1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/pagewalk.h> 18 #include <linux/mempolicy.h> 19 #include <linux/syscalls.h> 20 #include <linux/sched.h> 21 #include <linux/export.h> 22 #include <linux/rmap.h> 23 #include <linux/mmzone.h> 24 #include <linux/hugetlb.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/secretmem.h> 28 29 #include "internal.h" 30 31 struct mlock_fbatch { 32 local_lock_t lock; 33 struct folio_batch fbatch; 34 }; 35 36 static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = { 37 .lock = INIT_LOCAL_LOCK(lock), 38 }; 39 40 bool can_do_mlock(void) 41 { 42 if (rlimit(RLIMIT_MEMLOCK) != 0) 43 return true; 44 if (capable(CAP_IPC_LOCK)) 45 return true; 46 return false; 47 } 48 EXPORT_SYMBOL(can_do_mlock); 49 50 /* 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing 52 * in vmscan and, possibly, the fault path; and to support semi-accurate 53 * statistics. 54 * 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such 57 * list exists), rather than the [in]active lists. PG_unevictable is set to 58 * indicate the unevictable state. 59 */ 60 61 static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec) 62 { 63 /* There is nothing more we can do while it's off LRU */ 64 if (!folio_test_clear_lru(folio)) 65 return lruvec; 66 67 lruvec = folio_lruvec_relock_irq(folio, lruvec); 68 69 if (unlikely(folio_evictable(folio))) { 70 /* 71 * This is a little surprising, but quite possible: PG_mlocked 72 * must have got cleared already by another CPU. Could this 73 * folio be unevictable? I'm not sure, but move it now if so. 74 */ 75 if (folio_test_unevictable(folio)) { 76 lruvec_del_folio(lruvec, folio); 77 folio_clear_unevictable(folio); 78 lruvec_add_folio(lruvec, folio); 79 80 __count_vm_events(UNEVICTABLE_PGRESCUED, 81 folio_nr_pages(folio)); 82 } 83 goto out; 84 } 85 86 if (folio_test_unevictable(folio)) { 87 if (folio_test_mlocked(folio)) 88 folio->mlock_count++; 89 goto out; 90 } 91 92 lruvec_del_folio(lruvec, folio); 93 folio_clear_active(folio); 94 folio_set_unevictable(folio); 95 folio->mlock_count = !!folio_test_mlocked(folio); 96 lruvec_add_folio(lruvec, folio); 97 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 98 out: 99 folio_set_lru(folio); 100 return lruvec; 101 } 102 103 static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec) 104 { 105 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 106 107 lruvec = folio_lruvec_relock_irq(folio, lruvec); 108 109 /* As above, this is a little surprising, but possible */ 110 if (unlikely(folio_evictable(folio))) 111 goto out; 112 113 folio_set_unevictable(folio); 114 folio->mlock_count = !!folio_test_mlocked(folio); 115 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 116 out: 117 lruvec_add_folio(lruvec, folio); 118 folio_set_lru(folio); 119 return lruvec; 120 } 121 122 static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec) 123 { 124 int nr_pages = folio_nr_pages(folio); 125 bool isolated = false; 126 127 if (!folio_test_clear_lru(folio)) 128 goto munlock; 129 130 isolated = true; 131 lruvec = folio_lruvec_relock_irq(folio, lruvec); 132 133 if (folio_test_unevictable(folio)) { 134 /* Then mlock_count is maintained, but might undercount */ 135 if (folio->mlock_count) 136 folio->mlock_count--; 137 if (folio->mlock_count) 138 goto out; 139 } 140 /* else assume that was the last mlock: reclaim will fix it if not */ 141 142 munlock: 143 if (folio_test_clear_mlocked(folio)) { 144 __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 145 if (isolated || !folio_test_unevictable(folio)) 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 else 148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 149 } 150 151 /* folio_evictable() has to be checked *after* clearing Mlocked */ 152 if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) { 153 lruvec_del_folio(lruvec, folio); 154 folio_clear_unevictable(folio); 155 lruvec_add_folio(lruvec, folio); 156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 157 } 158 out: 159 if (isolated) 160 folio_set_lru(folio); 161 return lruvec; 162 } 163 164 /* 165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch. 166 */ 167 #define LRU_FOLIO 0x1 168 #define NEW_FOLIO 0x2 169 static inline struct folio *mlock_lru(struct folio *folio) 170 { 171 return (struct folio *)((unsigned long)folio + LRU_FOLIO); 172 } 173 174 static inline struct folio *mlock_new(struct folio *folio) 175 { 176 return (struct folio *)((unsigned long)folio + NEW_FOLIO); 177 } 178 179 /* 180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can 181 * make use of such folio pointer flags in future, but for now just keep it for 182 * mlock. We could use three separate folio batches instead, but one feels 183 * better (munlocking a full folio batch does not need to drain mlocking folio 184 * batches first). 185 */ 186 static void mlock_folio_batch(struct folio_batch *fbatch) 187 { 188 struct lruvec *lruvec = NULL; 189 unsigned long mlock; 190 struct folio *folio; 191 int i; 192 193 for (i = 0; i < folio_batch_count(fbatch); i++) { 194 folio = fbatch->folios[i]; 195 mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO); 196 folio = (struct folio *)((unsigned long)folio - mlock); 197 fbatch->folios[i] = folio; 198 199 if (mlock & LRU_FOLIO) 200 lruvec = __mlock_folio(folio, lruvec); 201 else if (mlock & NEW_FOLIO) 202 lruvec = __mlock_new_folio(folio, lruvec); 203 else 204 lruvec = __munlock_folio(folio, lruvec); 205 } 206 207 if (lruvec) 208 unlock_page_lruvec_irq(lruvec); 209 release_pages(fbatch->folios, fbatch->nr); 210 folio_batch_reinit(fbatch); 211 } 212 213 void mlock_drain_local(void) 214 { 215 struct folio_batch *fbatch; 216 217 local_lock(&mlock_fbatch.lock); 218 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 219 if (folio_batch_count(fbatch)) 220 mlock_folio_batch(fbatch); 221 local_unlock(&mlock_fbatch.lock); 222 } 223 224 void mlock_drain_remote(int cpu) 225 { 226 struct folio_batch *fbatch; 227 228 WARN_ON_ONCE(cpu_online(cpu)); 229 fbatch = &per_cpu(mlock_fbatch.fbatch, cpu); 230 if (folio_batch_count(fbatch)) 231 mlock_folio_batch(fbatch); 232 } 233 234 bool need_mlock_drain(int cpu) 235 { 236 return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu)); 237 } 238 239 /** 240 * mlock_folio - mlock a folio already on (or temporarily off) LRU 241 * @folio: folio to be mlocked. 242 */ 243 void mlock_folio(struct folio *folio) 244 { 245 struct folio_batch *fbatch; 246 247 local_lock(&mlock_fbatch.lock); 248 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 249 250 if (!folio_test_set_mlocked(folio)) { 251 int nr_pages = folio_nr_pages(folio); 252 253 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 254 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 255 } 256 257 folio_get(folio); 258 if (!folio_batch_add(fbatch, mlock_lru(folio)) || 259 folio_test_large(folio) || lru_cache_disabled()) 260 mlock_folio_batch(fbatch); 261 local_unlock(&mlock_fbatch.lock); 262 } 263 264 /** 265 * mlock_new_folio - mlock a newly allocated folio not yet on LRU 266 * @folio: folio to be mlocked, either normal or a THP head. 267 */ 268 void mlock_new_folio(struct folio *folio) 269 { 270 struct folio_batch *fbatch; 271 int nr_pages = folio_nr_pages(folio); 272 273 local_lock(&mlock_fbatch.lock); 274 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 275 folio_set_mlocked(folio); 276 277 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 278 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 279 280 folio_get(folio); 281 if (!folio_batch_add(fbatch, mlock_new(folio)) || 282 folio_test_large(folio) || lru_cache_disabled()) 283 mlock_folio_batch(fbatch); 284 local_unlock(&mlock_fbatch.lock); 285 } 286 287 /** 288 * munlock_folio - munlock a folio 289 * @folio: folio to be munlocked, either normal or a THP head. 290 */ 291 void munlock_folio(struct folio *folio) 292 { 293 struct folio_batch *fbatch; 294 295 local_lock(&mlock_fbatch.lock); 296 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 297 /* 298 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(), 299 * which will check whether the folio is multiply mlocked. 300 */ 301 folio_get(folio); 302 if (!folio_batch_add(fbatch, folio) || 303 folio_test_large(folio) || lru_cache_disabled()) 304 mlock_folio_batch(fbatch); 305 local_unlock(&mlock_fbatch.lock); 306 } 307 308 static int mlock_pte_range(pmd_t *pmd, unsigned long addr, 309 unsigned long end, struct mm_walk *walk) 310 311 { 312 struct vm_area_struct *vma = walk->vma; 313 spinlock_t *ptl; 314 pte_t *start_pte, *pte; 315 struct folio *folio; 316 317 ptl = pmd_trans_huge_lock(pmd, vma); 318 if (ptl) { 319 if (!pmd_present(*pmd)) 320 goto out; 321 if (is_huge_zero_pmd(*pmd)) 322 goto out; 323 folio = page_folio(pmd_page(*pmd)); 324 if (vma->vm_flags & VM_LOCKED) 325 mlock_folio(folio); 326 else 327 munlock_folio(folio); 328 goto out; 329 } 330 331 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 332 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) { 333 if (!pte_present(*pte)) 334 continue; 335 folio = vm_normal_folio(vma, addr, *pte); 336 if (!folio || folio_is_zone_device(folio)) 337 continue; 338 if (folio_test_large(folio)) 339 continue; 340 if (vma->vm_flags & VM_LOCKED) 341 mlock_folio(folio); 342 else 343 munlock_folio(folio); 344 } 345 pte_unmap(start_pte); 346 out: 347 spin_unlock(ptl); 348 cond_resched(); 349 return 0; 350 } 351 352 /* 353 * mlock_vma_pages_range() - mlock any pages already in the range, 354 * or munlock all pages in the range. 355 * @vma - vma containing range to be mlock()ed or munlock()ed 356 * @start - start address in @vma of the range 357 * @end - end of range in @vma 358 * @newflags - the new set of flags for @vma. 359 * 360 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED; 361 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma. 362 */ 363 static void mlock_vma_pages_range(struct vm_area_struct *vma, 364 unsigned long start, unsigned long end, vm_flags_t newflags) 365 { 366 static const struct mm_walk_ops mlock_walk_ops = { 367 .pmd_entry = mlock_pte_range, 368 }; 369 370 /* 371 * There is a slight chance that concurrent page migration, 372 * or page reclaim finding a page of this now-VM_LOCKED vma, 373 * will call mlock_vma_folio() and raise page's mlock_count: 374 * double counting, leaving the page unevictable indefinitely. 375 * Communicate this danger to mlock_vma_folio() with VM_IO, 376 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. 377 * mmap_lock is held in write mode here, so this weird 378 * combination should not be visible to other mmap_lock users; 379 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED. 380 */ 381 if (newflags & VM_LOCKED) 382 newflags |= VM_IO; 383 vm_flags_reset_once(vma, newflags); 384 385 lru_add_drain(); 386 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL); 387 lru_add_drain(); 388 389 if (newflags & VM_IO) { 390 newflags &= ~VM_IO; 391 vm_flags_reset_once(vma, newflags); 392 } 393 } 394 395 /* 396 * mlock_fixup - handle mlock[all]/munlock[all] requests. 397 * 398 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 399 * munlock is a no-op. However, for some special vmas, we go ahead and 400 * populate the ptes. 401 * 402 * For vmas that pass the filters, merge/split as appropriate. 403 */ 404 static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, 405 struct vm_area_struct **prev, unsigned long start, 406 unsigned long end, vm_flags_t newflags) 407 { 408 struct mm_struct *mm = vma->vm_mm; 409 pgoff_t pgoff; 410 int nr_pages; 411 int ret = 0; 412 vm_flags_t oldflags = vma->vm_flags; 413 414 if (newflags == oldflags || (oldflags & VM_SPECIAL) || 415 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 416 vma_is_dax(vma) || vma_is_secretmem(vma)) 417 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 418 goto out; 419 420 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 421 *prev = vma_merge(vmi, mm, *prev, start, end, newflags, 422 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 423 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 424 if (*prev) { 425 vma = *prev; 426 goto success; 427 } 428 429 if (start != vma->vm_start) { 430 ret = split_vma(vmi, vma, start, 1); 431 if (ret) 432 goto out; 433 } 434 435 if (end != vma->vm_end) { 436 ret = split_vma(vmi, vma, end, 0); 437 if (ret) 438 goto out; 439 } 440 441 success: 442 /* 443 * Keep track of amount of locked VM. 444 */ 445 nr_pages = (end - start) >> PAGE_SHIFT; 446 if (!(newflags & VM_LOCKED)) 447 nr_pages = -nr_pages; 448 else if (oldflags & VM_LOCKED) 449 nr_pages = 0; 450 mm->locked_vm += nr_pages; 451 452 /* 453 * vm_flags is protected by the mmap_lock held in write mode. 454 * It's okay if try_to_unmap_one unmaps a page just after we 455 * set VM_LOCKED, populate_vma_page_range will bring it back. 456 */ 457 458 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) { 459 /* No work to do, and mlocking twice would be wrong */ 460 vm_flags_reset(vma, newflags); 461 } else { 462 mlock_vma_pages_range(vma, start, end, newflags); 463 } 464 out: 465 *prev = vma; 466 return ret; 467 } 468 469 static int apply_vma_lock_flags(unsigned long start, size_t len, 470 vm_flags_t flags) 471 { 472 unsigned long nstart, end, tmp; 473 struct vm_area_struct *vma, *prev; 474 int error; 475 VMA_ITERATOR(vmi, current->mm, start); 476 477 VM_BUG_ON(offset_in_page(start)); 478 VM_BUG_ON(len != PAGE_ALIGN(len)); 479 end = start + len; 480 if (end < start) 481 return -EINVAL; 482 if (end == start) 483 return 0; 484 vma = vma_iter_load(&vmi); 485 if (!vma) 486 return -ENOMEM; 487 488 prev = vma_prev(&vmi); 489 if (start > vma->vm_start) 490 prev = vma; 491 492 nstart = start; 493 tmp = vma->vm_start; 494 for_each_vma_range(vmi, vma, end) { 495 vm_flags_t newflags; 496 497 if (vma->vm_start != tmp) 498 return -ENOMEM; 499 500 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 501 newflags |= flags; 502 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 503 tmp = vma->vm_end; 504 if (tmp > end) 505 tmp = end; 506 error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags); 507 if (error) 508 break; 509 nstart = tmp; 510 } 511 512 if (vma_iter_end(&vmi) < end) 513 return -ENOMEM; 514 515 return error; 516 } 517 518 /* 519 * Go through vma areas and sum size of mlocked 520 * vma pages, as return value. 521 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 522 * is also counted. 523 * Return value: previously mlocked page counts 524 */ 525 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 526 unsigned long start, size_t len) 527 { 528 struct vm_area_struct *vma; 529 unsigned long count = 0; 530 unsigned long end; 531 VMA_ITERATOR(vmi, mm, start); 532 533 /* Don't overflow past ULONG_MAX */ 534 if (unlikely(ULONG_MAX - len < start)) 535 end = ULONG_MAX; 536 else 537 end = start + len; 538 539 for_each_vma_range(vmi, vma, end) { 540 if (vma->vm_flags & VM_LOCKED) { 541 if (start > vma->vm_start) 542 count -= (start - vma->vm_start); 543 if (end < vma->vm_end) { 544 count += end - vma->vm_start; 545 break; 546 } 547 count += vma->vm_end - vma->vm_start; 548 } 549 } 550 551 return count >> PAGE_SHIFT; 552 } 553 554 /* 555 * convert get_user_pages() return value to posix mlock() error 556 */ 557 static int __mlock_posix_error_return(long retval) 558 { 559 if (retval == -EFAULT) 560 retval = -ENOMEM; 561 else if (retval == -ENOMEM) 562 retval = -EAGAIN; 563 return retval; 564 } 565 566 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 567 { 568 unsigned long locked; 569 unsigned long lock_limit; 570 int error = -ENOMEM; 571 572 start = untagged_addr(start); 573 574 if (!can_do_mlock()) 575 return -EPERM; 576 577 len = PAGE_ALIGN(len + (offset_in_page(start))); 578 start &= PAGE_MASK; 579 580 lock_limit = rlimit(RLIMIT_MEMLOCK); 581 lock_limit >>= PAGE_SHIFT; 582 locked = len >> PAGE_SHIFT; 583 584 if (mmap_write_lock_killable(current->mm)) 585 return -EINTR; 586 587 locked += current->mm->locked_vm; 588 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 589 /* 590 * It is possible that the regions requested intersect with 591 * previously mlocked areas, that part area in "mm->locked_vm" 592 * should not be counted to new mlock increment count. So check 593 * and adjust locked count if necessary. 594 */ 595 locked -= count_mm_mlocked_page_nr(current->mm, 596 start, len); 597 } 598 599 /* check against resource limits */ 600 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 601 error = apply_vma_lock_flags(start, len, flags); 602 603 mmap_write_unlock(current->mm); 604 if (error) 605 return error; 606 607 error = __mm_populate(start, len, 0); 608 if (error) 609 return __mlock_posix_error_return(error); 610 return 0; 611 } 612 613 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 614 { 615 return do_mlock(start, len, VM_LOCKED); 616 } 617 618 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 619 { 620 vm_flags_t vm_flags = VM_LOCKED; 621 622 if (flags & ~MLOCK_ONFAULT) 623 return -EINVAL; 624 625 if (flags & MLOCK_ONFAULT) 626 vm_flags |= VM_LOCKONFAULT; 627 628 return do_mlock(start, len, vm_flags); 629 } 630 631 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 632 { 633 int ret; 634 635 start = untagged_addr(start); 636 637 len = PAGE_ALIGN(len + (offset_in_page(start))); 638 start &= PAGE_MASK; 639 640 if (mmap_write_lock_killable(current->mm)) 641 return -EINTR; 642 ret = apply_vma_lock_flags(start, len, 0); 643 mmap_write_unlock(current->mm); 644 645 return ret; 646 } 647 648 /* 649 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 650 * and translate into the appropriate modifications to mm->def_flags and/or the 651 * flags for all current VMAs. 652 * 653 * There are a couple of subtleties with this. If mlockall() is called multiple 654 * times with different flags, the values do not necessarily stack. If mlockall 655 * is called once including the MCL_FUTURE flag and then a second time without 656 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 657 */ 658 static int apply_mlockall_flags(int flags) 659 { 660 VMA_ITERATOR(vmi, current->mm, 0); 661 struct vm_area_struct *vma, *prev = NULL; 662 vm_flags_t to_add = 0; 663 664 current->mm->def_flags &= ~VM_LOCKED_MASK; 665 if (flags & MCL_FUTURE) { 666 current->mm->def_flags |= VM_LOCKED; 667 668 if (flags & MCL_ONFAULT) 669 current->mm->def_flags |= VM_LOCKONFAULT; 670 671 if (!(flags & MCL_CURRENT)) 672 goto out; 673 } 674 675 if (flags & MCL_CURRENT) { 676 to_add |= VM_LOCKED; 677 if (flags & MCL_ONFAULT) 678 to_add |= VM_LOCKONFAULT; 679 } 680 681 for_each_vma(vmi, vma) { 682 vm_flags_t newflags; 683 684 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 685 newflags |= to_add; 686 687 /* Ignore errors */ 688 mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end, 689 newflags); 690 cond_resched(); 691 } 692 out: 693 return 0; 694 } 695 696 SYSCALL_DEFINE1(mlockall, int, flags) 697 { 698 unsigned long lock_limit; 699 int ret; 700 701 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 702 flags == MCL_ONFAULT) 703 return -EINVAL; 704 705 if (!can_do_mlock()) 706 return -EPERM; 707 708 lock_limit = rlimit(RLIMIT_MEMLOCK); 709 lock_limit >>= PAGE_SHIFT; 710 711 if (mmap_write_lock_killable(current->mm)) 712 return -EINTR; 713 714 ret = -ENOMEM; 715 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 716 capable(CAP_IPC_LOCK)) 717 ret = apply_mlockall_flags(flags); 718 mmap_write_unlock(current->mm); 719 if (!ret && (flags & MCL_CURRENT)) 720 mm_populate(0, TASK_SIZE); 721 722 return ret; 723 } 724 725 SYSCALL_DEFINE0(munlockall) 726 { 727 int ret; 728 729 if (mmap_write_lock_killable(current->mm)) 730 return -EINTR; 731 ret = apply_mlockall_flags(0); 732 mmap_write_unlock(current->mm); 733 return ret; 734 } 735 736 /* 737 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 738 * shm segments) get accounted against the user_struct instead. 739 */ 740 static DEFINE_SPINLOCK(shmlock_user_lock); 741 742 int user_shm_lock(size_t size, struct ucounts *ucounts) 743 { 744 unsigned long lock_limit, locked; 745 long memlock; 746 int allowed = 0; 747 748 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 749 lock_limit = rlimit(RLIMIT_MEMLOCK); 750 if (lock_limit != RLIM_INFINITY) 751 lock_limit >>= PAGE_SHIFT; 752 spin_lock(&shmlock_user_lock); 753 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 754 755 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { 756 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 757 goto out; 758 } 759 if (!get_ucounts(ucounts)) { 760 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 761 allowed = 0; 762 goto out; 763 } 764 allowed = 1; 765 out: 766 spin_unlock(&shmlock_user_lock); 767 return allowed; 768 } 769 770 void user_shm_unlock(size_t size, struct ucounts *ucounts) 771 { 772 spin_lock(&shmlock_user_lock); 773 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 774 spin_unlock(&shmlock_user_lock); 775 put_ucounts(ucounts); 776 } 777