1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/syscalls.h> 16 #include <linux/sched.h> 17 #include <linux/module.h> 18 #include <linux/rmap.h> 19 #include <linux/mmzone.h> 20 #include <linux/hugetlb.h> 21 22 #include "internal.h" 23 24 int can_do_mlock(void) 25 { 26 if (capable(CAP_IPC_LOCK)) 27 return 1; 28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 29 return 1; 30 return 0; 31 } 32 EXPORT_SYMBOL(can_do_mlock); 33 34 /* 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing 36 * in vmscan and, possibly, the fault path; and to support semi-accurate 37 * statistics. 38 * 39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 41 * The unevictable list is an LRU sibling list to the [in]active lists. 42 * PageUnevictable is set to indicate the unevictable state. 43 * 44 * When lazy mlocking via vmscan, it is important to ensure that the 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 46 * may have mlocked a page that is being munlocked. So lazy mlock must take 47 * the mmap_sem for read, and verify that the vma really is locked 48 * (see mm/rmap.c). 49 */ 50 51 /* 52 * LRU accounting for clear_page_mlock() 53 */ 54 void __clear_page_mlock(struct page *page) 55 { 56 VM_BUG_ON(!PageLocked(page)); 57 58 if (!page->mapping) { /* truncated ? */ 59 return; 60 } 61 62 dec_zone_page_state(page, NR_MLOCK); 63 count_vm_event(UNEVICTABLE_PGCLEARED); 64 if (!isolate_lru_page(page)) { 65 putback_lru_page(page); 66 } else { 67 /* 68 * We lost the race. the page already moved to evictable list. 69 */ 70 if (PageUnevictable(page)) 71 count_vm_event(UNEVICTABLE_PGSTRANDED); 72 } 73 } 74 75 /* 76 * Mark page as mlocked if not already. 77 * If page on LRU, isolate and putback to move to unevictable list. 78 */ 79 void mlock_vma_page(struct page *page) 80 { 81 BUG_ON(!PageLocked(page)); 82 83 if (!TestSetPageMlocked(page)) { 84 inc_zone_page_state(page, NR_MLOCK); 85 count_vm_event(UNEVICTABLE_PGMLOCKED); 86 if (!isolate_lru_page(page)) 87 putback_lru_page(page); 88 } 89 } 90 91 /* 92 * called from munlock()/munmap() path with page supposedly on the LRU. 93 * 94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked 95 * [in try_to_munlock()] and then attempt to isolate the page. We must 96 * isolate the page to keep others from messing with its unevictable 97 * and mlocked state while trying to munlock. However, we pre-clear the 98 * mlocked state anyway as we might lose the isolation race and we might 99 * not get another chance to clear PageMlocked. If we successfully 100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas 101 * mapping the page, it will restore the PageMlocked state, unless the page 102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(), 103 * perhaps redundantly. 104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED 105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap() 106 * either of which will restore the PageMlocked state by calling 107 * mlock_vma_page() above, if it can grab the vma's mmap sem. 108 */ 109 static void munlock_vma_page(struct page *page) 110 { 111 BUG_ON(!PageLocked(page)); 112 113 if (TestClearPageMlocked(page)) { 114 dec_zone_page_state(page, NR_MLOCK); 115 if (!isolate_lru_page(page)) { 116 int ret = try_to_munlock(page); 117 /* 118 * did try_to_unlock() succeed or punt? 119 */ 120 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN) 121 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 122 123 putback_lru_page(page); 124 } else { 125 /* 126 * We lost the race. let try_to_unmap() deal 127 * with it. At least we get the page state and 128 * mlock stats right. However, page is still on 129 * the noreclaim list. We'll fix that up when 130 * the page is eventually freed or we scan the 131 * noreclaim list. 132 */ 133 if (PageUnevictable(page)) 134 count_vm_event(UNEVICTABLE_PGSTRANDED); 135 else 136 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 137 } 138 } 139 } 140 141 /** 142 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma. 143 * @vma: target vma 144 * @start: start address 145 * @end: end address 146 * @mlock: 0 indicate munlock, otherwise mlock. 147 * 148 * If @mlock == 0, unlock an mlocked range; 149 * else mlock the range of pages. This takes care of making the pages present , 150 * too. 151 * 152 * return 0 on success, negative error code on error. 153 * 154 * vma->vm_mm->mmap_sem must be held for at least read. 155 */ 156 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 157 unsigned long start, unsigned long end, 158 int mlock) 159 { 160 struct mm_struct *mm = vma->vm_mm; 161 unsigned long addr = start; 162 struct page *pages[16]; /* 16 gives a reasonable batch */ 163 int nr_pages = (end - start) / PAGE_SIZE; 164 int ret = 0; 165 int gup_flags = 0; 166 167 VM_BUG_ON(start & ~PAGE_MASK); 168 VM_BUG_ON(end & ~PAGE_MASK); 169 VM_BUG_ON(start < vma->vm_start); 170 VM_BUG_ON(end > vma->vm_end); 171 VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) && 172 (atomic_read(&mm->mm_users) != 0)); 173 174 /* 175 * mlock: don't page populate if vma has PROT_NONE permission. 176 * munlock: always do munlock although the vma has PROT_NONE 177 * permission, or SIGKILL is pending. 178 */ 179 if (!mlock) 180 gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS | 181 GUP_FLAGS_IGNORE_SIGKILL; 182 183 if (vma->vm_flags & VM_WRITE) 184 gup_flags |= GUP_FLAGS_WRITE; 185 186 while (nr_pages > 0) { 187 int i; 188 189 cond_resched(); 190 191 /* 192 * get_user_pages makes pages present if we are 193 * setting mlock. and this extra reference count will 194 * disable migration of this page. However, page may 195 * still be truncated out from under us. 196 */ 197 ret = __get_user_pages(current, mm, addr, 198 min_t(int, nr_pages, ARRAY_SIZE(pages)), 199 gup_flags, pages, NULL); 200 /* 201 * This can happen for, e.g., VM_NONLINEAR regions before 202 * a page has been allocated and mapped at a given offset, 203 * or for addresses that map beyond end of a file. 204 * We'll mlock the the pages if/when they get faulted in. 205 */ 206 if (ret < 0) 207 break; 208 if (ret == 0) { 209 /* 210 * We know the vma is there, so the only time 211 * we cannot get a single page should be an 212 * error (ret < 0) case. 213 */ 214 WARN_ON(1); 215 break; 216 } 217 218 lru_add_drain(); /* push cached pages to LRU */ 219 220 for (i = 0; i < ret; i++) { 221 struct page *page = pages[i]; 222 223 lock_page(page); 224 /* 225 * Because we lock page here and migration is blocked 226 * by the elevated reference, we need only check for 227 * page truncation (file-cache only). 228 */ 229 if (page->mapping) { 230 if (mlock) 231 mlock_vma_page(page); 232 else 233 munlock_vma_page(page); 234 } 235 unlock_page(page); 236 put_page(page); /* ref from get_user_pages() */ 237 238 /* 239 * here we assume that get_user_pages() has given us 240 * a list of virtually contiguous pages. 241 */ 242 addr += PAGE_SIZE; /* for next get_user_pages() */ 243 nr_pages--; 244 } 245 ret = 0; 246 } 247 248 return ret; /* count entire vma as locked_vm */ 249 } 250 251 /* 252 * convert get_user_pages() return value to posix mlock() error 253 */ 254 static int __mlock_posix_error_return(long retval) 255 { 256 if (retval == -EFAULT) 257 retval = -ENOMEM; 258 else if (retval == -ENOMEM) 259 retval = -EAGAIN; 260 return retval; 261 } 262 263 /** 264 * mlock_vma_pages_range() - mlock pages in specified vma range. 265 * @vma - the vma containing the specfied address range 266 * @start - starting address in @vma to mlock 267 * @end - end address [+1] in @vma to mlock 268 * 269 * For mmap()/mremap()/expansion of mlocked vma. 270 * 271 * return 0 on success for "normal" vmas. 272 * 273 * return number of pages [> 0] to be removed from locked_vm on success 274 * of "special" vmas. 275 */ 276 long mlock_vma_pages_range(struct vm_area_struct *vma, 277 unsigned long start, unsigned long end) 278 { 279 int nr_pages = (end - start) / PAGE_SIZE; 280 BUG_ON(!(vma->vm_flags & VM_LOCKED)); 281 282 /* 283 * filter unlockable vmas 284 */ 285 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 286 goto no_mlock; 287 288 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 289 is_vm_hugetlb_page(vma) || 290 vma == get_gate_vma(current))) { 291 292 __mlock_vma_pages_range(vma, start, end, 1); 293 294 /* Hide errors from mmap() and other callers */ 295 return 0; 296 } 297 298 /* 299 * User mapped kernel pages or huge pages: 300 * make these pages present to populate the ptes, but 301 * fall thru' to reset VM_LOCKED--no need to unlock, and 302 * return nr_pages so these don't get counted against task's 303 * locked limit. huge pages are already counted against 304 * locked vm limit. 305 */ 306 make_pages_present(start, end); 307 308 no_mlock: 309 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */ 310 return nr_pages; /* error or pages NOT mlocked */ 311 } 312 313 314 /* 315 * munlock_vma_pages_range() - munlock all pages in the vma range.' 316 * @vma - vma containing range to be munlock()ed. 317 * @start - start address in @vma of the range 318 * @end - end of range in @vma. 319 * 320 * For mremap(), munmap() and exit(). 321 * 322 * Called with @vma VM_LOCKED. 323 * 324 * Returns with VM_LOCKED cleared. Callers must be prepared to 325 * deal with this. 326 * 327 * We don't save and restore VM_LOCKED here because pages are 328 * still on lru. In unmap path, pages might be scanned by reclaim 329 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 330 * free them. This will result in freeing mlocked pages. 331 */ 332 void munlock_vma_pages_range(struct vm_area_struct *vma, 333 unsigned long start, unsigned long end) 334 { 335 vma->vm_flags &= ~VM_LOCKED; 336 __mlock_vma_pages_range(vma, start, end, 0); 337 } 338 339 /* 340 * mlock_fixup - handle mlock[all]/munlock[all] requests. 341 * 342 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 343 * munlock is a no-op. However, for some special vmas, we go ahead and 344 * populate the ptes via make_pages_present(). 345 * 346 * For vmas that pass the filters, merge/split as appropriate. 347 */ 348 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 349 unsigned long start, unsigned long end, unsigned int newflags) 350 { 351 struct mm_struct *mm = vma->vm_mm; 352 pgoff_t pgoff; 353 int nr_pages; 354 int ret = 0; 355 int lock = newflags & VM_LOCKED; 356 357 if (newflags == vma->vm_flags || 358 (vma->vm_flags & (VM_IO | VM_PFNMAP))) 359 goto out; /* don't set VM_LOCKED, don't count */ 360 361 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 362 is_vm_hugetlb_page(vma) || 363 vma == get_gate_vma(current)) { 364 if (lock) 365 make_pages_present(start, end); 366 goto out; /* don't set VM_LOCKED, don't count */ 367 } 368 369 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 370 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 371 vma->vm_file, pgoff, vma_policy(vma)); 372 if (*prev) { 373 vma = *prev; 374 goto success; 375 } 376 377 if (start != vma->vm_start) { 378 ret = split_vma(mm, vma, start, 1); 379 if (ret) 380 goto out; 381 } 382 383 if (end != vma->vm_end) { 384 ret = split_vma(mm, vma, end, 0); 385 if (ret) 386 goto out; 387 } 388 389 success: 390 /* 391 * Keep track of amount of locked VM. 392 */ 393 nr_pages = (end - start) >> PAGE_SHIFT; 394 if (!lock) 395 nr_pages = -nr_pages; 396 mm->locked_vm += nr_pages; 397 398 /* 399 * vm_flags is protected by the mmap_sem held in write mode. 400 * It's okay if try_to_unmap_one unmaps a page just after we 401 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 402 */ 403 vma->vm_flags = newflags; 404 405 if (lock) { 406 ret = __mlock_vma_pages_range(vma, start, end, 1); 407 408 if (ret > 0) { 409 mm->locked_vm -= ret; 410 ret = 0; 411 } else 412 ret = __mlock_posix_error_return(ret); /* translate if needed */ 413 } else { 414 __mlock_vma_pages_range(vma, start, end, 0); 415 } 416 417 out: 418 *prev = vma; 419 return ret; 420 } 421 422 static int do_mlock(unsigned long start, size_t len, int on) 423 { 424 unsigned long nstart, end, tmp; 425 struct vm_area_struct * vma, * prev; 426 int error; 427 428 len = PAGE_ALIGN(len); 429 end = start + len; 430 if (end < start) 431 return -EINVAL; 432 if (end == start) 433 return 0; 434 vma = find_vma_prev(current->mm, start, &prev); 435 if (!vma || vma->vm_start > start) 436 return -ENOMEM; 437 438 if (start > vma->vm_start) 439 prev = vma; 440 441 for (nstart = start ; ; ) { 442 unsigned int newflags; 443 444 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 445 446 newflags = vma->vm_flags | VM_LOCKED; 447 if (!on) 448 newflags &= ~VM_LOCKED; 449 450 tmp = vma->vm_end; 451 if (tmp > end) 452 tmp = end; 453 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 454 if (error) 455 break; 456 nstart = tmp; 457 if (nstart < prev->vm_end) 458 nstart = prev->vm_end; 459 if (nstart >= end) 460 break; 461 462 vma = prev->vm_next; 463 if (!vma || vma->vm_start != nstart) { 464 error = -ENOMEM; 465 break; 466 } 467 } 468 return error; 469 } 470 471 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 472 { 473 unsigned long locked; 474 unsigned long lock_limit; 475 int error = -ENOMEM; 476 477 if (!can_do_mlock()) 478 return -EPERM; 479 480 lru_add_drain_all(); /* flush pagevec */ 481 482 down_write(¤t->mm->mmap_sem); 483 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 484 start &= PAGE_MASK; 485 486 locked = len >> PAGE_SHIFT; 487 locked += current->mm->locked_vm; 488 489 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 490 lock_limit >>= PAGE_SHIFT; 491 492 /* check against resource limits */ 493 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 494 error = do_mlock(start, len, 1); 495 up_write(¤t->mm->mmap_sem); 496 return error; 497 } 498 499 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 500 { 501 int ret; 502 503 down_write(¤t->mm->mmap_sem); 504 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 505 start &= PAGE_MASK; 506 ret = do_mlock(start, len, 0); 507 up_write(¤t->mm->mmap_sem); 508 return ret; 509 } 510 511 static int do_mlockall(int flags) 512 { 513 struct vm_area_struct * vma, * prev = NULL; 514 unsigned int def_flags = 0; 515 516 if (flags & MCL_FUTURE) 517 def_flags = VM_LOCKED; 518 current->mm->def_flags = def_flags; 519 if (flags == MCL_FUTURE) 520 goto out; 521 522 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 523 unsigned int newflags; 524 525 newflags = vma->vm_flags | VM_LOCKED; 526 if (!(flags & MCL_CURRENT)) 527 newflags &= ~VM_LOCKED; 528 529 /* Ignore errors */ 530 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 531 } 532 out: 533 return 0; 534 } 535 536 SYSCALL_DEFINE1(mlockall, int, flags) 537 { 538 unsigned long lock_limit; 539 int ret = -EINVAL; 540 541 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 542 goto out; 543 544 ret = -EPERM; 545 if (!can_do_mlock()) 546 goto out; 547 548 lru_add_drain_all(); /* flush pagevec */ 549 550 down_write(¤t->mm->mmap_sem); 551 552 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 553 lock_limit >>= PAGE_SHIFT; 554 555 ret = -ENOMEM; 556 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 557 capable(CAP_IPC_LOCK)) 558 ret = do_mlockall(flags); 559 up_write(¤t->mm->mmap_sem); 560 out: 561 return ret; 562 } 563 564 SYSCALL_DEFINE0(munlockall) 565 { 566 int ret; 567 568 down_write(¤t->mm->mmap_sem); 569 ret = do_mlockall(0); 570 up_write(¤t->mm->mmap_sem); 571 return ret; 572 } 573 574 /* 575 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 576 * shm segments) get accounted against the user_struct instead. 577 */ 578 static DEFINE_SPINLOCK(shmlock_user_lock); 579 580 int user_shm_lock(size_t size, struct user_struct *user) 581 { 582 unsigned long lock_limit, locked; 583 int allowed = 0; 584 585 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 586 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 587 if (lock_limit == RLIM_INFINITY) 588 allowed = 1; 589 lock_limit >>= PAGE_SHIFT; 590 spin_lock(&shmlock_user_lock); 591 if (!allowed && 592 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 593 goto out; 594 get_uid(user); 595 user->locked_shm += locked; 596 allowed = 1; 597 out: 598 spin_unlock(&shmlock_user_lock); 599 return allowed; 600 } 601 602 void user_shm_unlock(size_t size, struct user_struct *user) 603 { 604 spin_lock(&shmlock_user_lock); 605 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 606 spin_unlock(&shmlock_user_lock); 607 free_uid(user); 608 } 609 610 int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, 611 size_t size) 612 { 613 unsigned long lim, vm, pgsz; 614 int error = -ENOMEM; 615 616 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; 617 618 down_write(&mm->mmap_sem); 619 620 lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 621 vm = mm->total_vm + pgsz; 622 if (lim < vm) 623 goto out; 624 625 lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 626 vm = mm->locked_vm + pgsz; 627 if (lim < vm) 628 goto out; 629 630 mm->total_vm += pgsz; 631 mm->locked_vm += pgsz; 632 633 error = 0; 634 out: 635 up_write(&mm->mmap_sem); 636 return error; 637 } 638 639 void refund_locked_memory(struct mm_struct *mm, size_t size) 640 { 641 unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; 642 643 down_write(&mm->mmap_sem); 644 645 mm->total_vm -= pgsz; 646 mm->locked_vm -= pgsz; 647 648 up_write(&mm->mmap_sem); 649 } 650