xref: /openbmc/linux/mm/mm_init.c (revision 6887314f5356389fc219b8152e951ac084a10ef7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/swap.h>
28 #include <linux/cma.h>
29 #include <linux/crash_dump.h>
30 #include "internal.h"
31 #include "slab.h"
32 #include "shuffle.h"
33 
34 #include <asm/setup.h>
35 
36 #ifdef CONFIG_DEBUG_MEMORY_INIT
37 int __meminitdata mminit_loglevel;
38 
39 /* The zonelists are simply reported, validation is manual. */
40 void __init mminit_verify_zonelist(void)
41 {
42 	int nid;
43 
44 	if (mminit_loglevel < MMINIT_VERIFY)
45 		return;
46 
47 	for_each_online_node(nid) {
48 		pg_data_t *pgdat = NODE_DATA(nid);
49 		struct zone *zone;
50 		struct zoneref *z;
51 		struct zonelist *zonelist;
52 		int i, listid, zoneid;
53 
54 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
55 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
56 
57 			/* Identify the zone and nodelist */
58 			zoneid = i % MAX_NR_ZONES;
59 			listid = i / MAX_NR_ZONES;
60 			zonelist = &pgdat->node_zonelists[listid];
61 			zone = &pgdat->node_zones[zoneid];
62 			if (!populated_zone(zone))
63 				continue;
64 
65 			/* Print information about the zonelist */
66 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
67 				listid > 0 ? "thisnode" : "general", nid,
68 				zone->name);
69 
70 			/* Iterate the zonelist */
71 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
72 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
73 			pr_cont("\n");
74 		}
75 	}
76 }
77 
78 void __init mminit_verify_pageflags_layout(void)
79 {
80 	int shift, width;
81 	unsigned long or_mask, add_mask;
82 
83 	shift = BITS_PER_LONG;
84 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
85 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
86 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
87 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
88 		SECTIONS_WIDTH,
89 		NODES_WIDTH,
90 		ZONES_WIDTH,
91 		LAST_CPUPID_WIDTH,
92 		KASAN_TAG_WIDTH,
93 		LRU_GEN_WIDTH,
94 		LRU_REFS_WIDTH,
95 		NR_PAGEFLAGS);
96 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
97 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
98 		SECTIONS_SHIFT,
99 		NODES_SHIFT,
100 		ZONES_SHIFT,
101 		LAST_CPUPID_SHIFT,
102 		KASAN_TAG_WIDTH);
103 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
104 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
105 		(unsigned long)SECTIONS_PGSHIFT,
106 		(unsigned long)NODES_PGSHIFT,
107 		(unsigned long)ZONES_PGSHIFT,
108 		(unsigned long)LAST_CPUPID_PGSHIFT,
109 		(unsigned long)KASAN_TAG_PGSHIFT);
110 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
111 		"Node/Zone ID: %lu -> %lu\n",
112 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
113 		(unsigned long)ZONEID_PGOFF);
114 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
115 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
116 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
117 #ifdef NODE_NOT_IN_PAGE_FLAGS
118 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
119 		"Node not in page flags");
120 #endif
121 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
122 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
123 		"Last cpupid not in page flags");
124 #endif
125 
126 	if (SECTIONS_WIDTH) {
127 		shift -= SECTIONS_WIDTH;
128 		BUG_ON(shift != SECTIONS_PGSHIFT);
129 	}
130 	if (NODES_WIDTH) {
131 		shift -= NODES_WIDTH;
132 		BUG_ON(shift != NODES_PGSHIFT);
133 	}
134 	if (ZONES_WIDTH) {
135 		shift -= ZONES_WIDTH;
136 		BUG_ON(shift != ZONES_PGSHIFT);
137 	}
138 
139 	/* Check for bitmask overlaps */
140 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
141 			(NODES_MASK << NODES_PGSHIFT) |
142 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
143 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
144 			(NODES_MASK << NODES_PGSHIFT) +
145 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
146 	BUG_ON(or_mask != add_mask);
147 }
148 
149 static __init int set_mminit_loglevel(char *str)
150 {
151 	get_option(&str, &mminit_loglevel);
152 	return 0;
153 }
154 early_param("mminit_loglevel", set_mminit_loglevel);
155 #endif /* CONFIG_DEBUG_MEMORY_INIT */
156 
157 struct kobject *mm_kobj;
158 
159 #ifdef CONFIG_SMP
160 s32 vm_committed_as_batch = 32;
161 
162 void mm_compute_batch(int overcommit_policy)
163 {
164 	u64 memsized_batch;
165 	s32 nr = num_present_cpus();
166 	s32 batch = max_t(s32, nr*2, 32);
167 	unsigned long ram_pages = totalram_pages();
168 
169 	/*
170 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
171 	 * (total memory/#cpus), and lift it to 25% for other policies
172 	 * to easy the possible lock contention for percpu_counter
173 	 * vm_committed_as, while the max limit is INT_MAX
174 	 */
175 	if (overcommit_policy == OVERCOMMIT_NEVER)
176 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
177 	else
178 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
179 
180 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
181 }
182 
183 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
184 					unsigned long action, void *arg)
185 {
186 	switch (action) {
187 	case MEM_ONLINE:
188 	case MEM_OFFLINE:
189 		mm_compute_batch(sysctl_overcommit_memory);
190 		break;
191 	default:
192 		break;
193 	}
194 	return NOTIFY_OK;
195 }
196 
197 static int __init mm_compute_batch_init(void)
198 {
199 	mm_compute_batch(sysctl_overcommit_memory);
200 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
201 	return 0;
202 }
203 
204 __initcall(mm_compute_batch_init);
205 
206 #endif
207 
208 static int __init mm_sysfs_init(void)
209 {
210 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
211 	if (!mm_kobj)
212 		return -ENOMEM;
213 
214 	return 0;
215 }
216 postcore_initcall(mm_sysfs_init);
217 
218 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
219 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
220 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
221 
222 static unsigned long required_kernelcore __initdata;
223 static unsigned long required_kernelcore_percent __initdata;
224 static unsigned long required_movablecore __initdata;
225 static unsigned long required_movablecore_percent __initdata;
226 
227 static unsigned long nr_kernel_pages __initdata;
228 static unsigned long nr_all_pages __initdata;
229 static unsigned long dma_reserve __initdata;
230 
231 static bool deferred_struct_pages __meminitdata;
232 
233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234 
235 static int __init cmdline_parse_core(char *p, unsigned long *core,
236 				     unsigned long *percent)
237 {
238 	unsigned long long coremem;
239 	char *endptr;
240 
241 	if (!p)
242 		return -EINVAL;
243 
244 	/* Value may be a percentage of total memory, otherwise bytes */
245 	coremem = simple_strtoull(p, &endptr, 0);
246 	if (*endptr == '%') {
247 		/* Paranoid check for percent values greater than 100 */
248 		WARN_ON(coremem > 100);
249 
250 		*percent = coremem;
251 	} else {
252 		coremem = memparse(p, &p);
253 		/* Paranoid check that UL is enough for the coremem value */
254 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255 
256 		*core = coremem >> PAGE_SHIFT;
257 		*percent = 0UL;
258 	}
259 	return 0;
260 }
261 
262 bool mirrored_kernelcore __initdata_memblock;
263 
264 /*
265  * kernelcore=size sets the amount of memory for use for allocations that
266  * cannot be reclaimed or migrated.
267  */
268 static int __init cmdline_parse_kernelcore(char *p)
269 {
270 	/* parse kernelcore=mirror */
271 	if (parse_option_str(p, "mirror")) {
272 		mirrored_kernelcore = true;
273 		return 0;
274 	}
275 
276 	return cmdline_parse_core(p, &required_kernelcore,
277 				  &required_kernelcore_percent);
278 }
279 early_param("kernelcore", cmdline_parse_kernelcore);
280 
281 /*
282  * movablecore=size sets the amount of memory for use for allocations that
283  * can be reclaimed or migrated.
284  */
285 static int __init cmdline_parse_movablecore(char *p)
286 {
287 	return cmdline_parse_core(p, &required_movablecore,
288 				  &required_movablecore_percent);
289 }
290 early_param("movablecore", cmdline_parse_movablecore);
291 
292 /*
293  * early_calculate_totalpages()
294  * Sum pages in active regions for movable zone.
295  * Populate N_MEMORY for calculating usable_nodes.
296  */
297 static unsigned long __init early_calculate_totalpages(void)
298 {
299 	unsigned long totalpages = 0;
300 	unsigned long start_pfn, end_pfn;
301 	int i, nid;
302 
303 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
304 		unsigned long pages = end_pfn - start_pfn;
305 
306 		totalpages += pages;
307 		if (pages)
308 			node_set_state(nid, N_MEMORY);
309 	}
310 	return totalpages;
311 }
312 
313 /*
314  * This finds a zone that can be used for ZONE_MOVABLE pages. The
315  * assumption is made that zones within a node are ordered in monotonic
316  * increasing memory addresses so that the "highest" populated zone is used
317  */
318 static void __init find_usable_zone_for_movable(void)
319 {
320 	int zone_index;
321 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
322 		if (zone_index == ZONE_MOVABLE)
323 			continue;
324 
325 		if (arch_zone_highest_possible_pfn[zone_index] >
326 				arch_zone_lowest_possible_pfn[zone_index])
327 			break;
328 	}
329 
330 	VM_BUG_ON(zone_index == -1);
331 	movable_zone = zone_index;
332 }
333 
334 /*
335  * Find the PFN the Movable zone begins in each node. Kernel memory
336  * is spread evenly between nodes as long as the nodes have enough
337  * memory. When they don't, some nodes will have more kernelcore than
338  * others
339  */
340 static void __init find_zone_movable_pfns_for_nodes(void)
341 {
342 	int i, nid;
343 	unsigned long usable_startpfn;
344 	unsigned long kernelcore_node, kernelcore_remaining;
345 	/* save the state before borrow the nodemask */
346 	nodemask_t saved_node_state = node_states[N_MEMORY];
347 	unsigned long totalpages = early_calculate_totalpages();
348 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
349 	struct memblock_region *r;
350 
351 	/* Need to find movable_zone earlier when movable_node is specified. */
352 	find_usable_zone_for_movable();
353 
354 	/*
355 	 * If movable_node is specified, ignore kernelcore and movablecore
356 	 * options.
357 	 */
358 	if (movable_node_is_enabled()) {
359 		for_each_mem_region(r) {
360 			if (!memblock_is_hotpluggable(r))
361 				continue;
362 
363 			nid = memblock_get_region_node(r);
364 
365 			usable_startpfn = PFN_DOWN(r->base);
366 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
367 				min(usable_startpfn, zone_movable_pfn[nid]) :
368 				usable_startpfn;
369 		}
370 
371 		goto out2;
372 	}
373 
374 	/*
375 	 * If kernelcore=mirror is specified, ignore movablecore option
376 	 */
377 	if (mirrored_kernelcore) {
378 		bool mem_below_4gb_not_mirrored = false;
379 
380 		if (!memblock_has_mirror()) {
381 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
382 			goto out;
383 		}
384 
385 		if (is_kdump_kernel()) {
386 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
387 			goto out;
388 		}
389 
390 		for_each_mem_region(r) {
391 			if (memblock_is_mirror(r))
392 				continue;
393 
394 			nid = memblock_get_region_node(r);
395 
396 			usable_startpfn = memblock_region_memory_base_pfn(r);
397 
398 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
399 				mem_below_4gb_not_mirrored = true;
400 				continue;
401 			}
402 
403 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
404 				min(usable_startpfn, zone_movable_pfn[nid]) :
405 				usable_startpfn;
406 		}
407 
408 		if (mem_below_4gb_not_mirrored)
409 			pr_warn("This configuration results in unmirrored kernel memory.\n");
410 
411 		goto out2;
412 	}
413 
414 	/*
415 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
416 	 * amount of necessary memory.
417 	 */
418 	if (required_kernelcore_percent)
419 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
420 				       10000UL;
421 	if (required_movablecore_percent)
422 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
423 					10000UL;
424 
425 	/*
426 	 * If movablecore= was specified, calculate what size of
427 	 * kernelcore that corresponds so that memory usable for
428 	 * any allocation type is evenly spread. If both kernelcore
429 	 * and movablecore are specified, then the value of kernelcore
430 	 * will be used for required_kernelcore if it's greater than
431 	 * what movablecore would have allowed.
432 	 */
433 	if (required_movablecore) {
434 		unsigned long corepages;
435 
436 		/*
437 		 * Round-up so that ZONE_MOVABLE is at least as large as what
438 		 * was requested by the user
439 		 */
440 		required_movablecore =
441 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
442 		required_movablecore = min(totalpages, required_movablecore);
443 		corepages = totalpages - required_movablecore;
444 
445 		required_kernelcore = max(required_kernelcore, corepages);
446 	}
447 
448 	/*
449 	 * If kernelcore was not specified or kernelcore size is larger
450 	 * than totalpages, there is no ZONE_MOVABLE.
451 	 */
452 	if (!required_kernelcore || required_kernelcore >= totalpages)
453 		goto out;
454 
455 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
456 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
457 
458 restart:
459 	/* Spread kernelcore memory as evenly as possible throughout nodes */
460 	kernelcore_node = required_kernelcore / usable_nodes;
461 	for_each_node_state(nid, N_MEMORY) {
462 		unsigned long start_pfn, end_pfn;
463 
464 		/*
465 		 * Recalculate kernelcore_node if the division per node
466 		 * now exceeds what is necessary to satisfy the requested
467 		 * amount of memory for the kernel
468 		 */
469 		if (required_kernelcore < kernelcore_node)
470 			kernelcore_node = required_kernelcore / usable_nodes;
471 
472 		/*
473 		 * As the map is walked, we track how much memory is usable
474 		 * by the kernel using kernelcore_remaining. When it is
475 		 * 0, the rest of the node is usable by ZONE_MOVABLE
476 		 */
477 		kernelcore_remaining = kernelcore_node;
478 
479 		/* Go through each range of PFNs within this node */
480 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
481 			unsigned long size_pages;
482 
483 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
484 			if (start_pfn >= end_pfn)
485 				continue;
486 
487 			/* Account for what is only usable for kernelcore */
488 			if (start_pfn < usable_startpfn) {
489 				unsigned long kernel_pages;
490 				kernel_pages = min(end_pfn, usable_startpfn)
491 								- start_pfn;
492 
493 				kernelcore_remaining -= min(kernel_pages,
494 							kernelcore_remaining);
495 				required_kernelcore -= min(kernel_pages,
496 							required_kernelcore);
497 
498 				/* Continue if range is now fully accounted */
499 				if (end_pfn <= usable_startpfn) {
500 
501 					/*
502 					 * Push zone_movable_pfn to the end so
503 					 * that if we have to rebalance
504 					 * kernelcore across nodes, we will
505 					 * not double account here
506 					 */
507 					zone_movable_pfn[nid] = end_pfn;
508 					continue;
509 				}
510 				start_pfn = usable_startpfn;
511 			}
512 
513 			/*
514 			 * The usable PFN range for ZONE_MOVABLE is from
515 			 * start_pfn->end_pfn. Calculate size_pages as the
516 			 * number of pages used as kernelcore
517 			 */
518 			size_pages = end_pfn - start_pfn;
519 			if (size_pages > kernelcore_remaining)
520 				size_pages = kernelcore_remaining;
521 			zone_movable_pfn[nid] = start_pfn + size_pages;
522 
523 			/*
524 			 * Some kernelcore has been met, update counts and
525 			 * break if the kernelcore for this node has been
526 			 * satisfied
527 			 */
528 			required_kernelcore -= min(required_kernelcore,
529 								size_pages);
530 			kernelcore_remaining -= size_pages;
531 			if (!kernelcore_remaining)
532 				break;
533 		}
534 	}
535 
536 	/*
537 	 * If there is still required_kernelcore, we do another pass with one
538 	 * less node in the count. This will push zone_movable_pfn[nid] further
539 	 * along on the nodes that still have memory until kernelcore is
540 	 * satisfied
541 	 */
542 	usable_nodes--;
543 	if (usable_nodes && required_kernelcore > usable_nodes)
544 		goto restart;
545 
546 out2:
547 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
548 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
549 		unsigned long start_pfn, end_pfn;
550 
551 		zone_movable_pfn[nid] =
552 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
553 
554 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
555 		if (zone_movable_pfn[nid] >= end_pfn)
556 			zone_movable_pfn[nid] = 0;
557 	}
558 
559 out:
560 	/* restore the node_state */
561 	node_states[N_MEMORY] = saved_node_state;
562 }
563 
564 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
565 				unsigned long zone, int nid)
566 {
567 	mm_zero_struct_page(page);
568 	set_page_links(page, zone, nid, pfn);
569 	init_page_count(page);
570 	page_mapcount_reset(page);
571 	page_cpupid_reset_last(page);
572 	page_kasan_tag_reset(page);
573 
574 	INIT_LIST_HEAD(&page->lru);
575 #ifdef WANT_PAGE_VIRTUAL
576 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
577 	if (!is_highmem_idx(zone))
578 		set_page_address(page, __va(pfn << PAGE_SHIFT));
579 #endif
580 }
581 
582 #ifdef CONFIG_NUMA
583 /*
584  * During memory init memblocks map pfns to nids. The search is expensive and
585  * this caches recent lookups. The implementation of __early_pfn_to_nid
586  * treats start/end as pfns.
587  */
588 struct mminit_pfnnid_cache {
589 	unsigned long last_start;
590 	unsigned long last_end;
591 	int last_nid;
592 };
593 
594 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
595 
596 /*
597  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
598  */
599 static int __meminit __early_pfn_to_nid(unsigned long pfn,
600 					struct mminit_pfnnid_cache *state)
601 {
602 	unsigned long start_pfn, end_pfn;
603 	int nid;
604 
605 	if (state->last_start <= pfn && pfn < state->last_end)
606 		return state->last_nid;
607 
608 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
609 	if (nid != NUMA_NO_NODE) {
610 		state->last_start = start_pfn;
611 		state->last_end = end_pfn;
612 		state->last_nid = nid;
613 	}
614 
615 	return nid;
616 }
617 
618 int __meminit early_pfn_to_nid(unsigned long pfn)
619 {
620 	static DEFINE_SPINLOCK(early_pfn_lock);
621 	int nid;
622 
623 	spin_lock(&early_pfn_lock);
624 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
625 	if (nid < 0)
626 		nid = first_online_node;
627 	spin_unlock(&early_pfn_lock);
628 
629 	return nid;
630 }
631 
632 int hashdist = HASHDIST_DEFAULT;
633 
634 static int __init set_hashdist(char *str)
635 {
636 	if (!str)
637 		return 0;
638 	hashdist = simple_strtoul(str, &str, 0);
639 	return 1;
640 }
641 __setup("hashdist=", set_hashdist);
642 
643 static inline void fixup_hashdist(void)
644 {
645 	if (num_node_state(N_MEMORY) == 1)
646 		hashdist = 0;
647 }
648 #else
649 static inline void fixup_hashdist(void) {}
650 #endif /* CONFIG_NUMA */
651 
652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
653 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
654 {
655 	pgdat->first_deferred_pfn = ULONG_MAX;
656 }
657 
658 /* Returns true if the struct page for the pfn is initialised */
659 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
660 {
661 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
662 		return false;
663 
664 	return true;
665 }
666 
667 /*
668  * Returns true when the remaining initialisation should be deferred until
669  * later in the boot cycle when it can be parallelised.
670  */
671 static bool __meminit
672 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
673 {
674 	static unsigned long prev_end_pfn, nr_initialised;
675 
676 	if (early_page_ext_enabled())
677 		return false;
678 	/*
679 	 * prev_end_pfn static that contains the end of previous zone
680 	 * No need to protect because called very early in boot before smp_init.
681 	 */
682 	if (prev_end_pfn != end_pfn) {
683 		prev_end_pfn = end_pfn;
684 		nr_initialised = 0;
685 	}
686 
687 	/* Always populate low zones for address-constrained allocations */
688 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
689 		return false;
690 
691 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
692 		return true;
693 	/*
694 	 * We start only with one section of pages, more pages are added as
695 	 * needed until the rest of deferred pages are initialized.
696 	 */
697 	nr_initialised++;
698 	if ((nr_initialised > PAGES_PER_SECTION) &&
699 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
700 		NODE_DATA(nid)->first_deferred_pfn = pfn;
701 		return true;
702 	}
703 	return false;
704 }
705 
706 static void __meminit init_reserved_page(unsigned long pfn, int nid)
707 {
708 	pg_data_t *pgdat;
709 	int zid;
710 
711 	if (early_page_initialised(pfn, nid))
712 		return;
713 
714 	pgdat = NODE_DATA(nid);
715 
716 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
717 		struct zone *zone = &pgdat->node_zones[zid];
718 
719 		if (zone_spans_pfn(zone, pfn))
720 			break;
721 	}
722 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
723 }
724 #else
725 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
726 
727 static inline bool early_page_initialised(unsigned long pfn, int nid)
728 {
729 	return true;
730 }
731 
732 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
733 {
734 	return false;
735 }
736 
737 static inline void init_reserved_page(unsigned long pfn, int nid)
738 {
739 }
740 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
741 
742 /*
743  * Initialised pages do not have PageReserved set. This function is
744  * called for each range allocated by the bootmem allocator and
745  * marks the pages PageReserved. The remaining valid pages are later
746  * sent to the buddy page allocator.
747  */
748 void __meminit reserve_bootmem_region(phys_addr_t start,
749 				      phys_addr_t end, int nid)
750 {
751 	unsigned long start_pfn = PFN_DOWN(start);
752 	unsigned long end_pfn = PFN_UP(end);
753 
754 	for (; start_pfn < end_pfn; start_pfn++) {
755 		if (pfn_valid(start_pfn)) {
756 			struct page *page = pfn_to_page(start_pfn);
757 
758 			init_reserved_page(start_pfn, nid);
759 
760 			/* Avoid false-positive PageTail() */
761 			INIT_LIST_HEAD(&page->lru);
762 
763 			/*
764 			 * no need for atomic set_bit because the struct
765 			 * page is not visible yet so nobody should
766 			 * access it yet.
767 			 */
768 			__SetPageReserved(page);
769 		}
770 	}
771 }
772 
773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774 static bool __meminit
775 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776 {
777 	static struct memblock_region *r;
778 
779 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781 			for_each_mem_region(r) {
782 				if (*pfn < memblock_region_memory_end_pfn(r))
783 					break;
784 			}
785 		}
786 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
787 		    memblock_is_mirror(r)) {
788 			*pfn = memblock_region_memory_end_pfn(r);
789 			return true;
790 		}
791 	}
792 	return false;
793 }
794 
795 /*
796  * Only struct pages that correspond to ranges defined by memblock.memory
797  * are zeroed and initialized by going through __init_single_page() during
798  * memmap_init_zone_range().
799  *
800  * But, there could be struct pages that correspond to holes in
801  * memblock.memory. This can happen because of the following reasons:
802  * - physical memory bank size is not necessarily the exact multiple of the
803  *   arbitrary section size
804  * - early reserved memory may not be listed in memblock.memory
805  * - memory layouts defined with memmap= kernel parameter may not align
806  *   nicely with memmap sections
807  *
808  * Explicitly initialize those struct pages so that:
809  * - PG_Reserved is set
810  * - zone and node links point to zone and node that span the page if the
811  *   hole is in the middle of a zone
812  * - zone and node links point to adjacent zone/node if the hole falls on
813  *   the zone boundary; the pages in such holes will be prepended to the
814  *   zone/node above the hole except for the trailing pages in the last
815  *   section that will be appended to the zone/node below.
816  */
817 static void __init init_unavailable_range(unsigned long spfn,
818 					  unsigned long epfn,
819 					  int zone, int node)
820 {
821 	unsigned long pfn;
822 	u64 pgcnt = 0;
823 
824 	for (pfn = spfn; pfn < epfn; pfn++) {
825 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
826 			pfn = pageblock_end_pfn(pfn) - 1;
827 			continue;
828 		}
829 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
830 		__SetPageReserved(pfn_to_page(pfn));
831 		pgcnt++;
832 	}
833 
834 	if (pgcnt)
835 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
836 			node, zone_names[zone], pgcnt);
837 }
838 
839 /*
840  * Initially all pages are reserved - free ones are freed
841  * up by memblock_free_all() once the early boot process is
842  * done. Non-atomic initialization, single-pass.
843  *
844  * All aligned pageblocks are initialized to the specified migratetype
845  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
846  * zone stats (e.g., nr_isolate_pageblock) are touched.
847  */
848 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
849 		unsigned long start_pfn, unsigned long zone_end_pfn,
850 		enum meminit_context context,
851 		struct vmem_altmap *altmap, int migratetype)
852 {
853 	unsigned long pfn, end_pfn = start_pfn + size;
854 	struct page *page;
855 
856 	if (highest_memmap_pfn < end_pfn - 1)
857 		highest_memmap_pfn = end_pfn - 1;
858 
859 #ifdef CONFIG_ZONE_DEVICE
860 	/*
861 	 * Honor reservation requested by the driver for this ZONE_DEVICE
862 	 * memory. We limit the total number of pages to initialize to just
863 	 * those that might contain the memory mapping. We will defer the
864 	 * ZONE_DEVICE page initialization until after we have released
865 	 * the hotplug lock.
866 	 */
867 	if (zone == ZONE_DEVICE) {
868 		if (!altmap)
869 			return;
870 
871 		if (start_pfn == altmap->base_pfn)
872 			start_pfn += altmap->reserve;
873 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
874 	}
875 #endif
876 
877 	for (pfn = start_pfn; pfn < end_pfn; ) {
878 		/*
879 		 * There can be holes in boot-time mem_map[]s handed to this
880 		 * function.  They do not exist on hotplugged memory.
881 		 */
882 		if (context == MEMINIT_EARLY) {
883 			if (overlap_memmap_init(zone, &pfn))
884 				continue;
885 			if (defer_init(nid, pfn, zone_end_pfn)) {
886 				deferred_struct_pages = true;
887 				break;
888 			}
889 		}
890 
891 		page = pfn_to_page(pfn);
892 		__init_single_page(page, pfn, zone, nid);
893 		if (context == MEMINIT_HOTPLUG)
894 			__SetPageReserved(page);
895 
896 		/*
897 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
898 		 * such that unmovable allocations won't be scattered all
899 		 * over the place during system boot.
900 		 */
901 		if (pageblock_aligned(pfn)) {
902 			set_pageblock_migratetype(page, migratetype);
903 			cond_resched();
904 		}
905 		pfn++;
906 	}
907 }
908 
909 static void __init memmap_init_zone_range(struct zone *zone,
910 					  unsigned long start_pfn,
911 					  unsigned long end_pfn,
912 					  unsigned long *hole_pfn)
913 {
914 	unsigned long zone_start_pfn = zone->zone_start_pfn;
915 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
916 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
917 
918 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
919 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
920 
921 	if (start_pfn >= end_pfn)
922 		return;
923 
924 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
925 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
926 
927 	if (*hole_pfn < start_pfn)
928 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
929 
930 	*hole_pfn = end_pfn;
931 }
932 
933 static void __init memmap_init(void)
934 {
935 	unsigned long start_pfn, end_pfn;
936 	unsigned long hole_pfn = 0;
937 	int i, j, zone_id = 0, nid;
938 
939 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
940 		struct pglist_data *node = NODE_DATA(nid);
941 
942 		for (j = 0; j < MAX_NR_ZONES; j++) {
943 			struct zone *zone = node->node_zones + j;
944 
945 			if (!populated_zone(zone))
946 				continue;
947 
948 			memmap_init_zone_range(zone, start_pfn, end_pfn,
949 					       &hole_pfn);
950 			zone_id = j;
951 		}
952 	}
953 
954 #ifdef CONFIG_SPARSEMEM
955 	/*
956 	 * Initialize the memory map for hole in the range [memory_end,
957 	 * section_end].
958 	 * Append the pages in this hole to the highest zone in the last
959 	 * node.
960 	 * The call to init_unavailable_range() is outside the ifdef to
961 	 * silence the compiler warining about zone_id set but not used;
962 	 * for FLATMEM it is a nop anyway
963 	 */
964 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
965 	if (hole_pfn < end_pfn)
966 #endif
967 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
968 }
969 
970 #ifdef CONFIG_ZONE_DEVICE
971 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
972 					  unsigned long zone_idx, int nid,
973 					  struct dev_pagemap *pgmap)
974 {
975 
976 	__init_single_page(page, pfn, zone_idx, nid);
977 
978 	/*
979 	 * Mark page reserved as it will need to wait for onlining
980 	 * phase for it to be fully associated with a zone.
981 	 *
982 	 * We can use the non-atomic __set_bit operation for setting
983 	 * the flag as we are still initializing the pages.
984 	 */
985 	__SetPageReserved(page);
986 
987 	/*
988 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
989 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
990 	 * ever freed or placed on a driver-private list.
991 	 */
992 	page->pgmap = pgmap;
993 	page->zone_device_data = NULL;
994 
995 	/*
996 	 * Mark the block movable so that blocks are reserved for
997 	 * movable at startup. This will force kernel allocations
998 	 * to reserve their blocks rather than leaking throughout
999 	 * the address space during boot when many long-lived
1000 	 * kernel allocations are made.
1001 	 *
1002 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1003 	 * because this is done early in section_activate()
1004 	 */
1005 	if (pageblock_aligned(pfn)) {
1006 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1007 		cond_resched();
1008 	}
1009 
1010 	/*
1011 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1012 	 * which will set the page count to 1 when allocating the page.
1013 	 */
1014 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1015 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1016 		set_page_count(page, 0);
1017 }
1018 
1019 /*
1020  * With compound page geometry and when struct pages are stored in ram most
1021  * tail pages are reused. Consequently, the amount of unique struct pages to
1022  * initialize is a lot smaller that the total amount of struct pages being
1023  * mapped. This is a paired / mild layering violation with explicit knowledge
1024  * of how the sparse_vmemmap internals handle compound pages in the lack
1025  * of an altmap. See vmemmap_populate_compound_pages().
1026  */
1027 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1028 					      struct dev_pagemap *pgmap)
1029 {
1030 	if (!vmemmap_can_optimize(altmap, pgmap))
1031 		return pgmap_vmemmap_nr(pgmap);
1032 
1033 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1034 }
1035 
1036 static void __ref memmap_init_compound(struct page *head,
1037 				       unsigned long head_pfn,
1038 				       unsigned long zone_idx, int nid,
1039 				       struct dev_pagemap *pgmap,
1040 				       unsigned long nr_pages)
1041 {
1042 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1043 	unsigned int order = pgmap->vmemmap_shift;
1044 
1045 	__SetPageHead(head);
1046 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1047 		struct page *page = pfn_to_page(pfn);
1048 
1049 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1050 		prep_compound_tail(head, pfn - head_pfn);
1051 		set_page_count(page, 0);
1052 
1053 		/*
1054 		 * The first tail page stores important compound page info.
1055 		 * Call prep_compound_head() after the first tail page has
1056 		 * been initialized, to not have the data overwritten.
1057 		 */
1058 		if (pfn == head_pfn + 1)
1059 			prep_compound_head(head, order);
1060 	}
1061 }
1062 
1063 void __ref memmap_init_zone_device(struct zone *zone,
1064 				   unsigned long start_pfn,
1065 				   unsigned long nr_pages,
1066 				   struct dev_pagemap *pgmap)
1067 {
1068 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1069 	struct pglist_data *pgdat = zone->zone_pgdat;
1070 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1071 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1072 	unsigned long zone_idx = zone_idx(zone);
1073 	unsigned long start = jiffies;
1074 	int nid = pgdat->node_id;
1075 
1076 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1077 		return;
1078 
1079 	/*
1080 	 * The call to memmap_init should have already taken care
1081 	 * of the pages reserved for the memmap, so we can just jump to
1082 	 * the end of that region and start processing the device pages.
1083 	 */
1084 	if (altmap) {
1085 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1086 		nr_pages = end_pfn - start_pfn;
1087 	}
1088 
1089 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1090 		struct page *page = pfn_to_page(pfn);
1091 
1092 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1093 
1094 		if (pfns_per_compound == 1)
1095 			continue;
1096 
1097 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1098 				     compound_nr_pages(altmap, pgmap));
1099 	}
1100 
1101 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1102 		nr_pages, jiffies_to_msecs(jiffies - start));
1103 }
1104 #endif
1105 
1106 /*
1107  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1108  * because it is sized independent of architecture. Unlike the other zones,
1109  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1110  * in each node depending on the size of each node and how evenly kernelcore
1111  * is distributed. This helper function adjusts the zone ranges
1112  * provided by the architecture for a given node by using the end of the
1113  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1114  * zones within a node are in order of monotonic increases memory addresses
1115  */
1116 static void __init adjust_zone_range_for_zone_movable(int nid,
1117 					unsigned long zone_type,
1118 					unsigned long node_end_pfn,
1119 					unsigned long *zone_start_pfn,
1120 					unsigned long *zone_end_pfn)
1121 {
1122 	/* Only adjust if ZONE_MOVABLE is on this node */
1123 	if (zone_movable_pfn[nid]) {
1124 		/* Size ZONE_MOVABLE */
1125 		if (zone_type == ZONE_MOVABLE) {
1126 			*zone_start_pfn = zone_movable_pfn[nid];
1127 			*zone_end_pfn = min(node_end_pfn,
1128 				arch_zone_highest_possible_pfn[movable_zone]);
1129 
1130 		/* Adjust for ZONE_MOVABLE starting within this range */
1131 		} else if (!mirrored_kernelcore &&
1132 			*zone_start_pfn < zone_movable_pfn[nid] &&
1133 			*zone_end_pfn > zone_movable_pfn[nid]) {
1134 			*zone_end_pfn = zone_movable_pfn[nid];
1135 
1136 		/* Check if this whole range is within ZONE_MOVABLE */
1137 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1138 			*zone_start_pfn = *zone_end_pfn;
1139 	}
1140 }
1141 
1142 /*
1143  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1144  * then all holes in the requested range will be accounted for.
1145  */
1146 unsigned long __init __absent_pages_in_range(int nid,
1147 				unsigned long range_start_pfn,
1148 				unsigned long range_end_pfn)
1149 {
1150 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1151 	unsigned long start_pfn, end_pfn;
1152 	int i;
1153 
1154 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1155 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1156 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1157 		nr_absent -= end_pfn - start_pfn;
1158 	}
1159 	return nr_absent;
1160 }
1161 
1162 /**
1163  * absent_pages_in_range - Return number of page frames in holes within a range
1164  * @start_pfn: The start PFN to start searching for holes
1165  * @end_pfn: The end PFN to stop searching for holes
1166  *
1167  * Return: the number of pages frames in memory holes within a range.
1168  */
1169 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1170 							unsigned long end_pfn)
1171 {
1172 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1173 }
1174 
1175 /* Return the number of page frames in holes in a zone on a node */
1176 static unsigned long __init zone_absent_pages_in_node(int nid,
1177 					unsigned long zone_type,
1178 					unsigned long zone_start_pfn,
1179 					unsigned long zone_end_pfn)
1180 {
1181 	unsigned long nr_absent;
1182 
1183 	/* zone is empty, we don't have any absent pages */
1184 	if (zone_start_pfn == zone_end_pfn)
1185 		return 0;
1186 
1187 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1188 
1189 	/*
1190 	 * ZONE_MOVABLE handling.
1191 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1192 	 * and vice versa.
1193 	 */
1194 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1195 		unsigned long start_pfn, end_pfn;
1196 		struct memblock_region *r;
1197 
1198 		for_each_mem_region(r) {
1199 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1200 					  zone_start_pfn, zone_end_pfn);
1201 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1202 					zone_start_pfn, zone_end_pfn);
1203 
1204 			if (zone_type == ZONE_MOVABLE &&
1205 			    memblock_is_mirror(r))
1206 				nr_absent += end_pfn - start_pfn;
1207 
1208 			if (zone_type == ZONE_NORMAL &&
1209 			    !memblock_is_mirror(r))
1210 				nr_absent += end_pfn - start_pfn;
1211 		}
1212 	}
1213 
1214 	return nr_absent;
1215 }
1216 
1217 /*
1218  * Return the number of pages a zone spans in a node, including holes
1219  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1220  */
1221 static unsigned long __init zone_spanned_pages_in_node(int nid,
1222 					unsigned long zone_type,
1223 					unsigned long node_start_pfn,
1224 					unsigned long node_end_pfn,
1225 					unsigned long *zone_start_pfn,
1226 					unsigned long *zone_end_pfn)
1227 {
1228 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1229 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1230 
1231 	/* Get the start and end of the zone */
1232 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1233 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1234 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1235 					   zone_start_pfn, zone_end_pfn);
1236 
1237 	/* Check that this node has pages within the zone's required range */
1238 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1239 		return 0;
1240 
1241 	/* Move the zone boundaries inside the node if necessary */
1242 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1243 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1244 
1245 	/* Return the spanned pages */
1246 	return *zone_end_pfn - *zone_start_pfn;
1247 }
1248 
1249 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1250 {
1251 	struct zone *z;
1252 
1253 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1254 		z->zone_start_pfn = 0;
1255 		z->spanned_pages = 0;
1256 		z->present_pages = 0;
1257 #if defined(CONFIG_MEMORY_HOTPLUG)
1258 		z->present_early_pages = 0;
1259 #endif
1260 	}
1261 
1262 	pgdat->node_spanned_pages = 0;
1263 	pgdat->node_present_pages = 0;
1264 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1265 }
1266 
1267 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1268 						unsigned long node_start_pfn,
1269 						unsigned long node_end_pfn)
1270 {
1271 	unsigned long realtotalpages = 0, totalpages = 0;
1272 	enum zone_type i;
1273 
1274 	for (i = 0; i < MAX_NR_ZONES; i++) {
1275 		struct zone *zone = pgdat->node_zones + i;
1276 		unsigned long zone_start_pfn, zone_end_pfn;
1277 		unsigned long spanned, absent;
1278 		unsigned long real_size;
1279 
1280 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1281 						     node_start_pfn,
1282 						     node_end_pfn,
1283 						     &zone_start_pfn,
1284 						     &zone_end_pfn);
1285 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1286 						   zone_start_pfn,
1287 						   zone_end_pfn);
1288 
1289 		real_size = spanned - absent;
1290 
1291 		if (spanned)
1292 			zone->zone_start_pfn = zone_start_pfn;
1293 		else
1294 			zone->zone_start_pfn = 0;
1295 		zone->spanned_pages = spanned;
1296 		zone->present_pages = real_size;
1297 #if defined(CONFIG_MEMORY_HOTPLUG)
1298 		zone->present_early_pages = real_size;
1299 #endif
1300 
1301 		totalpages += spanned;
1302 		realtotalpages += real_size;
1303 	}
1304 
1305 	pgdat->node_spanned_pages = totalpages;
1306 	pgdat->node_present_pages = realtotalpages;
1307 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1308 }
1309 
1310 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1311 						unsigned long present_pages)
1312 {
1313 	unsigned long pages = spanned_pages;
1314 
1315 	/*
1316 	 * Provide a more accurate estimation if there are holes within
1317 	 * the zone and SPARSEMEM is in use. If there are holes within the
1318 	 * zone, each populated memory region may cost us one or two extra
1319 	 * memmap pages due to alignment because memmap pages for each
1320 	 * populated regions may not be naturally aligned on page boundary.
1321 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1322 	 */
1323 	if (spanned_pages > present_pages + (present_pages >> 4) &&
1324 	    IS_ENABLED(CONFIG_SPARSEMEM))
1325 		pages = present_pages;
1326 
1327 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1328 }
1329 
1330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1331 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1332 {
1333 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1334 
1335 	spin_lock_init(&ds_queue->split_queue_lock);
1336 	INIT_LIST_HEAD(&ds_queue->split_queue);
1337 	ds_queue->split_queue_len = 0;
1338 }
1339 #else
1340 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1341 #endif
1342 
1343 #ifdef CONFIG_COMPACTION
1344 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1345 {
1346 	init_waitqueue_head(&pgdat->kcompactd_wait);
1347 }
1348 #else
1349 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1350 #endif
1351 
1352 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1353 {
1354 	int i;
1355 
1356 	pgdat_resize_init(pgdat);
1357 	pgdat_kswapd_lock_init(pgdat);
1358 
1359 	pgdat_init_split_queue(pgdat);
1360 	pgdat_init_kcompactd(pgdat);
1361 
1362 	init_waitqueue_head(&pgdat->kswapd_wait);
1363 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1364 
1365 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1366 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1367 
1368 	pgdat_page_ext_init(pgdat);
1369 	lruvec_init(&pgdat->__lruvec);
1370 }
1371 
1372 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1373 							unsigned long remaining_pages)
1374 {
1375 	atomic_long_set(&zone->managed_pages, remaining_pages);
1376 	zone_set_nid(zone, nid);
1377 	zone->name = zone_names[idx];
1378 	zone->zone_pgdat = NODE_DATA(nid);
1379 	spin_lock_init(&zone->lock);
1380 	zone_seqlock_init(zone);
1381 	zone_pcp_init(zone);
1382 }
1383 
1384 static void __meminit zone_init_free_lists(struct zone *zone)
1385 {
1386 	unsigned int order, t;
1387 	for_each_migratetype_order(order, t) {
1388 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1389 		zone->free_area[order].nr_free = 0;
1390 	}
1391 
1392 #ifdef CONFIG_UNACCEPTED_MEMORY
1393 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1394 #endif
1395 }
1396 
1397 void __meminit init_currently_empty_zone(struct zone *zone,
1398 					unsigned long zone_start_pfn,
1399 					unsigned long size)
1400 {
1401 	struct pglist_data *pgdat = zone->zone_pgdat;
1402 	int zone_idx = zone_idx(zone) + 1;
1403 
1404 	if (zone_idx > pgdat->nr_zones)
1405 		pgdat->nr_zones = zone_idx;
1406 
1407 	zone->zone_start_pfn = zone_start_pfn;
1408 
1409 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1410 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1411 			pgdat->node_id,
1412 			(unsigned long)zone_idx(zone),
1413 			zone_start_pfn, (zone_start_pfn + size));
1414 
1415 	zone_init_free_lists(zone);
1416 	zone->initialized = 1;
1417 }
1418 
1419 #ifndef CONFIG_SPARSEMEM
1420 /*
1421  * Calculate the size of the zone->blockflags rounded to an unsigned long
1422  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1423  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1424  * round what is now in bits to nearest long in bits, then return it in
1425  * bytes.
1426  */
1427 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1428 {
1429 	unsigned long usemapsize;
1430 
1431 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1432 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1433 	usemapsize = usemapsize >> pageblock_order;
1434 	usemapsize *= NR_PAGEBLOCK_BITS;
1435 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1436 
1437 	return usemapsize / BITS_PER_BYTE;
1438 }
1439 
1440 static void __ref setup_usemap(struct zone *zone)
1441 {
1442 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1443 					       zone->spanned_pages);
1444 	zone->pageblock_flags = NULL;
1445 	if (usemapsize) {
1446 		zone->pageblock_flags =
1447 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1448 					    zone_to_nid(zone));
1449 		if (!zone->pageblock_flags)
1450 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1451 			      usemapsize, zone->name, zone_to_nid(zone));
1452 	}
1453 }
1454 #else
1455 static inline void setup_usemap(struct zone *zone) {}
1456 #endif /* CONFIG_SPARSEMEM */
1457 
1458 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1459 
1460 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1461 void __init set_pageblock_order(void)
1462 {
1463 	unsigned int order = MAX_ORDER;
1464 
1465 	/* Check that pageblock_nr_pages has not already been setup */
1466 	if (pageblock_order)
1467 		return;
1468 
1469 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1470 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1471 		order = HUGETLB_PAGE_ORDER;
1472 
1473 	/*
1474 	 * Assume the largest contiguous order of interest is a huge page.
1475 	 * This value may be variable depending on boot parameters on IA64 and
1476 	 * powerpc.
1477 	 */
1478 	pageblock_order = order;
1479 }
1480 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1481 
1482 /*
1483  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1484  * is unused as pageblock_order is set at compile-time. See
1485  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1486  * the kernel config
1487  */
1488 void __init set_pageblock_order(void)
1489 {
1490 }
1491 
1492 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1493 
1494 /*
1495  * Set up the zone data structures
1496  * - init pgdat internals
1497  * - init all zones belonging to this node
1498  *
1499  * NOTE: this function is only called during memory hotplug
1500  */
1501 #ifdef CONFIG_MEMORY_HOTPLUG
1502 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1503 {
1504 	int nid = pgdat->node_id;
1505 	enum zone_type z;
1506 	int cpu;
1507 
1508 	pgdat_init_internals(pgdat);
1509 
1510 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1511 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1512 
1513 	/*
1514 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1515 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1516 	 * when it starts in the near future.
1517 	 */
1518 	pgdat->nr_zones = 0;
1519 	pgdat->kswapd_order = 0;
1520 	pgdat->kswapd_highest_zoneidx = 0;
1521 	pgdat->node_start_pfn = 0;
1522 	pgdat->node_present_pages = 0;
1523 
1524 	for_each_online_cpu(cpu) {
1525 		struct per_cpu_nodestat *p;
1526 
1527 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1528 		memset(p, 0, sizeof(*p));
1529 	}
1530 
1531 	/*
1532 	 * When memory is hot-added, all the memory is in offline state. So
1533 	 * clear all zones' present_pages and managed_pages because they will
1534 	 * be updated in online_pages() and offline_pages().
1535 	 */
1536 	for (z = 0; z < MAX_NR_ZONES; z++) {
1537 		struct zone *zone = pgdat->node_zones + z;
1538 
1539 		zone->present_pages = 0;
1540 		zone_init_internals(zone, z, nid, 0);
1541 	}
1542 }
1543 #endif
1544 
1545 /*
1546  * Set up the zone data structures:
1547  *   - mark all pages reserved
1548  *   - mark all memory queues empty
1549  *   - clear the memory bitmaps
1550  *
1551  * NOTE: pgdat should get zeroed by caller.
1552  * NOTE: this function is only called during early init.
1553  */
1554 static void __init free_area_init_core(struct pglist_data *pgdat)
1555 {
1556 	enum zone_type j;
1557 	int nid = pgdat->node_id;
1558 
1559 	pgdat_init_internals(pgdat);
1560 	pgdat->per_cpu_nodestats = &boot_nodestats;
1561 
1562 	for (j = 0; j < MAX_NR_ZONES; j++) {
1563 		struct zone *zone = pgdat->node_zones + j;
1564 		unsigned long size, freesize, memmap_pages;
1565 
1566 		size = zone->spanned_pages;
1567 		freesize = zone->present_pages;
1568 
1569 		/*
1570 		 * Adjust freesize so that it accounts for how much memory
1571 		 * is used by this zone for memmap. This affects the watermark
1572 		 * and per-cpu initialisations
1573 		 */
1574 		memmap_pages = calc_memmap_size(size, freesize);
1575 		if (!is_highmem_idx(j)) {
1576 			if (freesize >= memmap_pages) {
1577 				freesize -= memmap_pages;
1578 				if (memmap_pages)
1579 					pr_debug("  %s zone: %lu pages used for memmap\n",
1580 						 zone_names[j], memmap_pages);
1581 			} else
1582 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
1583 					zone_names[j], memmap_pages, freesize);
1584 		}
1585 
1586 		/* Account for reserved pages */
1587 		if (j == 0 && freesize > dma_reserve) {
1588 			freesize -= dma_reserve;
1589 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1590 		}
1591 
1592 		if (!is_highmem_idx(j))
1593 			nr_kernel_pages += freesize;
1594 		/* Charge for highmem memmap if there are enough kernel pages */
1595 		else if (nr_kernel_pages > memmap_pages * 2)
1596 			nr_kernel_pages -= memmap_pages;
1597 		nr_all_pages += freesize;
1598 
1599 		/*
1600 		 * Set an approximate value for lowmem here, it will be adjusted
1601 		 * when the bootmem allocator frees pages into the buddy system.
1602 		 * And all highmem pages will be managed by the buddy system.
1603 		 */
1604 		zone_init_internals(zone, j, nid, freesize);
1605 
1606 		if (!size)
1607 			continue;
1608 
1609 		setup_usemap(zone);
1610 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1611 	}
1612 }
1613 
1614 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1615 			  phys_addr_t min_addr, int nid, bool exact_nid)
1616 {
1617 	void *ptr;
1618 
1619 	if (exact_nid)
1620 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1621 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1622 						   nid);
1623 	else
1624 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1625 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1626 						 nid);
1627 
1628 	if (ptr && size > 0)
1629 		page_init_poison(ptr, size);
1630 
1631 	return ptr;
1632 }
1633 
1634 #ifdef CONFIG_FLATMEM
1635 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1636 {
1637 	unsigned long __maybe_unused start = 0;
1638 	unsigned long __maybe_unused offset = 0;
1639 
1640 	/* Skip empty nodes */
1641 	if (!pgdat->node_spanned_pages)
1642 		return;
1643 
1644 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1645 	offset = pgdat->node_start_pfn - start;
1646 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1647 	if (!pgdat->node_mem_map) {
1648 		unsigned long size, end;
1649 		struct page *map;
1650 
1651 		/*
1652 		 * The zone's endpoints aren't required to be MAX_ORDER
1653 		 * aligned but the node_mem_map endpoints must be in order
1654 		 * for the buddy allocator to function correctly.
1655 		 */
1656 		end = pgdat_end_pfn(pgdat);
1657 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
1658 		size =  (end - start) * sizeof(struct page);
1659 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1660 				   pgdat->node_id, false);
1661 		if (!map)
1662 			panic("Failed to allocate %ld bytes for node %d memory map\n",
1663 			      size, pgdat->node_id);
1664 		pgdat->node_mem_map = map + offset;
1665 	}
1666 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1667 				__func__, pgdat->node_id, (unsigned long)pgdat,
1668 				(unsigned long)pgdat->node_mem_map);
1669 #ifndef CONFIG_NUMA
1670 	/*
1671 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1672 	 */
1673 	if (pgdat == NODE_DATA(0)) {
1674 		mem_map = NODE_DATA(0)->node_mem_map;
1675 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1676 			mem_map -= offset;
1677 	}
1678 #endif
1679 }
1680 #else
1681 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1682 #endif /* CONFIG_FLATMEM */
1683 
1684 /**
1685  * get_pfn_range_for_nid - Return the start and end page frames for a node
1686  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1687  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1688  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1689  *
1690  * It returns the start and end page frame of a node based on information
1691  * provided by memblock_set_node(). If called for a node
1692  * with no available memory, the start and end PFNs will be 0.
1693  */
1694 void __init get_pfn_range_for_nid(unsigned int nid,
1695 			unsigned long *start_pfn, unsigned long *end_pfn)
1696 {
1697 	unsigned long this_start_pfn, this_end_pfn;
1698 	int i;
1699 
1700 	*start_pfn = -1UL;
1701 	*end_pfn = 0;
1702 
1703 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1704 		*start_pfn = min(*start_pfn, this_start_pfn);
1705 		*end_pfn = max(*end_pfn, this_end_pfn);
1706 	}
1707 
1708 	if (*start_pfn == -1UL)
1709 		*start_pfn = 0;
1710 }
1711 
1712 static void __init free_area_init_node(int nid)
1713 {
1714 	pg_data_t *pgdat = NODE_DATA(nid);
1715 	unsigned long start_pfn = 0;
1716 	unsigned long end_pfn = 0;
1717 
1718 	/* pg_data_t should be reset to zero when it's allocated */
1719 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1720 
1721 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1722 
1723 	pgdat->node_id = nid;
1724 	pgdat->node_start_pfn = start_pfn;
1725 	pgdat->per_cpu_nodestats = NULL;
1726 
1727 	if (start_pfn != end_pfn) {
1728 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1729 			(u64)start_pfn << PAGE_SHIFT,
1730 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1731 
1732 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1733 	} else {
1734 		pr_info("Initmem setup node %d as memoryless\n", nid);
1735 
1736 		reset_memoryless_node_totalpages(pgdat);
1737 	}
1738 
1739 	alloc_node_mem_map(pgdat);
1740 	pgdat_set_deferred_range(pgdat);
1741 
1742 	free_area_init_core(pgdat);
1743 	lru_gen_init_pgdat(pgdat);
1744 }
1745 
1746 /* Any regular or high memory on that node ? */
1747 static void __init check_for_memory(pg_data_t *pgdat)
1748 {
1749 	enum zone_type zone_type;
1750 
1751 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1752 		struct zone *zone = &pgdat->node_zones[zone_type];
1753 		if (populated_zone(zone)) {
1754 			if (IS_ENABLED(CONFIG_HIGHMEM))
1755 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1756 			if (zone_type <= ZONE_NORMAL)
1757 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1758 			break;
1759 		}
1760 	}
1761 }
1762 
1763 #if MAX_NUMNODES > 1
1764 /*
1765  * Figure out the number of possible node ids.
1766  */
1767 void __init setup_nr_node_ids(void)
1768 {
1769 	unsigned int highest;
1770 
1771 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1772 	nr_node_ids = highest + 1;
1773 }
1774 #endif
1775 
1776 /*
1777  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1778  * such cases we allow max_zone_pfn sorted in the descending order
1779  */
1780 static bool arch_has_descending_max_zone_pfns(void)
1781 {
1782 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1783 }
1784 
1785 /**
1786  * free_area_init - Initialise all pg_data_t and zone data
1787  * @max_zone_pfn: an array of max PFNs for each zone
1788  *
1789  * This will call free_area_init_node() for each active node in the system.
1790  * Using the page ranges provided by memblock_set_node(), the size of each
1791  * zone in each node and their holes is calculated. If the maximum PFN
1792  * between two adjacent zones match, it is assumed that the zone is empty.
1793  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1794  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1795  * starts where the previous one ended. For example, ZONE_DMA32 starts
1796  * at arch_max_dma_pfn.
1797  */
1798 void __init free_area_init(unsigned long *max_zone_pfn)
1799 {
1800 	unsigned long start_pfn, end_pfn;
1801 	int i, nid, zone;
1802 	bool descending;
1803 
1804 	/* Record where the zone boundaries are */
1805 	memset(arch_zone_lowest_possible_pfn, 0,
1806 				sizeof(arch_zone_lowest_possible_pfn));
1807 	memset(arch_zone_highest_possible_pfn, 0,
1808 				sizeof(arch_zone_highest_possible_pfn));
1809 
1810 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1811 	descending = arch_has_descending_max_zone_pfns();
1812 
1813 	for (i = 0; i < MAX_NR_ZONES; i++) {
1814 		if (descending)
1815 			zone = MAX_NR_ZONES - i - 1;
1816 		else
1817 			zone = i;
1818 
1819 		if (zone == ZONE_MOVABLE)
1820 			continue;
1821 
1822 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1823 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1824 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1825 
1826 		start_pfn = end_pfn;
1827 	}
1828 
1829 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1830 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1831 	find_zone_movable_pfns_for_nodes();
1832 
1833 	/* Print out the zone ranges */
1834 	pr_info("Zone ranges:\n");
1835 	for (i = 0; i < MAX_NR_ZONES; i++) {
1836 		if (i == ZONE_MOVABLE)
1837 			continue;
1838 		pr_info("  %-8s ", zone_names[i]);
1839 		if (arch_zone_lowest_possible_pfn[i] ==
1840 				arch_zone_highest_possible_pfn[i])
1841 			pr_cont("empty\n");
1842 		else
1843 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1844 				(u64)arch_zone_lowest_possible_pfn[i]
1845 					<< PAGE_SHIFT,
1846 				((u64)arch_zone_highest_possible_pfn[i]
1847 					<< PAGE_SHIFT) - 1);
1848 	}
1849 
1850 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1851 	pr_info("Movable zone start for each node\n");
1852 	for (i = 0; i < MAX_NUMNODES; i++) {
1853 		if (zone_movable_pfn[i])
1854 			pr_info("  Node %d: %#018Lx\n", i,
1855 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1856 	}
1857 
1858 	/*
1859 	 * Print out the early node map, and initialize the
1860 	 * subsection-map relative to active online memory ranges to
1861 	 * enable future "sub-section" extensions of the memory map.
1862 	 */
1863 	pr_info("Early memory node ranges\n");
1864 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1865 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1866 			(u64)start_pfn << PAGE_SHIFT,
1867 			((u64)end_pfn << PAGE_SHIFT) - 1);
1868 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1869 	}
1870 
1871 	/* Initialise every node */
1872 	mminit_verify_pageflags_layout();
1873 	setup_nr_node_ids();
1874 	set_pageblock_order();
1875 
1876 	for_each_node(nid) {
1877 		pg_data_t *pgdat;
1878 
1879 		if (!node_online(nid)) {
1880 			pr_info("Initializing node %d as memoryless\n", nid);
1881 
1882 			/* Allocator not initialized yet */
1883 			pgdat = arch_alloc_nodedata(nid);
1884 			if (!pgdat)
1885 				panic("Cannot allocate %zuB for node %d.\n",
1886 				       sizeof(*pgdat), nid);
1887 			arch_refresh_nodedata(nid, pgdat);
1888 			free_area_init_node(nid);
1889 
1890 			/*
1891 			 * We do not want to confuse userspace by sysfs
1892 			 * files/directories for node without any memory
1893 			 * attached to it, so this node is not marked as
1894 			 * N_MEMORY and not marked online so that no sysfs
1895 			 * hierarchy will be created via register_one_node for
1896 			 * it. The pgdat will get fully initialized by
1897 			 * hotadd_init_pgdat() when memory is hotplugged into
1898 			 * this node.
1899 			 */
1900 			continue;
1901 		}
1902 
1903 		pgdat = NODE_DATA(nid);
1904 		free_area_init_node(nid);
1905 
1906 		/* Any memory on that node */
1907 		if (pgdat->node_present_pages)
1908 			node_set_state(nid, N_MEMORY);
1909 		check_for_memory(pgdat);
1910 	}
1911 
1912 	memmap_init();
1913 
1914 	/* disable hash distribution for systems with a single node */
1915 	fixup_hashdist();
1916 }
1917 
1918 /**
1919  * node_map_pfn_alignment - determine the maximum internode alignment
1920  *
1921  * This function should be called after node map is populated and sorted.
1922  * It calculates the maximum power of two alignment which can distinguish
1923  * all the nodes.
1924  *
1925  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1926  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1927  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1928  * shifted, 1GiB is enough and this function will indicate so.
1929  *
1930  * This is used to test whether pfn -> nid mapping of the chosen memory
1931  * model has fine enough granularity to avoid incorrect mapping for the
1932  * populated node map.
1933  *
1934  * Return: the determined alignment in pfn's.  0 if there is no alignment
1935  * requirement (single node).
1936  */
1937 unsigned long __init node_map_pfn_alignment(void)
1938 {
1939 	unsigned long accl_mask = 0, last_end = 0;
1940 	unsigned long start, end, mask;
1941 	int last_nid = NUMA_NO_NODE;
1942 	int i, nid;
1943 
1944 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1945 		if (!start || last_nid < 0 || last_nid == nid) {
1946 			last_nid = nid;
1947 			last_end = end;
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * Start with a mask granular enough to pin-point to the
1953 		 * start pfn and tick off bits one-by-one until it becomes
1954 		 * too coarse to separate the current node from the last.
1955 		 */
1956 		mask = ~((1 << __ffs(start)) - 1);
1957 		while (mask && last_end <= (start & (mask << 1)))
1958 			mask <<= 1;
1959 
1960 		/* accumulate all internode masks */
1961 		accl_mask |= mask;
1962 	}
1963 
1964 	/* convert mask to number of pages */
1965 	return ~accl_mask + 1;
1966 }
1967 
1968 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1969 static void __init deferred_free_range(unsigned long pfn,
1970 				       unsigned long nr_pages)
1971 {
1972 	struct page *page;
1973 	unsigned long i;
1974 
1975 	if (!nr_pages)
1976 		return;
1977 
1978 	page = pfn_to_page(pfn);
1979 
1980 	/* Free a large naturally-aligned chunk if possible */
1981 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1982 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1983 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1984 		__free_pages_core(page, MAX_ORDER);
1985 		return;
1986 	}
1987 
1988 	/* Accept chunks smaller than MAX_ORDER upfront */
1989 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1990 
1991 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1992 		if (pageblock_aligned(pfn))
1993 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1994 		__free_pages_core(page, 0);
1995 	}
1996 }
1997 
1998 /* Completion tracking for deferred_init_memmap() threads */
1999 static atomic_t pgdat_init_n_undone __initdata;
2000 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2001 
2002 static inline void __init pgdat_init_report_one_done(void)
2003 {
2004 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2005 		complete(&pgdat_init_all_done_comp);
2006 }
2007 
2008 /*
2009  * Returns true if page needs to be initialized or freed to buddy allocator.
2010  *
2011  * We check if a current MAX_ORDER block is valid by only checking the validity
2012  * of the head pfn.
2013  */
2014 static inline bool __init deferred_pfn_valid(unsigned long pfn)
2015 {
2016 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2017 		return false;
2018 	return true;
2019 }
2020 
2021 /*
2022  * Free pages to buddy allocator. Try to free aligned pages in
2023  * MAX_ORDER_NR_PAGES sizes.
2024  */
2025 static void __init deferred_free_pages(unsigned long pfn,
2026 				       unsigned long end_pfn)
2027 {
2028 	unsigned long nr_free = 0;
2029 
2030 	for (; pfn < end_pfn; pfn++) {
2031 		if (!deferred_pfn_valid(pfn)) {
2032 			deferred_free_range(pfn - nr_free, nr_free);
2033 			nr_free = 0;
2034 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2035 			deferred_free_range(pfn - nr_free, nr_free);
2036 			nr_free = 1;
2037 		} else {
2038 			nr_free++;
2039 		}
2040 	}
2041 	/* Free the last block of pages to allocator */
2042 	deferred_free_range(pfn - nr_free, nr_free);
2043 }
2044 
2045 /*
2046  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2047  * by performing it only once every MAX_ORDER_NR_PAGES.
2048  * Return number of pages initialized.
2049  */
2050 static unsigned long  __init deferred_init_pages(struct zone *zone,
2051 						 unsigned long pfn,
2052 						 unsigned long end_pfn)
2053 {
2054 	int nid = zone_to_nid(zone);
2055 	unsigned long nr_pages = 0;
2056 	int zid = zone_idx(zone);
2057 	struct page *page = NULL;
2058 
2059 	for (; pfn < end_pfn; pfn++) {
2060 		if (!deferred_pfn_valid(pfn)) {
2061 			page = NULL;
2062 			continue;
2063 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2064 			page = pfn_to_page(pfn);
2065 		} else {
2066 			page++;
2067 		}
2068 		__init_single_page(page, pfn, zid, nid);
2069 		nr_pages++;
2070 	}
2071 	return (nr_pages);
2072 }
2073 
2074 /*
2075  * This function is meant to pre-load the iterator for the zone init.
2076  * Specifically it walks through the ranges until we are caught up to the
2077  * first_init_pfn value and exits there. If we never encounter the value we
2078  * return false indicating there are no valid ranges left.
2079  */
2080 static bool __init
2081 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2082 				    unsigned long *spfn, unsigned long *epfn,
2083 				    unsigned long first_init_pfn)
2084 {
2085 	u64 j;
2086 
2087 	/*
2088 	 * Start out by walking through the ranges in this zone that have
2089 	 * already been initialized. We don't need to do anything with them
2090 	 * so we just need to flush them out of the system.
2091 	 */
2092 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2093 		if (*epfn <= first_init_pfn)
2094 			continue;
2095 		if (*spfn < first_init_pfn)
2096 			*spfn = first_init_pfn;
2097 		*i = j;
2098 		return true;
2099 	}
2100 
2101 	return false;
2102 }
2103 
2104 /*
2105  * Initialize and free pages. We do it in two loops: first we initialize
2106  * struct page, then free to buddy allocator, because while we are
2107  * freeing pages we can access pages that are ahead (computing buddy
2108  * page in __free_one_page()).
2109  *
2110  * In order to try and keep some memory in the cache we have the loop
2111  * broken along max page order boundaries. This way we will not cause
2112  * any issues with the buddy page computation.
2113  */
2114 static unsigned long __init
2115 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2116 		       unsigned long *end_pfn)
2117 {
2118 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2119 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2120 	unsigned long nr_pages = 0;
2121 	u64 j = *i;
2122 
2123 	/* First we loop through and initialize the page values */
2124 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2125 		unsigned long t;
2126 
2127 		if (mo_pfn <= *start_pfn)
2128 			break;
2129 
2130 		t = min(mo_pfn, *end_pfn);
2131 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2132 
2133 		if (mo_pfn < *end_pfn) {
2134 			*start_pfn = mo_pfn;
2135 			break;
2136 		}
2137 	}
2138 
2139 	/* Reset values and now loop through freeing pages as needed */
2140 	swap(j, *i);
2141 
2142 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2143 		unsigned long t;
2144 
2145 		if (mo_pfn <= spfn)
2146 			break;
2147 
2148 		t = min(mo_pfn, epfn);
2149 		deferred_free_pages(spfn, t);
2150 
2151 		if (mo_pfn <= epfn)
2152 			break;
2153 	}
2154 
2155 	return nr_pages;
2156 }
2157 
2158 static void __init
2159 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2160 			   void *arg)
2161 {
2162 	unsigned long spfn, epfn;
2163 	struct zone *zone = arg;
2164 	u64 i;
2165 
2166 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2167 
2168 	/*
2169 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2170 	 * can avoid introducing any issues with the buddy allocator.
2171 	 */
2172 	while (spfn < end_pfn) {
2173 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174 		cond_resched();
2175 	}
2176 }
2177 
2178 /* An arch may override for more concurrency. */
2179 __weak int __init
2180 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2181 {
2182 	return 1;
2183 }
2184 
2185 /* Initialise remaining memory on a node */
2186 static int __init deferred_init_memmap(void *data)
2187 {
2188 	pg_data_t *pgdat = data;
2189 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2190 	unsigned long spfn = 0, epfn = 0;
2191 	unsigned long first_init_pfn, flags;
2192 	unsigned long start = jiffies;
2193 	struct zone *zone;
2194 	int zid, max_threads;
2195 	u64 i;
2196 
2197 	/* Bind memory initialisation thread to a local node if possible */
2198 	if (!cpumask_empty(cpumask))
2199 		set_cpus_allowed_ptr(current, cpumask);
2200 
2201 	pgdat_resize_lock(pgdat, &flags);
2202 	first_init_pfn = pgdat->first_deferred_pfn;
2203 	if (first_init_pfn == ULONG_MAX) {
2204 		pgdat_resize_unlock(pgdat, &flags);
2205 		pgdat_init_report_one_done();
2206 		return 0;
2207 	}
2208 
2209 	/* Sanity check boundaries */
2210 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2211 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2212 	pgdat->first_deferred_pfn = ULONG_MAX;
2213 
2214 	/*
2215 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2216 	 * interrupt thread must allocate this early in boot, zone must be
2217 	 * pre-grown prior to start of deferred page initialization.
2218 	 */
2219 	pgdat_resize_unlock(pgdat, &flags);
2220 
2221 	/* Only the highest zone is deferred so find it */
2222 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2223 		zone = pgdat->node_zones + zid;
2224 		if (first_init_pfn < zone_end_pfn(zone))
2225 			break;
2226 	}
2227 
2228 	/* If the zone is empty somebody else may have cleared out the zone */
2229 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2230 						 first_init_pfn))
2231 		goto zone_empty;
2232 
2233 	max_threads = deferred_page_init_max_threads(cpumask);
2234 
2235 	while (spfn < epfn) {
2236 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2237 		struct padata_mt_job job = {
2238 			.thread_fn   = deferred_init_memmap_chunk,
2239 			.fn_arg      = zone,
2240 			.start       = spfn,
2241 			.size        = epfn_align - spfn,
2242 			.align       = PAGES_PER_SECTION,
2243 			.min_chunk   = PAGES_PER_SECTION,
2244 			.max_threads = max_threads,
2245 		};
2246 
2247 		padata_do_multithreaded(&job);
2248 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2249 						    epfn_align);
2250 	}
2251 zone_empty:
2252 	/* Sanity check that the next zone really is unpopulated */
2253 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2254 
2255 	pr_info("node %d deferred pages initialised in %ums\n",
2256 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2257 
2258 	pgdat_init_report_one_done();
2259 	return 0;
2260 }
2261 
2262 /*
2263  * If this zone has deferred pages, try to grow it by initializing enough
2264  * deferred pages to satisfy the allocation specified by order, rounded up to
2265  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2266  * of SECTION_SIZE bytes by initializing struct pages in increments of
2267  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2268  *
2269  * Return true when zone was grown, otherwise return false. We return true even
2270  * when we grow less than requested, to let the caller decide if there are
2271  * enough pages to satisfy the allocation.
2272  *
2273  * Note: We use noinline because this function is needed only during boot, and
2274  * it is called from a __ref function _deferred_grow_zone. This way we are
2275  * making sure that it is not inlined into permanent text section.
2276  */
2277 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2278 {
2279 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2280 	pg_data_t *pgdat = zone->zone_pgdat;
2281 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2282 	unsigned long spfn, epfn, flags;
2283 	unsigned long nr_pages = 0;
2284 	u64 i;
2285 
2286 	/* Only the last zone may have deferred pages */
2287 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2288 		return false;
2289 
2290 	pgdat_resize_lock(pgdat, &flags);
2291 
2292 	/*
2293 	 * If someone grew this zone while we were waiting for spinlock, return
2294 	 * true, as there might be enough pages already.
2295 	 */
2296 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2297 		pgdat_resize_unlock(pgdat, &flags);
2298 		return true;
2299 	}
2300 
2301 	/* If the zone is empty somebody else may have cleared out the zone */
2302 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2303 						 first_deferred_pfn)) {
2304 		pgdat->first_deferred_pfn = ULONG_MAX;
2305 		pgdat_resize_unlock(pgdat, &flags);
2306 		/* Retry only once. */
2307 		return first_deferred_pfn != ULONG_MAX;
2308 	}
2309 
2310 	/*
2311 	 * Initialize and free pages in MAX_ORDER sized increments so
2312 	 * that we can avoid introducing any issues with the buddy
2313 	 * allocator.
2314 	 */
2315 	while (spfn < epfn) {
2316 		/* update our first deferred PFN for this section */
2317 		first_deferred_pfn = spfn;
2318 
2319 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2320 		touch_nmi_watchdog();
2321 
2322 		/* We should only stop along section boundaries */
2323 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2324 			continue;
2325 
2326 		/* If our quota has been met we can stop here */
2327 		if (nr_pages >= nr_pages_needed)
2328 			break;
2329 	}
2330 
2331 	pgdat->first_deferred_pfn = spfn;
2332 	pgdat_resize_unlock(pgdat, &flags);
2333 
2334 	return nr_pages > 0;
2335 }
2336 
2337 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2338 
2339 #ifdef CONFIG_CMA
2340 void __init init_cma_reserved_pageblock(struct page *page)
2341 {
2342 	unsigned i = pageblock_nr_pages;
2343 	struct page *p = page;
2344 
2345 	do {
2346 		__ClearPageReserved(p);
2347 		set_page_count(p, 0);
2348 	} while (++p, --i);
2349 
2350 	set_pageblock_migratetype(page, MIGRATE_CMA);
2351 	set_page_refcounted(page);
2352 	__free_pages(page, pageblock_order);
2353 
2354 	adjust_managed_page_count(page, pageblock_nr_pages);
2355 	page_zone(page)->cma_pages += pageblock_nr_pages;
2356 }
2357 #endif
2358 
2359 void set_zone_contiguous(struct zone *zone)
2360 {
2361 	unsigned long block_start_pfn = zone->zone_start_pfn;
2362 	unsigned long block_end_pfn;
2363 
2364 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2365 	for (; block_start_pfn < zone_end_pfn(zone);
2366 			block_start_pfn = block_end_pfn,
2367 			 block_end_pfn += pageblock_nr_pages) {
2368 
2369 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2370 
2371 		if (!__pageblock_pfn_to_page(block_start_pfn,
2372 					     block_end_pfn, zone))
2373 			return;
2374 		cond_resched();
2375 	}
2376 
2377 	/* We confirm that there is no hole */
2378 	zone->contiguous = true;
2379 }
2380 
2381 void __init page_alloc_init_late(void)
2382 {
2383 	struct zone *zone;
2384 	int nid;
2385 
2386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2387 
2388 	/* There will be num_node_state(N_MEMORY) threads */
2389 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2390 	for_each_node_state(nid, N_MEMORY) {
2391 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2392 	}
2393 
2394 	/* Block until all are initialised */
2395 	wait_for_completion(&pgdat_init_all_done_comp);
2396 
2397 	/*
2398 	 * We initialized the rest of the deferred pages.  Permanently disable
2399 	 * on-demand struct page initialization.
2400 	 */
2401 	static_branch_disable(&deferred_pages);
2402 
2403 	/* Reinit limits that are based on free pages after the kernel is up */
2404 	files_maxfiles_init();
2405 #endif
2406 
2407 	buffer_init();
2408 
2409 	/* Discard memblock private memory */
2410 	memblock_discard();
2411 
2412 	for_each_node_state(nid, N_MEMORY)
2413 		shuffle_free_memory(NODE_DATA(nid));
2414 
2415 	for_each_populated_zone(zone)
2416 		set_zone_contiguous(zone);
2417 
2418 	/* Initialize page ext after all struct pages are initialized. */
2419 	if (deferred_struct_pages)
2420 		page_ext_init();
2421 
2422 	page_alloc_sysctl_init();
2423 }
2424 
2425 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2426 /*
2427  * Returns the number of pages that arch has reserved but
2428  * is not known to alloc_large_system_hash().
2429  */
2430 static unsigned long __init arch_reserved_kernel_pages(void)
2431 {
2432 	return 0;
2433 }
2434 #endif
2435 
2436 /*
2437  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2438  * machines. As memory size is increased the scale is also increased but at
2439  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2440  * quadruples the scale is increased by one, which means the size of hash table
2441  * only doubles, instead of quadrupling as well.
2442  * Because 32-bit systems cannot have large physical memory, where this scaling
2443  * makes sense, it is disabled on such platforms.
2444  */
2445 #if __BITS_PER_LONG > 32
2446 #define ADAPT_SCALE_BASE	(64ul << 30)
2447 #define ADAPT_SCALE_SHIFT	2
2448 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2449 #endif
2450 
2451 /*
2452  * allocate a large system hash table from bootmem
2453  * - it is assumed that the hash table must contain an exact power-of-2
2454  *   quantity of entries
2455  * - limit is the number of hash buckets, not the total allocation size
2456  */
2457 void *__init alloc_large_system_hash(const char *tablename,
2458 				     unsigned long bucketsize,
2459 				     unsigned long numentries,
2460 				     int scale,
2461 				     int flags,
2462 				     unsigned int *_hash_shift,
2463 				     unsigned int *_hash_mask,
2464 				     unsigned long low_limit,
2465 				     unsigned long high_limit)
2466 {
2467 	unsigned long long max = high_limit;
2468 	unsigned long log2qty, size;
2469 	void *table;
2470 	gfp_t gfp_flags;
2471 	bool virt;
2472 	bool huge;
2473 
2474 	/* allow the kernel cmdline to have a say */
2475 	if (!numentries) {
2476 		/* round applicable memory size up to nearest megabyte */
2477 		numentries = nr_kernel_pages;
2478 		numentries -= arch_reserved_kernel_pages();
2479 
2480 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2481 		if (PAGE_SIZE < SZ_1M)
2482 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2483 
2484 #if __BITS_PER_LONG > 32
2485 		if (!high_limit) {
2486 			unsigned long adapt;
2487 
2488 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2489 			     adapt <<= ADAPT_SCALE_SHIFT)
2490 				scale++;
2491 		}
2492 #endif
2493 
2494 		/* limit to 1 bucket per 2^scale bytes of low memory */
2495 		if (scale > PAGE_SHIFT)
2496 			numentries >>= (scale - PAGE_SHIFT);
2497 		else
2498 			numentries <<= (PAGE_SHIFT - scale);
2499 
2500 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2501 			numentries = PAGE_SIZE / bucketsize;
2502 	}
2503 	numentries = roundup_pow_of_two(numentries);
2504 
2505 	/* limit allocation size to 1/16 total memory by default */
2506 	if (max == 0) {
2507 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2508 		do_div(max, bucketsize);
2509 	}
2510 	max = min(max, 0x80000000ULL);
2511 
2512 	if (numentries < low_limit)
2513 		numentries = low_limit;
2514 	if (numentries > max)
2515 		numentries = max;
2516 
2517 	log2qty = ilog2(numentries);
2518 
2519 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2520 	do {
2521 		virt = false;
2522 		size = bucketsize << log2qty;
2523 		if (flags & HASH_EARLY) {
2524 			if (flags & HASH_ZERO)
2525 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2526 			else
2527 				table = memblock_alloc_raw(size,
2528 							   SMP_CACHE_BYTES);
2529 		} else if (get_order(size) > MAX_ORDER || hashdist) {
2530 			table = vmalloc_huge(size, gfp_flags);
2531 			virt = true;
2532 			if (table)
2533 				huge = is_vm_area_hugepages(table);
2534 		} else {
2535 			/*
2536 			 * If bucketsize is not a power-of-two, we may free
2537 			 * some pages at the end of hash table which
2538 			 * alloc_pages_exact() automatically does
2539 			 */
2540 			table = alloc_pages_exact(size, gfp_flags);
2541 			kmemleak_alloc(table, size, 1, gfp_flags);
2542 		}
2543 	} while (!table && size > PAGE_SIZE && --log2qty);
2544 
2545 	if (!table)
2546 		panic("Failed to allocate %s hash table\n", tablename);
2547 
2548 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2549 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2550 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2551 
2552 	if (_hash_shift)
2553 		*_hash_shift = log2qty;
2554 	if (_hash_mask)
2555 		*_hash_mask = (1 << log2qty) - 1;
2556 
2557 	return table;
2558 }
2559 
2560 /**
2561  * set_dma_reserve - set the specified number of pages reserved in the first zone
2562  * @new_dma_reserve: The number of pages to mark reserved
2563  *
2564  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2565  * In the DMA zone, a significant percentage may be consumed by kernel image
2566  * and other unfreeable allocations which can skew the watermarks badly. This
2567  * function may optionally be used to account for unfreeable pages in the
2568  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2569  * smaller per-cpu batchsize.
2570  */
2571 void __init set_dma_reserve(unsigned long new_dma_reserve)
2572 {
2573 	dma_reserve = new_dma_reserve;
2574 }
2575 
2576 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2577 							unsigned int order)
2578 {
2579 
2580 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2581 		int nid = early_pfn_to_nid(pfn);
2582 
2583 		if (!early_page_initialised(pfn, nid))
2584 			return;
2585 	}
2586 
2587 	if (!kmsan_memblock_free_pages(page, order)) {
2588 		/* KMSAN will take care of these pages. */
2589 		return;
2590 	}
2591 	__free_pages_core(page, order);
2592 }
2593 
2594 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2595 EXPORT_SYMBOL(init_on_alloc);
2596 
2597 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2598 EXPORT_SYMBOL(init_on_free);
2599 
2600 static bool _init_on_alloc_enabled_early __read_mostly
2601 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2602 static int __init early_init_on_alloc(char *buf)
2603 {
2604 
2605 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2606 }
2607 early_param("init_on_alloc", early_init_on_alloc);
2608 
2609 static bool _init_on_free_enabled_early __read_mostly
2610 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2611 static int __init early_init_on_free(char *buf)
2612 {
2613 	return kstrtobool(buf, &_init_on_free_enabled_early);
2614 }
2615 early_param("init_on_free", early_init_on_free);
2616 
2617 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2618 
2619 /*
2620  * Enable static keys related to various memory debugging and hardening options.
2621  * Some override others, and depend on early params that are evaluated in the
2622  * order of appearance. So we need to first gather the full picture of what was
2623  * enabled, and then make decisions.
2624  */
2625 static void __init mem_debugging_and_hardening_init(void)
2626 {
2627 	bool page_poisoning_requested = false;
2628 	bool want_check_pages = false;
2629 
2630 #ifdef CONFIG_PAGE_POISONING
2631 	/*
2632 	 * Page poisoning is debug page alloc for some arches. If
2633 	 * either of those options are enabled, enable poisoning.
2634 	 */
2635 	if (page_poisoning_enabled() ||
2636 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2637 	      debug_pagealloc_enabled())) {
2638 		static_branch_enable(&_page_poisoning_enabled);
2639 		page_poisoning_requested = true;
2640 		want_check_pages = true;
2641 	}
2642 #endif
2643 
2644 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2645 	    page_poisoning_requested) {
2646 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2647 			"will take precedence over init_on_alloc and init_on_free\n");
2648 		_init_on_alloc_enabled_early = false;
2649 		_init_on_free_enabled_early = false;
2650 	}
2651 
2652 	if (_init_on_alloc_enabled_early) {
2653 		want_check_pages = true;
2654 		static_branch_enable(&init_on_alloc);
2655 	} else {
2656 		static_branch_disable(&init_on_alloc);
2657 	}
2658 
2659 	if (_init_on_free_enabled_early) {
2660 		want_check_pages = true;
2661 		static_branch_enable(&init_on_free);
2662 	} else {
2663 		static_branch_disable(&init_on_free);
2664 	}
2665 
2666 	if (IS_ENABLED(CONFIG_KMSAN) &&
2667 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2668 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2669 
2670 #ifdef CONFIG_DEBUG_PAGEALLOC
2671 	if (debug_pagealloc_enabled()) {
2672 		want_check_pages = true;
2673 		static_branch_enable(&_debug_pagealloc_enabled);
2674 
2675 		if (debug_guardpage_minorder())
2676 			static_branch_enable(&_debug_guardpage_enabled);
2677 	}
2678 #endif
2679 
2680 	/*
2681 	 * Any page debugging or hardening option also enables sanity checking
2682 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2683 	 * enabled already.
2684 	 */
2685 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2686 		static_branch_enable(&check_pages_enabled);
2687 }
2688 
2689 /* Report memory auto-initialization states for this boot. */
2690 static void __init report_meminit(void)
2691 {
2692 	const char *stack;
2693 
2694 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2695 		stack = "all(pattern)";
2696 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2697 		stack = "all(zero)";
2698 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2699 		stack = "byref_all(zero)";
2700 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2701 		stack = "byref(zero)";
2702 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2703 		stack = "__user(zero)";
2704 	else
2705 		stack = "off";
2706 
2707 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2708 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2709 		want_init_on_free() ? "on" : "off");
2710 	if (want_init_on_free())
2711 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2712 }
2713 
2714 static void __init mem_init_print_info(void)
2715 {
2716 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2717 	unsigned long init_code_size, init_data_size;
2718 
2719 	physpages = get_num_physpages();
2720 	codesize = _etext - _stext;
2721 	datasize = _edata - _sdata;
2722 	rosize = __end_rodata - __start_rodata;
2723 	bss_size = __bss_stop - __bss_start;
2724 	init_data_size = __init_end - __init_begin;
2725 	init_code_size = _einittext - _sinittext;
2726 
2727 	/*
2728 	 * Detect special cases and adjust section sizes accordingly:
2729 	 * 1) .init.* may be embedded into .data sections
2730 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2731 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2732 	 * 3) .rodata.* may be embedded into .text or .data sections.
2733 	 */
2734 #define adj_init_size(start, end, size, pos, adj) \
2735 	do { \
2736 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2737 			size -= adj; \
2738 	} while (0)
2739 
2740 	adj_init_size(__init_begin, __init_end, init_data_size,
2741 		     _sinittext, init_code_size);
2742 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2743 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2744 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2745 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2746 
2747 #undef	adj_init_size
2748 
2749 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2750 #ifdef	CONFIG_HIGHMEM
2751 		", %luK highmem"
2752 #endif
2753 		")\n",
2754 		K(nr_free_pages()), K(physpages),
2755 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2756 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2757 		K(physpages - totalram_pages() - totalcma_pages),
2758 		K(totalcma_pages)
2759 #ifdef	CONFIG_HIGHMEM
2760 		, K(totalhigh_pages())
2761 #endif
2762 		);
2763 }
2764 
2765 /*
2766  * Set up kernel memory allocators
2767  */
2768 void __init mm_core_init(void)
2769 {
2770 	/* Initializations relying on SMP setup */
2771 	build_all_zonelists(NULL);
2772 	page_alloc_init_cpuhp();
2773 
2774 	/*
2775 	 * page_ext requires contiguous pages,
2776 	 * bigger than MAX_ORDER unless SPARSEMEM.
2777 	 */
2778 	page_ext_init_flatmem();
2779 	mem_debugging_and_hardening_init();
2780 	kfence_alloc_pool_and_metadata();
2781 	report_meminit();
2782 	kmsan_init_shadow();
2783 	stack_depot_early_init();
2784 	mem_init();
2785 	mem_init_print_info();
2786 	kmem_cache_init();
2787 	/*
2788 	 * page_owner must be initialized after buddy is ready, and also after
2789 	 * slab is ready so that stack_depot_init() works properly
2790 	 */
2791 	page_ext_init_flatmem_late();
2792 	kmemleak_init();
2793 	ptlock_cache_init();
2794 	pgtable_cache_init();
2795 	debug_objects_mem_init();
2796 	vmalloc_init();
2797 	/* If no deferred init page_ext now, as vmap is fully initialized */
2798 	if (!deferred_struct_pages)
2799 		page_ext_init();
2800 	/* Should be run before the first non-init thread is created */
2801 	init_espfix_bsp();
2802 	/* Should be run after espfix64 is set up. */
2803 	pti_init();
2804 	kmsan_init_runtime();
2805 	mm_cache_init();
2806 }
2807