1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/syscalls.h> 16 #include <linux/sched.h> 17 #include <linux/module.h> 18 #include <linux/rmap.h> 19 #include <linux/mmzone.h> 20 #include <linux/hugetlb.h> 21 22 #include "internal.h" 23 24 int can_do_mlock(void) 25 { 26 if (capable(CAP_IPC_LOCK)) 27 return 1; 28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 29 return 1; 30 return 0; 31 } 32 EXPORT_SYMBOL(can_do_mlock); 33 34 /* 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing 36 * in vmscan and, possibly, the fault path; and to support semi-accurate 37 * statistics. 38 * 39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 41 * The unevictable list is an LRU sibling list to the [in]active lists. 42 * PageUnevictable is set to indicate the unevictable state. 43 * 44 * When lazy mlocking via vmscan, it is important to ensure that the 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 46 * may have mlocked a page that is being munlocked. So lazy mlock must take 47 * the mmap_sem for read, and verify that the vma really is locked 48 * (see mm/rmap.c). 49 */ 50 51 /* 52 * LRU accounting for clear_page_mlock() 53 */ 54 void __clear_page_mlock(struct page *page) 55 { 56 VM_BUG_ON(!PageLocked(page)); 57 58 if (!page->mapping) { /* truncated ? */ 59 return; 60 } 61 62 dec_zone_page_state(page, NR_MLOCK); 63 count_vm_event(UNEVICTABLE_PGCLEARED); 64 if (!isolate_lru_page(page)) { 65 putback_lru_page(page); 66 } else { 67 /* 68 * We lost the race. the page already moved to evictable list. 69 */ 70 if (PageUnevictable(page)) 71 count_vm_event(UNEVICTABLE_PGSTRANDED); 72 } 73 } 74 75 /* 76 * Mark page as mlocked if not already. 77 * If page on LRU, isolate and putback to move to unevictable list. 78 */ 79 void mlock_vma_page(struct page *page) 80 { 81 BUG_ON(!PageLocked(page)); 82 83 if (!TestSetPageMlocked(page)) { 84 inc_zone_page_state(page, NR_MLOCK); 85 count_vm_event(UNEVICTABLE_PGMLOCKED); 86 if (!isolate_lru_page(page)) 87 putback_lru_page(page); 88 } 89 } 90 91 /* 92 * called from munlock()/munmap() path with page supposedly on the LRU. 93 * 94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked 95 * [in try_to_munlock()] and then attempt to isolate the page. We must 96 * isolate the page to keep others from messing with its unevictable 97 * and mlocked state while trying to munlock. However, we pre-clear the 98 * mlocked state anyway as we might lose the isolation race and we might 99 * not get another chance to clear PageMlocked. If we successfully 100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas 101 * mapping the page, it will restore the PageMlocked state, unless the page 102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(), 103 * perhaps redundantly. 104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED 105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap() 106 * either of which will restore the PageMlocked state by calling 107 * mlock_vma_page() above, if it can grab the vma's mmap sem. 108 */ 109 static void munlock_vma_page(struct page *page) 110 { 111 BUG_ON(!PageLocked(page)); 112 113 if (TestClearPageMlocked(page)) { 114 dec_zone_page_state(page, NR_MLOCK); 115 if (!isolate_lru_page(page)) { 116 int ret = try_to_munlock(page); 117 /* 118 * did try_to_unlock() succeed or punt? 119 */ 120 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN) 121 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 122 123 putback_lru_page(page); 124 } else { 125 /* 126 * We lost the race. let try_to_unmap() deal 127 * with it. At least we get the page state and 128 * mlock stats right. However, page is still on 129 * the noreclaim list. We'll fix that up when 130 * the page is eventually freed or we scan the 131 * noreclaim list. 132 */ 133 if (PageUnevictable(page)) 134 count_vm_event(UNEVICTABLE_PGSTRANDED); 135 else 136 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 137 } 138 } 139 } 140 141 /** 142 * __mlock_vma_pages_range() - mlock a range of pages in the vma. 143 * @vma: target vma 144 * @start: start address 145 * @end: end address 146 * 147 * This takes care of making the pages present too. 148 * 149 * return 0 on success, negative error code on error. 150 * 151 * vma->vm_mm->mmap_sem must be held for at least read. 152 */ 153 static long __mlock_vma_pages_range(struct vm_area_struct *vma, 154 unsigned long start, unsigned long end) 155 { 156 struct mm_struct *mm = vma->vm_mm; 157 unsigned long addr = start; 158 struct page *pages[16]; /* 16 gives a reasonable batch */ 159 int nr_pages = (end - start) / PAGE_SIZE; 160 int ret = 0; 161 int gup_flags; 162 163 VM_BUG_ON(start & ~PAGE_MASK); 164 VM_BUG_ON(end & ~PAGE_MASK); 165 VM_BUG_ON(start < vma->vm_start); 166 VM_BUG_ON(end > vma->vm_end); 167 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 168 169 gup_flags = FOLL_TOUCH | FOLL_GET; 170 if (vma->vm_flags & VM_WRITE) 171 gup_flags |= FOLL_WRITE; 172 173 while (nr_pages > 0) { 174 int i; 175 176 cond_resched(); 177 178 /* 179 * get_user_pages makes pages present if we are 180 * setting mlock. and this extra reference count will 181 * disable migration of this page. However, page may 182 * still be truncated out from under us. 183 */ 184 ret = __get_user_pages(current, mm, addr, 185 min_t(int, nr_pages, ARRAY_SIZE(pages)), 186 gup_flags, pages, NULL); 187 /* 188 * This can happen for, e.g., VM_NONLINEAR regions before 189 * a page has been allocated and mapped at a given offset, 190 * or for addresses that map beyond end of a file. 191 * We'll mlock the pages if/when they get faulted in. 192 */ 193 if (ret < 0) 194 break; 195 196 lru_add_drain(); /* push cached pages to LRU */ 197 198 for (i = 0; i < ret; i++) { 199 struct page *page = pages[i]; 200 201 if (page->mapping) { 202 /* 203 * That preliminary check is mainly to avoid 204 * the pointless overhead of lock_page on the 205 * ZERO_PAGE: which might bounce very badly if 206 * there is contention. However, we're still 207 * dirtying its cacheline with get/put_page: 208 * we'll add another __get_user_pages flag to 209 * avoid it if that case turns out to matter. 210 */ 211 lock_page(page); 212 /* 213 * Because we lock page here and migration is 214 * blocked by the elevated reference, we need 215 * only check for file-cache page truncation. 216 */ 217 if (page->mapping) 218 mlock_vma_page(page); 219 unlock_page(page); 220 } 221 put_page(page); /* ref from get_user_pages() */ 222 } 223 224 addr += ret * PAGE_SIZE; 225 nr_pages -= ret; 226 ret = 0; 227 } 228 229 return ret; /* 0 or negative error code */ 230 } 231 232 /* 233 * convert get_user_pages() return value to posix mlock() error 234 */ 235 static int __mlock_posix_error_return(long retval) 236 { 237 if (retval == -EFAULT) 238 retval = -ENOMEM; 239 else if (retval == -ENOMEM) 240 retval = -EAGAIN; 241 return retval; 242 } 243 244 /** 245 * mlock_vma_pages_range() - mlock pages in specified vma range. 246 * @vma - the vma containing the specfied address range 247 * @start - starting address in @vma to mlock 248 * @end - end address [+1] in @vma to mlock 249 * 250 * For mmap()/mremap()/expansion of mlocked vma. 251 * 252 * return 0 on success for "normal" vmas. 253 * 254 * return number of pages [> 0] to be removed from locked_vm on success 255 * of "special" vmas. 256 */ 257 long mlock_vma_pages_range(struct vm_area_struct *vma, 258 unsigned long start, unsigned long end) 259 { 260 int nr_pages = (end - start) / PAGE_SIZE; 261 BUG_ON(!(vma->vm_flags & VM_LOCKED)); 262 263 /* 264 * filter unlockable vmas 265 */ 266 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 267 goto no_mlock; 268 269 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 270 is_vm_hugetlb_page(vma) || 271 vma == get_gate_vma(current))) { 272 273 __mlock_vma_pages_range(vma, start, end); 274 275 /* Hide errors from mmap() and other callers */ 276 return 0; 277 } 278 279 /* 280 * User mapped kernel pages or huge pages: 281 * make these pages present to populate the ptes, but 282 * fall thru' to reset VM_LOCKED--no need to unlock, and 283 * return nr_pages so these don't get counted against task's 284 * locked limit. huge pages are already counted against 285 * locked vm limit. 286 */ 287 make_pages_present(start, end); 288 289 no_mlock: 290 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */ 291 return nr_pages; /* error or pages NOT mlocked */ 292 } 293 294 /* 295 * munlock_vma_pages_range() - munlock all pages in the vma range.' 296 * @vma - vma containing range to be munlock()ed. 297 * @start - start address in @vma of the range 298 * @end - end of range in @vma. 299 * 300 * For mremap(), munmap() and exit(). 301 * 302 * Called with @vma VM_LOCKED. 303 * 304 * Returns with VM_LOCKED cleared. Callers must be prepared to 305 * deal with this. 306 * 307 * We don't save and restore VM_LOCKED here because pages are 308 * still on lru. In unmap path, pages might be scanned by reclaim 309 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 310 * free them. This will result in freeing mlocked pages. 311 */ 312 void munlock_vma_pages_range(struct vm_area_struct *vma, 313 unsigned long start, unsigned long end) 314 { 315 unsigned long addr; 316 317 lru_add_drain(); 318 vma->vm_flags &= ~VM_LOCKED; 319 320 for (addr = start; addr < end; addr += PAGE_SIZE) { 321 struct page *page; 322 /* 323 * Although FOLL_DUMP is intended for get_dump_page(), 324 * it just so happens that its special treatment of the 325 * ZERO_PAGE (returning an error instead of doing get_page) 326 * suits munlock very well (and if somehow an abnormal page 327 * has sneaked into the range, we won't oops here: great). 328 */ 329 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 330 if (page && !IS_ERR(page)) { 331 lock_page(page); 332 /* 333 * Like in __mlock_vma_pages_range(), 334 * because we lock page here and migration is 335 * blocked by the elevated reference, we need 336 * only check for file-cache page truncation. 337 */ 338 if (page->mapping) 339 munlock_vma_page(page); 340 unlock_page(page); 341 put_page(page); 342 } 343 cond_resched(); 344 } 345 } 346 347 /* 348 * mlock_fixup - handle mlock[all]/munlock[all] requests. 349 * 350 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 351 * munlock is a no-op. However, for some special vmas, we go ahead and 352 * populate the ptes via make_pages_present(). 353 * 354 * For vmas that pass the filters, merge/split as appropriate. 355 */ 356 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 357 unsigned long start, unsigned long end, unsigned int newflags) 358 { 359 struct mm_struct *mm = vma->vm_mm; 360 pgoff_t pgoff; 361 int nr_pages; 362 int ret = 0; 363 int lock = newflags & VM_LOCKED; 364 365 if (newflags == vma->vm_flags || 366 (vma->vm_flags & (VM_IO | VM_PFNMAP))) 367 goto out; /* don't set VM_LOCKED, don't count */ 368 369 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || 370 is_vm_hugetlb_page(vma) || 371 vma == get_gate_vma(current)) { 372 if (lock) 373 make_pages_present(start, end); 374 goto out; /* don't set VM_LOCKED, don't count */ 375 } 376 377 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 378 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 379 vma->vm_file, pgoff, vma_policy(vma)); 380 if (*prev) { 381 vma = *prev; 382 goto success; 383 } 384 385 if (start != vma->vm_start) { 386 ret = split_vma(mm, vma, start, 1); 387 if (ret) 388 goto out; 389 } 390 391 if (end != vma->vm_end) { 392 ret = split_vma(mm, vma, end, 0); 393 if (ret) 394 goto out; 395 } 396 397 success: 398 /* 399 * Keep track of amount of locked VM. 400 */ 401 nr_pages = (end - start) >> PAGE_SHIFT; 402 if (!lock) 403 nr_pages = -nr_pages; 404 mm->locked_vm += nr_pages; 405 406 /* 407 * vm_flags is protected by the mmap_sem held in write mode. 408 * It's okay if try_to_unmap_one unmaps a page just after we 409 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 410 */ 411 412 if (lock) { 413 vma->vm_flags = newflags; 414 ret = __mlock_vma_pages_range(vma, start, end); 415 if (ret < 0) 416 ret = __mlock_posix_error_return(ret); 417 } else { 418 munlock_vma_pages_range(vma, start, end); 419 } 420 421 out: 422 *prev = vma; 423 return ret; 424 } 425 426 static int do_mlock(unsigned long start, size_t len, int on) 427 { 428 unsigned long nstart, end, tmp; 429 struct vm_area_struct * vma, * prev; 430 int error; 431 432 len = PAGE_ALIGN(len); 433 end = start + len; 434 if (end < start) 435 return -EINVAL; 436 if (end == start) 437 return 0; 438 vma = find_vma_prev(current->mm, start, &prev); 439 if (!vma || vma->vm_start > start) 440 return -ENOMEM; 441 442 if (start > vma->vm_start) 443 prev = vma; 444 445 for (nstart = start ; ; ) { 446 unsigned int newflags; 447 448 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 449 450 newflags = vma->vm_flags | VM_LOCKED; 451 if (!on) 452 newflags &= ~VM_LOCKED; 453 454 tmp = vma->vm_end; 455 if (tmp > end) 456 tmp = end; 457 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 458 if (error) 459 break; 460 nstart = tmp; 461 if (nstart < prev->vm_end) 462 nstart = prev->vm_end; 463 if (nstart >= end) 464 break; 465 466 vma = prev->vm_next; 467 if (!vma || vma->vm_start != nstart) { 468 error = -ENOMEM; 469 break; 470 } 471 } 472 return error; 473 } 474 475 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 476 { 477 unsigned long locked; 478 unsigned long lock_limit; 479 int error = -ENOMEM; 480 481 if (!can_do_mlock()) 482 return -EPERM; 483 484 lru_add_drain_all(); /* flush pagevec */ 485 486 down_write(¤t->mm->mmap_sem); 487 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 488 start &= PAGE_MASK; 489 490 locked = len >> PAGE_SHIFT; 491 locked += current->mm->locked_vm; 492 493 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 494 lock_limit >>= PAGE_SHIFT; 495 496 /* check against resource limits */ 497 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 498 error = do_mlock(start, len, 1); 499 up_write(¤t->mm->mmap_sem); 500 return error; 501 } 502 503 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 504 { 505 int ret; 506 507 down_write(¤t->mm->mmap_sem); 508 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 509 start &= PAGE_MASK; 510 ret = do_mlock(start, len, 0); 511 up_write(¤t->mm->mmap_sem); 512 return ret; 513 } 514 515 static int do_mlockall(int flags) 516 { 517 struct vm_area_struct * vma, * prev = NULL; 518 unsigned int def_flags = 0; 519 520 if (flags & MCL_FUTURE) 521 def_flags = VM_LOCKED; 522 current->mm->def_flags = def_flags; 523 if (flags == MCL_FUTURE) 524 goto out; 525 526 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 527 unsigned int newflags; 528 529 newflags = vma->vm_flags | VM_LOCKED; 530 if (!(flags & MCL_CURRENT)) 531 newflags &= ~VM_LOCKED; 532 533 /* Ignore errors */ 534 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 535 } 536 out: 537 return 0; 538 } 539 540 SYSCALL_DEFINE1(mlockall, int, flags) 541 { 542 unsigned long lock_limit; 543 int ret = -EINVAL; 544 545 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 546 goto out; 547 548 ret = -EPERM; 549 if (!can_do_mlock()) 550 goto out; 551 552 lru_add_drain_all(); /* flush pagevec */ 553 554 down_write(¤t->mm->mmap_sem); 555 556 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 557 lock_limit >>= PAGE_SHIFT; 558 559 ret = -ENOMEM; 560 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 561 capable(CAP_IPC_LOCK)) 562 ret = do_mlockall(flags); 563 up_write(¤t->mm->mmap_sem); 564 out: 565 return ret; 566 } 567 568 SYSCALL_DEFINE0(munlockall) 569 { 570 int ret; 571 572 down_write(¤t->mm->mmap_sem); 573 ret = do_mlockall(0); 574 up_write(¤t->mm->mmap_sem); 575 return ret; 576 } 577 578 /* 579 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 580 * shm segments) get accounted against the user_struct instead. 581 */ 582 static DEFINE_SPINLOCK(shmlock_user_lock); 583 584 int user_shm_lock(size_t size, struct user_struct *user) 585 { 586 unsigned long lock_limit, locked; 587 int allowed = 0; 588 589 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 590 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 591 if (lock_limit == RLIM_INFINITY) 592 allowed = 1; 593 lock_limit >>= PAGE_SHIFT; 594 spin_lock(&shmlock_user_lock); 595 if (!allowed && 596 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 597 goto out; 598 get_uid(user); 599 user->locked_shm += locked; 600 allowed = 1; 601 out: 602 spin_unlock(&shmlock_user_lock); 603 return allowed; 604 } 605 606 void user_shm_unlock(size_t size, struct user_struct *user) 607 { 608 spin_lock(&shmlock_user_lock); 609 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 610 spin_unlock(&shmlock_user_lock); 611 free_uid(user); 612 } 613 614 int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, 615 size_t size) 616 { 617 unsigned long lim, vm, pgsz; 618 int error = -ENOMEM; 619 620 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; 621 622 down_write(&mm->mmap_sem); 623 624 lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 625 vm = mm->total_vm + pgsz; 626 if (lim < vm) 627 goto out; 628 629 lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 630 vm = mm->locked_vm + pgsz; 631 if (lim < vm) 632 goto out; 633 634 mm->total_vm += pgsz; 635 mm->locked_vm += pgsz; 636 637 error = 0; 638 out: 639 up_write(&mm->mmap_sem); 640 return error; 641 } 642 643 void refund_locked_memory(struct mm_struct *mm, size_t size) 644 { 645 unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; 646 647 down_write(&mm->mmap_sem); 648 649 mm->total_vm -= pgsz; 650 mm->locked_vm -= pgsz; 651 652 up_write(&mm->mmap_sem); 653 } 654