1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/swap.h> 28 #include <linux/cma.h> 29 #include "internal.h" 30 #include "slab.h" 31 #include "shuffle.h" 32 33 #include <asm/setup.h> 34 35 #ifdef CONFIG_DEBUG_MEMORY_INIT 36 int __meminitdata mminit_loglevel; 37 38 /* The zonelists are simply reported, validation is manual. */ 39 void __init mminit_verify_zonelist(void) 40 { 41 int nid; 42 43 if (mminit_loglevel < MMINIT_VERIFY) 44 return; 45 46 for_each_online_node(nid) { 47 pg_data_t *pgdat = NODE_DATA(nid); 48 struct zone *zone; 49 struct zoneref *z; 50 struct zonelist *zonelist; 51 int i, listid, zoneid; 52 53 BUILD_BUG_ON(MAX_ZONELISTS > 2); 54 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 55 56 /* Identify the zone and nodelist */ 57 zoneid = i % MAX_NR_ZONES; 58 listid = i / MAX_NR_ZONES; 59 zonelist = &pgdat->node_zonelists[listid]; 60 zone = &pgdat->node_zones[zoneid]; 61 if (!populated_zone(zone)) 62 continue; 63 64 /* Print information about the zonelist */ 65 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 66 listid > 0 ? "thisnode" : "general", nid, 67 zone->name); 68 69 /* Iterate the zonelist */ 70 for_each_zone_zonelist(zone, z, zonelist, zoneid) 71 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 72 pr_cont("\n"); 73 } 74 } 75 } 76 77 void __init mminit_verify_pageflags_layout(void) 78 { 79 int shift, width; 80 unsigned long or_mask, add_mask; 81 82 shift = 8 * sizeof(unsigned long); 83 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 84 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 85 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 86 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 87 SECTIONS_WIDTH, 88 NODES_WIDTH, 89 ZONES_WIDTH, 90 LAST_CPUPID_WIDTH, 91 KASAN_TAG_WIDTH, 92 LRU_GEN_WIDTH, 93 LRU_REFS_WIDTH, 94 NR_PAGEFLAGS); 95 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 96 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 97 SECTIONS_SHIFT, 98 NODES_SHIFT, 99 ZONES_SHIFT, 100 LAST_CPUPID_SHIFT, 101 KASAN_TAG_WIDTH); 102 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 103 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 104 (unsigned long)SECTIONS_PGSHIFT, 105 (unsigned long)NODES_PGSHIFT, 106 (unsigned long)ZONES_PGSHIFT, 107 (unsigned long)LAST_CPUPID_PGSHIFT, 108 (unsigned long)KASAN_TAG_PGSHIFT); 109 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 110 "Node/Zone ID: %lu -> %lu\n", 111 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 112 (unsigned long)ZONEID_PGOFF); 113 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 114 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 115 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 116 #ifdef NODE_NOT_IN_PAGE_FLAGS 117 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 118 "Node not in page flags"); 119 #endif 120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 122 "Last cpupid not in page flags"); 123 #endif 124 125 if (SECTIONS_WIDTH) { 126 shift -= SECTIONS_WIDTH; 127 BUG_ON(shift != SECTIONS_PGSHIFT); 128 } 129 if (NODES_WIDTH) { 130 shift -= NODES_WIDTH; 131 BUG_ON(shift != NODES_PGSHIFT); 132 } 133 if (ZONES_WIDTH) { 134 shift -= ZONES_WIDTH; 135 BUG_ON(shift != ZONES_PGSHIFT); 136 } 137 138 /* Check for bitmask overlaps */ 139 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 140 (NODES_MASK << NODES_PGSHIFT) | 141 (SECTIONS_MASK << SECTIONS_PGSHIFT); 142 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 143 (NODES_MASK << NODES_PGSHIFT) + 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 BUG_ON(or_mask != add_mask); 146 } 147 148 static __init int set_mminit_loglevel(char *str) 149 { 150 get_option(&str, &mminit_loglevel); 151 return 0; 152 } 153 early_param("mminit_loglevel", set_mminit_loglevel); 154 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 155 156 struct kobject *mm_kobj; 157 EXPORT_SYMBOL_GPL(mm_kobj); 158 159 #ifdef CONFIG_SMP 160 s32 vm_committed_as_batch = 32; 161 162 void mm_compute_batch(int overcommit_policy) 163 { 164 u64 memsized_batch; 165 s32 nr = num_present_cpus(); 166 s32 batch = max_t(s32, nr*2, 32); 167 unsigned long ram_pages = totalram_pages(); 168 169 /* 170 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 171 * (total memory/#cpus), and lift it to 25% for other policies 172 * to easy the possible lock contention for percpu_counter 173 * vm_committed_as, while the max limit is INT_MAX 174 */ 175 if (overcommit_policy == OVERCOMMIT_NEVER) 176 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 177 else 178 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 179 180 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 181 } 182 183 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 184 unsigned long action, void *arg) 185 { 186 switch (action) { 187 case MEM_ONLINE: 188 case MEM_OFFLINE: 189 mm_compute_batch(sysctl_overcommit_memory); 190 break; 191 default: 192 break; 193 } 194 return NOTIFY_OK; 195 } 196 197 static int __init mm_compute_batch_init(void) 198 { 199 mm_compute_batch(sysctl_overcommit_memory); 200 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 201 return 0; 202 } 203 204 __initcall(mm_compute_batch_init); 205 206 #endif 207 208 static int __init mm_sysfs_init(void) 209 { 210 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 211 if (!mm_kobj) 212 return -ENOMEM; 213 214 return 0; 215 } 216 postcore_initcall(mm_sysfs_init); 217 218 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 219 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 220 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 221 222 static unsigned long required_kernelcore __initdata; 223 static unsigned long required_kernelcore_percent __initdata; 224 static unsigned long required_movablecore __initdata; 225 static unsigned long required_movablecore_percent __initdata; 226 227 static unsigned long nr_kernel_pages __initdata; 228 static unsigned long nr_all_pages __initdata; 229 static unsigned long dma_reserve __initdata; 230 231 static bool deferred_struct_pages __meminitdata; 232 233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 234 235 static int __init cmdline_parse_core(char *p, unsigned long *core, 236 unsigned long *percent) 237 { 238 unsigned long long coremem; 239 char *endptr; 240 241 if (!p) 242 return -EINVAL; 243 244 /* Value may be a percentage of total memory, otherwise bytes */ 245 coremem = simple_strtoull(p, &endptr, 0); 246 if (*endptr == '%') { 247 /* Paranoid check for percent values greater than 100 */ 248 WARN_ON(coremem > 100); 249 250 *percent = coremem; 251 } else { 252 coremem = memparse(p, &p); 253 /* Paranoid check that UL is enough for the coremem value */ 254 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 255 256 *core = coremem >> PAGE_SHIFT; 257 *percent = 0UL; 258 } 259 return 0; 260 } 261 262 /* 263 * kernelcore=size sets the amount of memory for use for allocations that 264 * cannot be reclaimed or migrated. 265 */ 266 static int __init cmdline_parse_kernelcore(char *p) 267 { 268 /* parse kernelcore=mirror */ 269 if (parse_option_str(p, "mirror")) { 270 mirrored_kernelcore = true; 271 return 0; 272 } 273 274 return cmdline_parse_core(p, &required_kernelcore, 275 &required_kernelcore_percent); 276 } 277 early_param("kernelcore", cmdline_parse_kernelcore); 278 279 /* 280 * movablecore=size sets the amount of memory for use for allocations that 281 * can be reclaimed or migrated. 282 */ 283 static int __init cmdline_parse_movablecore(char *p) 284 { 285 return cmdline_parse_core(p, &required_movablecore, 286 &required_movablecore_percent); 287 } 288 early_param("movablecore", cmdline_parse_movablecore); 289 290 /* 291 * early_calculate_totalpages() 292 * Sum pages in active regions for movable zone. 293 * Populate N_MEMORY for calculating usable_nodes. 294 */ 295 static unsigned long __init early_calculate_totalpages(void) 296 { 297 unsigned long totalpages = 0; 298 unsigned long start_pfn, end_pfn; 299 int i, nid; 300 301 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 302 unsigned long pages = end_pfn - start_pfn; 303 304 totalpages += pages; 305 if (pages) 306 node_set_state(nid, N_MEMORY); 307 } 308 return totalpages; 309 } 310 311 /* 312 * This finds a zone that can be used for ZONE_MOVABLE pages. The 313 * assumption is made that zones within a node are ordered in monotonic 314 * increasing memory addresses so that the "highest" populated zone is used 315 */ 316 static void __init find_usable_zone_for_movable(void) 317 { 318 int zone_index; 319 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 320 if (zone_index == ZONE_MOVABLE) 321 continue; 322 323 if (arch_zone_highest_possible_pfn[zone_index] > 324 arch_zone_lowest_possible_pfn[zone_index]) 325 break; 326 } 327 328 VM_BUG_ON(zone_index == -1); 329 movable_zone = zone_index; 330 } 331 332 /* 333 * Find the PFN the Movable zone begins in each node. Kernel memory 334 * is spread evenly between nodes as long as the nodes have enough 335 * memory. When they don't, some nodes will have more kernelcore than 336 * others 337 */ 338 static void __init find_zone_movable_pfns_for_nodes(void) 339 { 340 int i, nid; 341 unsigned long usable_startpfn; 342 unsigned long kernelcore_node, kernelcore_remaining; 343 /* save the state before borrow the nodemask */ 344 nodemask_t saved_node_state = node_states[N_MEMORY]; 345 unsigned long totalpages = early_calculate_totalpages(); 346 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 347 struct memblock_region *r; 348 349 /* Need to find movable_zone earlier when movable_node is specified. */ 350 find_usable_zone_for_movable(); 351 352 /* 353 * If movable_node is specified, ignore kernelcore and movablecore 354 * options. 355 */ 356 if (movable_node_is_enabled()) { 357 for_each_mem_region(r) { 358 if (!memblock_is_hotpluggable(r)) 359 continue; 360 361 nid = memblock_get_region_node(r); 362 363 usable_startpfn = PFN_DOWN(r->base); 364 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 365 min(usable_startpfn, zone_movable_pfn[nid]) : 366 usable_startpfn; 367 } 368 369 goto out2; 370 } 371 372 /* 373 * If kernelcore=mirror is specified, ignore movablecore option 374 */ 375 if (mirrored_kernelcore) { 376 bool mem_below_4gb_not_mirrored = false; 377 378 for_each_mem_region(r) { 379 if (memblock_is_mirror(r)) 380 continue; 381 382 nid = memblock_get_region_node(r); 383 384 usable_startpfn = memblock_region_memory_base_pfn(r); 385 386 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 387 mem_below_4gb_not_mirrored = true; 388 continue; 389 } 390 391 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 392 min(usable_startpfn, zone_movable_pfn[nid]) : 393 usable_startpfn; 394 } 395 396 if (mem_below_4gb_not_mirrored) 397 pr_warn("This configuration results in unmirrored kernel memory.\n"); 398 399 goto out2; 400 } 401 402 /* 403 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 404 * amount of necessary memory. 405 */ 406 if (required_kernelcore_percent) 407 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 408 10000UL; 409 if (required_movablecore_percent) 410 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 411 10000UL; 412 413 /* 414 * If movablecore= was specified, calculate what size of 415 * kernelcore that corresponds so that memory usable for 416 * any allocation type is evenly spread. If both kernelcore 417 * and movablecore are specified, then the value of kernelcore 418 * will be used for required_kernelcore if it's greater than 419 * what movablecore would have allowed. 420 */ 421 if (required_movablecore) { 422 unsigned long corepages; 423 424 /* 425 * Round-up so that ZONE_MOVABLE is at least as large as what 426 * was requested by the user 427 */ 428 required_movablecore = 429 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 430 required_movablecore = min(totalpages, required_movablecore); 431 corepages = totalpages - required_movablecore; 432 433 required_kernelcore = max(required_kernelcore, corepages); 434 } 435 436 /* 437 * If kernelcore was not specified or kernelcore size is larger 438 * than totalpages, there is no ZONE_MOVABLE. 439 */ 440 if (!required_kernelcore || required_kernelcore >= totalpages) 441 goto out; 442 443 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 444 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 445 446 restart: 447 /* Spread kernelcore memory as evenly as possible throughout nodes */ 448 kernelcore_node = required_kernelcore / usable_nodes; 449 for_each_node_state(nid, N_MEMORY) { 450 unsigned long start_pfn, end_pfn; 451 452 /* 453 * Recalculate kernelcore_node if the division per node 454 * now exceeds what is necessary to satisfy the requested 455 * amount of memory for the kernel 456 */ 457 if (required_kernelcore < kernelcore_node) 458 kernelcore_node = required_kernelcore / usable_nodes; 459 460 /* 461 * As the map is walked, we track how much memory is usable 462 * by the kernel using kernelcore_remaining. When it is 463 * 0, the rest of the node is usable by ZONE_MOVABLE 464 */ 465 kernelcore_remaining = kernelcore_node; 466 467 /* Go through each range of PFNs within this node */ 468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 469 unsigned long size_pages; 470 471 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 472 if (start_pfn >= end_pfn) 473 continue; 474 475 /* Account for what is only usable for kernelcore */ 476 if (start_pfn < usable_startpfn) { 477 unsigned long kernel_pages; 478 kernel_pages = min(end_pfn, usable_startpfn) 479 - start_pfn; 480 481 kernelcore_remaining -= min(kernel_pages, 482 kernelcore_remaining); 483 required_kernelcore -= min(kernel_pages, 484 required_kernelcore); 485 486 /* Continue if range is now fully accounted */ 487 if (end_pfn <= usable_startpfn) { 488 489 /* 490 * Push zone_movable_pfn to the end so 491 * that if we have to rebalance 492 * kernelcore across nodes, we will 493 * not double account here 494 */ 495 zone_movable_pfn[nid] = end_pfn; 496 continue; 497 } 498 start_pfn = usable_startpfn; 499 } 500 501 /* 502 * The usable PFN range for ZONE_MOVABLE is from 503 * start_pfn->end_pfn. Calculate size_pages as the 504 * number of pages used as kernelcore 505 */ 506 size_pages = end_pfn - start_pfn; 507 if (size_pages > kernelcore_remaining) 508 size_pages = kernelcore_remaining; 509 zone_movable_pfn[nid] = start_pfn + size_pages; 510 511 /* 512 * Some kernelcore has been met, update counts and 513 * break if the kernelcore for this node has been 514 * satisfied 515 */ 516 required_kernelcore -= min(required_kernelcore, 517 size_pages); 518 kernelcore_remaining -= size_pages; 519 if (!kernelcore_remaining) 520 break; 521 } 522 } 523 524 /* 525 * If there is still required_kernelcore, we do another pass with one 526 * less node in the count. This will push zone_movable_pfn[nid] further 527 * along on the nodes that still have memory until kernelcore is 528 * satisfied 529 */ 530 usable_nodes--; 531 if (usable_nodes && required_kernelcore > usable_nodes) 532 goto restart; 533 534 out2: 535 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 536 for (nid = 0; nid < MAX_NUMNODES; nid++) { 537 unsigned long start_pfn, end_pfn; 538 539 zone_movable_pfn[nid] = 540 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 541 542 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 543 if (zone_movable_pfn[nid] >= end_pfn) 544 zone_movable_pfn[nid] = 0; 545 } 546 547 out: 548 /* restore the node_state */ 549 node_states[N_MEMORY] = saved_node_state; 550 } 551 552 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 553 unsigned long zone, int nid) 554 { 555 mm_zero_struct_page(page); 556 set_page_links(page, zone, nid, pfn); 557 init_page_count(page); 558 page_mapcount_reset(page); 559 page_cpupid_reset_last(page); 560 page_kasan_tag_reset(page); 561 562 INIT_LIST_HEAD(&page->lru); 563 #ifdef WANT_PAGE_VIRTUAL 564 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 565 if (!is_highmem_idx(zone)) 566 set_page_address(page, __va(pfn << PAGE_SHIFT)); 567 #endif 568 } 569 570 #ifdef CONFIG_NUMA 571 /* 572 * During memory init memblocks map pfns to nids. The search is expensive and 573 * this caches recent lookups. The implementation of __early_pfn_to_nid 574 * treats start/end as pfns. 575 */ 576 struct mminit_pfnnid_cache { 577 unsigned long last_start; 578 unsigned long last_end; 579 int last_nid; 580 }; 581 582 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 583 584 /* 585 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 586 */ 587 static int __meminit __early_pfn_to_nid(unsigned long pfn, 588 struct mminit_pfnnid_cache *state) 589 { 590 unsigned long start_pfn, end_pfn; 591 int nid; 592 593 if (state->last_start <= pfn && pfn < state->last_end) 594 return state->last_nid; 595 596 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 597 if (nid != NUMA_NO_NODE) { 598 state->last_start = start_pfn; 599 state->last_end = end_pfn; 600 state->last_nid = nid; 601 } 602 603 return nid; 604 } 605 606 int __meminit early_pfn_to_nid(unsigned long pfn) 607 { 608 static DEFINE_SPINLOCK(early_pfn_lock); 609 int nid; 610 611 spin_lock(&early_pfn_lock); 612 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 613 if (nid < 0) 614 nid = first_online_node; 615 spin_unlock(&early_pfn_lock); 616 617 return nid; 618 } 619 620 int hashdist = HASHDIST_DEFAULT; 621 622 static int __init set_hashdist(char *str) 623 { 624 if (!str) 625 return 0; 626 hashdist = simple_strtoul(str, &str, 0); 627 return 1; 628 } 629 __setup("hashdist=", set_hashdist); 630 631 static inline void fixup_hashdist(void) 632 { 633 if (num_node_state(N_MEMORY) == 1) 634 hashdist = 0; 635 } 636 #else 637 static inline void fixup_hashdist(void) {} 638 #endif /* CONFIG_NUMA */ 639 640 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 641 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 642 { 643 pgdat->first_deferred_pfn = ULONG_MAX; 644 } 645 646 /* Returns true if the struct page for the pfn is initialised */ 647 static inline bool __meminit early_page_initialised(unsigned long pfn) 648 { 649 int nid = early_pfn_to_nid(pfn); 650 651 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 652 return false; 653 654 return true; 655 } 656 657 /* 658 * Returns true when the remaining initialisation should be deferred until 659 * later in the boot cycle when it can be parallelised. 660 */ 661 static bool __meminit 662 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 663 { 664 static unsigned long prev_end_pfn, nr_initialised; 665 666 if (early_page_ext_enabled()) 667 return false; 668 /* 669 * prev_end_pfn static that contains the end of previous zone 670 * No need to protect because called very early in boot before smp_init. 671 */ 672 if (prev_end_pfn != end_pfn) { 673 prev_end_pfn = end_pfn; 674 nr_initialised = 0; 675 } 676 677 /* Always populate low zones for address-constrained allocations */ 678 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 679 return false; 680 681 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 682 return true; 683 /* 684 * We start only with one section of pages, more pages are added as 685 * needed until the rest of deferred pages are initialized. 686 */ 687 nr_initialised++; 688 if ((nr_initialised > PAGES_PER_SECTION) && 689 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 690 NODE_DATA(nid)->first_deferred_pfn = pfn; 691 return true; 692 } 693 return false; 694 } 695 696 static void __meminit init_reserved_page(unsigned long pfn) 697 { 698 pg_data_t *pgdat; 699 int nid, zid; 700 701 if (early_page_initialised(pfn)) 702 return; 703 704 nid = early_pfn_to_nid(pfn); 705 pgdat = NODE_DATA(nid); 706 707 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 708 struct zone *zone = &pgdat->node_zones[zid]; 709 710 if (zone_spans_pfn(zone, pfn)) 711 break; 712 } 713 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 714 } 715 #else 716 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 717 718 static inline bool early_page_initialised(unsigned long pfn) 719 { 720 return true; 721 } 722 723 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 724 { 725 return false; 726 } 727 728 static inline void init_reserved_page(unsigned long pfn) 729 { 730 } 731 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 732 733 /* 734 * Initialised pages do not have PageReserved set. This function is 735 * called for each range allocated by the bootmem allocator and 736 * marks the pages PageReserved. The remaining valid pages are later 737 * sent to the buddy page allocator. 738 */ 739 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 740 { 741 unsigned long start_pfn = PFN_DOWN(start); 742 unsigned long end_pfn = PFN_UP(end); 743 744 for (; start_pfn < end_pfn; start_pfn++) { 745 if (pfn_valid(start_pfn)) { 746 struct page *page = pfn_to_page(start_pfn); 747 748 init_reserved_page(start_pfn); 749 750 /* Avoid false-positive PageTail() */ 751 INIT_LIST_HEAD(&page->lru); 752 753 /* 754 * no need for atomic set_bit because the struct 755 * page is not visible yet so nobody should 756 * access it yet. 757 */ 758 __SetPageReserved(page); 759 } 760 } 761 } 762 763 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 764 static bool __meminit 765 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 766 { 767 static struct memblock_region *r; 768 769 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 770 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 771 for_each_mem_region(r) { 772 if (*pfn < memblock_region_memory_end_pfn(r)) 773 break; 774 } 775 } 776 if (*pfn >= memblock_region_memory_base_pfn(r) && 777 memblock_is_mirror(r)) { 778 *pfn = memblock_region_memory_end_pfn(r); 779 return true; 780 } 781 } 782 return false; 783 } 784 785 /* 786 * Only struct pages that correspond to ranges defined by memblock.memory 787 * are zeroed and initialized by going through __init_single_page() during 788 * memmap_init_zone_range(). 789 * 790 * But, there could be struct pages that correspond to holes in 791 * memblock.memory. This can happen because of the following reasons: 792 * - physical memory bank size is not necessarily the exact multiple of the 793 * arbitrary section size 794 * - early reserved memory may not be listed in memblock.memory 795 * - memory layouts defined with memmap= kernel parameter may not align 796 * nicely with memmap sections 797 * 798 * Explicitly initialize those struct pages so that: 799 * - PG_Reserved is set 800 * - zone and node links point to zone and node that span the page if the 801 * hole is in the middle of a zone 802 * - zone and node links point to adjacent zone/node if the hole falls on 803 * the zone boundary; the pages in such holes will be prepended to the 804 * zone/node above the hole except for the trailing pages in the last 805 * section that will be appended to the zone/node below. 806 */ 807 static void __init init_unavailable_range(unsigned long spfn, 808 unsigned long epfn, 809 int zone, int node) 810 { 811 unsigned long pfn; 812 u64 pgcnt = 0; 813 814 for (pfn = spfn; pfn < epfn; pfn++) { 815 if (!pfn_valid(pageblock_start_pfn(pfn))) { 816 pfn = pageblock_end_pfn(pfn) - 1; 817 continue; 818 } 819 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 820 __SetPageReserved(pfn_to_page(pfn)); 821 pgcnt++; 822 } 823 824 if (pgcnt) 825 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 826 node, zone_names[zone], pgcnt); 827 } 828 829 /* 830 * Initially all pages are reserved - free ones are freed 831 * up by memblock_free_all() once the early boot process is 832 * done. Non-atomic initialization, single-pass. 833 * 834 * All aligned pageblocks are initialized to the specified migratetype 835 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 836 * zone stats (e.g., nr_isolate_pageblock) are touched. 837 */ 838 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 839 unsigned long start_pfn, unsigned long zone_end_pfn, 840 enum meminit_context context, 841 struct vmem_altmap *altmap, int migratetype) 842 { 843 unsigned long pfn, end_pfn = start_pfn + size; 844 struct page *page; 845 846 if (highest_memmap_pfn < end_pfn - 1) 847 highest_memmap_pfn = end_pfn - 1; 848 849 #ifdef CONFIG_ZONE_DEVICE 850 /* 851 * Honor reservation requested by the driver for this ZONE_DEVICE 852 * memory. We limit the total number of pages to initialize to just 853 * those that might contain the memory mapping. We will defer the 854 * ZONE_DEVICE page initialization until after we have released 855 * the hotplug lock. 856 */ 857 if (zone == ZONE_DEVICE) { 858 if (!altmap) 859 return; 860 861 if (start_pfn == altmap->base_pfn) 862 start_pfn += altmap->reserve; 863 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 864 } 865 #endif 866 867 for (pfn = start_pfn; pfn < end_pfn; ) { 868 /* 869 * There can be holes in boot-time mem_map[]s handed to this 870 * function. They do not exist on hotplugged memory. 871 */ 872 if (context == MEMINIT_EARLY) { 873 if (overlap_memmap_init(zone, &pfn)) 874 continue; 875 if (defer_init(nid, pfn, zone_end_pfn)) { 876 deferred_struct_pages = true; 877 break; 878 } 879 } 880 881 page = pfn_to_page(pfn); 882 __init_single_page(page, pfn, zone, nid); 883 if (context == MEMINIT_HOTPLUG) 884 __SetPageReserved(page); 885 886 /* 887 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 888 * such that unmovable allocations won't be scattered all 889 * over the place during system boot. 890 */ 891 if (pageblock_aligned(pfn)) { 892 set_pageblock_migratetype(page, migratetype); 893 cond_resched(); 894 } 895 pfn++; 896 } 897 } 898 899 static void __init memmap_init_zone_range(struct zone *zone, 900 unsigned long start_pfn, 901 unsigned long end_pfn, 902 unsigned long *hole_pfn) 903 { 904 unsigned long zone_start_pfn = zone->zone_start_pfn; 905 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 906 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 907 908 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 909 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 910 911 if (start_pfn >= end_pfn) 912 return; 913 914 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 915 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 916 917 if (*hole_pfn < start_pfn) 918 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 919 920 *hole_pfn = end_pfn; 921 } 922 923 static void __init memmap_init(void) 924 { 925 unsigned long start_pfn, end_pfn; 926 unsigned long hole_pfn = 0; 927 int i, j, zone_id = 0, nid; 928 929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 930 struct pglist_data *node = NODE_DATA(nid); 931 932 for (j = 0; j < MAX_NR_ZONES; j++) { 933 struct zone *zone = node->node_zones + j; 934 935 if (!populated_zone(zone)) 936 continue; 937 938 memmap_init_zone_range(zone, start_pfn, end_pfn, 939 &hole_pfn); 940 zone_id = j; 941 } 942 } 943 944 #ifdef CONFIG_SPARSEMEM 945 /* 946 * Initialize the memory map for hole in the range [memory_end, 947 * section_end]. 948 * Append the pages in this hole to the highest zone in the last 949 * node. 950 * The call to init_unavailable_range() is outside the ifdef to 951 * silence the compiler warining about zone_id set but not used; 952 * for FLATMEM it is a nop anyway 953 */ 954 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 955 if (hole_pfn < end_pfn) 956 #endif 957 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 958 } 959 960 #ifdef CONFIG_ZONE_DEVICE 961 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 962 unsigned long zone_idx, int nid, 963 struct dev_pagemap *pgmap) 964 { 965 966 __init_single_page(page, pfn, zone_idx, nid); 967 968 /* 969 * Mark page reserved as it will need to wait for onlining 970 * phase for it to be fully associated with a zone. 971 * 972 * We can use the non-atomic __set_bit operation for setting 973 * the flag as we are still initializing the pages. 974 */ 975 __SetPageReserved(page); 976 977 /* 978 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 979 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 980 * ever freed or placed on a driver-private list. 981 */ 982 page->pgmap = pgmap; 983 page->zone_device_data = NULL; 984 985 /* 986 * Mark the block movable so that blocks are reserved for 987 * movable at startup. This will force kernel allocations 988 * to reserve their blocks rather than leaking throughout 989 * the address space during boot when many long-lived 990 * kernel allocations are made. 991 * 992 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 993 * because this is done early in section_activate() 994 */ 995 if (pageblock_aligned(pfn)) { 996 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 997 cond_resched(); 998 } 999 1000 /* 1001 * ZONE_DEVICE pages are released directly to the driver page allocator 1002 * which will set the page count to 1 when allocating the page. 1003 */ 1004 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1005 pgmap->type == MEMORY_DEVICE_COHERENT) 1006 set_page_count(page, 0); 1007 } 1008 1009 /* 1010 * With compound page geometry and when struct pages are stored in ram most 1011 * tail pages are reused. Consequently, the amount of unique struct pages to 1012 * initialize is a lot smaller that the total amount of struct pages being 1013 * mapped. This is a paired / mild layering violation with explicit knowledge 1014 * of how the sparse_vmemmap internals handle compound pages in the lack 1015 * of an altmap. See vmemmap_populate_compound_pages(). 1016 */ 1017 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1018 struct dev_pagemap *pgmap) 1019 { 1020 if (!vmemmap_can_optimize(altmap, pgmap)) 1021 return pgmap_vmemmap_nr(pgmap); 1022 1023 return 2 * (PAGE_SIZE / sizeof(struct page)); 1024 } 1025 1026 static void __ref memmap_init_compound(struct page *head, 1027 unsigned long head_pfn, 1028 unsigned long zone_idx, int nid, 1029 struct dev_pagemap *pgmap, 1030 unsigned long nr_pages) 1031 { 1032 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1033 unsigned int order = pgmap->vmemmap_shift; 1034 1035 __SetPageHead(head); 1036 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1037 struct page *page = pfn_to_page(pfn); 1038 1039 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1040 prep_compound_tail(head, pfn - head_pfn); 1041 set_page_count(page, 0); 1042 1043 /* 1044 * The first tail page stores important compound page info. 1045 * Call prep_compound_head() after the first tail page has 1046 * been initialized, to not have the data overwritten. 1047 */ 1048 if (pfn == head_pfn + 1) 1049 prep_compound_head(head, order); 1050 } 1051 } 1052 1053 void __ref memmap_init_zone_device(struct zone *zone, 1054 unsigned long start_pfn, 1055 unsigned long nr_pages, 1056 struct dev_pagemap *pgmap) 1057 { 1058 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1059 struct pglist_data *pgdat = zone->zone_pgdat; 1060 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1061 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1062 unsigned long zone_idx = zone_idx(zone); 1063 unsigned long start = jiffies; 1064 int nid = pgdat->node_id; 1065 1066 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1067 return; 1068 1069 /* 1070 * The call to memmap_init should have already taken care 1071 * of the pages reserved for the memmap, so we can just jump to 1072 * the end of that region and start processing the device pages. 1073 */ 1074 if (altmap) { 1075 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1076 nr_pages = end_pfn - start_pfn; 1077 } 1078 1079 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1080 struct page *page = pfn_to_page(pfn); 1081 1082 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1083 1084 if (pfns_per_compound == 1) 1085 continue; 1086 1087 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1088 compound_nr_pages(altmap, pgmap)); 1089 } 1090 1091 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1092 nr_pages, jiffies_to_msecs(jiffies - start)); 1093 } 1094 #endif 1095 1096 /* 1097 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1098 * because it is sized independent of architecture. Unlike the other zones, 1099 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1100 * in each node depending on the size of each node and how evenly kernelcore 1101 * is distributed. This helper function adjusts the zone ranges 1102 * provided by the architecture for a given node by using the end of the 1103 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1104 * zones within a node are in order of monotonic increases memory addresses 1105 */ 1106 static void __init adjust_zone_range_for_zone_movable(int nid, 1107 unsigned long zone_type, 1108 unsigned long node_start_pfn, 1109 unsigned long node_end_pfn, 1110 unsigned long *zone_start_pfn, 1111 unsigned long *zone_end_pfn) 1112 { 1113 /* Only adjust if ZONE_MOVABLE is on this node */ 1114 if (zone_movable_pfn[nid]) { 1115 /* Size ZONE_MOVABLE */ 1116 if (zone_type == ZONE_MOVABLE) { 1117 *zone_start_pfn = zone_movable_pfn[nid]; 1118 *zone_end_pfn = min(node_end_pfn, 1119 arch_zone_highest_possible_pfn[movable_zone]); 1120 1121 /* Adjust for ZONE_MOVABLE starting within this range */ 1122 } else if (!mirrored_kernelcore && 1123 *zone_start_pfn < zone_movable_pfn[nid] && 1124 *zone_end_pfn > zone_movable_pfn[nid]) { 1125 *zone_end_pfn = zone_movable_pfn[nid]; 1126 1127 /* Check if this whole range is within ZONE_MOVABLE */ 1128 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1129 *zone_start_pfn = *zone_end_pfn; 1130 } 1131 } 1132 1133 /* 1134 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1135 * then all holes in the requested range will be accounted for. 1136 */ 1137 unsigned long __init __absent_pages_in_range(int nid, 1138 unsigned long range_start_pfn, 1139 unsigned long range_end_pfn) 1140 { 1141 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1142 unsigned long start_pfn, end_pfn; 1143 int i; 1144 1145 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1146 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1147 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1148 nr_absent -= end_pfn - start_pfn; 1149 } 1150 return nr_absent; 1151 } 1152 1153 /** 1154 * absent_pages_in_range - Return number of page frames in holes within a range 1155 * @start_pfn: The start PFN to start searching for holes 1156 * @end_pfn: The end PFN to stop searching for holes 1157 * 1158 * Return: the number of pages frames in memory holes within a range. 1159 */ 1160 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1161 unsigned long end_pfn) 1162 { 1163 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1164 } 1165 1166 /* Return the number of page frames in holes in a zone on a node */ 1167 static unsigned long __init zone_absent_pages_in_node(int nid, 1168 unsigned long zone_type, 1169 unsigned long node_start_pfn, 1170 unsigned long node_end_pfn) 1171 { 1172 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1173 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1174 unsigned long zone_start_pfn, zone_end_pfn; 1175 unsigned long nr_absent; 1176 1177 /* When hotadd a new node from cpu_up(), the node should be empty */ 1178 if (!node_start_pfn && !node_end_pfn) 1179 return 0; 1180 1181 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1182 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1183 1184 adjust_zone_range_for_zone_movable(nid, zone_type, 1185 node_start_pfn, node_end_pfn, 1186 &zone_start_pfn, &zone_end_pfn); 1187 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1188 1189 /* 1190 * ZONE_MOVABLE handling. 1191 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1192 * and vice versa. 1193 */ 1194 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1195 unsigned long start_pfn, end_pfn; 1196 struct memblock_region *r; 1197 1198 for_each_mem_region(r) { 1199 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1200 zone_start_pfn, zone_end_pfn); 1201 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1202 zone_start_pfn, zone_end_pfn); 1203 1204 if (zone_type == ZONE_MOVABLE && 1205 memblock_is_mirror(r)) 1206 nr_absent += end_pfn - start_pfn; 1207 1208 if (zone_type == ZONE_NORMAL && 1209 !memblock_is_mirror(r)) 1210 nr_absent += end_pfn - start_pfn; 1211 } 1212 } 1213 1214 return nr_absent; 1215 } 1216 1217 /* 1218 * Return the number of pages a zone spans in a node, including holes 1219 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1220 */ 1221 static unsigned long __init zone_spanned_pages_in_node(int nid, 1222 unsigned long zone_type, 1223 unsigned long node_start_pfn, 1224 unsigned long node_end_pfn, 1225 unsigned long *zone_start_pfn, 1226 unsigned long *zone_end_pfn) 1227 { 1228 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1229 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1230 /* When hotadd a new node from cpu_up(), the node should be empty */ 1231 if (!node_start_pfn && !node_end_pfn) 1232 return 0; 1233 1234 /* Get the start and end of the zone */ 1235 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1236 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1237 adjust_zone_range_for_zone_movable(nid, zone_type, 1238 node_start_pfn, node_end_pfn, 1239 zone_start_pfn, zone_end_pfn); 1240 1241 /* Check that this node has pages within the zone's required range */ 1242 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1243 return 0; 1244 1245 /* Move the zone boundaries inside the node if necessary */ 1246 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1247 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1248 1249 /* Return the spanned pages */ 1250 return *zone_end_pfn - *zone_start_pfn; 1251 } 1252 1253 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1254 unsigned long node_start_pfn, 1255 unsigned long node_end_pfn) 1256 { 1257 unsigned long realtotalpages = 0, totalpages = 0; 1258 enum zone_type i; 1259 1260 for (i = 0; i < MAX_NR_ZONES; i++) { 1261 struct zone *zone = pgdat->node_zones + i; 1262 unsigned long zone_start_pfn, zone_end_pfn; 1263 unsigned long spanned, absent; 1264 unsigned long size, real_size; 1265 1266 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1267 node_start_pfn, 1268 node_end_pfn, 1269 &zone_start_pfn, 1270 &zone_end_pfn); 1271 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1272 node_start_pfn, 1273 node_end_pfn); 1274 1275 size = spanned; 1276 real_size = size - absent; 1277 1278 if (size) 1279 zone->zone_start_pfn = zone_start_pfn; 1280 else 1281 zone->zone_start_pfn = 0; 1282 zone->spanned_pages = size; 1283 zone->present_pages = real_size; 1284 #if defined(CONFIG_MEMORY_HOTPLUG) 1285 zone->present_early_pages = real_size; 1286 #endif 1287 1288 totalpages += size; 1289 realtotalpages += real_size; 1290 } 1291 1292 pgdat->node_spanned_pages = totalpages; 1293 pgdat->node_present_pages = realtotalpages; 1294 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1295 } 1296 1297 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 1298 unsigned long present_pages) 1299 { 1300 unsigned long pages = spanned_pages; 1301 1302 /* 1303 * Provide a more accurate estimation if there are holes within 1304 * the zone and SPARSEMEM is in use. If there are holes within the 1305 * zone, each populated memory region may cost us one or two extra 1306 * memmap pages due to alignment because memmap pages for each 1307 * populated regions may not be naturally aligned on page boundary. 1308 * So the (present_pages >> 4) heuristic is a tradeoff for that. 1309 */ 1310 if (spanned_pages > present_pages + (present_pages >> 4) && 1311 IS_ENABLED(CONFIG_SPARSEMEM)) 1312 pages = present_pages; 1313 1314 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 1315 } 1316 1317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1318 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1319 { 1320 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1321 1322 spin_lock_init(&ds_queue->split_queue_lock); 1323 INIT_LIST_HEAD(&ds_queue->split_queue); 1324 ds_queue->split_queue_len = 0; 1325 } 1326 #else 1327 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1328 #endif 1329 1330 #ifdef CONFIG_COMPACTION 1331 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1332 { 1333 init_waitqueue_head(&pgdat->kcompactd_wait); 1334 } 1335 #else 1336 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1337 #endif 1338 1339 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1340 { 1341 int i; 1342 1343 pgdat_resize_init(pgdat); 1344 pgdat_kswapd_lock_init(pgdat); 1345 1346 pgdat_init_split_queue(pgdat); 1347 pgdat_init_kcompactd(pgdat); 1348 1349 init_waitqueue_head(&pgdat->kswapd_wait); 1350 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1351 1352 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1353 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1354 1355 pgdat_page_ext_init(pgdat); 1356 lruvec_init(&pgdat->__lruvec); 1357 } 1358 1359 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1360 unsigned long remaining_pages) 1361 { 1362 atomic_long_set(&zone->managed_pages, remaining_pages); 1363 zone_set_nid(zone, nid); 1364 zone->name = zone_names[idx]; 1365 zone->zone_pgdat = NODE_DATA(nid); 1366 spin_lock_init(&zone->lock); 1367 zone_seqlock_init(zone); 1368 zone_pcp_init(zone); 1369 } 1370 1371 static void __meminit zone_init_free_lists(struct zone *zone) 1372 { 1373 unsigned int order, t; 1374 for_each_migratetype_order(order, t) { 1375 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1376 zone->free_area[order].nr_free = 0; 1377 } 1378 1379 #ifdef CONFIG_UNACCEPTED_MEMORY 1380 INIT_LIST_HEAD(&zone->unaccepted_pages); 1381 #endif 1382 } 1383 1384 void __meminit init_currently_empty_zone(struct zone *zone, 1385 unsigned long zone_start_pfn, 1386 unsigned long size) 1387 { 1388 struct pglist_data *pgdat = zone->zone_pgdat; 1389 int zone_idx = zone_idx(zone) + 1; 1390 1391 if (zone_idx > pgdat->nr_zones) 1392 pgdat->nr_zones = zone_idx; 1393 1394 zone->zone_start_pfn = zone_start_pfn; 1395 1396 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1397 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1398 pgdat->node_id, 1399 (unsigned long)zone_idx(zone), 1400 zone_start_pfn, (zone_start_pfn + size)); 1401 1402 zone_init_free_lists(zone); 1403 zone->initialized = 1; 1404 } 1405 1406 #ifndef CONFIG_SPARSEMEM 1407 /* 1408 * Calculate the size of the zone->blockflags rounded to an unsigned long 1409 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1410 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1411 * round what is now in bits to nearest long in bits, then return it in 1412 * bytes. 1413 */ 1414 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1415 { 1416 unsigned long usemapsize; 1417 1418 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1419 usemapsize = roundup(zonesize, pageblock_nr_pages); 1420 usemapsize = usemapsize >> pageblock_order; 1421 usemapsize *= NR_PAGEBLOCK_BITS; 1422 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 1423 1424 return usemapsize / 8; 1425 } 1426 1427 static void __ref setup_usemap(struct zone *zone) 1428 { 1429 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1430 zone->spanned_pages); 1431 zone->pageblock_flags = NULL; 1432 if (usemapsize) { 1433 zone->pageblock_flags = 1434 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1435 zone_to_nid(zone)); 1436 if (!zone->pageblock_flags) 1437 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1438 usemapsize, zone->name, zone_to_nid(zone)); 1439 } 1440 } 1441 #else 1442 static inline void setup_usemap(struct zone *zone) {} 1443 #endif /* CONFIG_SPARSEMEM */ 1444 1445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1446 1447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1448 void __init set_pageblock_order(void) 1449 { 1450 unsigned int order = MAX_ORDER; 1451 1452 /* Check that pageblock_nr_pages has not already been setup */ 1453 if (pageblock_order) 1454 return; 1455 1456 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1457 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1458 order = HUGETLB_PAGE_ORDER; 1459 1460 /* 1461 * Assume the largest contiguous order of interest is a huge page. 1462 * This value may be variable depending on boot parameters on IA64 and 1463 * powerpc. 1464 */ 1465 pageblock_order = order; 1466 } 1467 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1468 1469 /* 1470 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1471 * is unused as pageblock_order is set at compile-time. See 1472 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1473 * the kernel config 1474 */ 1475 void __init set_pageblock_order(void) 1476 { 1477 } 1478 1479 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1480 1481 /* 1482 * Set up the zone data structures 1483 * - init pgdat internals 1484 * - init all zones belonging to this node 1485 * 1486 * NOTE: this function is only called during memory hotplug 1487 */ 1488 #ifdef CONFIG_MEMORY_HOTPLUG 1489 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1490 { 1491 int nid = pgdat->node_id; 1492 enum zone_type z; 1493 int cpu; 1494 1495 pgdat_init_internals(pgdat); 1496 1497 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1498 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1499 1500 /* 1501 * Reset the nr_zones, order and highest_zoneidx before reuse. 1502 * Note that kswapd will init kswapd_highest_zoneidx properly 1503 * when it starts in the near future. 1504 */ 1505 pgdat->nr_zones = 0; 1506 pgdat->kswapd_order = 0; 1507 pgdat->kswapd_highest_zoneidx = 0; 1508 pgdat->node_start_pfn = 0; 1509 for_each_online_cpu(cpu) { 1510 struct per_cpu_nodestat *p; 1511 1512 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1513 memset(p, 0, sizeof(*p)); 1514 } 1515 1516 for (z = 0; z < MAX_NR_ZONES; z++) 1517 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 1518 } 1519 #endif 1520 1521 /* 1522 * Set up the zone data structures: 1523 * - mark all pages reserved 1524 * - mark all memory queues empty 1525 * - clear the memory bitmaps 1526 * 1527 * NOTE: pgdat should get zeroed by caller. 1528 * NOTE: this function is only called during early init. 1529 */ 1530 static void __init free_area_init_core(struct pglist_data *pgdat) 1531 { 1532 enum zone_type j; 1533 int nid = pgdat->node_id; 1534 1535 pgdat_init_internals(pgdat); 1536 pgdat->per_cpu_nodestats = &boot_nodestats; 1537 1538 for (j = 0; j < MAX_NR_ZONES; j++) { 1539 struct zone *zone = pgdat->node_zones + j; 1540 unsigned long size, freesize, memmap_pages; 1541 1542 size = zone->spanned_pages; 1543 freesize = zone->present_pages; 1544 1545 /* 1546 * Adjust freesize so that it accounts for how much memory 1547 * is used by this zone for memmap. This affects the watermark 1548 * and per-cpu initialisations 1549 */ 1550 memmap_pages = calc_memmap_size(size, freesize); 1551 if (!is_highmem_idx(j)) { 1552 if (freesize >= memmap_pages) { 1553 freesize -= memmap_pages; 1554 if (memmap_pages) 1555 pr_debug(" %s zone: %lu pages used for memmap\n", 1556 zone_names[j], memmap_pages); 1557 } else 1558 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 1559 zone_names[j], memmap_pages, freesize); 1560 } 1561 1562 /* Account for reserved pages */ 1563 if (j == 0 && freesize > dma_reserve) { 1564 freesize -= dma_reserve; 1565 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 1566 } 1567 1568 if (!is_highmem_idx(j)) 1569 nr_kernel_pages += freesize; 1570 /* Charge for highmem memmap if there are enough kernel pages */ 1571 else if (nr_kernel_pages > memmap_pages * 2) 1572 nr_kernel_pages -= memmap_pages; 1573 nr_all_pages += freesize; 1574 1575 /* 1576 * Set an approximate value for lowmem here, it will be adjusted 1577 * when the bootmem allocator frees pages into the buddy system. 1578 * And all highmem pages will be managed by the buddy system. 1579 */ 1580 zone_init_internals(zone, j, nid, freesize); 1581 1582 if (!size) 1583 continue; 1584 1585 set_pageblock_order(); 1586 setup_usemap(zone); 1587 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1588 } 1589 } 1590 1591 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1592 phys_addr_t min_addr, int nid, bool exact_nid) 1593 { 1594 void *ptr; 1595 1596 if (exact_nid) 1597 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1598 MEMBLOCK_ALLOC_ACCESSIBLE, 1599 nid); 1600 else 1601 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1602 MEMBLOCK_ALLOC_ACCESSIBLE, 1603 nid); 1604 1605 if (ptr && size > 0) 1606 page_init_poison(ptr, size); 1607 1608 return ptr; 1609 } 1610 1611 #ifdef CONFIG_FLATMEM 1612 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1613 { 1614 unsigned long __maybe_unused start = 0; 1615 unsigned long __maybe_unused offset = 0; 1616 1617 /* Skip empty nodes */ 1618 if (!pgdat->node_spanned_pages) 1619 return; 1620 1621 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1622 offset = pgdat->node_start_pfn - start; 1623 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1624 if (!pgdat->node_mem_map) { 1625 unsigned long size, end; 1626 struct page *map; 1627 1628 /* 1629 * The zone's endpoints aren't required to be MAX_ORDER 1630 * aligned but the node_mem_map endpoints must be in order 1631 * for the buddy allocator to function correctly. 1632 */ 1633 end = pgdat_end_pfn(pgdat); 1634 end = ALIGN(end, MAX_ORDER_NR_PAGES); 1635 size = (end - start) * sizeof(struct page); 1636 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1637 pgdat->node_id, false); 1638 if (!map) 1639 panic("Failed to allocate %ld bytes for node %d memory map\n", 1640 size, pgdat->node_id); 1641 pgdat->node_mem_map = map + offset; 1642 } 1643 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1644 __func__, pgdat->node_id, (unsigned long)pgdat, 1645 (unsigned long)pgdat->node_mem_map); 1646 #ifndef CONFIG_NUMA 1647 /* 1648 * With no DISCONTIG, the global mem_map is just set as node 0's 1649 */ 1650 if (pgdat == NODE_DATA(0)) { 1651 mem_map = NODE_DATA(0)->node_mem_map; 1652 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1653 mem_map -= offset; 1654 } 1655 #endif 1656 } 1657 #else 1658 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1659 #endif /* CONFIG_FLATMEM */ 1660 1661 /** 1662 * get_pfn_range_for_nid - Return the start and end page frames for a node 1663 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1664 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1665 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1666 * 1667 * It returns the start and end page frame of a node based on information 1668 * provided by memblock_set_node(). If called for a node 1669 * with no available memory, a warning is printed and the start and end 1670 * PFNs will be 0. 1671 */ 1672 void __init get_pfn_range_for_nid(unsigned int nid, 1673 unsigned long *start_pfn, unsigned long *end_pfn) 1674 { 1675 unsigned long this_start_pfn, this_end_pfn; 1676 int i; 1677 1678 *start_pfn = -1UL; 1679 *end_pfn = 0; 1680 1681 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1682 *start_pfn = min(*start_pfn, this_start_pfn); 1683 *end_pfn = max(*end_pfn, this_end_pfn); 1684 } 1685 1686 if (*start_pfn == -1UL) 1687 *start_pfn = 0; 1688 } 1689 1690 static void __init free_area_init_node(int nid) 1691 { 1692 pg_data_t *pgdat = NODE_DATA(nid); 1693 unsigned long start_pfn = 0; 1694 unsigned long end_pfn = 0; 1695 1696 /* pg_data_t should be reset to zero when it's allocated */ 1697 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1698 1699 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1700 1701 pgdat->node_id = nid; 1702 pgdat->node_start_pfn = start_pfn; 1703 pgdat->per_cpu_nodestats = NULL; 1704 1705 if (start_pfn != end_pfn) { 1706 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1707 (u64)start_pfn << PAGE_SHIFT, 1708 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1709 } else { 1710 pr_info("Initmem setup node %d as memoryless\n", nid); 1711 } 1712 1713 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1714 1715 alloc_node_mem_map(pgdat); 1716 pgdat_set_deferred_range(pgdat); 1717 1718 free_area_init_core(pgdat); 1719 lru_gen_init_pgdat(pgdat); 1720 } 1721 1722 /* Any regular or high memory on that node ? */ 1723 static void check_for_memory(pg_data_t *pgdat, int nid) 1724 { 1725 enum zone_type zone_type; 1726 1727 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1728 struct zone *zone = &pgdat->node_zones[zone_type]; 1729 if (populated_zone(zone)) { 1730 if (IS_ENABLED(CONFIG_HIGHMEM)) 1731 node_set_state(nid, N_HIGH_MEMORY); 1732 if (zone_type <= ZONE_NORMAL) 1733 node_set_state(nid, N_NORMAL_MEMORY); 1734 break; 1735 } 1736 } 1737 } 1738 1739 #if MAX_NUMNODES > 1 1740 /* 1741 * Figure out the number of possible node ids. 1742 */ 1743 void __init setup_nr_node_ids(void) 1744 { 1745 unsigned int highest; 1746 1747 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1748 nr_node_ids = highest + 1; 1749 } 1750 #endif 1751 1752 static void __init free_area_init_memoryless_node(int nid) 1753 { 1754 free_area_init_node(nid); 1755 } 1756 1757 /* 1758 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1759 * such cases we allow max_zone_pfn sorted in the descending order 1760 */ 1761 static bool arch_has_descending_max_zone_pfns(void) 1762 { 1763 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1764 } 1765 1766 /** 1767 * free_area_init - Initialise all pg_data_t and zone data 1768 * @max_zone_pfn: an array of max PFNs for each zone 1769 * 1770 * This will call free_area_init_node() for each active node in the system. 1771 * Using the page ranges provided by memblock_set_node(), the size of each 1772 * zone in each node and their holes is calculated. If the maximum PFN 1773 * between two adjacent zones match, it is assumed that the zone is empty. 1774 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1775 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1776 * starts where the previous one ended. For example, ZONE_DMA32 starts 1777 * at arch_max_dma_pfn. 1778 */ 1779 void __init free_area_init(unsigned long *max_zone_pfn) 1780 { 1781 unsigned long start_pfn, end_pfn; 1782 int i, nid, zone; 1783 bool descending; 1784 1785 /* Record where the zone boundaries are */ 1786 memset(arch_zone_lowest_possible_pfn, 0, 1787 sizeof(arch_zone_lowest_possible_pfn)); 1788 memset(arch_zone_highest_possible_pfn, 0, 1789 sizeof(arch_zone_highest_possible_pfn)); 1790 1791 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1792 descending = arch_has_descending_max_zone_pfns(); 1793 1794 for (i = 0; i < MAX_NR_ZONES; i++) { 1795 if (descending) 1796 zone = MAX_NR_ZONES - i - 1; 1797 else 1798 zone = i; 1799 1800 if (zone == ZONE_MOVABLE) 1801 continue; 1802 1803 end_pfn = max(max_zone_pfn[zone], start_pfn); 1804 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1805 arch_zone_highest_possible_pfn[zone] = end_pfn; 1806 1807 start_pfn = end_pfn; 1808 } 1809 1810 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1811 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1812 find_zone_movable_pfns_for_nodes(); 1813 1814 /* Print out the zone ranges */ 1815 pr_info("Zone ranges:\n"); 1816 for (i = 0; i < MAX_NR_ZONES; i++) { 1817 if (i == ZONE_MOVABLE) 1818 continue; 1819 pr_info(" %-8s ", zone_names[i]); 1820 if (arch_zone_lowest_possible_pfn[i] == 1821 arch_zone_highest_possible_pfn[i]) 1822 pr_cont("empty\n"); 1823 else 1824 pr_cont("[mem %#018Lx-%#018Lx]\n", 1825 (u64)arch_zone_lowest_possible_pfn[i] 1826 << PAGE_SHIFT, 1827 ((u64)arch_zone_highest_possible_pfn[i] 1828 << PAGE_SHIFT) - 1); 1829 } 1830 1831 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1832 pr_info("Movable zone start for each node\n"); 1833 for (i = 0; i < MAX_NUMNODES; i++) { 1834 if (zone_movable_pfn[i]) 1835 pr_info(" Node %d: %#018Lx\n", i, 1836 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1837 } 1838 1839 /* 1840 * Print out the early node map, and initialize the 1841 * subsection-map relative to active online memory ranges to 1842 * enable future "sub-section" extensions of the memory map. 1843 */ 1844 pr_info("Early memory node ranges\n"); 1845 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1846 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1847 (u64)start_pfn << PAGE_SHIFT, 1848 ((u64)end_pfn << PAGE_SHIFT) - 1); 1849 subsection_map_init(start_pfn, end_pfn - start_pfn); 1850 } 1851 1852 /* Initialise every node */ 1853 mminit_verify_pageflags_layout(); 1854 setup_nr_node_ids(); 1855 for_each_node(nid) { 1856 pg_data_t *pgdat; 1857 1858 if (!node_online(nid)) { 1859 pr_info("Initializing node %d as memoryless\n", nid); 1860 1861 /* Allocator not initialized yet */ 1862 pgdat = arch_alloc_nodedata(nid); 1863 if (!pgdat) 1864 panic("Cannot allocate %zuB for node %d.\n", 1865 sizeof(*pgdat), nid); 1866 arch_refresh_nodedata(nid, pgdat); 1867 free_area_init_memoryless_node(nid); 1868 1869 /* 1870 * We do not want to confuse userspace by sysfs 1871 * files/directories for node without any memory 1872 * attached to it, so this node is not marked as 1873 * N_MEMORY and not marked online so that no sysfs 1874 * hierarchy will be created via register_one_node for 1875 * it. The pgdat will get fully initialized by 1876 * hotadd_init_pgdat() when memory is hotplugged into 1877 * this node. 1878 */ 1879 continue; 1880 } 1881 1882 pgdat = NODE_DATA(nid); 1883 free_area_init_node(nid); 1884 1885 /* Any memory on that node */ 1886 if (pgdat->node_present_pages) 1887 node_set_state(nid, N_MEMORY); 1888 check_for_memory(pgdat, nid); 1889 } 1890 1891 memmap_init(); 1892 1893 /* disable hash distribution for systems with a single node */ 1894 fixup_hashdist(); 1895 } 1896 1897 /** 1898 * node_map_pfn_alignment - determine the maximum internode alignment 1899 * 1900 * This function should be called after node map is populated and sorted. 1901 * It calculates the maximum power of two alignment which can distinguish 1902 * all the nodes. 1903 * 1904 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1905 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1906 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1907 * shifted, 1GiB is enough and this function will indicate so. 1908 * 1909 * This is used to test whether pfn -> nid mapping of the chosen memory 1910 * model has fine enough granularity to avoid incorrect mapping for the 1911 * populated node map. 1912 * 1913 * Return: the determined alignment in pfn's. 0 if there is no alignment 1914 * requirement (single node). 1915 */ 1916 unsigned long __init node_map_pfn_alignment(void) 1917 { 1918 unsigned long accl_mask = 0, last_end = 0; 1919 unsigned long start, end, mask; 1920 int last_nid = NUMA_NO_NODE; 1921 int i, nid; 1922 1923 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1924 if (!start || last_nid < 0 || last_nid == nid) { 1925 last_nid = nid; 1926 last_end = end; 1927 continue; 1928 } 1929 1930 /* 1931 * Start with a mask granular enough to pin-point to the 1932 * start pfn and tick off bits one-by-one until it becomes 1933 * too coarse to separate the current node from the last. 1934 */ 1935 mask = ~((1 << __ffs(start)) - 1); 1936 while (mask && last_end <= (start & (mask << 1))) 1937 mask <<= 1; 1938 1939 /* accumulate all internode masks */ 1940 accl_mask |= mask; 1941 } 1942 1943 /* convert mask to number of pages */ 1944 return ~accl_mask + 1; 1945 } 1946 1947 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1948 static void __init deferred_free_range(unsigned long pfn, 1949 unsigned long nr_pages) 1950 { 1951 struct page *page; 1952 unsigned long i; 1953 1954 if (!nr_pages) 1955 return; 1956 1957 page = pfn_to_page(pfn); 1958 1959 /* Free a large naturally-aligned chunk if possible */ 1960 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1961 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1962 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1963 __free_pages_core(page, MAX_ORDER); 1964 return; 1965 } 1966 1967 /* Accept chunks smaller than MAX_ORDER upfront */ 1968 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); 1969 1970 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1971 if (pageblock_aligned(pfn)) 1972 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1973 __free_pages_core(page, 0); 1974 } 1975 } 1976 1977 /* Completion tracking for deferred_init_memmap() threads */ 1978 static atomic_t pgdat_init_n_undone __initdata; 1979 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1980 1981 static inline void __init pgdat_init_report_one_done(void) 1982 { 1983 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1984 complete(&pgdat_init_all_done_comp); 1985 } 1986 1987 /* 1988 * Returns true if page needs to be initialized or freed to buddy allocator. 1989 * 1990 * We check if a current MAX_ORDER block is valid by only checking the validity 1991 * of the head pfn. 1992 */ 1993 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1994 { 1995 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) 1996 return false; 1997 return true; 1998 } 1999 2000 /* 2001 * Free pages to buddy allocator. Try to free aligned pages in 2002 * MAX_ORDER_NR_PAGES sizes. 2003 */ 2004 static void __init deferred_free_pages(unsigned long pfn, 2005 unsigned long end_pfn) 2006 { 2007 unsigned long nr_free = 0; 2008 2009 for (; pfn < end_pfn; pfn++) { 2010 if (!deferred_pfn_valid(pfn)) { 2011 deferred_free_range(pfn - nr_free, nr_free); 2012 nr_free = 0; 2013 } else if (IS_MAX_ORDER_ALIGNED(pfn)) { 2014 deferred_free_range(pfn - nr_free, nr_free); 2015 nr_free = 1; 2016 } else { 2017 nr_free++; 2018 } 2019 } 2020 /* Free the last block of pages to allocator */ 2021 deferred_free_range(pfn - nr_free, nr_free); 2022 } 2023 2024 /* 2025 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 2026 * by performing it only once every MAX_ORDER_NR_PAGES. 2027 * Return number of pages initialized. 2028 */ 2029 static unsigned long __init deferred_init_pages(struct zone *zone, 2030 unsigned long pfn, 2031 unsigned long end_pfn) 2032 { 2033 int nid = zone_to_nid(zone); 2034 unsigned long nr_pages = 0; 2035 int zid = zone_idx(zone); 2036 struct page *page = NULL; 2037 2038 for (; pfn < end_pfn; pfn++) { 2039 if (!deferred_pfn_valid(pfn)) { 2040 page = NULL; 2041 continue; 2042 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { 2043 page = pfn_to_page(pfn); 2044 } else { 2045 page++; 2046 } 2047 __init_single_page(page, pfn, zid, nid); 2048 nr_pages++; 2049 } 2050 return (nr_pages); 2051 } 2052 2053 /* 2054 * This function is meant to pre-load the iterator for the zone init. 2055 * Specifically it walks through the ranges until we are caught up to the 2056 * first_init_pfn value and exits there. If we never encounter the value we 2057 * return false indicating there are no valid ranges left. 2058 */ 2059 static bool __init 2060 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2061 unsigned long *spfn, unsigned long *epfn, 2062 unsigned long first_init_pfn) 2063 { 2064 u64 j; 2065 2066 /* 2067 * Start out by walking through the ranges in this zone that have 2068 * already been initialized. We don't need to do anything with them 2069 * so we just need to flush them out of the system. 2070 */ 2071 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2072 if (*epfn <= first_init_pfn) 2073 continue; 2074 if (*spfn < first_init_pfn) 2075 *spfn = first_init_pfn; 2076 *i = j; 2077 return true; 2078 } 2079 2080 return false; 2081 } 2082 2083 /* 2084 * Initialize and free pages. We do it in two loops: first we initialize 2085 * struct page, then free to buddy allocator, because while we are 2086 * freeing pages we can access pages that are ahead (computing buddy 2087 * page in __free_one_page()). 2088 * 2089 * In order to try and keep some memory in the cache we have the loop 2090 * broken along max page order boundaries. This way we will not cause 2091 * any issues with the buddy page computation. 2092 */ 2093 static unsigned long __init 2094 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2095 unsigned long *end_pfn) 2096 { 2097 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2098 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2099 unsigned long nr_pages = 0; 2100 u64 j = *i; 2101 2102 /* First we loop through and initialize the page values */ 2103 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2104 unsigned long t; 2105 2106 if (mo_pfn <= *start_pfn) 2107 break; 2108 2109 t = min(mo_pfn, *end_pfn); 2110 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2111 2112 if (mo_pfn < *end_pfn) { 2113 *start_pfn = mo_pfn; 2114 break; 2115 } 2116 } 2117 2118 /* Reset values and now loop through freeing pages as needed */ 2119 swap(j, *i); 2120 2121 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2122 unsigned long t; 2123 2124 if (mo_pfn <= spfn) 2125 break; 2126 2127 t = min(mo_pfn, epfn); 2128 deferred_free_pages(spfn, t); 2129 2130 if (mo_pfn <= epfn) 2131 break; 2132 } 2133 2134 return nr_pages; 2135 } 2136 2137 static void __init 2138 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2139 void *arg) 2140 { 2141 unsigned long spfn, epfn; 2142 struct zone *zone = arg; 2143 u64 i; 2144 2145 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2146 2147 /* 2148 * Initialize and free pages in MAX_ORDER sized increments so that we 2149 * can avoid introducing any issues with the buddy allocator. 2150 */ 2151 while (spfn < end_pfn) { 2152 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2153 cond_resched(); 2154 } 2155 } 2156 2157 /* An arch may override for more concurrency. */ 2158 __weak int __init 2159 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2160 { 2161 return 1; 2162 } 2163 2164 /* Initialise remaining memory on a node */ 2165 static int __init deferred_init_memmap(void *data) 2166 { 2167 pg_data_t *pgdat = data; 2168 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2169 unsigned long spfn = 0, epfn = 0; 2170 unsigned long first_init_pfn, flags; 2171 unsigned long start = jiffies; 2172 struct zone *zone; 2173 int zid, max_threads; 2174 u64 i; 2175 2176 /* Bind memory initialisation thread to a local node if possible */ 2177 if (!cpumask_empty(cpumask)) 2178 set_cpus_allowed_ptr(current, cpumask); 2179 2180 pgdat_resize_lock(pgdat, &flags); 2181 first_init_pfn = pgdat->first_deferred_pfn; 2182 if (first_init_pfn == ULONG_MAX) { 2183 pgdat_resize_unlock(pgdat, &flags); 2184 pgdat_init_report_one_done(); 2185 return 0; 2186 } 2187 2188 /* Sanity check boundaries */ 2189 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2190 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2191 pgdat->first_deferred_pfn = ULONG_MAX; 2192 2193 /* 2194 * Once we unlock here, the zone cannot be grown anymore, thus if an 2195 * interrupt thread must allocate this early in boot, zone must be 2196 * pre-grown prior to start of deferred page initialization. 2197 */ 2198 pgdat_resize_unlock(pgdat, &flags); 2199 2200 /* Only the highest zone is deferred so find it */ 2201 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2202 zone = pgdat->node_zones + zid; 2203 if (first_init_pfn < zone_end_pfn(zone)) 2204 break; 2205 } 2206 2207 /* If the zone is empty somebody else may have cleared out the zone */ 2208 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2209 first_init_pfn)) 2210 goto zone_empty; 2211 2212 max_threads = deferred_page_init_max_threads(cpumask); 2213 2214 while (spfn < epfn) { 2215 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2216 struct padata_mt_job job = { 2217 .thread_fn = deferred_init_memmap_chunk, 2218 .fn_arg = zone, 2219 .start = spfn, 2220 .size = epfn_align - spfn, 2221 .align = PAGES_PER_SECTION, 2222 .min_chunk = PAGES_PER_SECTION, 2223 .max_threads = max_threads, 2224 }; 2225 2226 padata_do_multithreaded(&job); 2227 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2228 epfn_align); 2229 } 2230 zone_empty: 2231 /* Sanity check that the next zone really is unpopulated */ 2232 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2233 2234 pr_info("node %d deferred pages initialised in %ums\n", 2235 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2236 2237 pgdat_init_report_one_done(); 2238 return 0; 2239 } 2240 2241 /* 2242 * If this zone has deferred pages, try to grow it by initializing enough 2243 * deferred pages to satisfy the allocation specified by order, rounded up to 2244 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2245 * of SECTION_SIZE bytes by initializing struct pages in increments of 2246 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2247 * 2248 * Return true when zone was grown, otherwise return false. We return true even 2249 * when we grow less than requested, to let the caller decide if there are 2250 * enough pages to satisfy the allocation. 2251 * 2252 * Note: We use noinline because this function is needed only during boot, and 2253 * it is called from a __ref function _deferred_grow_zone. This way we are 2254 * making sure that it is not inlined into permanent text section. 2255 */ 2256 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2257 { 2258 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2259 pg_data_t *pgdat = zone->zone_pgdat; 2260 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2261 unsigned long spfn, epfn, flags; 2262 unsigned long nr_pages = 0; 2263 u64 i; 2264 2265 /* Only the last zone may have deferred pages */ 2266 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2267 return false; 2268 2269 pgdat_resize_lock(pgdat, &flags); 2270 2271 /* 2272 * If someone grew this zone while we were waiting for spinlock, return 2273 * true, as there might be enough pages already. 2274 */ 2275 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2276 pgdat_resize_unlock(pgdat, &flags); 2277 return true; 2278 } 2279 2280 /* If the zone is empty somebody else may have cleared out the zone */ 2281 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2282 first_deferred_pfn)) { 2283 pgdat->first_deferred_pfn = ULONG_MAX; 2284 pgdat_resize_unlock(pgdat, &flags); 2285 /* Retry only once. */ 2286 return first_deferred_pfn != ULONG_MAX; 2287 } 2288 2289 /* 2290 * Initialize and free pages in MAX_ORDER sized increments so 2291 * that we can avoid introducing any issues with the buddy 2292 * allocator. 2293 */ 2294 while (spfn < epfn) { 2295 /* update our first deferred PFN for this section */ 2296 first_deferred_pfn = spfn; 2297 2298 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2299 touch_nmi_watchdog(); 2300 2301 /* We should only stop along section boundaries */ 2302 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2303 continue; 2304 2305 /* If our quota has been met we can stop here */ 2306 if (nr_pages >= nr_pages_needed) 2307 break; 2308 } 2309 2310 pgdat->first_deferred_pfn = spfn; 2311 pgdat_resize_unlock(pgdat, &flags); 2312 2313 return nr_pages > 0; 2314 } 2315 2316 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2317 2318 #ifdef CONFIG_CMA 2319 void __init init_cma_reserved_pageblock(struct page *page) 2320 { 2321 unsigned i = pageblock_nr_pages; 2322 struct page *p = page; 2323 2324 do { 2325 __ClearPageReserved(p); 2326 set_page_count(p, 0); 2327 } while (++p, --i); 2328 2329 set_pageblock_migratetype(page, MIGRATE_CMA); 2330 set_page_refcounted(page); 2331 __free_pages(page, pageblock_order); 2332 2333 adjust_managed_page_count(page, pageblock_nr_pages); 2334 page_zone(page)->cma_pages += pageblock_nr_pages; 2335 } 2336 #endif 2337 2338 void __init page_alloc_init_late(void) 2339 { 2340 struct zone *zone; 2341 int nid; 2342 2343 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2344 2345 /* There will be num_node_state(N_MEMORY) threads */ 2346 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2347 for_each_node_state(nid, N_MEMORY) { 2348 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2349 } 2350 2351 /* Block until all are initialised */ 2352 wait_for_completion(&pgdat_init_all_done_comp); 2353 2354 /* 2355 * We initialized the rest of the deferred pages. Permanently disable 2356 * on-demand struct page initialization. 2357 */ 2358 static_branch_disable(&deferred_pages); 2359 2360 /* Reinit limits that are based on free pages after the kernel is up */ 2361 files_maxfiles_init(); 2362 #endif 2363 2364 buffer_init(); 2365 2366 /* Discard memblock private memory */ 2367 memblock_discard(); 2368 2369 for_each_node_state(nid, N_MEMORY) 2370 shuffle_free_memory(NODE_DATA(nid)); 2371 2372 for_each_populated_zone(zone) 2373 set_zone_contiguous(zone); 2374 2375 /* Initialize page ext after all struct pages are initialized. */ 2376 if (deferred_struct_pages) 2377 page_ext_init(); 2378 } 2379 2380 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2381 /* 2382 * Returns the number of pages that arch has reserved but 2383 * is not known to alloc_large_system_hash(). 2384 */ 2385 static unsigned long __init arch_reserved_kernel_pages(void) 2386 { 2387 return 0; 2388 } 2389 #endif 2390 2391 /* 2392 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2393 * machines. As memory size is increased the scale is also increased but at 2394 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2395 * quadruples the scale is increased by one, which means the size of hash table 2396 * only doubles, instead of quadrupling as well. 2397 * Because 32-bit systems cannot have large physical memory, where this scaling 2398 * makes sense, it is disabled on such platforms. 2399 */ 2400 #if __BITS_PER_LONG > 32 2401 #define ADAPT_SCALE_BASE (64ul << 30) 2402 #define ADAPT_SCALE_SHIFT 2 2403 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2404 #endif 2405 2406 /* 2407 * allocate a large system hash table from bootmem 2408 * - it is assumed that the hash table must contain an exact power-of-2 2409 * quantity of entries 2410 * - limit is the number of hash buckets, not the total allocation size 2411 */ 2412 void *__init alloc_large_system_hash(const char *tablename, 2413 unsigned long bucketsize, 2414 unsigned long numentries, 2415 int scale, 2416 int flags, 2417 unsigned int *_hash_shift, 2418 unsigned int *_hash_mask, 2419 unsigned long low_limit, 2420 unsigned long high_limit) 2421 { 2422 unsigned long long max = high_limit; 2423 unsigned long log2qty, size; 2424 void *table; 2425 gfp_t gfp_flags; 2426 bool virt; 2427 bool huge; 2428 2429 /* allow the kernel cmdline to have a say */ 2430 if (!numentries) { 2431 /* round applicable memory size up to nearest megabyte */ 2432 numentries = nr_kernel_pages; 2433 numentries -= arch_reserved_kernel_pages(); 2434 2435 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2436 if (PAGE_SIZE < SZ_1M) 2437 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2438 2439 #if __BITS_PER_LONG > 32 2440 if (!high_limit) { 2441 unsigned long adapt; 2442 2443 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2444 adapt <<= ADAPT_SCALE_SHIFT) 2445 scale++; 2446 } 2447 #endif 2448 2449 /* limit to 1 bucket per 2^scale bytes of low memory */ 2450 if (scale > PAGE_SHIFT) 2451 numentries >>= (scale - PAGE_SHIFT); 2452 else 2453 numentries <<= (PAGE_SHIFT - scale); 2454 2455 /* Make sure we've got at least a 0-order allocation.. */ 2456 if (unlikely(flags & HASH_SMALL)) { 2457 /* Makes no sense without HASH_EARLY */ 2458 WARN_ON(!(flags & HASH_EARLY)); 2459 if (!(numentries >> *_hash_shift)) { 2460 numentries = 1UL << *_hash_shift; 2461 BUG_ON(!numentries); 2462 } 2463 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2464 numentries = PAGE_SIZE / bucketsize; 2465 } 2466 numentries = roundup_pow_of_two(numentries); 2467 2468 /* limit allocation size to 1/16 total memory by default */ 2469 if (max == 0) { 2470 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2471 do_div(max, bucketsize); 2472 } 2473 max = min(max, 0x80000000ULL); 2474 2475 if (numentries < low_limit) 2476 numentries = low_limit; 2477 if (numentries > max) 2478 numentries = max; 2479 2480 log2qty = ilog2(numentries); 2481 2482 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2483 do { 2484 virt = false; 2485 size = bucketsize << log2qty; 2486 if (flags & HASH_EARLY) { 2487 if (flags & HASH_ZERO) 2488 table = memblock_alloc(size, SMP_CACHE_BYTES); 2489 else 2490 table = memblock_alloc_raw(size, 2491 SMP_CACHE_BYTES); 2492 } else if (get_order(size) > MAX_ORDER || hashdist) { 2493 table = vmalloc_huge(size, gfp_flags); 2494 virt = true; 2495 if (table) 2496 huge = is_vm_area_hugepages(table); 2497 } else { 2498 /* 2499 * If bucketsize is not a power-of-two, we may free 2500 * some pages at the end of hash table which 2501 * alloc_pages_exact() automatically does 2502 */ 2503 table = alloc_pages_exact(size, gfp_flags); 2504 kmemleak_alloc(table, size, 1, gfp_flags); 2505 } 2506 } while (!table && size > PAGE_SIZE && --log2qty); 2507 2508 if (!table) 2509 panic("Failed to allocate %s hash table\n", tablename); 2510 2511 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2512 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2513 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2514 2515 if (_hash_shift) 2516 *_hash_shift = log2qty; 2517 if (_hash_mask) 2518 *_hash_mask = (1 << log2qty) - 1; 2519 2520 return table; 2521 } 2522 2523 /** 2524 * set_dma_reserve - set the specified number of pages reserved in the first zone 2525 * @new_dma_reserve: The number of pages to mark reserved 2526 * 2527 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 2528 * In the DMA zone, a significant percentage may be consumed by kernel image 2529 * and other unfreeable allocations which can skew the watermarks badly. This 2530 * function may optionally be used to account for unfreeable pages in the 2531 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2532 * smaller per-cpu batchsize. 2533 */ 2534 void __init set_dma_reserve(unsigned long new_dma_reserve) 2535 { 2536 dma_reserve = new_dma_reserve; 2537 } 2538 2539 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2540 unsigned int order) 2541 { 2542 if (!early_page_initialised(pfn)) 2543 return; 2544 if (!kmsan_memblock_free_pages(page, order)) { 2545 /* KMSAN will take care of these pages. */ 2546 return; 2547 } 2548 __free_pages_core(page, order); 2549 } 2550 2551 static bool _init_on_alloc_enabled_early __read_mostly 2552 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2553 static int __init early_init_on_alloc(char *buf) 2554 { 2555 2556 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2557 } 2558 early_param("init_on_alloc", early_init_on_alloc); 2559 2560 static bool _init_on_free_enabled_early __read_mostly 2561 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2562 static int __init early_init_on_free(char *buf) 2563 { 2564 return kstrtobool(buf, &_init_on_free_enabled_early); 2565 } 2566 early_param("init_on_free", early_init_on_free); 2567 2568 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2569 2570 /* 2571 * Enable static keys related to various memory debugging and hardening options. 2572 * Some override others, and depend on early params that are evaluated in the 2573 * order of appearance. So we need to first gather the full picture of what was 2574 * enabled, and then make decisions. 2575 */ 2576 static void __init mem_debugging_and_hardening_init(void) 2577 { 2578 bool page_poisoning_requested = false; 2579 bool want_check_pages = false; 2580 2581 #ifdef CONFIG_PAGE_POISONING 2582 /* 2583 * Page poisoning is debug page alloc for some arches. If 2584 * either of those options are enabled, enable poisoning. 2585 */ 2586 if (page_poisoning_enabled() || 2587 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2588 debug_pagealloc_enabled())) { 2589 static_branch_enable(&_page_poisoning_enabled); 2590 page_poisoning_requested = true; 2591 want_check_pages = true; 2592 } 2593 #endif 2594 2595 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2596 page_poisoning_requested) { 2597 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2598 "will take precedence over init_on_alloc and init_on_free\n"); 2599 _init_on_alloc_enabled_early = false; 2600 _init_on_free_enabled_early = false; 2601 } 2602 2603 if (_init_on_alloc_enabled_early) { 2604 want_check_pages = true; 2605 static_branch_enable(&init_on_alloc); 2606 } else { 2607 static_branch_disable(&init_on_alloc); 2608 } 2609 2610 if (_init_on_free_enabled_early) { 2611 want_check_pages = true; 2612 static_branch_enable(&init_on_free); 2613 } else { 2614 static_branch_disable(&init_on_free); 2615 } 2616 2617 if (IS_ENABLED(CONFIG_KMSAN) && 2618 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2619 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2620 2621 #ifdef CONFIG_DEBUG_PAGEALLOC 2622 if (debug_pagealloc_enabled()) { 2623 want_check_pages = true; 2624 static_branch_enable(&_debug_pagealloc_enabled); 2625 2626 if (debug_guardpage_minorder()) 2627 static_branch_enable(&_debug_guardpage_enabled); 2628 } 2629 #endif 2630 2631 /* 2632 * Any page debugging or hardening option also enables sanity checking 2633 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2634 * enabled already. 2635 */ 2636 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2637 static_branch_enable(&check_pages_enabled); 2638 } 2639 2640 /* Report memory auto-initialization states for this boot. */ 2641 static void __init report_meminit(void) 2642 { 2643 const char *stack; 2644 2645 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2646 stack = "all(pattern)"; 2647 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2648 stack = "all(zero)"; 2649 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2650 stack = "byref_all(zero)"; 2651 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2652 stack = "byref(zero)"; 2653 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2654 stack = "__user(zero)"; 2655 else 2656 stack = "off"; 2657 2658 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2659 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2660 want_init_on_free() ? "on" : "off"); 2661 if (want_init_on_free()) 2662 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2663 } 2664 2665 static void __init mem_init_print_info(void) 2666 { 2667 unsigned long physpages, codesize, datasize, rosize, bss_size; 2668 unsigned long init_code_size, init_data_size; 2669 2670 physpages = get_num_physpages(); 2671 codesize = _etext - _stext; 2672 datasize = _edata - _sdata; 2673 rosize = __end_rodata - __start_rodata; 2674 bss_size = __bss_stop - __bss_start; 2675 init_data_size = __init_end - __init_begin; 2676 init_code_size = _einittext - _sinittext; 2677 2678 /* 2679 * Detect special cases and adjust section sizes accordingly: 2680 * 1) .init.* may be embedded into .data sections 2681 * 2) .init.text.* may be out of [__init_begin, __init_end], 2682 * please refer to arch/tile/kernel/vmlinux.lds.S. 2683 * 3) .rodata.* may be embedded into .text or .data sections. 2684 */ 2685 #define adj_init_size(start, end, size, pos, adj) \ 2686 do { \ 2687 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2688 size -= adj; \ 2689 } while (0) 2690 2691 adj_init_size(__init_begin, __init_end, init_data_size, 2692 _sinittext, init_code_size); 2693 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2694 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2695 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2696 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2697 2698 #undef adj_init_size 2699 2700 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2701 #ifdef CONFIG_HIGHMEM 2702 ", %luK highmem" 2703 #endif 2704 ")\n", 2705 K(nr_free_pages()), K(physpages), 2706 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2707 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2708 K(physpages - totalram_pages() - totalcma_pages), 2709 K(totalcma_pages) 2710 #ifdef CONFIG_HIGHMEM 2711 , K(totalhigh_pages()) 2712 #endif 2713 ); 2714 } 2715 2716 /* 2717 * Set up kernel memory allocators 2718 */ 2719 void __init mm_core_init(void) 2720 { 2721 /* Initializations relying on SMP setup */ 2722 build_all_zonelists(NULL); 2723 page_alloc_init_cpuhp(); 2724 2725 /* 2726 * page_ext requires contiguous pages, 2727 * bigger than MAX_ORDER unless SPARSEMEM. 2728 */ 2729 page_ext_init_flatmem(); 2730 mem_debugging_and_hardening_init(); 2731 kfence_alloc_pool(); 2732 report_meminit(); 2733 kmsan_init_shadow(); 2734 stack_depot_early_init(); 2735 mem_init(); 2736 mem_init_print_info(); 2737 kmem_cache_init(); 2738 /* 2739 * page_owner must be initialized after buddy is ready, and also after 2740 * slab is ready so that stack_depot_init() works properly 2741 */ 2742 page_ext_init_flatmem_late(); 2743 kmemleak_init(); 2744 ptlock_cache_init(); 2745 pgtable_cache_init(); 2746 debug_objects_mem_init(); 2747 vmalloc_init(); 2748 /* If no deferred init page_ext now, as vmap is fully initialized */ 2749 if (!deferred_struct_pages) 2750 page_ext_init(); 2751 /* Should be run before the first non-init thread is created */ 2752 init_espfix_bsp(); 2753 /* Should be run after espfix64 is set up. */ 2754 pti_init(); 2755 kmsan_init_runtime(); 2756 mm_cache_init(); 2757 } 2758