAX_ORDER_NR_PAGES. 2018 * Return number of pages initialized. 2019 */ 2020 static unsigned long __init deferred_init_pages(struct zone *zone, 2021 unsigned long pfn, 2022 unsigned long end_pfn) 2023 { 2024 int nid = zone_to_nid(zone); 2025 unsigned long nr_pages = 0; 2026 int zid = zone_idx(zone); 2027 struct page *page = NULL; 2028 2029 for (; pfn < end_pfn; pfn++) { 2030 if (!deferred_pfn_valid(pfn)) { 2031 page = NULL; 2032 continue; 2033 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { 2034 page = pfn_to_page(pfn); 2035 } else { 2036 page++; 2037 } 2038 __init_single_page(page, pfn, zid, nid); 2039 nr_pages++; 2040 } 2041 return (nr_pages); 2042 } 2043 2044 /* 2045 * This function is meant to pre-load the iterator for the zone init. 2046 * Specifically it walks through the ranges until we are caught up to the 2047 * first_init_pfn value and exits there. If we never encounter the value we 2048 * return false indicating there are no valid ranges left. 2049 */ 2050 static bool __init 2051 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2052 unsigned long *spfn, unsigned long *epfn, 2053 unsigned long first_init_pfn) 2054 { 2055 u64 j; 2056 2057 /* 2058 * Start out by walking through the ranges in this zone that have 2059 * already been initialized. We don't need to do anything with them 2060 * so we just need to flush them out of the system. 2061 */ 2062 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2063 if (*epfn <= first_init_pfn) 2064 continue; 2065 if (*spfn < first_init_pfn) 2066 *spfn = first_init_pfn; 2067 *i = j; 2068 return true; 2069 } 2070 2071 return false; 2072 } 2073 2074 /* 2075 * Initialize and free pages. We do it in two loops: first we initialize 2076 * struct page, then free to buddy allocator, because while we are 2077 * freeing pages we can access pages that are ahead (computing buddy 2078 * page in __free_one_page()). 2079 * 2080 * In order to try and keep some memory in the cache we have the loop 2081 * broken along max page order boundaries. This way we will not cause 2082 * any issues with the buddy page computation. 2083 */ 2084 static unsigned long __init 2085 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2086 unsigned long *end_pfn) 2087 { 2088 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2089 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2090 unsigned long nr_pages = 0; 2091 u64 j = *i; 2092 2093 /* First we loop through and initialize the page values */ 2094 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2095 unsigned long t; 2096 2097 if (mo_pfn <= *start_pfn) 2098 break; 2099 2100 t = min(mo_pfn, *end_pfn); 2101 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2102 2103 if (mo_pfn < *end_pfn) { 2104 *start_pfn = mo_pfn; 2105 break; 2106 } 2107 } 2108 2109 /* Reset values and now loop through freeing pages as needed */ 2110 swap(j, *i); 2111 2112 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2113 unsigned long t; 2114 2115 if (mo_pfn <= spfn) 2116 break; 2117 2118 t = min(mo_pfn, epfn); 2119 deferred_free_pages(spfn, t); 2120 2121 if (mo_pfn <= epfn) 2122 break; 2123 } 2124 2125 return nr_pages; 2126 } 2127 2128 static void __init 2129 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2130 void *arg) 2131 { 2132 unsigned long spfn, epfn; 2133 struct zone *zone = arg; 2134 u64 i; 2135 2136 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2137 2138 /* 2139 * Initialize and free pages in MAX_ORDER sized increments so that we 2140 * can avoid introducing any issues with the buddy allocator. 2141 */ 2142 while (spfn < end_pfn) { 2143 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2144 cond_resched(); 2145 } 2146 } 2147 2148 /* An arch may override for more concurrency. */ 2149 __weak int __init 2150 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2151 { 2152 return 1; 2153 } 2154 2155 /* Initialise remaining memory on a node */ 2156 static int __init deferred_init_memmap(void *data) 2157 { 2158 pg_data_t *pgdat = data; 2159 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2160 unsigned long spfn = 0, epfn = 0; 2161 unsigned long first_init_pfn, flags; 2162 unsigned long start = jiffies; 2163 struct zone *zone; 2164 int zid, max_threads; 2165 u64 i; 2166 2167 /* Bind memory initialisation thread to a local node if possible */ 2168 if (!cpumask_empty(cpumask)) 2169 set_cpus_allowed_ptr(current, cpumask); 2170 2171 pgdat_resize_lock(pgdat, &flags); 2172 first_init_pfn = pgdat->first_deferred_pfn; 2173 if (first_init_pfn == ULONG_MAX) { 2174 pgdat_resize_unlock(pgdat, &flags); 2175 pgdat_init_report_one_done(); 2176 return 0; 2177 } 2178 2179 /* Sanity check boundaries */ 2180 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2181 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2182 pgdat->first_deferred_pfn = ULONG_MAX; 2183 2184 /* 2185 * Once we unlock here, the zone cannot be grown anymore, thus if an 2186 * interrupt thread must allocate this early in boot, zone must be 2187 * pre-grown prior to start of deferred page initialization. 2188 */ 2189 pgdat_resize_unlock(pgdat, &flags); 2190 2191 /* Only the highest zone is deferred so find it */ 2192 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2193 zone = pgdat->node_zones + zid; 2194 if (first_init_pfn < zone_end_pfn(zone)) 2195 break; 2196 } 2197 2198 /* If the zone is empty somebody else may have cleared out the zone */ 2199 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2200 first_init_pfn)) 2201 goto zone_empty; 2202 2203 max_threads = deferred_page_init_max_threads(cpumask); 2204 2205 while (spfn < epfn) { 2206 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2207 struct padata_mt_job job = { 2208 .thread_fn = deferred_init_memmap_chunk, 2209 .fn_arg = zone, 2210 .start = spfn, 2211 .size = epfn_align - spfn, 2212 .align = PAGES_PER_SECTION, 2213 .min_chunk = PAGES_PER_SECTION, 2214 .max_threads = max_threads, 2215 }; 2216 2217 padata_do_multithreaded(&job); 2218 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2219 epfn_align); 2220 } 2221 zone_empty: 2222 /* Sanity check that the next zone really is unpopulated */ 2223 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2224 2225 pr_info("node %d deferred pages initialised in %ums\n", 2226 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2227 2228 pgdat_init_report_one_done(); 2229 return 0; 2230 } 2231 2232 /* 2233 * If this zone has deferred pages, try to grow it by initializing enough 2234 * deferred pages to satisfy the allocation specified by order, rounded up to 2235 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2236 * of SECTION_SIZE bytes by initializing struct pages in increments of 2237 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2238 * 2239 * Return true when zone was grown, otherwise return false. We return true even 2240 * when we grow less than requested, to let the caller decide if there are 2241 * enough pages to satisfy the allocation. 2242 * 2243 * Note: We use noinline because this function is needed only during boot, and 2244 * it is called from a __ref function _deferred_grow_zone. This way we are 2245 * making sure that it is not inlined into permanent text section. 2246 */ 2247 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2248 { 2249 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2250 pg_data_t *pgdat = zone->zone_pgdat; 2251 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2252 unsigned long spfn, epfn, flags; 2253 unsigned long nr_pages = 0; 2254 u64 i; 2255 2256 /* Only the last zone may have deferred pages */ 2257 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2258 return false; 2259 2260 pgdat_resize_lock(pgdat, &flags); 2261 2262 /* 2263 * If someone grew this zone while we were waiting for spinlock, return 2264 * true, as there might be enough pages already. 2265 */ 2266 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2267 pgdat_resize_unlock(pgdat, &flags); 2268 return true; 2269 } 2270 2271 /* If the zone is empty somebody else may have cleared out the zone */ 2272 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2273 first_deferred_pfn)) { 2274 pgdat->first_deferred_pfn = ULONG_MAX; 2275 pgdat_resize_unlock(pgdat, &flags); 2276 /* Retry only once. */ 2277 return first_deferred_pfn != ULONG_MAX; 2278 } 2279 2280 /* 2281 * Initialize and free pages in MAX_ORDER sized increments so 2282 * that we can avoid introducing any issues with the buddy 2283 * allocator. 2284 */ 2285 while (spfn < epfn) { 2286 /* update our first deferred PFN for this section */ 2287 first_deferred_pfn = spfn; 2288 2289 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2290 touch_nmi_watchdog(); 2291 2292 /* We should only stop along section boundaries */ 2293 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2294 continue; 2295 2296 /* If our quota has been met we can stop here */ 2297 if (nr_pages >= nr_pages_needed) 2298 break; 2299 } 2300 2301 pgdat->first_deferred_pfn = spfn; 2302 pgdat_resize_unlock(pgdat, &flags); 2303 2304 return nr_pages > 0; 2305 } 2306 2307 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2308 2309 #ifdef CONFIG_CMA 2310 void __init init_cma_reserved_pageblock(struct page *page) 2311 { 2312 unsigned i = pageblock_nr_pages; 2313 struct page *p = page; 2314 2315 do { 2316 __ClearPageReserved(p); 2317 set_page_count(p, 0); 2318 } while (++p, --i); 2319 2320 set_pageblock_migratetype(page, MIGRATE_CMA); 2321 set_page_refcounted(page); 2322 __free_pages(page, pageblock_order); 2323 2324 adjust_managed_page_count(page, pageblock_nr_pages); 2325 page_zone(page)->cma_pages += pageblock_nr_pages; 2326 } 2327 #endif 2328 2329 void __init page_alloc_init_late(void) 2330 { 2331 struct zone *zone; 2332 int nid; 2333 2334 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2335 2336 /* There will be num_node_state(N_MEMORY) threads */ 2337 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2338 for_each_node_state(nid, N_MEMORY) { 2339 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2340 } 2341 2342 /* Block until all are initialised */ 2343 wait_for_completion(&pgdat_init_all_done_comp); 2344 2345 /* 2346 * We initialized the rest of the deferred pages. Permanently disable 2347 * on-demand struct page initialization. 2348 */ 2349 static_branch_disable(&deferred_pages); 2350 2351 /* Reinit limits that are based on free pages after the kernel is up */ 2352 files_maxfiles_init(); 2353 #endif 2354 2355 buffer_init(); 2356 2357 /* Discard memblock private memory */ 2358 memblock_discard(); 2359 2360 for_each_node_state(nid, N_MEMORY) 2361 shuffle_free_memory(NODE_DATA(nid)); 2362 2363 for_each_populated_zone(zone) 2364 set_zone_contiguous(zone); 2365 2366 /* Initialize page ext after all struct pages are initialized. */ 2367 if (deferred_struct_pages) 2368 page_ext_init(); 2369 } 2370 2371 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2372 /* 2373 * Returns the number of pages that arch has reserved but 2374 * is not known to alloc_large_system_hash(). 2375 */ 2376 static unsigned long __init arch_reserved_kernel_pages(void) 2377 { 2378 return 0; 2379 } 2380 #endif 2381 2382 /* 2383 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2384 * machines. As memory size is increased the scale is also increased but at 2385 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2386 * quadruples the scale is increased by one, which means the size of hash table 2387 * only doubles, instead of quadrupling as well. 2388 * Because 32-bit systems cannot have large physical memory, where this scaling 2389 * makes sense, it is disabled on such platforms. 2390 */ 2391 #if __BITS_PER_LONG > 32 2392 #define ADAPT_SCALE_BASE (64ul << 30) 2393 #define ADAPT_SCALE_SHIFT 2 2394 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2395 #endif 2396 2397 /* 2398 * allocate a large system hash table from bootmem 2399 * - it is assumed that the hash table must contain an exact power-of-2 2400 * quantity of entries 2401 * - limit is the number of hash buckets, not the total allocation size 2402 */ 2403 void *__init alloc_large_system_hash(const char *tablename, 2404 unsigned long bucketsize, 2405 unsigned long numentries, 2406 int scale, 2407 int flags, 2408 unsigned int *_hash_shift, 2409 unsigned int *_hash_mask, 2410 unsigned long low_limit, 2411 unsigned long high_limit) 2412 { 2413 unsigned long long max = high_limit; 2414 unsigned long log2qty, size; 2415 void *table; 2416 gfp_t gfp_flags; 2417 bool virt; 2418 bool huge; 2419 2420 /* allow the kernel cmdline to have a say */ 2421 if (!numentries) { 2422 /* round applicable memory size up to nearest megabyte */ 2423 numentries = nr_kernel_pages; 2424 numentries -= arch_reserved_kernel_pages(); 2425 2426 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2427 if (PAGE_SIZE < SZ_1M) 2428 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2429 2430 #if __BITS_PER_LONG > 32 2431 if (!high_limit) { 2432 unsigned long adapt; 2433 2434 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2435 adapt <<= ADAPT_SCALE_SHIFT) 2436 scale++; 2437 } 2438 #endif 2439 2440 /* limit to 1 bucket per 2^scale bytes of low memory */ 2441 if (scale > PAGE_SHIFT) 2442 numentries >>= (scale - PAGE_SHIFT); 2443 else 2444 numentries <<= (PAGE_SHIFT - scale); 2445 2446 /* Make sure we've got at least a 0-order allocation.. */ 2447 if (unlikely(flags & HASH_SMALL)) { 2448 /* Makes no sense without HASH_EARLY */ 2449 WARN_ON(!(flags & HASH_EARLY)); 2450 if (!(numentries >> *_hash_shift)) { 2451 numentries = 1UL << *_hash_shift; 2452 BUG_ON(!numentries); 2453 } 2454 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2455 numentries = PAGE_SIZE / bucketsize; 2456 } 2457 numentries = roundup_pow_of_two(numentries); 2458 2459 /* limit allocation size to 1/16 total memory by default */ 2460 if (max == 0) { 2461 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2462 do_div(max, bucketsize); 2463 } 2464 max = min(max, 0x80000000ULL); 2465 2466 if (numentries < low_limit) 2467 numentries = low_limit; 2468 if (numentries > max) 2469 numentries = max; 2470 2471 log2qty = ilog2(numentries); 2472 2473 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2474 do { 2475 virt = false; 2476 size = bucketsize << log2qty; 2477 if (flags & HASH_EARLY) { 2478 if (flags & HASH_ZERO) 2479 table = memblock_alloc(size, SMP_CACHE_BYTES); 2480 else 2481 table = memblock_alloc_raw(size, 2482 SMP_CACHE_BYTES); 2483 } else if (get_order(size) > MAX_ORDER || hashdist) { 2484 table = vmalloc_huge(size, gfp_flags); 2485 virt = true; 2486 if (table) 2487 huge = is_vm_area_hugepages(table); 2488 } else { 2489 /* 2490 * If bucketsize is not a power-of-two, we may free 2491 * some pages at the end of hash table which 2492 * alloc_pages_exact() automatically does 2493 */ 2494 table = alloc_pages_exact(size, gfp_flags); 2495 kmemleak_alloc(table, size, 1, gfp_flags); 2496 } 2497 } while (!table && size > PAGE_SIZE && --log2qty); 2498 2499 if (!table) 2500 panic("Failed to allocate %s hash table\n", tablename); 2501 2502 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2503 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2504 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2505 2506 if (_hash_shift) 2507 *_hash_shift = log2qty; 2508 if (_hash_mask) 2509 *_hash_mask = (1 << log2qty) - 1; 2510 2511 return table; 2512 } 2513 2514 /** 2515 * set_dma_reserve - set the specified number of pages reserved in the first zone 2516 * @new_dma_reserve: The number of pages to mark reserved 2517 * 2518 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 2519 * In the DMA zone, a significant percentage may be consumed by kernel image 2520 * and other unfreeable allocations which can skew the watermarks badly. This 2521 * function may optionally be used to account for unfreeable pages in the 2522 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2523 * smaller per-cpu batchsize. 2524 */ 2525 void __init set_dma_reserve(unsigned long new_dma_reserve) 2526 { 2527 dma_reserve = new_dma_reserve; 2528 } 2529 2530 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2531 unsigned int order) 2532 { 2533 if (!early_page_initialised(pfn)) 2534 return; 2535 if (!kmsan_memblock_free_pages(page, order)) { 2536 /* KMSAN will take care of these pages. */ 2537 return; 2538 } 2539 __free_pages_core(page, order); 2540 } 2541 2542 static bool _init_on_alloc_enabled_early __read_mostly 2543 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2544 static int __init early_init_on_alloc(char *buf) 2545 { 2546 2547 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2548 } 2549 early_param("init_on_alloc", early_init_on_alloc); 2550 2551 static bool _init_on_free_enabled_early __read_mostly 2552 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2553 static int __init early_init_on_free(char *buf) 2554 { 2555 return kstrtobool(buf, &_init_on_free_enabled_early); 2556 } 2557 early_param("init_on_free", early_init_on_free); 2558 2559 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2560 2561 /* 2562 * Enable static keys related to various memory debugging and hardening options. 2563 * Some override others, and depend on early params that are evaluated in the 2564 * order of appearance. So we need to first gather the full picture of what was 2565 * enabled, and then make decisions. 2566 */ 2567 static void __init mem_debugging_and_hardening_init(void) 2568 { 2569 bool page_poisoning_requested = false; 2570 bool want_check_pages = false; 2571 2572 #ifdef CONFIG_PAGE_POISONING 2573 /* 2574 * Page poisoning is debug page alloc for some arches. If 2575 * either of those options are enabled, enable poisoning. 2576 */ 2577 if (page_poisoning_enabled() || 2578 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2579 debug_pagealloc_enabled())) { 2580 static_branch_enable(&_page_poisoning_enabled); 2581 page_poisoning_requested = true; 2582 want_check_pages = true; 2583 } 2584 #endif 2585 2586 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2587 page_poisoning_requested) { 2588 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2589 "will take precedence over init_on_alloc and init_on_free\n"); 2590 _init_on_alloc_enabled_early = false; 2591 _init_on_free_enabled_early = false; 2592 } 2593 2594 if (_init_on_alloc_enabled_early) { 2595 want_check_pages = true; 2596 static_branch_enable(&init_on_alloc); 2597 } else { 2598 static_branch_disable(&init_on_alloc); 2599 } 2600 2601 if (_init_on_free_enabled_early) { 2602 want_check_pages = true; 2603 static_branch_enable(&init_on_free); 2604 } else { 2605 static_branch_disable(&init_on_free); 2606 } 2607 2608 if (IS_ENABLED(CONFIG_KMSAN) && 2609 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2610 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2611 2612 #ifdef CONFIG_DEBUG_PAGEALLOC 2613 if (debug_pagealloc_enabled()) { 2614 want_check_pages = true; 2615 static_branch_enable(&_debug_pagealloc_enabled); 2616 2617 if (debug_guardpage_minorder()) 2618 static_branch_enable(&_debug_guardpage_enabled); 2619 } 2620 #endif 2621 2622 /* 2623 * Any page debugging or hardening option also enables sanity checking 2624 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2625 * enabled already. 2626 */ 2627 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2628 static_branch_enable(&check_pages_enabled); 2629 } 2630 2631 /* Report memory auto-initialization states for this boot. */ 2632 static void __init report_meminit(void) 2633 { 2634 const char *stack; 2635 2636 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2637 stack = "all(pattern)"; 2638 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2639 stack = "all(zero)"; 2640 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2641 stack = "byref_all(zero)"; 2642 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2643 stack = "byref(zero)"; 2644 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2645 stack = "__user(zero)"; 2646 else 2647 stack = "off"; 2648 2649 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2650 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2651 want_init_on_free() ? "on" : "off"); 2652 if (want_init_on_free()) 2653 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2654 } 2655 2656 static void __init mem_init_print_info(void) 2657 { 2658 unsigned long physpages, codesize, datasize, rosize, bss_size; 2659 unsigned long init_code_size, init_data_size; 2660 2661 physpages = get_num_physpages(); 2662 codesize = _etext - _stext; 2663 datasize = _edata - _sdata; 2664 rosize = __end_rodata - __start_rodata; 2665 bss_size = __bss_stop - __bss_start; 2666 init_data_size = __init_end - __init_begin; 2667 init_code_size = _einittext - _sinittext; 2668 2669 /* 2670 * Detect special cases and adjust section sizes accordingly: 2671 * 1) .init.* may be embedded into .data sections 2672 * 2) .init.text.* may be out of [__init_begin, __init_end], 2673 * please refer to arch/tile/kernel/vmlinux.lds.S. 2674 * 3) .rodata.* may be embedded into .text or .data sections. 2675 */ 2676 #define adj_init_size(start, end, size, pos, adj) \ 2677 do { \ 2678 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2679 size -= adj; \ 2680 } while (0) 2681 2682 adj_init_size(__init_begin, __init_end, init_data_size, 2683 _sinittext, init_code_size); 2684 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2685 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2686 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2687 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2688 2689 #undef adj_init_size 2690 2691 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2692 #ifdef CONFIG_HIGHMEM 2693 ", %luK highmem" 2694 #endif 2695 ")\n", 2696 K(nr_free_pages()), K(physpages), 2697 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2698 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2699 K(physpages - totalram_pages() - totalcma_pages), 2700 K(totalcma_pages) 2701 #ifdef CONFIG_HIGHMEM 2702 , K(totalhigh_pages()) 2703 #endif 2704 ); 2705 } 2706 2707 /* 2708 * Set up kernel memory allocators 2709 */ 2710 void __init mm_core_init(void) 2711 { 2712 /* Initializations relying on SMP setup */ 2713 build_all_zonelists(NULL); 2714 page_alloc_init_cpuhp(); 2715 2716 /* 2717 * page_ext requires contiguous pages, 2718 * bigger than MAX_ORDER unless SPARSEMEM. 2719 */ 2720 page_ext_init_flatmem(); 2721 mem_debugging_and_hardening_init(); 2722 kfence_alloc_pool(); 2723 report_meminit(); 2724 kmsan_init_shadow(); 2725 stack_depot_early_init(); 2726 mem_init(); 2727 mem_init_print_info(); 2728 kmem_cache_init(); 2729 /* 2730 * page_owner must be initialized after buddy is ready, and also after 2731 * slab is ready so that stack_depot_init() works properly 2732 */ 2733 page_ext_init_flatmem_late(); 2734 kmemleak_init(); 2735 ptlock_cache_init(); 2736 pgtable_cache_init(); 2737 debug_objects_mem_init(); 2738 vmalloc_init(); 2739 /* If no deferred init page_ext now, as vmap is fully initialized */ 2740 if (!deferred_struct_pages) 2741 page_ext_init(); 2742 /* Should be run before the first non-init thread is created */ 2743 init_espfix_bsp(); 2744 /* Should be run after espfix64 is set up. */ 2745 pti_init(); 2746 kmsan_init_runtime(); 2747 mm_cache_init(); 2748 } 2749