1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 int can_do_mlock(void) 28 { 29 if (capable(CAP_IPC_LOCK)) 30 return 1; 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return 1; 33 return 0; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 BUG_ON(!PageLocked(page)); 83 84 if (!TestSetPageMlocked(page)) { 85 mod_zone_page_state(page_zone(page), NR_MLOCK, 86 hpage_nr_pages(page)); 87 count_vm_event(UNEVICTABLE_PGMLOCKED); 88 if (!isolate_lru_page(page)) 89 putback_lru_page(page); 90 } 91 } 92 93 /* 94 * Finish munlock after successful page isolation 95 * 96 * Page must be locked. This is a wrapper for try_to_munlock() 97 * and putback_lru_page() with munlock accounting. 98 */ 99 static void __munlock_isolated_page(struct page *page) 100 { 101 int ret = SWAP_AGAIN; 102 103 /* 104 * Optimization: if the page was mapped just once, that's our mapping 105 * and we don't need to check all the other vmas. 106 */ 107 if (page_mapcount(page) > 1) 108 ret = try_to_munlock(page); 109 110 /* Did try_to_unlock() succeed or punt? */ 111 if (ret != SWAP_MLOCK) 112 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 113 114 putback_lru_page(page); 115 } 116 117 /* 118 * Accounting for page isolation fail during munlock 119 * 120 * Performs accounting when page isolation fails in munlock. There is nothing 121 * else to do because it means some other task has already removed the page 122 * from the LRU. putback_lru_page() will take care of removing the page from 123 * the unevictable list, if necessary. vmscan [page_referenced()] will move 124 * the page back to the unevictable list if some other vma has it mlocked. 125 */ 126 static void __munlock_isolation_failed(struct page *page) 127 { 128 if (PageUnevictable(page)) 129 count_vm_event(UNEVICTABLE_PGSTRANDED); 130 else 131 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 132 } 133 134 /** 135 * munlock_vma_page - munlock a vma page 136 * @page - page to be unlocked 137 * 138 * called from munlock()/munmap() path with page supposedly on the LRU. 139 * When we munlock a page, because the vma where we found the page is being 140 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 141 * page locked so that we can leave it on the unevictable lru list and not 142 * bother vmscan with it. However, to walk the page's rmap list in 143 * try_to_munlock() we must isolate the page from the LRU. If some other 144 * task has removed the page from the LRU, we won't be able to do that. 145 * So we clear the PageMlocked as we might not get another chance. If we 146 * can't isolate the page, we leave it for putback_lru_page() and vmscan 147 * [page_referenced()/try_to_unmap()] to deal with. 148 */ 149 unsigned int munlock_vma_page(struct page *page) 150 { 151 unsigned int page_mask = 0; 152 153 BUG_ON(!PageLocked(page)); 154 155 if (TestClearPageMlocked(page)) { 156 unsigned int nr_pages = hpage_nr_pages(page); 157 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 158 page_mask = nr_pages - 1; 159 if (!isolate_lru_page(page)) 160 __munlock_isolated_page(page); 161 else 162 __munlock_isolation_failed(page); 163 } 164 165 return page_mask; 166 } 167 168 /** 169 * __mlock_vma_pages_range() - mlock a range of pages in the vma. 170 * @vma: target vma 171 * @start: start address 172 * @end: end address 173 * 174 * This takes care of making the pages present too. 175 * 176 * return 0 on success, negative error code on error. 177 * 178 * vma->vm_mm->mmap_sem must be held for at least read. 179 */ 180 long __mlock_vma_pages_range(struct vm_area_struct *vma, 181 unsigned long start, unsigned long end, int *nonblocking) 182 { 183 struct mm_struct *mm = vma->vm_mm; 184 unsigned long nr_pages = (end - start) / PAGE_SIZE; 185 int gup_flags; 186 187 VM_BUG_ON(start & ~PAGE_MASK); 188 VM_BUG_ON(end & ~PAGE_MASK); 189 VM_BUG_ON(start < vma->vm_start); 190 VM_BUG_ON(end > vma->vm_end); 191 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 192 193 gup_flags = FOLL_TOUCH | FOLL_MLOCK; 194 /* 195 * We want to touch writable mappings with a write fault in order 196 * to break COW, except for shared mappings because these don't COW 197 * and we would not want to dirty them for nothing. 198 */ 199 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 200 gup_flags |= FOLL_WRITE; 201 202 /* 203 * We want mlock to succeed for regions that have any permissions 204 * other than PROT_NONE. 205 */ 206 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 207 gup_flags |= FOLL_FORCE; 208 209 /* 210 * We made sure addr is within a VMA, so the following will 211 * not result in a stack expansion that recurses back here. 212 */ 213 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 214 NULL, NULL, nonblocking); 215 } 216 217 /* 218 * convert get_user_pages() return value to posix mlock() error 219 */ 220 static int __mlock_posix_error_return(long retval) 221 { 222 if (retval == -EFAULT) 223 retval = -ENOMEM; 224 else if (retval == -ENOMEM) 225 retval = -EAGAIN; 226 return retval; 227 } 228 229 /* 230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 231 * 232 * The fast path is available only for evictable pages with single mapping. 233 * Then we can bypass the per-cpu pvec and get better performance. 234 * when mapcount > 1 we need try_to_munlock() which can fail. 235 * when !page_evictable(), we need the full redo logic of putback_lru_page to 236 * avoid leaving evictable page in unevictable list. 237 * 238 * In case of success, @page is added to @pvec and @pgrescued is incremented 239 * in case that the page was previously unevictable. @page is also unlocked. 240 */ 241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 242 int *pgrescued) 243 { 244 VM_BUG_ON(PageLRU(page)); 245 VM_BUG_ON(!PageLocked(page)); 246 247 if (page_mapcount(page) <= 1 && page_evictable(page)) { 248 pagevec_add(pvec, page); 249 if (TestClearPageUnevictable(page)) 250 (*pgrescued)++; 251 unlock_page(page); 252 return true; 253 } 254 255 return false; 256 } 257 258 /* 259 * Putback multiple evictable pages to the LRU 260 * 261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 262 * the pages might have meanwhile become unevictable but that is OK. 263 */ 264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 265 { 266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 267 /* 268 *__pagevec_lru_add() calls release_pages() so we don't call 269 * put_page() explicitly 270 */ 271 __pagevec_lru_add(pvec); 272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 273 } 274 275 /* 276 * Munlock a batch of pages from the same zone 277 * 278 * The work is split to two main phases. First phase clears the Mlocked flag 279 * and attempts to isolate the pages, all under a single zone lru lock. 280 * The second phase finishes the munlock only for pages where isolation 281 * succeeded. 282 * 283 * Note that the pagevec may be modified during the process. 284 */ 285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 286 { 287 int i; 288 int nr = pagevec_count(pvec); 289 int delta_munlocked = -nr; 290 struct pagevec pvec_putback; 291 int pgrescued = 0; 292 293 /* Phase 1: page isolation */ 294 spin_lock_irq(&zone->lru_lock); 295 for (i = 0; i < nr; i++) { 296 struct page *page = pvec->pages[i]; 297 298 if (TestClearPageMlocked(page)) { 299 struct lruvec *lruvec; 300 int lru; 301 302 if (PageLRU(page)) { 303 lruvec = mem_cgroup_page_lruvec(page, zone); 304 lru = page_lru(page); 305 /* 306 * We already have pin from follow_page_mask() 307 * so we can spare the get_page() here. 308 */ 309 ClearPageLRU(page); 310 del_page_from_lru_list(page, lruvec, lru); 311 } else { 312 __munlock_isolation_failed(page); 313 goto skip_munlock; 314 } 315 316 } else { 317 skip_munlock: 318 /* 319 * We won't be munlocking this page in the next phase 320 * but we still need to release the follow_page_mask() 321 * pin. 322 */ 323 pvec->pages[i] = NULL; 324 put_page(page); 325 delta_munlocked++; 326 } 327 } 328 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 329 spin_unlock_irq(&zone->lru_lock); 330 331 /* Phase 2: page munlock */ 332 pagevec_init(&pvec_putback, 0); 333 for (i = 0; i < nr; i++) { 334 struct page *page = pvec->pages[i]; 335 336 if (page) { 337 lock_page(page); 338 if (!__putback_lru_fast_prepare(page, &pvec_putback, 339 &pgrescued)) { 340 /* 341 * Slow path. We don't want to lose the last 342 * pin before unlock_page() 343 */ 344 get_page(page); /* for putback_lru_page() */ 345 __munlock_isolated_page(page); 346 unlock_page(page); 347 put_page(page); /* from follow_page_mask() */ 348 } 349 } 350 } 351 352 /* 353 * Phase 3: page putback for pages that qualified for the fast path 354 * This will also call put_page() to return pin from follow_page_mask() 355 */ 356 if (pagevec_count(&pvec_putback)) 357 __putback_lru_fast(&pvec_putback, pgrescued); 358 } 359 360 /* 361 * Fill up pagevec for __munlock_pagevec using pte walk 362 * 363 * The function expects that the struct page corresponding to @start address is 364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 365 * 366 * The rest of @pvec is filled by subsequent pages within the same pmd and same 367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 368 * pages also get pinned. 369 * 370 * Returns the address of the next page that should be scanned. This equals 371 * @start + PAGE_SIZE when no page could be added by the pte walk. 372 */ 373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 374 struct vm_area_struct *vma, int zoneid, unsigned long start, 375 unsigned long end) 376 { 377 pte_t *pte; 378 spinlock_t *ptl; 379 380 /* 381 * Initialize pte walk starting at the already pinned page where we 382 * are sure that there is a pte, as it was pinned under the same 383 * mmap_sem write op. 384 */ 385 pte = get_locked_pte(vma->vm_mm, start, &ptl); 386 /* Make sure we do not cross the page table boundary */ 387 end = pgd_addr_end(start, end); 388 end = pud_addr_end(start, end); 389 end = pmd_addr_end(start, end); 390 391 /* The page next to the pinned page is the first we will try to get */ 392 start += PAGE_SIZE; 393 while (start < end) { 394 struct page *page = NULL; 395 pte++; 396 if (pte_present(*pte)) 397 page = vm_normal_page(vma, start, *pte); 398 /* 399 * Break if page could not be obtained or the page's node+zone does not 400 * match 401 */ 402 if (!page || page_zone_id(page) != zoneid) 403 break; 404 405 get_page(page); 406 /* 407 * Increase the address that will be returned *before* the 408 * eventual break due to pvec becoming full by adding the page 409 */ 410 start += PAGE_SIZE; 411 if (pagevec_add(pvec, page) == 0) 412 break; 413 } 414 pte_unmap_unlock(pte, ptl); 415 return start; 416 } 417 418 /* 419 * munlock_vma_pages_range() - munlock all pages in the vma range.' 420 * @vma - vma containing range to be munlock()ed. 421 * @start - start address in @vma of the range 422 * @end - end of range in @vma. 423 * 424 * For mremap(), munmap() and exit(). 425 * 426 * Called with @vma VM_LOCKED. 427 * 428 * Returns with VM_LOCKED cleared. Callers must be prepared to 429 * deal with this. 430 * 431 * We don't save and restore VM_LOCKED here because pages are 432 * still on lru. In unmap path, pages might be scanned by reclaim 433 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 434 * free them. This will result in freeing mlocked pages. 435 */ 436 void munlock_vma_pages_range(struct vm_area_struct *vma, 437 unsigned long start, unsigned long end) 438 { 439 vma->vm_flags &= ~VM_LOCKED; 440 441 while (start < end) { 442 struct page *page = NULL; 443 unsigned int page_mask, page_increm; 444 struct pagevec pvec; 445 struct zone *zone; 446 int zoneid; 447 448 pagevec_init(&pvec, 0); 449 /* 450 * Although FOLL_DUMP is intended for get_dump_page(), 451 * it just so happens that its special treatment of the 452 * ZERO_PAGE (returning an error instead of doing get_page) 453 * suits munlock very well (and if somehow an abnormal page 454 * has sneaked into the range, we won't oops here: great). 455 */ 456 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 457 &page_mask); 458 459 if (page && !IS_ERR(page)) { 460 if (PageTransHuge(page)) { 461 lock_page(page); 462 /* 463 * Any THP page found by follow_page_mask() may 464 * have gotten split before reaching 465 * munlock_vma_page(), so we need to recompute 466 * the page_mask here. 467 */ 468 page_mask = munlock_vma_page(page); 469 unlock_page(page); 470 put_page(page); /* follow_page_mask() */ 471 } else { 472 /* 473 * Non-huge pages are handled in batches via 474 * pagevec. The pin from follow_page_mask() 475 * prevents them from collapsing by THP. 476 */ 477 pagevec_add(&pvec, page); 478 zone = page_zone(page); 479 zoneid = page_zone_id(page); 480 481 /* 482 * Try to fill the rest of pagevec using fast 483 * pte walk. This will also update start to 484 * the next page to process. Then munlock the 485 * pagevec. 486 */ 487 start = __munlock_pagevec_fill(&pvec, vma, 488 zoneid, start, end); 489 __munlock_pagevec(&pvec, zone); 490 goto next; 491 } 492 } 493 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 494 start += page_increm * PAGE_SIZE; 495 next: 496 cond_resched(); 497 } 498 } 499 500 /* 501 * mlock_fixup - handle mlock[all]/munlock[all] requests. 502 * 503 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 504 * munlock is a no-op. However, for some special vmas, we go ahead and 505 * populate the ptes. 506 * 507 * For vmas that pass the filters, merge/split as appropriate. 508 */ 509 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 510 unsigned long start, unsigned long end, vm_flags_t newflags) 511 { 512 struct mm_struct *mm = vma->vm_mm; 513 pgoff_t pgoff; 514 int nr_pages; 515 int ret = 0; 516 int lock = !!(newflags & VM_LOCKED); 517 518 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 519 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 520 goto out; /* don't set VM_LOCKED, don't count */ 521 522 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 523 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 524 vma->vm_file, pgoff, vma_policy(vma)); 525 if (*prev) { 526 vma = *prev; 527 goto success; 528 } 529 530 if (start != vma->vm_start) { 531 ret = split_vma(mm, vma, start, 1); 532 if (ret) 533 goto out; 534 } 535 536 if (end != vma->vm_end) { 537 ret = split_vma(mm, vma, end, 0); 538 if (ret) 539 goto out; 540 } 541 542 success: 543 /* 544 * Keep track of amount of locked VM. 545 */ 546 nr_pages = (end - start) >> PAGE_SHIFT; 547 if (!lock) 548 nr_pages = -nr_pages; 549 mm->locked_vm += nr_pages; 550 551 /* 552 * vm_flags is protected by the mmap_sem held in write mode. 553 * It's okay if try_to_unmap_one unmaps a page just after we 554 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 555 */ 556 557 if (lock) 558 vma->vm_flags = newflags; 559 else 560 munlock_vma_pages_range(vma, start, end); 561 562 out: 563 *prev = vma; 564 return ret; 565 } 566 567 static int do_mlock(unsigned long start, size_t len, int on) 568 { 569 unsigned long nstart, end, tmp; 570 struct vm_area_struct * vma, * prev; 571 int error; 572 573 VM_BUG_ON(start & ~PAGE_MASK); 574 VM_BUG_ON(len != PAGE_ALIGN(len)); 575 end = start + len; 576 if (end < start) 577 return -EINVAL; 578 if (end == start) 579 return 0; 580 vma = find_vma(current->mm, start); 581 if (!vma || vma->vm_start > start) 582 return -ENOMEM; 583 584 prev = vma->vm_prev; 585 if (start > vma->vm_start) 586 prev = vma; 587 588 for (nstart = start ; ; ) { 589 vm_flags_t newflags; 590 591 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 592 593 newflags = vma->vm_flags & ~VM_LOCKED; 594 if (on) 595 newflags |= VM_LOCKED; 596 597 tmp = vma->vm_end; 598 if (tmp > end) 599 tmp = end; 600 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 601 if (error) 602 break; 603 nstart = tmp; 604 if (nstart < prev->vm_end) 605 nstart = prev->vm_end; 606 if (nstart >= end) 607 break; 608 609 vma = prev->vm_next; 610 if (!vma || vma->vm_start != nstart) { 611 error = -ENOMEM; 612 break; 613 } 614 } 615 return error; 616 } 617 618 /* 619 * __mm_populate - populate and/or mlock pages within a range of address space. 620 * 621 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 622 * flags. VMAs must be already marked with the desired vm_flags, and 623 * mmap_sem must not be held. 624 */ 625 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 626 { 627 struct mm_struct *mm = current->mm; 628 unsigned long end, nstart, nend; 629 struct vm_area_struct *vma = NULL; 630 int locked = 0; 631 long ret = 0; 632 633 VM_BUG_ON(start & ~PAGE_MASK); 634 VM_BUG_ON(len != PAGE_ALIGN(len)); 635 end = start + len; 636 637 for (nstart = start; nstart < end; nstart = nend) { 638 /* 639 * We want to fault in pages for [nstart; end) address range. 640 * Find first corresponding VMA. 641 */ 642 if (!locked) { 643 locked = 1; 644 down_read(&mm->mmap_sem); 645 vma = find_vma(mm, nstart); 646 } else if (nstart >= vma->vm_end) 647 vma = vma->vm_next; 648 if (!vma || vma->vm_start >= end) 649 break; 650 /* 651 * Set [nstart; nend) to intersection of desired address 652 * range with the first VMA. Also, skip undesirable VMA types. 653 */ 654 nend = min(end, vma->vm_end); 655 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 656 continue; 657 if (nstart < vma->vm_start) 658 nstart = vma->vm_start; 659 /* 660 * Now fault in a range of pages. __mlock_vma_pages_range() 661 * double checks the vma flags, so that it won't mlock pages 662 * if the vma was already munlocked. 663 */ 664 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked); 665 if (ret < 0) { 666 if (ignore_errors) { 667 ret = 0; 668 continue; /* continue at next VMA */ 669 } 670 ret = __mlock_posix_error_return(ret); 671 break; 672 } 673 nend = nstart + ret * PAGE_SIZE; 674 ret = 0; 675 } 676 if (locked) 677 up_read(&mm->mmap_sem); 678 return ret; /* 0 or negative error code */ 679 } 680 681 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 682 { 683 unsigned long locked; 684 unsigned long lock_limit; 685 int error = -ENOMEM; 686 687 if (!can_do_mlock()) 688 return -EPERM; 689 690 lru_add_drain_all(); /* flush pagevec */ 691 692 down_write(¤t->mm->mmap_sem); 693 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 694 start &= PAGE_MASK; 695 696 locked = len >> PAGE_SHIFT; 697 locked += current->mm->locked_vm; 698 699 lock_limit = rlimit(RLIMIT_MEMLOCK); 700 lock_limit >>= PAGE_SHIFT; 701 702 /* check against resource limits */ 703 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 704 error = do_mlock(start, len, 1); 705 up_write(¤t->mm->mmap_sem); 706 if (!error) 707 error = __mm_populate(start, len, 0); 708 return error; 709 } 710 711 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 712 { 713 int ret; 714 715 down_write(¤t->mm->mmap_sem); 716 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 717 start &= PAGE_MASK; 718 ret = do_mlock(start, len, 0); 719 up_write(¤t->mm->mmap_sem); 720 return ret; 721 } 722 723 static int do_mlockall(int flags) 724 { 725 struct vm_area_struct * vma, * prev = NULL; 726 727 if (flags & MCL_FUTURE) 728 current->mm->def_flags |= VM_LOCKED; 729 else 730 current->mm->def_flags &= ~VM_LOCKED; 731 if (flags == MCL_FUTURE) 732 goto out; 733 734 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 735 vm_flags_t newflags; 736 737 newflags = vma->vm_flags & ~VM_LOCKED; 738 if (flags & MCL_CURRENT) 739 newflags |= VM_LOCKED; 740 741 /* Ignore errors */ 742 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 743 cond_resched(); 744 } 745 out: 746 return 0; 747 } 748 749 SYSCALL_DEFINE1(mlockall, int, flags) 750 { 751 unsigned long lock_limit; 752 int ret = -EINVAL; 753 754 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 755 goto out; 756 757 ret = -EPERM; 758 if (!can_do_mlock()) 759 goto out; 760 761 if (flags & MCL_CURRENT) 762 lru_add_drain_all(); /* flush pagevec */ 763 764 down_write(¤t->mm->mmap_sem); 765 766 lock_limit = rlimit(RLIMIT_MEMLOCK); 767 lock_limit >>= PAGE_SHIFT; 768 769 ret = -ENOMEM; 770 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 771 capable(CAP_IPC_LOCK)) 772 ret = do_mlockall(flags); 773 up_write(¤t->mm->mmap_sem); 774 if (!ret && (flags & MCL_CURRENT)) 775 mm_populate(0, TASK_SIZE); 776 out: 777 return ret; 778 } 779 780 SYSCALL_DEFINE0(munlockall) 781 { 782 int ret; 783 784 down_write(¤t->mm->mmap_sem); 785 ret = do_mlockall(0); 786 up_write(¤t->mm->mmap_sem); 787 return ret; 788 } 789 790 /* 791 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 792 * shm segments) get accounted against the user_struct instead. 793 */ 794 static DEFINE_SPINLOCK(shmlock_user_lock); 795 796 int user_shm_lock(size_t size, struct user_struct *user) 797 { 798 unsigned long lock_limit, locked; 799 int allowed = 0; 800 801 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 802 lock_limit = rlimit(RLIMIT_MEMLOCK); 803 if (lock_limit == RLIM_INFINITY) 804 allowed = 1; 805 lock_limit >>= PAGE_SHIFT; 806 spin_lock(&shmlock_user_lock); 807 if (!allowed && 808 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 809 goto out; 810 get_uid(user); 811 user->locked_shm += locked; 812 allowed = 1; 813 out: 814 spin_unlock(&shmlock_user_lock); 815 return allowed; 816 } 817 818 void user_shm_unlock(size_t size, struct user_struct *user) 819 { 820 spin_lock(&shmlock_user_lock); 821 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 822 spin_unlock(&shmlock_user_lock); 823 free_uid(user); 824 } 825