1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/swap.h> 28 #include <linux/cma.h> 29 #include "internal.h" 30 #include "slab.h" 31 #include "shuffle.h" 32 33 #include <asm/setup.h> 34 35 #ifdef CONFIG_DEBUG_MEMORY_INIT 36 int __meminitdata mminit_loglevel; 37 38 /* The zonelists are simply reported, validation is manual. */ 39 void __init mminit_verify_zonelist(void) 40 { 41 int nid; 42 43 if (mminit_loglevel < MMINIT_VERIFY) 44 return; 45 46 for_each_online_node(nid) { 47 pg_data_t *pgdat = NODE_DATA(nid); 48 struct zone *zone; 49 struct zoneref *z; 50 struct zonelist *zonelist; 51 int i, listid, zoneid; 52 53 BUILD_BUG_ON(MAX_ZONELISTS > 2); 54 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 55 56 /* Identify the zone and nodelist */ 57 zoneid = i % MAX_NR_ZONES; 58 listid = i / MAX_NR_ZONES; 59 zonelist = &pgdat->node_zonelists[listid]; 60 zone = &pgdat->node_zones[zoneid]; 61 if (!populated_zone(zone)) 62 continue; 63 64 /* Print information about the zonelist */ 65 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 66 listid > 0 ? "thisnode" : "general", nid, 67 zone->name); 68 69 /* Iterate the zonelist */ 70 for_each_zone_zonelist(zone, z, zonelist, zoneid) 71 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 72 pr_cont("\n"); 73 } 74 } 75 } 76 77 void __init mminit_verify_pageflags_layout(void) 78 { 79 int shift, width; 80 unsigned long or_mask, add_mask; 81 82 shift = BITS_PER_LONG; 83 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 84 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 85 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 86 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 87 SECTIONS_WIDTH, 88 NODES_WIDTH, 89 ZONES_WIDTH, 90 LAST_CPUPID_WIDTH, 91 KASAN_TAG_WIDTH, 92 LRU_GEN_WIDTH, 93 LRU_REFS_WIDTH, 94 NR_PAGEFLAGS); 95 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 96 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 97 SECTIONS_SHIFT, 98 NODES_SHIFT, 99 ZONES_SHIFT, 100 LAST_CPUPID_SHIFT, 101 KASAN_TAG_WIDTH); 102 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 103 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 104 (unsigned long)SECTIONS_PGSHIFT, 105 (unsigned long)NODES_PGSHIFT, 106 (unsigned long)ZONES_PGSHIFT, 107 (unsigned long)LAST_CPUPID_PGSHIFT, 108 (unsigned long)KASAN_TAG_PGSHIFT); 109 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 110 "Node/Zone ID: %lu -> %lu\n", 111 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 112 (unsigned long)ZONEID_PGOFF); 113 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 114 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 115 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 116 #ifdef NODE_NOT_IN_PAGE_FLAGS 117 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 118 "Node not in page flags"); 119 #endif 120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 122 "Last cpupid not in page flags"); 123 #endif 124 125 if (SECTIONS_WIDTH) { 126 shift -= SECTIONS_WIDTH; 127 BUG_ON(shift != SECTIONS_PGSHIFT); 128 } 129 if (NODES_WIDTH) { 130 shift -= NODES_WIDTH; 131 BUG_ON(shift != NODES_PGSHIFT); 132 } 133 if (ZONES_WIDTH) { 134 shift -= ZONES_WIDTH; 135 BUG_ON(shift != ZONES_PGSHIFT); 136 } 137 138 /* Check for bitmask overlaps */ 139 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 140 (NODES_MASK << NODES_PGSHIFT) | 141 (SECTIONS_MASK << SECTIONS_PGSHIFT); 142 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 143 (NODES_MASK << NODES_PGSHIFT) + 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 BUG_ON(or_mask != add_mask); 146 } 147 148 static __init int set_mminit_loglevel(char *str) 149 { 150 get_option(&str, &mminit_loglevel); 151 return 0; 152 } 153 early_param("mminit_loglevel", set_mminit_loglevel); 154 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 155 156 struct kobject *mm_kobj; 157 158 #ifdef CONFIG_SMP 159 s32 vm_committed_as_batch = 32; 160 161 void mm_compute_batch(int overcommit_policy) 162 { 163 u64 memsized_batch; 164 s32 nr = num_present_cpus(); 165 s32 batch = max_t(s32, nr*2, 32); 166 unsigned long ram_pages = totalram_pages(); 167 168 /* 169 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 170 * (total memory/#cpus), and lift it to 25% for other policies 171 * to easy the possible lock contention for percpu_counter 172 * vm_committed_as, while the max limit is INT_MAX 173 */ 174 if (overcommit_policy == OVERCOMMIT_NEVER) 175 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 176 else 177 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 178 179 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 180 } 181 182 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 183 unsigned long action, void *arg) 184 { 185 switch (action) { 186 case MEM_ONLINE: 187 case MEM_OFFLINE: 188 mm_compute_batch(sysctl_overcommit_memory); 189 break; 190 default: 191 break; 192 } 193 return NOTIFY_OK; 194 } 195 196 static int __init mm_compute_batch_init(void) 197 { 198 mm_compute_batch(sysctl_overcommit_memory); 199 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 200 return 0; 201 } 202 203 __initcall(mm_compute_batch_init); 204 205 #endif 206 207 static int __init mm_sysfs_init(void) 208 { 209 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 210 if (!mm_kobj) 211 return -ENOMEM; 212 213 return 0; 214 } 215 postcore_initcall(mm_sysfs_init); 216 217 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 218 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 219 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 220 221 static unsigned long required_kernelcore __initdata; 222 static unsigned long required_kernelcore_percent __initdata; 223 static unsigned long required_movablecore __initdata; 224 static unsigned long required_movablecore_percent __initdata; 225 226 static unsigned long nr_kernel_pages __initdata; 227 static unsigned long nr_all_pages __initdata; 228 static unsigned long dma_reserve __initdata; 229 230 static bool deferred_struct_pages __meminitdata; 231 232 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 233 234 static int __init cmdline_parse_core(char *p, unsigned long *core, 235 unsigned long *percent) 236 { 237 unsigned long long coremem; 238 char *endptr; 239 240 if (!p) 241 return -EINVAL; 242 243 /* Value may be a percentage of total memory, otherwise bytes */ 244 coremem = simple_strtoull(p, &endptr, 0); 245 if (*endptr == '%') { 246 /* Paranoid check for percent values greater than 100 */ 247 WARN_ON(coremem > 100); 248 249 *percent = coremem; 250 } else { 251 coremem = memparse(p, &p); 252 /* Paranoid check that UL is enough for the coremem value */ 253 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 254 255 *core = coremem >> PAGE_SHIFT; 256 *percent = 0UL; 257 } 258 return 0; 259 } 260 261 bool mirrored_kernelcore __initdata_memblock; 262 263 /* 264 * kernelcore=size sets the amount of memory for use for allocations that 265 * cannot be reclaimed or migrated. 266 */ 267 static int __init cmdline_parse_kernelcore(char *p) 268 { 269 /* parse kernelcore=mirror */ 270 if (parse_option_str(p, "mirror")) { 271 mirrored_kernelcore = true; 272 return 0; 273 } 274 275 return cmdline_parse_core(p, &required_kernelcore, 276 &required_kernelcore_percent); 277 } 278 early_param("kernelcore", cmdline_parse_kernelcore); 279 280 /* 281 * movablecore=size sets the amount of memory for use for allocations that 282 * can be reclaimed or migrated. 283 */ 284 static int __init cmdline_parse_movablecore(char *p) 285 { 286 return cmdline_parse_core(p, &required_movablecore, 287 &required_movablecore_percent); 288 } 289 early_param("movablecore", cmdline_parse_movablecore); 290 291 /* 292 * early_calculate_totalpages() 293 * Sum pages in active regions for movable zone. 294 * Populate N_MEMORY for calculating usable_nodes. 295 */ 296 static unsigned long __init early_calculate_totalpages(void) 297 { 298 unsigned long totalpages = 0; 299 unsigned long start_pfn, end_pfn; 300 int i, nid; 301 302 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 303 unsigned long pages = end_pfn - start_pfn; 304 305 totalpages += pages; 306 if (pages) 307 node_set_state(nid, N_MEMORY); 308 } 309 return totalpages; 310 } 311 312 /* 313 * This finds a zone that can be used for ZONE_MOVABLE pages. The 314 * assumption is made that zones within a node are ordered in monotonic 315 * increasing memory addresses so that the "highest" populated zone is used 316 */ 317 static void __init find_usable_zone_for_movable(void) 318 { 319 int zone_index; 320 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 321 if (zone_index == ZONE_MOVABLE) 322 continue; 323 324 if (arch_zone_highest_possible_pfn[zone_index] > 325 arch_zone_lowest_possible_pfn[zone_index]) 326 break; 327 } 328 329 VM_BUG_ON(zone_index == -1); 330 movable_zone = zone_index; 331 } 332 333 /* 334 * Find the PFN the Movable zone begins in each node. Kernel memory 335 * is spread evenly between nodes as long as the nodes have enough 336 * memory. When they don't, some nodes will have more kernelcore than 337 * others 338 */ 339 static void __init find_zone_movable_pfns_for_nodes(void) 340 { 341 int i, nid; 342 unsigned long usable_startpfn; 343 unsigned long kernelcore_node, kernelcore_remaining; 344 /* save the state before borrow the nodemask */ 345 nodemask_t saved_node_state = node_states[N_MEMORY]; 346 unsigned long totalpages = early_calculate_totalpages(); 347 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 348 struct memblock_region *r; 349 350 /* Need to find movable_zone earlier when movable_node is specified. */ 351 find_usable_zone_for_movable(); 352 353 /* 354 * If movable_node is specified, ignore kernelcore and movablecore 355 * options. 356 */ 357 if (movable_node_is_enabled()) { 358 for_each_mem_region(r) { 359 if (!memblock_is_hotpluggable(r)) 360 continue; 361 362 nid = memblock_get_region_node(r); 363 364 usable_startpfn = PFN_DOWN(r->base); 365 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 366 min(usable_startpfn, zone_movable_pfn[nid]) : 367 usable_startpfn; 368 } 369 370 goto out2; 371 } 372 373 /* 374 * If kernelcore=mirror is specified, ignore movablecore option 375 */ 376 if (mirrored_kernelcore) { 377 bool mem_below_4gb_not_mirrored = false; 378 379 if (!memblock_has_mirror()) { 380 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); 381 goto out; 382 } 383 384 for_each_mem_region(r) { 385 if (memblock_is_mirror(r)) 386 continue; 387 388 nid = memblock_get_region_node(r); 389 390 usable_startpfn = memblock_region_memory_base_pfn(r); 391 392 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 393 mem_below_4gb_not_mirrored = true; 394 continue; 395 } 396 397 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 398 min(usable_startpfn, zone_movable_pfn[nid]) : 399 usable_startpfn; 400 } 401 402 if (mem_below_4gb_not_mirrored) 403 pr_warn("This configuration results in unmirrored kernel memory.\n"); 404 405 goto out2; 406 } 407 408 /* 409 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 410 * amount of necessary memory. 411 */ 412 if (required_kernelcore_percent) 413 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 414 10000UL; 415 if (required_movablecore_percent) 416 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 417 10000UL; 418 419 /* 420 * If movablecore= was specified, calculate what size of 421 * kernelcore that corresponds so that memory usable for 422 * any allocation type is evenly spread. If both kernelcore 423 * and movablecore are specified, then the value of kernelcore 424 * will be used for required_kernelcore if it's greater than 425 * what movablecore would have allowed. 426 */ 427 if (required_movablecore) { 428 unsigned long corepages; 429 430 /* 431 * Round-up so that ZONE_MOVABLE is at least as large as what 432 * was requested by the user 433 */ 434 required_movablecore = 435 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 436 required_movablecore = min(totalpages, required_movablecore); 437 corepages = totalpages - required_movablecore; 438 439 required_kernelcore = max(required_kernelcore, corepages); 440 } 441 442 /* 443 * If kernelcore was not specified or kernelcore size is larger 444 * than totalpages, there is no ZONE_MOVABLE. 445 */ 446 if (!required_kernelcore || required_kernelcore >= totalpages) 447 goto out; 448 449 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 450 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 451 452 restart: 453 /* Spread kernelcore memory as evenly as possible throughout nodes */ 454 kernelcore_node = required_kernelcore / usable_nodes; 455 for_each_node_state(nid, N_MEMORY) { 456 unsigned long start_pfn, end_pfn; 457 458 /* 459 * Recalculate kernelcore_node if the division per node 460 * now exceeds what is necessary to satisfy the requested 461 * amount of memory for the kernel 462 */ 463 if (required_kernelcore < kernelcore_node) 464 kernelcore_node = required_kernelcore / usable_nodes; 465 466 /* 467 * As the map is walked, we track how much memory is usable 468 * by the kernel using kernelcore_remaining. When it is 469 * 0, the rest of the node is usable by ZONE_MOVABLE 470 */ 471 kernelcore_remaining = kernelcore_node; 472 473 /* Go through each range of PFNs within this node */ 474 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 475 unsigned long size_pages; 476 477 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 478 if (start_pfn >= end_pfn) 479 continue; 480 481 /* Account for what is only usable for kernelcore */ 482 if (start_pfn < usable_startpfn) { 483 unsigned long kernel_pages; 484 kernel_pages = min(end_pfn, usable_startpfn) 485 - start_pfn; 486 487 kernelcore_remaining -= min(kernel_pages, 488 kernelcore_remaining); 489 required_kernelcore -= min(kernel_pages, 490 required_kernelcore); 491 492 /* Continue if range is now fully accounted */ 493 if (end_pfn <= usable_startpfn) { 494 495 /* 496 * Push zone_movable_pfn to the end so 497 * that if we have to rebalance 498 * kernelcore across nodes, we will 499 * not double account here 500 */ 501 zone_movable_pfn[nid] = end_pfn; 502 continue; 503 } 504 start_pfn = usable_startpfn; 505 } 506 507 /* 508 * The usable PFN range for ZONE_MOVABLE is from 509 * start_pfn->end_pfn. Calculate size_pages as the 510 * number of pages used as kernelcore 511 */ 512 size_pages = end_pfn - start_pfn; 513 if (size_pages > kernelcore_remaining) 514 size_pages = kernelcore_remaining; 515 zone_movable_pfn[nid] = start_pfn + size_pages; 516 517 /* 518 * Some kernelcore has been met, update counts and 519 * break if the kernelcore for this node has been 520 * satisfied 521 */ 522 required_kernelcore -= min(required_kernelcore, 523 size_pages); 524 kernelcore_remaining -= size_pages; 525 if (!kernelcore_remaining) 526 break; 527 } 528 } 529 530 /* 531 * If there is still required_kernelcore, we do another pass with one 532 * less node in the count. This will push zone_movable_pfn[nid] further 533 * along on the nodes that still have memory until kernelcore is 534 * satisfied 535 */ 536 usable_nodes--; 537 if (usable_nodes && required_kernelcore > usable_nodes) 538 goto restart; 539 540 out2: 541 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 542 for (nid = 0; nid < MAX_NUMNODES; nid++) { 543 unsigned long start_pfn, end_pfn; 544 545 zone_movable_pfn[nid] = 546 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 547 548 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 549 if (zone_movable_pfn[nid] >= end_pfn) 550 zone_movable_pfn[nid] = 0; 551 } 552 553 out: 554 /* restore the node_state */ 555 node_states[N_MEMORY] = saved_node_state; 556 } 557 558 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 559 unsigned long zone, int nid) 560 { 561 mm_zero_struct_page(page); 562 set_page_links(page, zone, nid, pfn); 563 init_page_count(page); 564 page_mapcount_reset(page); 565 page_cpupid_reset_last(page); 566 page_kasan_tag_reset(page); 567 568 INIT_LIST_HEAD(&page->lru); 569 #ifdef WANT_PAGE_VIRTUAL 570 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 571 if (!is_highmem_idx(zone)) 572 set_page_address(page, __va(pfn << PAGE_SHIFT)); 573 #endif 574 } 575 576 #ifdef CONFIG_NUMA 577 /* 578 * During memory init memblocks map pfns to nids. The search is expensive and 579 * this caches recent lookups. The implementation of __early_pfn_to_nid 580 * treats start/end as pfns. 581 */ 582 struct mminit_pfnnid_cache { 583 unsigned long last_start; 584 unsigned long last_end; 585 int last_nid; 586 }; 587 588 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 589 590 /* 591 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 592 */ 593 static int __meminit __early_pfn_to_nid(unsigned long pfn, 594 struct mminit_pfnnid_cache *state) 595 { 596 unsigned long start_pfn, end_pfn; 597 int nid; 598 599 if (state->last_start <= pfn && pfn < state->last_end) 600 return state->last_nid; 601 602 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 603 if (nid != NUMA_NO_NODE) { 604 state->last_start = start_pfn; 605 state->last_end = end_pfn; 606 state->last_nid = nid; 607 } 608 609 return nid; 610 } 611 612 int __meminit early_pfn_to_nid(unsigned long pfn) 613 { 614 static DEFINE_SPINLOCK(early_pfn_lock); 615 int nid; 616 617 spin_lock(&early_pfn_lock); 618 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 619 if (nid < 0) 620 nid = first_online_node; 621 spin_unlock(&early_pfn_lock); 622 623 return nid; 624 } 625 626 int hashdist = HASHDIST_DEFAULT; 627 628 static int __init set_hashdist(char *str) 629 { 630 if (!str) 631 return 0; 632 hashdist = simple_strtoul(str, &str, 0); 633 return 1; 634 } 635 __setup("hashdist=", set_hashdist); 636 637 static inline void fixup_hashdist(void) 638 { 639 if (num_node_state(N_MEMORY) == 1) 640 hashdist = 0; 641 } 642 #else 643 static inline void fixup_hashdist(void) {} 644 #endif /* CONFIG_NUMA */ 645 646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 647 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 648 { 649 pgdat->first_deferred_pfn = ULONG_MAX; 650 } 651 652 /* Returns true if the struct page for the pfn is initialised */ 653 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 654 { 655 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 656 return false; 657 658 return true; 659 } 660 661 /* 662 * Returns true when the remaining initialisation should be deferred until 663 * later in the boot cycle when it can be parallelised. 664 */ 665 static bool __meminit 666 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 667 { 668 static unsigned long prev_end_pfn, nr_initialised; 669 670 if (early_page_ext_enabled()) 671 return false; 672 /* 673 * prev_end_pfn static that contains the end of previous zone 674 * No need to protect because called very early in boot before smp_init. 675 */ 676 if (prev_end_pfn != end_pfn) { 677 prev_end_pfn = end_pfn; 678 nr_initialised = 0; 679 } 680 681 /* Always populate low zones for address-constrained allocations */ 682 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 683 return false; 684 685 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 686 return true; 687 /* 688 * We start only with one section of pages, more pages are added as 689 * needed until the rest of deferred pages are initialized. 690 */ 691 nr_initialised++; 692 if ((nr_initialised > PAGES_PER_SECTION) && 693 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 694 NODE_DATA(nid)->first_deferred_pfn = pfn; 695 return true; 696 } 697 return false; 698 } 699 700 static void __meminit init_reserved_page(unsigned long pfn, int nid) 701 { 702 pg_data_t *pgdat; 703 int zid; 704 705 if (early_page_initialised(pfn, nid)) 706 return; 707 708 pgdat = NODE_DATA(nid); 709 710 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 711 struct zone *zone = &pgdat->node_zones[zid]; 712 713 if (zone_spans_pfn(zone, pfn)) 714 break; 715 } 716 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 717 } 718 #else 719 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 720 721 static inline bool early_page_initialised(unsigned long pfn, int nid) 722 { 723 return true; 724 } 725 726 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 727 { 728 return false; 729 } 730 731 static inline void init_reserved_page(unsigned long pfn, int nid) 732 { 733 } 734 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 735 736 /* 737 * Initialised pages do not have PageReserved set. This function is 738 * called for each range allocated by the bootmem allocator and 739 * marks the pages PageReserved. The remaining valid pages are later 740 * sent to the buddy page allocator. 741 */ 742 void __meminit reserve_bootmem_region(phys_addr_t start, 743 phys_addr_t end, int nid) 744 { 745 unsigned long start_pfn = PFN_DOWN(start); 746 unsigned long end_pfn = PFN_UP(end); 747 748 for (; start_pfn < end_pfn; start_pfn++) { 749 if (pfn_valid(start_pfn)) { 750 struct page *page = pfn_to_page(start_pfn); 751 752 init_reserved_page(start_pfn, nid); 753 754 /* Avoid false-positive PageTail() */ 755 INIT_LIST_HEAD(&page->lru); 756 757 /* 758 * no need for atomic set_bit because the struct 759 * page is not visible yet so nobody should 760 * access it yet. 761 */ 762 __SetPageReserved(page); 763 } 764 } 765 } 766 767 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 768 static bool __meminit 769 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 770 { 771 static struct memblock_region *r; 772 773 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 774 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 775 for_each_mem_region(r) { 776 if (*pfn < memblock_region_memory_end_pfn(r)) 777 break; 778 } 779 } 780 if (*pfn >= memblock_region_memory_base_pfn(r) && 781 memblock_is_mirror(r)) { 782 *pfn = memblock_region_memory_end_pfn(r); 783 return true; 784 } 785 } 786 return false; 787 } 788 789 /* 790 * Only struct pages that correspond to ranges defined by memblock.memory 791 * are zeroed and initialized by going through __init_single_page() during 792 * memmap_init_zone_range(). 793 * 794 * But, there could be struct pages that correspond to holes in 795 * memblock.memory. This can happen because of the following reasons: 796 * - physical memory bank size is not necessarily the exact multiple of the 797 * arbitrary section size 798 * - early reserved memory may not be listed in memblock.memory 799 * - memory layouts defined with memmap= kernel parameter may not align 800 * nicely with memmap sections 801 * 802 * Explicitly initialize those struct pages so that: 803 * - PG_Reserved is set 804 * - zone and node links point to zone and node that span the page if the 805 * hole is in the middle of a zone 806 * - zone and node links point to adjacent zone/node if the hole falls on 807 * the zone boundary; the pages in such holes will be prepended to the 808 * zone/node above the hole except for the trailing pages in the last 809 * section that will be appended to the zone/node below. 810 */ 811 static void __init init_unavailable_range(unsigned long spfn, 812 unsigned long epfn, 813 int zone, int node) 814 { 815 unsigned long pfn; 816 u64 pgcnt = 0; 817 818 for (pfn = spfn; pfn < epfn; pfn++) { 819 if (!pfn_valid(pageblock_start_pfn(pfn))) { 820 pfn = pageblock_end_pfn(pfn) - 1; 821 continue; 822 } 823 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 824 __SetPageReserved(pfn_to_page(pfn)); 825 pgcnt++; 826 } 827 828 if (pgcnt) 829 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 830 node, zone_names[zone], pgcnt); 831 } 832 833 /* 834 * Initially all pages are reserved - free ones are freed 835 * up by memblock_free_all() once the early boot process is 836 * done. Non-atomic initialization, single-pass. 837 * 838 * All aligned pageblocks are initialized to the specified migratetype 839 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 840 * zone stats (e.g., nr_isolate_pageblock) are touched. 841 */ 842 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 843 unsigned long start_pfn, unsigned long zone_end_pfn, 844 enum meminit_context context, 845 struct vmem_altmap *altmap, int migratetype) 846 { 847 unsigned long pfn, end_pfn = start_pfn + size; 848 struct page *page; 849 850 if (highest_memmap_pfn < end_pfn - 1) 851 highest_memmap_pfn = end_pfn - 1; 852 853 #ifdef CONFIG_ZONE_DEVICE 854 /* 855 * Honor reservation requested by the driver for this ZONE_DEVICE 856 * memory. We limit the total number of pages to initialize to just 857 * those that might contain the memory mapping. We will defer the 858 * ZONE_DEVICE page initialization until after we have released 859 * the hotplug lock. 860 */ 861 if (zone == ZONE_DEVICE) { 862 if (!altmap) 863 return; 864 865 if (start_pfn == altmap->base_pfn) 866 start_pfn += altmap->reserve; 867 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 868 } 869 #endif 870 871 for (pfn = start_pfn; pfn < end_pfn; ) { 872 /* 873 * There can be holes in boot-time mem_map[]s handed to this 874 * function. They do not exist on hotplugged memory. 875 */ 876 if (context == MEMINIT_EARLY) { 877 if (overlap_memmap_init(zone, &pfn)) 878 continue; 879 if (defer_init(nid, pfn, zone_end_pfn)) { 880 deferred_struct_pages = true; 881 break; 882 } 883 } 884 885 page = pfn_to_page(pfn); 886 __init_single_page(page, pfn, zone, nid); 887 if (context == MEMINIT_HOTPLUG) 888 __SetPageReserved(page); 889 890 /* 891 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 892 * such that unmovable allocations won't be scattered all 893 * over the place during system boot. 894 */ 895 if (pageblock_aligned(pfn)) { 896 set_pageblock_migratetype(page, migratetype); 897 cond_resched(); 898 } 899 pfn++; 900 } 901 } 902 903 static void __init memmap_init_zone_range(struct zone *zone, 904 unsigned long start_pfn, 905 unsigned long end_pfn, 906 unsigned long *hole_pfn) 907 { 908 unsigned long zone_start_pfn = zone->zone_start_pfn; 909 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 910 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 911 912 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 913 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 914 915 if (start_pfn >= end_pfn) 916 return; 917 918 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 919 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 920 921 if (*hole_pfn < start_pfn) 922 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 923 924 *hole_pfn = end_pfn; 925 } 926 927 static void __init memmap_init(void) 928 { 929 unsigned long start_pfn, end_pfn; 930 unsigned long hole_pfn = 0; 931 int i, j, zone_id = 0, nid; 932 933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 934 struct pglist_data *node = NODE_DATA(nid); 935 936 for (j = 0; j < MAX_NR_ZONES; j++) { 937 struct zone *zone = node->node_zones + j; 938 939 if (!populated_zone(zone)) 940 continue; 941 942 memmap_init_zone_range(zone, start_pfn, end_pfn, 943 &hole_pfn); 944 zone_id = j; 945 } 946 } 947 948 #ifdef CONFIG_SPARSEMEM 949 /* 950 * Initialize the memory map for hole in the range [memory_end, 951 * section_end]. 952 * Append the pages in this hole to the highest zone in the last 953 * node. 954 * The call to init_unavailable_range() is outside the ifdef to 955 * silence the compiler warining about zone_id set but not used; 956 * for FLATMEM it is a nop anyway 957 */ 958 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 959 if (hole_pfn < end_pfn) 960 #endif 961 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 962 } 963 964 #ifdef CONFIG_ZONE_DEVICE 965 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 966 unsigned long zone_idx, int nid, 967 struct dev_pagemap *pgmap) 968 { 969 970 __init_single_page(page, pfn, zone_idx, nid); 971 972 /* 973 * Mark page reserved as it will need to wait for onlining 974 * phase for it to be fully associated with a zone. 975 * 976 * We can use the non-atomic __set_bit operation for setting 977 * the flag as we are still initializing the pages. 978 */ 979 __SetPageReserved(page); 980 981 /* 982 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 983 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 984 * ever freed or placed on a driver-private list. 985 */ 986 page->pgmap = pgmap; 987 page->zone_device_data = NULL; 988 989 /* 990 * Mark the block movable so that blocks are reserved for 991 * movable at startup. This will force kernel allocations 992 * to reserve their blocks rather than leaking throughout 993 * the address space during boot when many long-lived 994 * kernel allocations are made. 995 * 996 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 997 * because this is done early in section_activate() 998 */ 999 if (pageblock_aligned(pfn)) { 1000 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1001 cond_resched(); 1002 } 1003 1004 /* 1005 * ZONE_DEVICE pages are released directly to the driver page allocator 1006 * which will set the page count to 1 when allocating the page. 1007 */ 1008 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1009 pgmap->type == MEMORY_DEVICE_COHERENT) 1010 set_page_count(page, 0); 1011 } 1012 1013 /* 1014 * With compound page geometry and when struct pages are stored in ram most 1015 * tail pages are reused. Consequently, the amount of unique struct pages to 1016 * initialize is a lot smaller that the total amount of struct pages being 1017 * mapped. This is a paired / mild layering violation with explicit knowledge 1018 * of how the sparse_vmemmap internals handle compound pages in the lack 1019 * of an altmap. See vmemmap_populate_compound_pages(). 1020 */ 1021 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1022 struct dev_pagemap *pgmap) 1023 { 1024 if (!vmemmap_can_optimize(altmap, pgmap)) 1025 return pgmap_vmemmap_nr(pgmap); 1026 1027 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1028 } 1029 1030 static void __ref memmap_init_compound(struct page *head, 1031 unsigned long head_pfn, 1032 unsigned long zone_idx, int nid, 1033 struct dev_pagemap *pgmap, 1034 unsigned long nr_pages) 1035 { 1036 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1037 unsigned int order = pgmap->vmemmap_shift; 1038 1039 __SetPageHead(head); 1040 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1041 struct page *page = pfn_to_page(pfn); 1042 1043 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1044 prep_compound_tail(head, pfn - head_pfn); 1045 set_page_count(page, 0); 1046 1047 /* 1048 * The first tail page stores important compound page info. 1049 * Call prep_compound_head() after the first tail page has 1050 * been initialized, to not have the data overwritten. 1051 */ 1052 if (pfn == head_pfn + 1) 1053 prep_compound_head(head, order); 1054 } 1055 } 1056 1057 void __ref memmap_init_zone_device(struct zone *zone, 1058 unsigned long start_pfn, 1059 unsigned long nr_pages, 1060 struct dev_pagemap *pgmap) 1061 { 1062 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1063 struct pglist_data *pgdat = zone->zone_pgdat; 1064 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1065 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1066 unsigned long zone_idx = zone_idx(zone); 1067 unsigned long start = jiffies; 1068 int nid = pgdat->node_id; 1069 1070 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1071 return; 1072 1073 /* 1074 * The call to memmap_init should have already taken care 1075 * of the pages reserved for the memmap, so we can just jump to 1076 * the end of that region and start processing the device pages. 1077 */ 1078 if (altmap) { 1079 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1080 nr_pages = end_pfn - start_pfn; 1081 } 1082 1083 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1084 struct page *page = pfn_to_page(pfn); 1085 1086 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1087 1088 if (pfns_per_compound == 1) 1089 continue; 1090 1091 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1092 compound_nr_pages(altmap, pgmap)); 1093 } 1094 1095 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1096 nr_pages, jiffies_to_msecs(jiffies - start)); 1097 } 1098 #endif 1099 1100 /* 1101 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1102 * because it is sized independent of architecture. Unlike the other zones, 1103 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1104 * in each node depending on the size of each node and how evenly kernelcore 1105 * is distributed. This helper function adjusts the zone ranges 1106 * provided by the architecture for a given node by using the end of the 1107 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1108 * zones within a node are in order of monotonic increases memory addresses 1109 */ 1110 static void __init adjust_zone_range_for_zone_movable(int nid, 1111 unsigned long zone_type, 1112 unsigned long node_end_pfn, 1113 unsigned long *zone_start_pfn, 1114 unsigned long *zone_end_pfn) 1115 { 1116 /* Only adjust if ZONE_MOVABLE is on this node */ 1117 if (zone_movable_pfn[nid]) { 1118 /* Size ZONE_MOVABLE */ 1119 if (zone_type == ZONE_MOVABLE) { 1120 *zone_start_pfn = zone_movable_pfn[nid]; 1121 *zone_end_pfn = min(node_end_pfn, 1122 arch_zone_highest_possible_pfn[movable_zone]); 1123 1124 /* Adjust for ZONE_MOVABLE starting within this range */ 1125 } else if (!mirrored_kernelcore && 1126 *zone_start_pfn < zone_movable_pfn[nid] && 1127 *zone_end_pfn > zone_movable_pfn[nid]) { 1128 *zone_end_pfn = zone_movable_pfn[nid]; 1129 1130 /* Check if this whole range is within ZONE_MOVABLE */ 1131 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1132 *zone_start_pfn = *zone_end_pfn; 1133 } 1134 } 1135 1136 /* 1137 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1138 * then all holes in the requested range will be accounted for. 1139 */ 1140 unsigned long __init __absent_pages_in_range(int nid, 1141 unsigned long range_start_pfn, 1142 unsigned long range_end_pfn) 1143 { 1144 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1145 unsigned long start_pfn, end_pfn; 1146 int i; 1147 1148 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1149 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1150 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1151 nr_absent -= end_pfn - start_pfn; 1152 } 1153 return nr_absent; 1154 } 1155 1156 /** 1157 * absent_pages_in_range - Return number of page frames in holes within a range 1158 * @start_pfn: The start PFN to start searching for holes 1159 * @end_pfn: The end PFN to stop searching for holes 1160 * 1161 * Return: the number of pages frames in memory holes within a range. 1162 */ 1163 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1164 unsigned long end_pfn) 1165 { 1166 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1167 } 1168 1169 /* Return the number of page frames in holes in a zone on a node */ 1170 static unsigned long __init zone_absent_pages_in_node(int nid, 1171 unsigned long zone_type, 1172 unsigned long zone_start_pfn, 1173 unsigned long zone_end_pfn) 1174 { 1175 unsigned long nr_absent; 1176 1177 /* zone is empty, we don't have any absent pages */ 1178 if (zone_start_pfn == zone_end_pfn) 1179 return 0; 1180 1181 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1182 1183 /* 1184 * ZONE_MOVABLE handling. 1185 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1186 * and vice versa. 1187 */ 1188 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1189 unsigned long start_pfn, end_pfn; 1190 struct memblock_region *r; 1191 1192 for_each_mem_region(r) { 1193 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1194 zone_start_pfn, zone_end_pfn); 1195 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1196 zone_start_pfn, zone_end_pfn); 1197 1198 if (zone_type == ZONE_MOVABLE && 1199 memblock_is_mirror(r)) 1200 nr_absent += end_pfn - start_pfn; 1201 1202 if (zone_type == ZONE_NORMAL && 1203 !memblock_is_mirror(r)) 1204 nr_absent += end_pfn - start_pfn; 1205 } 1206 } 1207 1208 return nr_absent; 1209 } 1210 1211 /* 1212 * Return the number of pages a zone spans in a node, including holes 1213 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1214 */ 1215 static unsigned long __init zone_spanned_pages_in_node(int nid, 1216 unsigned long zone_type, 1217 unsigned long node_start_pfn, 1218 unsigned long node_end_pfn, 1219 unsigned long *zone_start_pfn, 1220 unsigned long *zone_end_pfn) 1221 { 1222 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1223 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1224 1225 /* Get the start and end of the zone */ 1226 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1227 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1228 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1229 zone_start_pfn, zone_end_pfn); 1230 1231 /* Check that this node has pages within the zone's required range */ 1232 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1233 return 0; 1234 1235 /* Move the zone boundaries inside the node if necessary */ 1236 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1237 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1238 1239 /* Return the spanned pages */ 1240 return *zone_end_pfn - *zone_start_pfn; 1241 } 1242 1243 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1244 { 1245 struct zone *z; 1246 1247 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1248 z->zone_start_pfn = 0; 1249 z->spanned_pages = 0; 1250 z->present_pages = 0; 1251 #if defined(CONFIG_MEMORY_HOTPLUG) 1252 z->present_early_pages = 0; 1253 #endif 1254 } 1255 1256 pgdat->node_spanned_pages = 0; 1257 pgdat->node_present_pages = 0; 1258 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1259 } 1260 1261 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1262 unsigned long node_start_pfn, 1263 unsigned long node_end_pfn) 1264 { 1265 unsigned long realtotalpages = 0, totalpages = 0; 1266 enum zone_type i; 1267 1268 for (i = 0; i < MAX_NR_ZONES; i++) { 1269 struct zone *zone = pgdat->node_zones + i; 1270 unsigned long zone_start_pfn, zone_end_pfn; 1271 unsigned long spanned, absent; 1272 unsigned long real_size; 1273 1274 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1275 node_start_pfn, 1276 node_end_pfn, 1277 &zone_start_pfn, 1278 &zone_end_pfn); 1279 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1280 zone_start_pfn, 1281 zone_end_pfn); 1282 1283 real_size = spanned - absent; 1284 1285 if (spanned) 1286 zone->zone_start_pfn = zone_start_pfn; 1287 else 1288 zone->zone_start_pfn = 0; 1289 zone->spanned_pages = spanned; 1290 zone->present_pages = real_size; 1291 #if defined(CONFIG_MEMORY_HOTPLUG) 1292 zone->present_early_pages = real_size; 1293 #endif 1294 1295 totalpages += spanned; 1296 realtotalpages += real_size; 1297 } 1298 1299 pgdat->node_spanned_pages = totalpages; 1300 pgdat->node_present_pages = realtotalpages; 1301 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1302 } 1303 1304 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 1305 unsigned long present_pages) 1306 { 1307 unsigned long pages = spanned_pages; 1308 1309 /* 1310 * Provide a more accurate estimation if there are holes within 1311 * the zone and SPARSEMEM is in use. If there are holes within the 1312 * zone, each populated memory region may cost us one or two extra 1313 * memmap pages due to alignment because memmap pages for each 1314 * populated regions may not be naturally aligned on page boundary. 1315 * So the (present_pages >> 4) heuristic is a tradeoff for that. 1316 */ 1317 if (spanned_pages > present_pages + (present_pages >> 4) && 1318 IS_ENABLED(CONFIG_SPARSEMEM)) 1319 pages = present_pages; 1320 1321 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 1322 } 1323 1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1325 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1326 { 1327 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1328 1329 spin_lock_init(&ds_queue->split_queue_lock); 1330 INIT_LIST_HEAD(&ds_queue->split_queue); 1331 ds_queue->split_queue_len = 0; 1332 } 1333 #else 1334 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1335 #endif 1336 1337 #ifdef CONFIG_COMPACTION 1338 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1339 { 1340 init_waitqueue_head(&pgdat->kcompactd_wait); 1341 } 1342 #else 1343 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1344 #endif 1345 1346 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1347 { 1348 int i; 1349 1350 pgdat_resize_init(pgdat); 1351 pgdat_kswapd_lock_init(pgdat); 1352 1353 pgdat_init_split_queue(pgdat); 1354 pgdat_init_kcompactd(pgdat); 1355 1356 init_waitqueue_head(&pgdat->kswapd_wait); 1357 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1358 1359 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1360 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1361 1362 pgdat_page_ext_init(pgdat); 1363 lruvec_init(&pgdat->__lruvec); 1364 } 1365 1366 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1367 unsigned long remaining_pages) 1368 { 1369 atomic_long_set(&zone->managed_pages, remaining_pages); 1370 zone_set_nid(zone, nid); 1371 zone->name = zone_names[idx]; 1372 zone->zone_pgdat = NODE_DATA(nid); 1373 spin_lock_init(&zone->lock); 1374 zone_seqlock_init(zone); 1375 zone_pcp_init(zone); 1376 } 1377 1378 static void __meminit zone_init_free_lists(struct zone *zone) 1379 { 1380 unsigned int order, t; 1381 for_each_migratetype_order(order, t) { 1382 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1383 zone->free_area[order].nr_free = 0; 1384 } 1385 1386 #ifdef CONFIG_UNACCEPTED_MEMORY 1387 INIT_LIST_HEAD(&zone->unaccepted_pages); 1388 #endif 1389 } 1390 1391 void __meminit init_currently_empty_zone(struct zone *zone, 1392 unsigned long zone_start_pfn, 1393 unsigned long size) 1394 { 1395 struct pglist_data *pgdat = zone->zone_pgdat; 1396 int zone_idx = zone_idx(zone) + 1; 1397 1398 if (zone_idx > pgdat->nr_zones) 1399 pgdat->nr_zones = zone_idx; 1400 1401 zone->zone_start_pfn = zone_start_pfn; 1402 1403 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1404 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1405 pgdat->node_id, 1406 (unsigned long)zone_idx(zone), 1407 zone_start_pfn, (zone_start_pfn + size)); 1408 1409 zone_init_free_lists(zone); 1410 zone->initialized = 1; 1411 } 1412 1413 #ifndef CONFIG_SPARSEMEM 1414 /* 1415 * Calculate the size of the zone->blockflags rounded to an unsigned long 1416 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1417 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1418 * round what is now in bits to nearest long in bits, then return it in 1419 * bytes. 1420 */ 1421 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1422 { 1423 unsigned long usemapsize; 1424 1425 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1426 usemapsize = roundup(zonesize, pageblock_nr_pages); 1427 usemapsize = usemapsize >> pageblock_order; 1428 usemapsize *= NR_PAGEBLOCK_BITS; 1429 usemapsize = roundup(usemapsize, BITS_PER_LONG); 1430 1431 return usemapsize / BITS_PER_BYTE; 1432 } 1433 1434 static void __ref setup_usemap(struct zone *zone) 1435 { 1436 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1437 zone->spanned_pages); 1438 zone->pageblock_flags = NULL; 1439 if (usemapsize) { 1440 zone->pageblock_flags = 1441 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1442 zone_to_nid(zone)); 1443 if (!zone->pageblock_flags) 1444 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1445 usemapsize, zone->name, zone_to_nid(zone)); 1446 } 1447 } 1448 #else 1449 static inline void setup_usemap(struct zone *zone) {} 1450 #endif /* CONFIG_SPARSEMEM */ 1451 1452 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1453 1454 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1455 void __init set_pageblock_order(void) 1456 { 1457 unsigned int order = MAX_ORDER; 1458 1459 /* Check that pageblock_nr_pages has not already been setup */ 1460 if (pageblock_order) 1461 return; 1462 1463 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1464 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1465 order = HUGETLB_PAGE_ORDER; 1466 1467 /* 1468 * Assume the largest contiguous order of interest is a huge page. 1469 * This value may be variable depending on boot parameters on IA64 and 1470 * powerpc. 1471 */ 1472 pageblock_order = order; 1473 } 1474 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1475 1476 /* 1477 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1478 * is unused as pageblock_order is set at compile-time. See 1479 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1480 * the kernel config 1481 */ 1482 void __init set_pageblock_order(void) 1483 { 1484 } 1485 1486 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1487 1488 /* 1489 * Set up the zone data structures 1490 * - init pgdat internals 1491 * - init all zones belonging to this node 1492 * 1493 * NOTE: this function is only called during memory hotplug 1494 */ 1495 #ifdef CONFIG_MEMORY_HOTPLUG 1496 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1497 { 1498 int nid = pgdat->node_id; 1499 enum zone_type z; 1500 int cpu; 1501 1502 pgdat_init_internals(pgdat); 1503 1504 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1505 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1506 1507 /* 1508 * Reset the nr_zones, order and highest_zoneidx before reuse. 1509 * Note that kswapd will init kswapd_highest_zoneidx properly 1510 * when it starts in the near future. 1511 */ 1512 pgdat->nr_zones = 0; 1513 pgdat->kswapd_order = 0; 1514 pgdat->kswapd_highest_zoneidx = 0; 1515 pgdat->node_start_pfn = 0; 1516 pgdat->node_present_pages = 0; 1517 1518 for_each_online_cpu(cpu) { 1519 struct per_cpu_nodestat *p; 1520 1521 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1522 memset(p, 0, sizeof(*p)); 1523 } 1524 1525 /* 1526 * When memory is hot-added, all the memory is in offline state. So 1527 * clear all zones' present_pages and managed_pages because they will 1528 * be updated in online_pages() and offline_pages(). 1529 */ 1530 for (z = 0; z < MAX_NR_ZONES; z++) { 1531 struct zone *zone = pgdat->node_zones + z; 1532 1533 zone->present_pages = 0; 1534 zone_init_internals(zone, z, nid, 0); 1535 } 1536 } 1537 #endif 1538 1539 /* 1540 * Set up the zone data structures: 1541 * - mark all pages reserved 1542 * - mark all memory queues empty 1543 * - clear the memory bitmaps 1544 * 1545 * NOTE: pgdat should get zeroed by caller. 1546 * NOTE: this function is only called during early init. 1547 */ 1548 static void __init free_area_init_core(struct pglist_data *pgdat) 1549 { 1550 enum zone_type j; 1551 int nid = pgdat->node_id; 1552 1553 pgdat_init_internals(pgdat); 1554 pgdat->per_cpu_nodestats = &boot_nodestats; 1555 1556 for (j = 0; j < MAX_NR_ZONES; j++) { 1557 struct zone *zone = pgdat->node_zones + j; 1558 unsigned long size, freesize, memmap_pages; 1559 1560 size = zone->spanned_pages; 1561 freesize = zone->present_pages; 1562 1563 /* 1564 * Adjust freesize so that it accounts for how much memory 1565 * is used by this zone for memmap. This affects the watermark 1566 * and per-cpu initialisations 1567 */ 1568 memmap_pages = calc_memmap_size(size, freesize); 1569 if (!is_highmem_idx(j)) { 1570 if (freesize >= memmap_pages) { 1571 freesize -= memmap_pages; 1572 if (memmap_pages) 1573 pr_debug(" %s zone: %lu pages used for memmap\n", 1574 zone_names[j], memmap_pages); 1575 } else 1576 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 1577 zone_names[j], memmap_pages, freesize); 1578 } 1579 1580 /* Account for reserved pages */ 1581 if (j == 0 && freesize > dma_reserve) { 1582 freesize -= dma_reserve; 1583 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 1584 } 1585 1586 if (!is_highmem_idx(j)) 1587 nr_kernel_pages += freesize; 1588 /* Charge for highmem memmap if there are enough kernel pages */ 1589 else if (nr_kernel_pages > memmap_pages * 2) 1590 nr_kernel_pages -= memmap_pages; 1591 nr_all_pages += freesize; 1592 1593 /* 1594 * Set an approximate value for lowmem here, it will be adjusted 1595 * when the bootmem allocator frees pages into the buddy system. 1596 * And all highmem pages will be managed by the buddy system. 1597 */ 1598 zone_init_internals(zone, j, nid, freesize); 1599 1600 if (!size) 1601 continue; 1602 1603 setup_usemap(zone); 1604 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1605 } 1606 } 1607 1608 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1609 phys_addr_t min_addr, int nid, bool exact_nid) 1610 { 1611 void *ptr; 1612 1613 if (exact_nid) 1614 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1615 MEMBLOCK_ALLOC_ACCESSIBLE, 1616 nid); 1617 else 1618 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1619 MEMBLOCK_ALLOC_ACCESSIBLE, 1620 nid); 1621 1622 if (ptr && size > 0) 1623 page_init_poison(ptr, size); 1624 1625 return ptr; 1626 } 1627 1628 #ifdef CONFIG_FLATMEM 1629 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1630 { 1631 unsigned long __maybe_unused start = 0; 1632 unsigned long __maybe_unused offset = 0; 1633 1634 /* Skip empty nodes */ 1635 if (!pgdat->node_spanned_pages) 1636 return; 1637 1638 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1639 offset = pgdat->node_start_pfn - start; 1640 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1641 if (!pgdat->node_mem_map) { 1642 unsigned long size, end; 1643 struct page *map; 1644 1645 /* 1646 * The zone's endpoints aren't required to be MAX_ORDER 1647 * aligned but the node_mem_map endpoints must be in order 1648 * for the buddy allocator to function correctly. 1649 */ 1650 end = pgdat_end_pfn(pgdat); 1651 end = ALIGN(end, MAX_ORDER_NR_PAGES); 1652 size = (end - start) * sizeof(struct page); 1653 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1654 pgdat->node_id, false); 1655 if (!map) 1656 panic("Failed to allocate %ld bytes for node %d memory map\n", 1657 size, pgdat->node_id); 1658 pgdat->node_mem_map = map + offset; 1659 } 1660 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1661 __func__, pgdat->node_id, (unsigned long)pgdat, 1662 (unsigned long)pgdat->node_mem_map); 1663 #ifndef CONFIG_NUMA 1664 /* 1665 * With no DISCONTIG, the global mem_map is just set as node 0's 1666 */ 1667 if (pgdat == NODE_DATA(0)) { 1668 mem_map = NODE_DATA(0)->node_mem_map; 1669 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1670 mem_map -= offset; 1671 } 1672 #endif 1673 } 1674 #else 1675 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1676 #endif /* CONFIG_FLATMEM */ 1677 1678 /** 1679 * get_pfn_range_for_nid - Return the start and end page frames for a node 1680 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1681 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1682 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1683 * 1684 * It returns the start and end page frame of a node based on information 1685 * provided by memblock_set_node(). If called for a node 1686 * with no available memory, the start and end PFNs will be 0. 1687 */ 1688 void __init get_pfn_range_for_nid(unsigned int nid, 1689 unsigned long *start_pfn, unsigned long *end_pfn) 1690 { 1691 unsigned long this_start_pfn, this_end_pfn; 1692 int i; 1693 1694 *start_pfn = -1UL; 1695 *end_pfn = 0; 1696 1697 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1698 *start_pfn = min(*start_pfn, this_start_pfn); 1699 *end_pfn = max(*end_pfn, this_end_pfn); 1700 } 1701 1702 if (*start_pfn == -1UL) 1703 *start_pfn = 0; 1704 } 1705 1706 static void __init free_area_init_node(int nid) 1707 { 1708 pg_data_t *pgdat = NODE_DATA(nid); 1709 unsigned long start_pfn = 0; 1710 unsigned long end_pfn = 0; 1711 1712 /* pg_data_t should be reset to zero when it's allocated */ 1713 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1714 1715 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1716 1717 pgdat->node_id = nid; 1718 pgdat->node_start_pfn = start_pfn; 1719 pgdat->per_cpu_nodestats = NULL; 1720 1721 if (start_pfn != end_pfn) { 1722 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1723 (u64)start_pfn << PAGE_SHIFT, 1724 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1725 1726 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1727 } else { 1728 pr_info("Initmem setup node %d as memoryless\n", nid); 1729 1730 reset_memoryless_node_totalpages(pgdat); 1731 } 1732 1733 alloc_node_mem_map(pgdat); 1734 pgdat_set_deferred_range(pgdat); 1735 1736 free_area_init_core(pgdat); 1737 lru_gen_init_pgdat(pgdat); 1738 } 1739 1740 /* Any regular or high memory on that node ? */ 1741 static void __init check_for_memory(pg_data_t *pgdat) 1742 { 1743 enum zone_type zone_type; 1744 1745 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1746 struct zone *zone = &pgdat->node_zones[zone_type]; 1747 if (populated_zone(zone)) { 1748 if (IS_ENABLED(CONFIG_HIGHMEM)) 1749 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1750 if (zone_type <= ZONE_NORMAL) 1751 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1752 break; 1753 } 1754 } 1755 } 1756 1757 #if MAX_NUMNODES > 1 1758 /* 1759 * Figure out the number of possible node ids. 1760 */ 1761 void __init setup_nr_node_ids(void) 1762 { 1763 unsigned int highest; 1764 1765 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1766 nr_node_ids = highest + 1; 1767 } 1768 #endif 1769 1770 /* 1771 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1772 * such cases we allow max_zone_pfn sorted in the descending order 1773 */ 1774 static bool arch_has_descending_max_zone_pfns(void) 1775 { 1776 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1777 } 1778 1779 /** 1780 * free_area_init - Initialise all pg_data_t and zone data 1781 * @max_zone_pfn: an array of max PFNs for each zone 1782 * 1783 * This will call free_area_init_node() for each active node in the system. 1784 * Using the page ranges provided by memblock_set_node(), the size of each 1785 * zone in each node and their holes is calculated. If the maximum PFN 1786 * between two adjacent zones match, it is assumed that the zone is empty. 1787 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1788 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1789 * starts where the previous one ended. For example, ZONE_DMA32 starts 1790 * at arch_max_dma_pfn. 1791 */ 1792 void __init free_area_init(unsigned long *max_zone_pfn) 1793 { 1794 unsigned long start_pfn, end_pfn; 1795 int i, nid, zone; 1796 bool descending; 1797 1798 /* Record where the zone boundaries are */ 1799 memset(arch_zone_lowest_possible_pfn, 0, 1800 sizeof(arch_zone_lowest_possible_pfn)); 1801 memset(arch_zone_highest_possible_pfn, 0, 1802 sizeof(arch_zone_highest_possible_pfn)); 1803 1804 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1805 descending = arch_has_descending_max_zone_pfns(); 1806 1807 for (i = 0; i < MAX_NR_ZONES; i++) { 1808 if (descending) 1809 zone = MAX_NR_ZONES - i - 1; 1810 else 1811 zone = i; 1812 1813 if (zone == ZONE_MOVABLE) 1814 continue; 1815 1816 end_pfn = max(max_zone_pfn[zone], start_pfn); 1817 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1818 arch_zone_highest_possible_pfn[zone] = end_pfn; 1819 1820 start_pfn = end_pfn; 1821 } 1822 1823 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1824 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1825 find_zone_movable_pfns_for_nodes(); 1826 1827 /* Print out the zone ranges */ 1828 pr_info("Zone ranges:\n"); 1829 for (i = 0; i < MAX_NR_ZONES; i++) { 1830 if (i == ZONE_MOVABLE) 1831 continue; 1832 pr_info(" %-8s ", zone_names[i]); 1833 if (arch_zone_lowest_possible_pfn[i] == 1834 arch_zone_highest_possible_pfn[i]) 1835 pr_cont("empty\n"); 1836 else 1837 pr_cont("[mem %#018Lx-%#018Lx]\n", 1838 (u64)arch_zone_lowest_possible_pfn[i] 1839 << PAGE_SHIFT, 1840 ((u64)arch_zone_highest_possible_pfn[i] 1841 << PAGE_SHIFT) - 1); 1842 } 1843 1844 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1845 pr_info("Movable zone start for each node\n"); 1846 for (i = 0; i < MAX_NUMNODES; i++) { 1847 if (zone_movable_pfn[i]) 1848 pr_info(" Node %d: %#018Lx\n", i, 1849 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1850 } 1851 1852 /* 1853 * Print out the early node map, and initialize the 1854 * subsection-map relative to active online memory ranges to 1855 * enable future "sub-section" extensions of the memory map. 1856 */ 1857 pr_info("Early memory node ranges\n"); 1858 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1859 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1860 (u64)start_pfn << PAGE_SHIFT, 1861 ((u64)end_pfn << PAGE_SHIFT) - 1); 1862 subsection_map_init(start_pfn, end_pfn - start_pfn); 1863 } 1864 1865 /* Initialise every node */ 1866 mminit_verify_pageflags_layout(); 1867 setup_nr_node_ids(); 1868 set_pageblock_order(); 1869 1870 for_each_node(nid) { 1871 pg_data_t *pgdat; 1872 1873 if (!node_online(nid)) { 1874 pr_info("Initializing node %d as memoryless\n", nid); 1875 1876 /* Allocator not initialized yet */ 1877 pgdat = arch_alloc_nodedata(nid); 1878 if (!pgdat) 1879 panic("Cannot allocate %zuB for node %d.\n", 1880 sizeof(*pgdat), nid); 1881 arch_refresh_nodedata(nid, pgdat); 1882 free_area_init_node(nid); 1883 1884 /* 1885 * We do not want to confuse userspace by sysfs 1886 * files/directories for node without any memory 1887 * attached to it, so this node is not marked as 1888 * N_MEMORY and not marked online so that no sysfs 1889 * hierarchy will be created via register_one_node for 1890 * it. The pgdat will get fully initialized by 1891 * hotadd_init_pgdat() when memory is hotplugged into 1892 * this node. 1893 */ 1894 continue; 1895 } 1896 1897 pgdat = NODE_DATA(nid); 1898 free_area_init_node(nid); 1899 1900 /* Any memory on that node */ 1901 if (pgdat->node_present_pages) 1902 node_set_state(nid, N_MEMORY); 1903 check_for_memory(pgdat); 1904 } 1905 1906 memmap_init(); 1907 1908 /* disable hash distribution for systems with a single node */ 1909 fixup_hashdist(); 1910 } 1911 1912 /** 1913 * node_map_pfn_alignment - determine the maximum internode alignment 1914 * 1915 * This function should be called after node map is populated and sorted. 1916 * It calculates the maximum power of two alignment which can distinguish 1917 * all the nodes. 1918 * 1919 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1920 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1921 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1922 * shifted, 1GiB is enough and this function will indicate so. 1923 * 1924 * This is used to test whether pfn -> nid mapping of the chosen memory 1925 * model has fine enough granularity to avoid incorrect mapping for the 1926 * populated node map. 1927 * 1928 * Return: the determined alignment in pfn's. 0 if there is no alignment 1929 * requirement (single node). 1930 */ 1931 unsigned long __init node_map_pfn_alignment(void) 1932 { 1933 unsigned long accl_mask = 0, last_end = 0; 1934 unsigned long start, end, mask; 1935 int last_nid = NUMA_NO_NODE; 1936 int i, nid; 1937 1938 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1939 if (!start || last_nid < 0 || last_nid == nid) { 1940 last_nid = nid; 1941 last_end = end; 1942 continue; 1943 } 1944 1945 /* 1946 * Start with a mask granular enough to pin-point to the 1947 * start pfn and tick off bits one-by-one until it becomes 1948 * too coarse to separate the current node from the last. 1949 */ 1950 mask = ~((1 << __ffs(start)) - 1); 1951 while (mask && last_end <= (start & (mask << 1))) 1952 mask <<= 1; 1953 1954 /* accumulate all internode masks */ 1955 accl_mask |= mask; 1956 } 1957 1958 /* convert mask to number of pages */ 1959 return ~accl_mask + 1; 1960 } 1961 1962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1963 static void __init deferred_free_range(unsigned long pfn, 1964 unsigned long nr_pages) 1965 { 1966 struct page *page; 1967 unsigned long i; 1968 1969 if (!nr_pages) 1970 return; 1971 1972 page = pfn_to_page(pfn); 1973 1974 /* Free a large naturally-aligned chunk if possible */ 1975 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1976 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1977 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1978 __free_pages_core(page, MAX_ORDER); 1979 return; 1980 } 1981 1982 /* Accept chunks smaller than MAX_ORDER upfront */ 1983 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); 1984 1985 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1986 if (pageblock_aligned(pfn)) 1987 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1988 __free_pages_core(page, 0); 1989 } 1990 } 1991 1992 /* Completion tracking for deferred_init_memmap() threads */ 1993 static atomic_t pgdat_init_n_undone __initdata; 1994 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1995 1996 static inline void __init pgdat_init_report_one_done(void) 1997 { 1998 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1999 complete(&pgdat_init_all_done_comp); 2000 } 2001 2002 /* 2003 * Returns true if page needs to be initialized or freed to buddy allocator. 2004 * 2005 * We check if a current MAX_ORDER block is valid by only checking the validity 2006 * of the head pfn. 2007 */ 2008 static inline bool __init deferred_pfn_valid(unsigned long pfn) 2009 { 2010 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) 2011 return false; 2012 return true; 2013 } 2014 2015 /* 2016 * Free pages to buddy allocator. Try to free aligned pages in 2017 * MAX_ORDER_NR_PAGES sizes. 2018 */ 2019 static void __init deferred_free_pages(unsigned long pfn, 2020 unsigned long end_pfn) 2021 { 2022 unsigned long nr_free = 0; 2023 2024 for (; pfn < end_pfn; pfn++) { 2025 if (!deferred_pfn_valid(pfn)) { 2026 deferred_free_range(pfn - nr_free, nr_free); 2027 nr_free = 0; 2028 } else if (IS_MAX_ORDER_ALIGNED(pfn)) { 2029 deferred_free_range(pfn - nr_free, nr_free); 2030 nr_free = 1; 2031 } else { 2032 nr_free++; 2033 } 2034 } 2035 /* Free the last block of pages to allocator */ 2036 deferred_free_range(pfn - nr_free, nr_free); 2037 } 2038 2039 /* 2040 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 2041 * by performing it only once every MAX_ORDER_NR_PAGES. 2042 * Return number of pages initialized. 2043 */ 2044 static unsigned long __init deferred_init_pages(struct zone *zone, 2045 unsigned long pfn, 2046 unsigned long end_pfn) 2047 { 2048 int nid = zone_to_nid(zone); 2049 unsigned long nr_pages = 0; 2050 int zid = zone_idx(zone); 2051 struct page *page = NULL; 2052 2053 for (; pfn < end_pfn; pfn++) { 2054 if (!deferred_pfn_valid(pfn)) { 2055 page = NULL; 2056 continue; 2057 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { 2058 page = pfn_to_page(pfn); 2059 } else { 2060 page++; 2061 } 2062 __init_single_page(page, pfn, zid, nid); 2063 nr_pages++; 2064 } 2065 return (nr_pages); 2066 } 2067 2068 /* 2069 * This function is meant to pre-load the iterator for the zone init. 2070 * Specifically it walks through the ranges until we are caught up to the 2071 * first_init_pfn value and exits there. If we never encounter the value we 2072 * return false indicating there are no valid ranges left. 2073 */ 2074 static bool __init 2075 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2076 unsigned long *spfn, unsigned long *epfn, 2077 unsigned long first_init_pfn) 2078 { 2079 u64 j; 2080 2081 /* 2082 * Start out by walking through the ranges in this zone that have 2083 * already been initialized. We don't need to do anything with them 2084 * so we just need to flush them out of the system. 2085 */ 2086 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2087 if (*epfn <= first_init_pfn) 2088 continue; 2089 if (*spfn < first_init_pfn) 2090 *spfn = first_init_pfn; 2091 *i = j; 2092 return true; 2093 } 2094 2095 return false; 2096 } 2097 2098 /* 2099 * Initialize and free pages. We do it in two loops: first we initialize 2100 * struct page, then free to buddy allocator, because while we are 2101 * freeing pages we can access pages that are ahead (computing buddy 2102 * page in __free_one_page()). 2103 * 2104 * In order to try and keep some memory in the cache we have the loop 2105 * broken along max page order boundaries. This way we will not cause 2106 * any issues with the buddy page computation. 2107 */ 2108 static unsigned long __init 2109 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2110 unsigned long *end_pfn) 2111 { 2112 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2113 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2114 unsigned long nr_pages = 0; 2115 u64 j = *i; 2116 2117 /* First we loop through and initialize the page values */ 2118 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2119 unsigned long t; 2120 2121 if (mo_pfn <= *start_pfn) 2122 break; 2123 2124 t = min(mo_pfn, *end_pfn); 2125 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2126 2127 if (mo_pfn < *end_pfn) { 2128 *start_pfn = mo_pfn; 2129 break; 2130 } 2131 } 2132 2133 /* Reset values and now loop through freeing pages as needed */ 2134 swap(j, *i); 2135 2136 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2137 unsigned long t; 2138 2139 if (mo_pfn <= spfn) 2140 break; 2141 2142 t = min(mo_pfn, epfn); 2143 deferred_free_pages(spfn, t); 2144 2145 if (mo_pfn <= epfn) 2146 break; 2147 } 2148 2149 return nr_pages; 2150 } 2151 2152 static void __init 2153 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2154 void *arg) 2155 { 2156 unsigned long spfn, epfn; 2157 struct zone *zone = arg; 2158 u64 i; 2159 2160 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2161 2162 /* 2163 * Initialize and free pages in MAX_ORDER sized increments so that we 2164 * can avoid introducing any issues with the buddy allocator. 2165 */ 2166 while (spfn < end_pfn) { 2167 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2168 cond_resched(); 2169 } 2170 } 2171 2172 /* An arch may override for more concurrency. */ 2173 __weak int __init 2174 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2175 { 2176 return 1; 2177 } 2178 2179 /* Initialise remaining memory on a node */ 2180 static int __init deferred_init_memmap(void *data) 2181 { 2182 pg_data_t *pgdat = data; 2183 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2184 unsigned long spfn = 0, epfn = 0; 2185 unsigned long first_init_pfn, flags; 2186 unsigned long start = jiffies; 2187 struct zone *zone; 2188 int zid, max_threads; 2189 u64 i; 2190 2191 /* Bind memory initialisation thread to a local node if possible */ 2192 if (!cpumask_empty(cpumask)) 2193 set_cpus_allowed_ptr(current, cpumask); 2194 2195 pgdat_resize_lock(pgdat, &flags); 2196 first_init_pfn = pgdat->first_deferred_pfn; 2197 if (first_init_pfn == ULONG_MAX) { 2198 pgdat_resize_unlock(pgdat, &flags); 2199 pgdat_init_report_one_done(); 2200 return 0; 2201 } 2202 2203 /* Sanity check boundaries */ 2204 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2205 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2206 pgdat->first_deferred_pfn = ULONG_MAX; 2207 2208 /* 2209 * Once we unlock here, the zone cannot be grown anymore, thus if an 2210 * interrupt thread must allocate this early in boot, zone must be 2211 * pre-grown prior to start of deferred page initialization. 2212 */ 2213 pgdat_resize_unlock(pgdat, &flags); 2214 2215 /* Only the highest zone is deferred so find it */ 2216 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2217 zone = pgdat->node_zones + zid; 2218 if (first_init_pfn < zone_end_pfn(zone)) 2219 break; 2220 } 2221 2222 /* If the zone is empty somebody else may have cleared out the zone */ 2223 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2224 first_init_pfn)) 2225 goto zone_empty; 2226 2227 max_threads = deferred_page_init_max_threads(cpumask); 2228 2229 while (spfn < epfn) { 2230 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2231 struct padata_mt_job job = { 2232 .thread_fn = deferred_init_memmap_chunk, 2233 .fn_arg = zone, 2234 .start = spfn, 2235 .size = epfn_align - spfn, 2236 .align = PAGES_PER_SECTION, 2237 .min_chunk = PAGES_PER_SECTION, 2238 .max_threads = max_threads, 2239 }; 2240 2241 padata_do_multithreaded(&job); 2242 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2243 epfn_align); 2244 } 2245 zone_empty: 2246 /* Sanity check that the next zone really is unpopulated */ 2247 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2248 2249 pr_info("node %d deferred pages initialised in %ums\n", 2250 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2251 2252 pgdat_init_report_one_done(); 2253 return 0; 2254 } 2255 2256 /* 2257 * If this zone has deferred pages, try to grow it by initializing enough 2258 * deferred pages to satisfy the allocation specified by order, rounded up to 2259 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2260 * of SECTION_SIZE bytes by initializing struct pages in increments of 2261 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2262 * 2263 * Return true when zone was grown, otherwise return false. We return true even 2264 * when we grow less than requested, to let the caller decide if there are 2265 * enough pages to satisfy the allocation. 2266 * 2267 * Note: We use noinline because this function is needed only during boot, and 2268 * it is called from a __ref function _deferred_grow_zone. This way we are 2269 * making sure that it is not inlined into permanent text section. 2270 */ 2271 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2272 { 2273 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2274 pg_data_t *pgdat = zone->zone_pgdat; 2275 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2276 unsigned long spfn, epfn, flags; 2277 unsigned long nr_pages = 0; 2278 u64 i; 2279 2280 /* Only the last zone may have deferred pages */ 2281 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2282 return false; 2283 2284 pgdat_resize_lock(pgdat, &flags); 2285 2286 /* 2287 * If someone grew this zone while we were waiting for spinlock, return 2288 * true, as there might be enough pages already. 2289 */ 2290 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2291 pgdat_resize_unlock(pgdat, &flags); 2292 return true; 2293 } 2294 2295 /* If the zone is empty somebody else may have cleared out the zone */ 2296 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2297 first_deferred_pfn)) { 2298 pgdat->first_deferred_pfn = ULONG_MAX; 2299 pgdat_resize_unlock(pgdat, &flags); 2300 /* Retry only once. */ 2301 return first_deferred_pfn != ULONG_MAX; 2302 } 2303 2304 /* 2305 * Initialize and free pages in MAX_ORDER sized increments so 2306 * that we can avoid introducing any issues with the buddy 2307 * allocator. 2308 */ 2309 while (spfn < epfn) { 2310 /* update our first deferred PFN for this section */ 2311 first_deferred_pfn = spfn; 2312 2313 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2314 touch_nmi_watchdog(); 2315 2316 /* We should only stop along section boundaries */ 2317 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2318 continue; 2319 2320 /* If our quota has been met we can stop here */ 2321 if (nr_pages >= nr_pages_needed) 2322 break; 2323 } 2324 2325 pgdat->first_deferred_pfn = spfn; 2326 pgdat_resize_unlock(pgdat, &flags); 2327 2328 return nr_pages > 0; 2329 } 2330 2331 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2332 2333 #ifdef CONFIG_CMA 2334 void __init init_cma_reserved_pageblock(struct page *page) 2335 { 2336 unsigned i = pageblock_nr_pages; 2337 struct page *p = page; 2338 2339 do { 2340 __ClearPageReserved(p); 2341 set_page_count(p, 0); 2342 } while (++p, --i); 2343 2344 set_pageblock_migratetype(page, MIGRATE_CMA); 2345 set_page_refcounted(page); 2346 __free_pages(page, pageblock_order); 2347 2348 adjust_managed_page_count(page, pageblock_nr_pages); 2349 page_zone(page)->cma_pages += pageblock_nr_pages; 2350 } 2351 #endif 2352 2353 void set_zone_contiguous(struct zone *zone) 2354 { 2355 unsigned long block_start_pfn = zone->zone_start_pfn; 2356 unsigned long block_end_pfn; 2357 2358 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2359 for (; block_start_pfn < zone_end_pfn(zone); 2360 block_start_pfn = block_end_pfn, 2361 block_end_pfn += pageblock_nr_pages) { 2362 2363 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2364 2365 if (!__pageblock_pfn_to_page(block_start_pfn, 2366 block_end_pfn, zone)) 2367 return; 2368 cond_resched(); 2369 } 2370 2371 /* We confirm that there is no hole */ 2372 zone->contiguous = true; 2373 } 2374 2375 void __init page_alloc_init_late(void) 2376 { 2377 struct zone *zone; 2378 int nid; 2379 2380 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2381 2382 /* There will be num_node_state(N_MEMORY) threads */ 2383 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2384 for_each_node_state(nid, N_MEMORY) { 2385 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2386 } 2387 2388 /* Block until all are initialised */ 2389 wait_for_completion(&pgdat_init_all_done_comp); 2390 2391 /* 2392 * We initialized the rest of the deferred pages. Permanently disable 2393 * on-demand struct page initialization. 2394 */ 2395 static_branch_disable(&deferred_pages); 2396 2397 /* Reinit limits that are based on free pages after the kernel is up */ 2398 files_maxfiles_init(); 2399 #endif 2400 2401 buffer_init(); 2402 2403 /* Discard memblock private memory */ 2404 memblock_discard(); 2405 2406 for_each_node_state(nid, N_MEMORY) 2407 shuffle_free_memory(NODE_DATA(nid)); 2408 2409 for_each_populated_zone(zone) 2410 set_zone_contiguous(zone); 2411 2412 /* Initialize page ext after all struct pages are initialized. */ 2413 if (deferred_struct_pages) 2414 page_ext_init(); 2415 2416 page_alloc_sysctl_init(); 2417 } 2418 2419 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2420 /* 2421 * Returns the number of pages that arch has reserved but 2422 * is not known to alloc_large_system_hash(). 2423 */ 2424 static unsigned long __init arch_reserved_kernel_pages(void) 2425 { 2426 return 0; 2427 } 2428 #endif 2429 2430 /* 2431 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2432 * machines. As memory size is increased the scale is also increased but at 2433 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2434 * quadruples the scale is increased by one, which means the size of hash table 2435 * only doubles, instead of quadrupling as well. 2436 * Because 32-bit systems cannot have large physical memory, where this scaling 2437 * makes sense, it is disabled on such platforms. 2438 */ 2439 #if __BITS_PER_LONG > 32 2440 #define ADAPT_SCALE_BASE (64ul << 30) 2441 #define ADAPT_SCALE_SHIFT 2 2442 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2443 #endif 2444 2445 /* 2446 * allocate a large system hash table from bootmem 2447 * - it is assumed that the hash table must contain an exact power-of-2 2448 * quantity of entries 2449 * - limit is the number of hash buckets, not the total allocation size 2450 */ 2451 void *__init alloc_large_system_hash(const char *tablename, 2452 unsigned long bucketsize, 2453 unsigned long numentries, 2454 int scale, 2455 int flags, 2456 unsigned int *_hash_shift, 2457 unsigned int *_hash_mask, 2458 unsigned long low_limit, 2459 unsigned long high_limit) 2460 { 2461 unsigned long long max = high_limit; 2462 unsigned long log2qty, size; 2463 void *table; 2464 gfp_t gfp_flags; 2465 bool virt; 2466 bool huge; 2467 2468 /* allow the kernel cmdline to have a say */ 2469 if (!numentries) { 2470 /* round applicable memory size up to nearest megabyte */ 2471 numentries = nr_kernel_pages; 2472 numentries -= arch_reserved_kernel_pages(); 2473 2474 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2475 if (PAGE_SIZE < SZ_1M) 2476 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2477 2478 #if __BITS_PER_LONG > 32 2479 if (!high_limit) { 2480 unsigned long adapt; 2481 2482 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2483 adapt <<= ADAPT_SCALE_SHIFT) 2484 scale++; 2485 } 2486 #endif 2487 2488 /* limit to 1 bucket per 2^scale bytes of low memory */ 2489 if (scale > PAGE_SHIFT) 2490 numentries >>= (scale - PAGE_SHIFT); 2491 else 2492 numentries <<= (PAGE_SHIFT - scale); 2493 2494 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2495 numentries = PAGE_SIZE / bucketsize; 2496 } 2497 numentries = roundup_pow_of_two(numentries); 2498 2499 /* limit allocation size to 1/16 total memory by default */ 2500 if (max == 0) { 2501 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2502 do_div(max, bucketsize); 2503 } 2504 max = min(max, 0x80000000ULL); 2505 2506 if (numentries < low_limit) 2507 numentries = low_limit; 2508 if (numentries > max) 2509 numentries = max; 2510 2511 log2qty = ilog2(numentries); 2512 2513 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2514 do { 2515 virt = false; 2516 size = bucketsize << log2qty; 2517 if (flags & HASH_EARLY) { 2518 if (flags & HASH_ZERO) 2519 table = memblock_alloc(size, SMP_CACHE_BYTES); 2520 else 2521 table = memblock_alloc_raw(size, 2522 SMP_CACHE_BYTES); 2523 } else if (get_order(size) > MAX_ORDER || hashdist) { 2524 table = vmalloc_huge(size, gfp_flags); 2525 virt = true; 2526 if (table) 2527 huge = is_vm_area_hugepages(table); 2528 } else { 2529 /* 2530 * If bucketsize is not a power-of-two, we may free 2531 * some pages at the end of hash table which 2532 * alloc_pages_exact() automatically does 2533 */ 2534 table = alloc_pages_exact(size, gfp_flags); 2535 kmemleak_alloc(table, size, 1, gfp_flags); 2536 } 2537 } while (!table && size > PAGE_SIZE && --log2qty); 2538 2539 if (!table) 2540 panic("Failed to allocate %s hash table\n", tablename); 2541 2542 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2543 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2544 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2545 2546 if (_hash_shift) 2547 *_hash_shift = log2qty; 2548 if (_hash_mask) 2549 *_hash_mask = (1 << log2qty) - 1; 2550 2551 return table; 2552 } 2553 2554 /** 2555 * set_dma_reserve - set the specified number of pages reserved in the first zone 2556 * @new_dma_reserve: The number of pages to mark reserved 2557 * 2558 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 2559 * In the DMA zone, a significant percentage may be consumed by kernel image 2560 * and other unfreeable allocations which can skew the watermarks badly. This 2561 * function may optionally be used to account for unfreeable pages in the 2562 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2563 * smaller per-cpu batchsize. 2564 */ 2565 void __init set_dma_reserve(unsigned long new_dma_reserve) 2566 { 2567 dma_reserve = new_dma_reserve; 2568 } 2569 2570 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2571 unsigned int order) 2572 { 2573 2574 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2575 int nid = early_pfn_to_nid(pfn); 2576 2577 if (!early_page_initialised(pfn, nid)) 2578 return; 2579 } 2580 2581 if (!kmsan_memblock_free_pages(page, order)) { 2582 /* KMSAN will take care of these pages. */ 2583 return; 2584 } 2585 __free_pages_core(page, order); 2586 } 2587 2588 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2589 EXPORT_SYMBOL(init_on_alloc); 2590 2591 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2592 EXPORT_SYMBOL(init_on_free); 2593 2594 static bool _init_on_alloc_enabled_early __read_mostly 2595 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2596 static int __init early_init_on_alloc(char *buf) 2597 { 2598 2599 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2600 } 2601 early_param("init_on_alloc", early_init_on_alloc); 2602 2603 static bool _init_on_free_enabled_early __read_mostly 2604 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2605 static int __init early_init_on_free(char *buf) 2606 { 2607 return kstrtobool(buf, &_init_on_free_enabled_early); 2608 } 2609 early_param("init_on_free", early_init_on_free); 2610 2611 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2612 2613 /* 2614 * Enable static keys related to various memory debugging and hardening options. 2615 * Some override others, and depend on early params that are evaluated in the 2616 * order of appearance. So we need to first gather the full picture of what was 2617 * enabled, and then make decisions. 2618 */ 2619 static void __init mem_debugging_and_hardening_init(void) 2620 { 2621 bool page_poisoning_requested = false; 2622 bool want_check_pages = false; 2623 2624 #ifdef CONFIG_PAGE_POISONING 2625 /* 2626 * Page poisoning is debug page alloc for some arches. If 2627 * either of those options are enabled, enable poisoning. 2628 */ 2629 if (page_poisoning_enabled() || 2630 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2631 debug_pagealloc_enabled())) { 2632 static_branch_enable(&_page_poisoning_enabled); 2633 page_poisoning_requested = true; 2634 want_check_pages = true; 2635 } 2636 #endif 2637 2638 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2639 page_poisoning_requested) { 2640 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2641 "will take precedence over init_on_alloc and init_on_free\n"); 2642 _init_on_alloc_enabled_early = false; 2643 _init_on_free_enabled_early = false; 2644 } 2645 2646 if (_init_on_alloc_enabled_early) { 2647 want_check_pages = true; 2648 static_branch_enable(&init_on_alloc); 2649 } else { 2650 static_branch_disable(&init_on_alloc); 2651 } 2652 2653 if (_init_on_free_enabled_early) { 2654 want_check_pages = true; 2655 static_branch_enable(&init_on_free); 2656 } else { 2657 static_branch_disable(&init_on_free); 2658 } 2659 2660 if (IS_ENABLED(CONFIG_KMSAN) && 2661 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2662 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2663 2664 #ifdef CONFIG_DEBUG_PAGEALLOC 2665 if (debug_pagealloc_enabled()) { 2666 want_check_pages = true; 2667 static_branch_enable(&_debug_pagealloc_enabled); 2668 2669 if (debug_guardpage_minorder()) 2670 static_branch_enable(&_debug_guardpage_enabled); 2671 } 2672 #endif 2673 2674 /* 2675 * Any page debugging or hardening option also enables sanity checking 2676 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2677 * enabled already. 2678 */ 2679 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2680 static_branch_enable(&check_pages_enabled); 2681 } 2682 2683 /* Report memory auto-initialization states for this boot. */ 2684 static void __init report_meminit(void) 2685 { 2686 const char *stack; 2687 2688 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2689 stack = "all(pattern)"; 2690 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2691 stack = "all(zero)"; 2692 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2693 stack = "byref_all(zero)"; 2694 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2695 stack = "byref(zero)"; 2696 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2697 stack = "__user(zero)"; 2698 else 2699 stack = "off"; 2700 2701 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2702 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2703 want_init_on_free() ? "on" : "off"); 2704 if (want_init_on_free()) 2705 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2706 } 2707 2708 static void __init mem_init_print_info(void) 2709 { 2710 unsigned long physpages, codesize, datasize, rosize, bss_size; 2711 unsigned long init_code_size, init_data_size; 2712 2713 physpages = get_num_physpages(); 2714 codesize = _etext - _stext; 2715 datasize = _edata - _sdata; 2716 rosize = __end_rodata - __start_rodata; 2717 bss_size = __bss_stop - __bss_start; 2718 init_data_size = __init_end - __init_begin; 2719 init_code_size = _einittext - _sinittext; 2720 2721 /* 2722 * Detect special cases and adjust section sizes accordingly: 2723 * 1) .init.* may be embedded into .data sections 2724 * 2) .init.text.* may be out of [__init_begin, __init_end], 2725 * please refer to arch/tile/kernel/vmlinux.lds.S. 2726 * 3) .rodata.* may be embedded into .text or .data sections. 2727 */ 2728 #define adj_init_size(start, end, size, pos, adj) \ 2729 do { \ 2730 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2731 size -= adj; \ 2732 } while (0) 2733 2734 adj_init_size(__init_begin, __init_end, init_data_size, 2735 _sinittext, init_code_size); 2736 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2737 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2738 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2739 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2740 2741 #undef adj_init_size 2742 2743 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2744 #ifdef CONFIG_HIGHMEM 2745 ", %luK highmem" 2746 #endif 2747 ")\n", 2748 K(nr_free_pages()), K(physpages), 2749 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2750 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2751 K(physpages - totalram_pages() - totalcma_pages), 2752 K(totalcma_pages) 2753 #ifdef CONFIG_HIGHMEM 2754 , K(totalhigh_pages()) 2755 #endif 2756 ); 2757 } 2758 2759 /* 2760 * Set up kernel memory allocators 2761 */ 2762 void __init mm_core_init(void) 2763 { 2764 /* Initializations relying on SMP setup */ 2765 build_all_zonelists(NULL); 2766 page_alloc_init_cpuhp(); 2767 2768 /* 2769 * page_ext requires contiguous pages, 2770 * bigger than MAX_ORDER unless SPARSEMEM. 2771 */ 2772 page_ext_init_flatmem(); 2773 mem_debugging_and_hardening_init(); 2774 kfence_alloc_pool_and_metadata(); 2775 report_meminit(); 2776 kmsan_init_shadow(); 2777 stack_depot_early_init(); 2778 mem_init(); 2779 mem_init_print_info(); 2780 kmem_cache_init(); 2781 /* 2782 * page_owner must be initialized after buddy is ready, and also after 2783 * slab is ready so that stack_depot_init() works properly 2784 */ 2785 page_ext_init_flatmem_late(); 2786 kmemleak_init(); 2787 ptlock_cache_init(); 2788 pgtable_cache_init(); 2789 debug_objects_mem_init(); 2790 vmalloc_init(); 2791 /* If no deferred init page_ext now, as vmap is fully initialized */ 2792 if (!deferred_struct_pages) 2793 page_ext_init(); 2794 /* Should be run before the first non-init thread is created */ 2795 init_espfix_bsp(); 2796 /* Should be run after espfix64 is set up. */ 2797 pti_init(); 2798 kmsan_init_runtime(); 2799 mm_cache_init(); 2800 } 2801