1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/sched/user.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/pagemap.h> 15 #include <linux/pagevec.h> 16 #include <linux/mempolicy.h> 17 #include <linux/syscalls.h> 18 #include <linux/sched.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> 21 #include <linux/mmzone.h> 22 #include <linux/hugetlb.h> 23 #include <linux/memcontrol.h> 24 #include <linux/mm_inline.h> 25 26 #include "internal.h" 27 28 bool can_do_mlock(void) 29 { 30 if (rlimit(RLIMIT_MEMLOCK) != 0) 31 return true; 32 if (capable(CAP_IPC_LOCK)) 33 return true; 34 return false; 35 } 36 EXPORT_SYMBOL(can_do_mlock); 37 38 /* 39 * Mlocked pages are marked with PageMlocked() flag for efficient testing 40 * in vmscan and, possibly, the fault path; and to support semi-accurate 41 * statistics. 42 * 43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 44 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 45 * The unevictable list is an LRU sibling list to the [in]active lists. 46 * PageUnevictable is set to indicate the unevictable state. 47 * 48 * When lazy mlocking via vmscan, it is important to ensure that the 49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 50 * may have mlocked a page that is being munlocked. So lazy mlock must take 51 * the mmap_sem for read, and verify that the vma really is locked 52 * (see mm/rmap.c). 53 */ 54 55 /* 56 * LRU accounting for clear_page_mlock() 57 */ 58 void clear_page_mlock(struct page *page) 59 { 60 if (!TestClearPageMlocked(page)) 61 return; 62 63 mod_zone_page_state(page_zone(page), NR_MLOCK, 64 -hpage_nr_pages(page)); 65 count_vm_event(UNEVICTABLE_PGCLEARED); 66 if (!isolate_lru_page(page)) { 67 putback_lru_page(page); 68 } else { 69 /* 70 * We lost the race. the page already moved to evictable list. 71 */ 72 if (PageUnevictable(page)) 73 count_vm_event(UNEVICTABLE_PGSTRANDED); 74 } 75 } 76 77 /* 78 * Mark page as mlocked if not already. 79 * If page on LRU, isolate and putback to move to unevictable list. 80 */ 81 void mlock_vma_page(struct page *page) 82 { 83 /* Serialize with page migration */ 84 BUG_ON(!PageLocked(page)); 85 86 VM_BUG_ON_PAGE(PageTail(page), page); 87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 88 89 if (!TestSetPageMlocked(page)) { 90 mod_zone_page_state(page_zone(page), NR_MLOCK, 91 hpage_nr_pages(page)); 92 count_vm_event(UNEVICTABLE_PGMLOCKED); 93 if (!isolate_lru_page(page)) 94 putback_lru_page(page); 95 } 96 } 97 98 /* 99 * Isolate a page from LRU with optional get_page() pin. 100 * Assumes lru_lock already held and page already pinned. 101 */ 102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 103 { 104 if (PageLRU(page)) { 105 struct lruvec *lruvec; 106 107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 108 if (getpage) 109 get_page(page); 110 ClearPageLRU(page); 111 del_page_from_lru_list(page, lruvec, page_lru(page)); 112 return true; 113 } 114 115 return false; 116 } 117 118 /* 119 * Finish munlock after successful page isolation 120 * 121 * Page must be locked. This is a wrapper for try_to_munlock() 122 * and putback_lru_page() with munlock accounting. 123 */ 124 static void __munlock_isolated_page(struct page *page) 125 { 126 /* 127 * Optimization: if the page was mapped just once, that's our mapping 128 * and we don't need to check all the other vmas. 129 */ 130 if (page_mapcount(page) > 1) 131 try_to_munlock(page); 132 133 /* Did try_to_unlock() succeed or punt? */ 134 if (!PageMlocked(page)) 135 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 136 137 putback_lru_page(page); 138 } 139 140 /* 141 * Accounting for page isolation fail during munlock 142 * 143 * Performs accounting when page isolation fails in munlock. There is nothing 144 * else to do because it means some other task has already removed the page 145 * from the LRU. putback_lru_page() will take care of removing the page from 146 * the unevictable list, if necessary. vmscan [page_referenced()] will move 147 * the page back to the unevictable list if some other vma has it mlocked. 148 */ 149 static void __munlock_isolation_failed(struct page *page) 150 { 151 if (PageUnevictable(page)) 152 __count_vm_event(UNEVICTABLE_PGSTRANDED); 153 else 154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 155 } 156 157 /** 158 * munlock_vma_page - munlock a vma page 159 * @page - page to be unlocked, either a normal page or THP page head 160 * 161 * returns the size of the page as a page mask (0 for normal page, 162 * HPAGE_PMD_NR - 1 for THP head page) 163 * 164 * called from munlock()/munmap() path with page supposedly on the LRU. 165 * When we munlock a page, because the vma where we found the page is being 166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 167 * page locked so that we can leave it on the unevictable lru list and not 168 * bother vmscan with it. However, to walk the page's rmap list in 169 * try_to_munlock() we must isolate the page from the LRU. If some other 170 * task has removed the page from the LRU, we won't be able to do that. 171 * So we clear the PageMlocked as we might not get another chance. If we 172 * can't isolate the page, we leave it for putback_lru_page() and vmscan 173 * [page_referenced()/try_to_unmap()] to deal with. 174 */ 175 unsigned int munlock_vma_page(struct page *page) 176 { 177 int nr_pages; 178 struct zone *zone = page_zone(page); 179 180 /* For try_to_munlock() and to serialize with page migration */ 181 BUG_ON(!PageLocked(page)); 182 183 VM_BUG_ON_PAGE(PageTail(page), page); 184 185 /* 186 * Serialize with any parallel __split_huge_page_refcount() which 187 * might otherwise copy PageMlocked to part of the tail pages before 188 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 189 */ 190 spin_lock_irq(zone_lru_lock(zone)); 191 192 if (!TestClearPageMlocked(page)) { 193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 194 nr_pages = 1; 195 goto unlock_out; 196 } 197 198 nr_pages = hpage_nr_pages(page); 199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 200 201 if (__munlock_isolate_lru_page(page, true)) { 202 spin_unlock_irq(zone_lru_lock(zone)); 203 __munlock_isolated_page(page); 204 goto out; 205 } 206 __munlock_isolation_failed(page); 207 208 unlock_out: 209 spin_unlock_irq(zone_lru_lock(zone)); 210 211 out: 212 return nr_pages - 1; 213 } 214 215 /* 216 * convert get_user_pages() return value to posix mlock() error 217 */ 218 static int __mlock_posix_error_return(long retval) 219 { 220 if (retval == -EFAULT) 221 retval = -ENOMEM; 222 else if (retval == -ENOMEM) 223 retval = -EAGAIN; 224 return retval; 225 } 226 227 /* 228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 229 * 230 * The fast path is available only for evictable pages with single mapping. 231 * Then we can bypass the per-cpu pvec and get better performance. 232 * when mapcount > 1 we need try_to_munlock() which can fail. 233 * when !page_evictable(), we need the full redo logic of putback_lru_page to 234 * avoid leaving evictable page in unevictable list. 235 * 236 * In case of success, @page is added to @pvec and @pgrescued is incremented 237 * in case that the page was previously unevictable. @page is also unlocked. 238 */ 239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 240 int *pgrescued) 241 { 242 VM_BUG_ON_PAGE(PageLRU(page), page); 243 VM_BUG_ON_PAGE(!PageLocked(page), page); 244 245 if (page_mapcount(page) <= 1 && page_evictable(page)) { 246 pagevec_add(pvec, page); 247 if (TestClearPageUnevictable(page)) 248 (*pgrescued)++; 249 unlock_page(page); 250 return true; 251 } 252 253 return false; 254 } 255 256 /* 257 * Putback multiple evictable pages to the LRU 258 * 259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 260 * the pages might have meanwhile become unevictable but that is OK. 261 */ 262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 263 { 264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 265 /* 266 *__pagevec_lru_add() calls release_pages() so we don't call 267 * put_page() explicitly 268 */ 269 __pagevec_lru_add(pvec); 270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 271 } 272 273 /* 274 * Munlock a batch of pages from the same zone 275 * 276 * The work is split to two main phases. First phase clears the Mlocked flag 277 * and attempts to isolate the pages, all under a single zone lru lock. 278 * The second phase finishes the munlock only for pages where isolation 279 * succeeded. 280 * 281 * Note that the pagevec may be modified during the process. 282 */ 283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 284 { 285 int i; 286 int nr = pagevec_count(pvec); 287 int delta_munlocked = -nr; 288 struct pagevec pvec_putback; 289 int pgrescued = 0; 290 291 pagevec_init(&pvec_putback, 0); 292 293 /* Phase 1: page isolation */ 294 spin_lock_irq(zone_lru_lock(zone)); 295 for (i = 0; i < nr; i++) { 296 struct page *page = pvec->pages[i]; 297 298 if (TestClearPageMlocked(page)) { 299 /* 300 * We already have pin from follow_page_mask() 301 * so we can spare the get_page() here. 302 */ 303 if (__munlock_isolate_lru_page(page, false)) 304 continue; 305 else 306 __munlock_isolation_failed(page); 307 } else { 308 delta_munlocked++; 309 } 310 311 /* 312 * We won't be munlocking this page in the next phase 313 * but we still need to release the follow_page_mask() 314 * pin. We cannot do it under lru_lock however. If it's 315 * the last pin, __page_cache_release() would deadlock. 316 */ 317 pagevec_add(&pvec_putback, pvec->pages[i]); 318 pvec->pages[i] = NULL; 319 } 320 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 321 spin_unlock_irq(zone_lru_lock(zone)); 322 323 /* Now we can release pins of pages that we are not munlocking */ 324 pagevec_release(&pvec_putback); 325 326 /* Phase 2: page munlock */ 327 for (i = 0; i < nr; i++) { 328 struct page *page = pvec->pages[i]; 329 330 if (page) { 331 lock_page(page); 332 if (!__putback_lru_fast_prepare(page, &pvec_putback, 333 &pgrescued)) { 334 /* 335 * Slow path. We don't want to lose the last 336 * pin before unlock_page() 337 */ 338 get_page(page); /* for putback_lru_page() */ 339 __munlock_isolated_page(page); 340 unlock_page(page); 341 put_page(page); /* from follow_page_mask() */ 342 } 343 } 344 } 345 346 /* 347 * Phase 3: page putback for pages that qualified for the fast path 348 * This will also call put_page() to return pin from follow_page_mask() 349 */ 350 if (pagevec_count(&pvec_putback)) 351 __putback_lru_fast(&pvec_putback, pgrescued); 352 } 353 354 /* 355 * Fill up pagevec for __munlock_pagevec using pte walk 356 * 357 * The function expects that the struct page corresponding to @start address is 358 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 359 * 360 * The rest of @pvec is filled by subsequent pages within the same pmd and same 361 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 362 * pages also get pinned. 363 * 364 * Returns the address of the next page that should be scanned. This equals 365 * @start + PAGE_SIZE when no page could be added by the pte walk. 366 */ 367 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 368 struct vm_area_struct *vma, int zoneid, unsigned long start, 369 unsigned long end) 370 { 371 pte_t *pte; 372 spinlock_t *ptl; 373 374 /* 375 * Initialize pte walk starting at the already pinned page where we 376 * are sure that there is a pte, as it was pinned under the same 377 * mmap_sem write op. 378 */ 379 pte = get_locked_pte(vma->vm_mm, start, &ptl); 380 /* Make sure we do not cross the page table boundary */ 381 end = pgd_addr_end(start, end); 382 end = p4d_addr_end(start, end); 383 end = pud_addr_end(start, end); 384 end = pmd_addr_end(start, end); 385 386 /* The page next to the pinned page is the first we will try to get */ 387 start += PAGE_SIZE; 388 while (start < end) { 389 struct page *page = NULL; 390 pte++; 391 if (pte_present(*pte)) 392 page = vm_normal_page(vma, start, *pte); 393 /* 394 * Break if page could not be obtained or the page's node+zone does not 395 * match 396 */ 397 if (!page || page_zone_id(page) != zoneid) 398 break; 399 400 /* 401 * Do not use pagevec for PTE-mapped THP, 402 * munlock_vma_pages_range() will handle them. 403 */ 404 if (PageTransCompound(page)) 405 break; 406 407 get_page(page); 408 /* 409 * Increase the address that will be returned *before* the 410 * eventual break due to pvec becoming full by adding the page 411 */ 412 start += PAGE_SIZE; 413 if (pagevec_add(pvec, page) == 0) 414 break; 415 } 416 pte_unmap_unlock(pte, ptl); 417 return start; 418 } 419 420 /* 421 * munlock_vma_pages_range() - munlock all pages in the vma range.' 422 * @vma - vma containing range to be munlock()ed. 423 * @start - start address in @vma of the range 424 * @end - end of range in @vma. 425 * 426 * For mremap(), munmap() and exit(). 427 * 428 * Called with @vma VM_LOCKED. 429 * 430 * Returns with VM_LOCKED cleared. Callers must be prepared to 431 * deal with this. 432 * 433 * We don't save and restore VM_LOCKED here because pages are 434 * still on lru. In unmap path, pages might be scanned by reclaim 435 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 436 * free them. This will result in freeing mlocked pages. 437 */ 438 void munlock_vma_pages_range(struct vm_area_struct *vma, 439 unsigned long start, unsigned long end) 440 { 441 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 442 443 while (start < end) { 444 struct page *page; 445 unsigned int page_mask = 0; 446 unsigned long page_increm; 447 struct pagevec pvec; 448 struct zone *zone; 449 int zoneid; 450 451 pagevec_init(&pvec, 0); 452 /* 453 * Although FOLL_DUMP is intended for get_dump_page(), 454 * it just so happens that its special treatment of the 455 * ZERO_PAGE (returning an error instead of doing get_page) 456 * suits munlock very well (and if somehow an abnormal page 457 * has sneaked into the range, we won't oops here: great). 458 */ 459 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 460 461 if (page && !IS_ERR(page)) { 462 if (PageTransTail(page)) { 463 VM_BUG_ON_PAGE(PageMlocked(page), page); 464 put_page(page); /* follow_page_mask() */ 465 } else if (PageTransHuge(page)) { 466 lock_page(page); 467 /* 468 * Any THP page found by follow_page_mask() may 469 * have gotten split before reaching 470 * munlock_vma_page(), so we need to compute 471 * the page_mask here instead. 472 */ 473 page_mask = munlock_vma_page(page); 474 unlock_page(page); 475 put_page(page); /* follow_page_mask() */ 476 } else { 477 /* 478 * Non-huge pages are handled in batches via 479 * pagevec. The pin from follow_page_mask() 480 * prevents them from collapsing by THP. 481 */ 482 pagevec_add(&pvec, page); 483 zone = page_zone(page); 484 zoneid = page_zone_id(page); 485 486 /* 487 * Try to fill the rest of pagevec using fast 488 * pte walk. This will also update start to 489 * the next page to process. Then munlock the 490 * pagevec. 491 */ 492 start = __munlock_pagevec_fill(&pvec, vma, 493 zoneid, start, end); 494 __munlock_pagevec(&pvec, zone); 495 goto next; 496 } 497 } 498 page_increm = 1 + page_mask; 499 start += page_increm * PAGE_SIZE; 500 next: 501 cond_resched(); 502 } 503 } 504 505 /* 506 * mlock_fixup - handle mlock[all]/munlock[all] requests. 507 * 508 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 509 * munlock is a no-op. However, for some special vmas, we go ahead and 510 * populate the ptes. 511 * 512 * For vmas that pass the filters, merge/split as appropriate. 513 */ 514 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 515 unsigned long start, unsigned long end, vm_flags_t newflags) 516 { 517 struct mm_struct *mm = vma->vm_mm; 518 pgoff_t pgoff; 519 int nr_pages; 520 int ret = 0; 521 int lock = !!(newflags & VM_LOCKED); 522 vm_flags_t old_flags = vma->vm_flags; 523 524 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 525 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 526 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 527 goto out; 528 529 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 530 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 531 vma->vm_file, pgoff, vma_policy(vma), 532 vma->vm_userfaultfd_ctx); 533 if (*prev) { 534 vma = *prev; 535 goto success; 536 } 537 538 if (start != vma->vm_start) { 539 ret = split_vma(mm, vma, start, 1); 540 if (ret) 541 goto out; 542 } 543 544 if (end != vma->vm_end) { 545 ret = split_vma(mm, vma, end, 0); 546 if (ret) 547 goto out; 548 } 549 550 success: 551 /* 552 * Keep track of amount of locked VM. 553 */ 554 nr_pages = (end - start) >> PAGE_SHIFT; 555 if (!lock) 556 nr_pages = -nr_pages; 557 else if (old_flags & VM_LOCKED) 558 nr_pages = 0; 559 mm->locked_vm += nr_pages; 560 561 /* 562 * vm_flags is protected by the mmap_sem held in write mode. 563 * It's okay if try_to_unmap_one unmaps a page just after we 564 * set VM_LOCKED, populate_vma_page_range will bring it back. 565 */ 566 567 if (lock) 568 vma->vm_flags = newflags; 569 else 570 munlock_vma_pages_range(vma, start, end); 571 572 out: 573 *prev = vma; 574 return ret; 575 } 576 577 static int apply_vma_lock_flags(unsigned long start, size_t len, 578 vm_flags_t flags) 579 { 580 unsigned long nstart, end, tmp; 581 struct vm_area_struct * vma, * prev; 582 int error; 583 584 VM_BUG_ON(offset_in_page(start)); 585 VM_BUG_ON(len != PAGE_ALIGN(len)); 586 end = start + len; 587 if (end < start) 588 return -EINVAL; 589 if (end == start) 590 return 0; 591 vma = find_vma(current->mm, start); 592 if (!vma || vma->vm_start > start) 593 return -ENOMEM; 594 595 prev = vma->vm_prev; 596 if (start > vma->vm_start) 597 prev = vma; 598 599 for (nstart = start ; ; ) { 600 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 601 602 newflags |= flags; 603 604 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 605 tmp = vma->vm_end; 606 if (tmp > end) 607 tmp = end; 608 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 609 if (error) 610 break; 611 nstart = tmp; 612 if (nstart < prev->vm_end) 613 nstart = prev->vm_end; 614 if (nstart >= end) 615 break; 616 617 vma = prev->vm_next; 618 if (!vma || vma->vm_start != nstart) { 619 error = -ENOMEM; 620 break; 621 } 622 } 623 return error; 624 } 625 626 /* 627 * Go through vma areas and sum size of mlocked 628 * vma pages, as return value. 629 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 630 * is also counted. 631 * Return value: previously mlocked page counts 632 */ 633 static int count_mm_mlocked_page_nr(struct mm_struct *mm, 634 unsigned long start, size_t len) 635 { 636 struct vm_area_struct *vma; 637 int count = 0; 638 639 if (mm == NULL) 640 mm = current->mm; 641 642 vma = find_vma(mm, start); 643 if (vma == NULL) 644 vma = mm->mmap; 645 646 for (; vma ; vma = vma->vm_next) { 647 if (start >= vma->vm_end) 648 continue; 649 if (start + len <= vma->vm_start) 650 break; 651 if (vma->vm_flags & VM_LOCKED) { 652 if (start > vma->vm_start) 653 count -= (start - vma->vm_start); 654 if (start + len < vma->vm_end) { 655 count += start + len - vma->vm_start; 656 break; 657 } 658 count += vma->vm_end - vma->vm_start; 659 } 660 } 661 662 return count >> PAGE_SHIFT; 663 } 664 665 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 666 { 667 unsigned long locked; 668 unsigned long lock_limit; 669 int error = -ENOMEM; 670 671 if (!can_do_mlock()) 672 return -EPERM; 673 674 lru_add_drain_all(); /* flush pagevec */ 675 676 len = PAGE_ALIGN(len + (offset_in_page(start))); 677 start &= PAGE_MASK; 678 679 lock_limit = rlimit(RLIMIT_MEMLOCK); 680 lock_limit >>= PAGE_SHIFT; 681 locked = len >> PAGE_SHIFT; 682 683 if (down_write_killable(¤t->mm->mmap_sem)) 684 return -EINTR; 685 686 locked += current->mm->locked_vm; 687 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 688 /* 689 * It is possible that the regions requested intersect with 690 * previously mlocked areas, that part area in "mm->locked_vm" 691 * should not be counted to new mlock increment count. So check 692 * and adjust locked count if necessary. 693 */ 694 locked -= count_mm_mlocked_page_nr(current->mm, 695 start, len); 696 } 697 698 /* check against resource limits */ 699 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 700 error = apply_vma_lock_flags(start, len, flags); 701 702 up_write(¤t->mm->mmap_sem); 703 if (error) 704 return error; 705 706 error = __mm_populate(start, len, 0); 707 if (error) 708 return __mlock_posix_error_return(error); 709 return 0; 710 } 711 712 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 713 { 714 return do_mlock(start, len, VM_LOCKED); 715 } 716 717 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 718 { 719 vm_flags_t vm_flags = VM_LOCKED; 720 721 if (flags & ~MLOCK_ONFAULT) 722 return -EINVAL; 723 724 if (flags & MLOCK_ONFAULT) 725 vm_flags |= VM_LOCKONFAULT; 726 727 return do_mlock(start, len, vm_flags); 728 } 729 730 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 731 { 732 int ret; 733 734 len = PAGE_ALIGN(len + (offset_in_page(start))); 735 start &= PAGE_MASK; 736 737 if (down_write_killable(¤t->mm->mmap_sem)) 738 return -EINTR; 739 ret = apply_vma_lock_flags(start, len, 0); 740 up_write(¤t->mm->mmap_sem); 741 742 return ret; 743 } 744 745 /* 746 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 747 * and translate into the appropriate modifications to mm->def_flags and/or the 748 * flags for all current VMAs. 749 * 750 * There are a couple of subtleties with this. If mlockall() is called multiple 751 * times with different flags, the values do not necessarily stack. If mlockall 752 * is called once including the MCL_FUTURE flag and then a second time without 753 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 754 */ 755 static int apply_mlockall_flags(int flags) 756 { 757 struct vm_area_struct * vma, * prev = NULL; 758 vm_flags_t to_add = 0; 759 760 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 761 if (flags & MCL_FUTURE) { 762 current->mm->def_flags |= VM_LOCKED; 763 764 if (flags & MCL_ONFAULT) 765 current->mm->def_flags |= VM_LOCKONFAULT; 766 767 if (!(flags & MCL_CURRENT)) 768 goto out; 769 } 770 771 if (flags & MCL_CURRENT) { 772 to_add |= VM_LOCKED; 773 if (flags & MCL_ONFAULT) 774 to_add |= VM_LOCKONFAULT; 775 } 776 777 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 778 vm_flags_t newflags; 779 780 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 781 newflags |= to_add; 782 783 /* Ignore errors */ 784 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 785 cond_resched_rcu_qs(); 786 } 787 out: 788 return 0; 789 } 790 791 SYSCALL_DEFINE1(mlockall, int, flags) 792 { 793 unsigned long lock_limit; 794 int ret; 795 796 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) 797 return -EINVAL; 798 799 if (!can_do_mlock()) 800 return -EPERM; 801 802 if (flags & MCL_CURRENT) 803 lru_add_drain_all(); /* flush pagevec */ 804 805 lock_limit = rlimit(RLIMIT_MEMLOCK); 806 lock_limit >>= PAGE_SHIFT; 807 808 if (down_write_killable(¤t->mm->mmap_sem)) 809 return -EINTR; 810 811 ret = -ENOMEM; 812 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 813 capable(CAP_IPC_LOCK)) 814 ret = apply_mlockall_flags(flags); 815 up_write(¤t->mm->mmap_sem); 816 if (!ret && (flags & MCL_CURRENT)) 817 mm_populate(0, TASK_SIZE); 818 819 return ret; 820 } 821 822 SYSCALL_DEFINE0(munlockall) 823 { 824 int ret; 825 826 if (down_write_killable(¤t->mm->mmap_sem)) 827 return -EINTR; 828 ret = apply_mlockall_flags(0); 829 up_write(¤t->mm->mmap_sem); 830 return ret; 831 } 832 833 /* 834 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 835 * shm segments) get accounted against the user_struct instead. 836 */ 837 static DEFINE_SPINLOCK(shmlock_user_lock); 838 839 int user_shm_lock(size_t size, struct user_struct *user) 840 { 841 unsigned long lock_limit, locked; 842 int allowed = 0; 843 844 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 845 lock_limit = rlimit(RLIMIT_MEMLOCK); 846 if (lock_limit == RLIM_INFINITY) 847 allowed = 1; 848 lock_limit >>= PAGE_SHIFT; 849 spin_lock(&shmlock_user_lock); 850 if (!allowed && 851 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 852 goto out; 853 get_uid(user); 854 user->locked_shm += locked; 855 allowed = 1; 856 out: 857 spin_unlock(&shmlock_user_lock); 858 return allowed; 859 } 860 861 void user_shm_unlock(size_t size, struct user_struct *user) 862 { 863 spin_lock(&shmlock_user_lock); 864 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 865 spin_unlock(&shmlock_user_lock); 866 free_uid(user); 867 } 868