xref: /openbmc/linux/mm/mlock.c (revision e8e0929d)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /*
92  * called from munlock()/munmap() path with page supposedly on the LRU.
93  *
94  * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
95  * [in try_to_munlock()] and then attempt to isolate the page.  We must
96  * isolate the page to keep others from messing with its unevictable
97  * and mlocked state while trying to munlock.  However, we pre-clear the
98  * mlocked state anyway as we might lose the isolation race and we might
99  * not get another chance to clear PageMlocked.  If we successfully
100  * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101  * mapping the page, it will restore the PageMlocked state, unless the page
102  * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
103  * perhaps redundantly.
104  * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105  * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106  * either of which will restore the PageMlocked state by calling
107  * mlock_vma_page() above, if it can grab the vma's mmap sem.
108  */
109 static void munlock_vma_page(struct page *page)
110 {
111 	BUG_ON(!PageLocked(page));
112 
113 	if (TestClearPageMlocked(page)) {
114 		dec_zone_page_state(page, NR_MLOCK);
115 		if (!isolate_lru_page(page)) {
116 			int ret = try_to_munlock(page);
117 			/*
118 			 * did try_to_unlock() succeed or punt?
119 			 */
120 			if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
121 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
122 
123 			putback_lru_page(page);
124 		} else {
125 			/*
126 			 * We lost the race.  let try_to_unmap() deal
127 			 * with it.  At least we get the page state and
128 			 * mlock stats right.  However, page is still on
129 			 * the noreclaim list.  We'll fix that up when
130 			 * the page is eventually freed or we scan the
131 			 * noreclaim list.
132 			 */
133 			if (PageUnevictable(page))
134 				count_vm_event(UNEVICTABLE_PGSTRANDED);
135 			else
136 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137 		}
138 	}
139 }
140 
141 /**
142  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
143  * @vma:   target vma
144  * @start: start address
145  * @end:   end address
146  *
147  * This takes care of making the pages present too.
148  *
149  * return 0 on success, negative error code on error.
150  *
151  * vma->vm_mm->mmap_sem must be held for at least read.
152  */
153 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
154 				    unsigned long start, unsigned long end)
155 {
156 	struct mm_struct *mm = vma->vm_mm;
157 	unsigned long addr = start;
158 	struct page *pages[16]; /* 16 gives a reasonable batch */
159 	int nr_pages = (end - start) / PAGE_SIZE;
160 	int ret = 0;
161 	int gup_flags;
162 
163 	VM_BUG_ON(start & ~PAGE_MASK);
164 	VM_BUG_ON(end   & ~PAGE_MASK);
165 	VM_BUG_ON(start < vma->vm_start);
166 	VM_BUG_ON(end   > vma->vm_end);
167 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
168 
169 	gup_flags = FOLL_TOUCH | FOLL_GET;
170 	if (vma->vm_flags & VM_WRITE)
171 		gup_flags |= FOLL_WRITE;
172 
173 	while (nr_pages > 0) {
174 		int i;
175 
176 		cond_resched();
177 
178 		/*
179 		 * get_user_pages makes pages present if we are
180 		 * setting mlock. and this extra reference count will
181 		 * disable migration of this page.  However, page may
182 		 * still be truncated out from under us.
183 		 */
184 		ret = __get_user_pages(current, mm, addr,
185 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
186 				gup_flags, pages, NULL);
187 		/*
188 		 * This can happen for, e.g., VM_NONLINEAR regions before
189 		 * a page has been allocated and mapped at a given offset,
190 		 * or for addresses that map beyond end of a file.
191 		 * We'll mlock the pages if/when they get faulted in.
192 		 */
193 		if (ret < 0)
194 			break;
195 
196 		lru_add_drain();	/* push cached pages to LRU */
197 
198 		for (i = 0; i < ret; i++) {
199 			struct page *page = pages[i];
200 
201 			if (page->mapping) {
202 				/*
203 				 * That preliminary check is mainly to avoid
204 				 * the pointless overhead of lock_page on the
205 				 * ZERO_PAGE: which might bounce very badly if
206 				 * there is contention.  However, we're still
207 				 * dirtying its cacheline with get/put_page:
208 				 * we'll add another __get_user_pages flag to
209 				 * avoid it if that case turns out to matter.
210 				 */
211 				lock_page(page);
212 				/*
213 				 * Because we lock page here and migration is
214 				 * blocked by the elevated reference, we need
215 				 * only check for file-cache page truncation.
216 				 */
217 				if (page->mapping)
218 					mlock_vma_page(page);
219 				unlock_page(page);
220 			}
221 			put_page(page);	/* ref from get_user_pages() */
222 		}
223 
224 		addr += ret * PAGE_SIZE;
225 		nr_pages -= ret;
226 		ret = 0;
227 	}
228 
229 	return ret;	/* 0 or negative error code */
230 }
231 
232 /*
233  * convert get_user_pages() return value to posix mlock() error
234  */
235 static int __mlock_posix_error_return(long retval)
236 {
237 	if (retval == -EFAULT)
238 		retval = -ENOMEM;
239 	else if (retval == -ENOMEM)
240 		retval = -EAGAIN;
241 	return retval;
242 }
243 
244 /**
245  * mlock_vma_pages_range() - mlock pages in specified vma range.
246  * @vma - the vma containing the specfied address range
247  * @start - starting address in @vma to mlock
248  * @end   - end address [+1] in @vma to mlock
249  *
250  * For mmap()/mremap()/expansion of mlocked vma.
251  *
252  * return 0 on success for "normal" vmas.
253  *
254  * return number of pages [> 0] to be removed from locked_vm on success
255  * of "special" vmas.
256  */
257 long mlock_vma_pages_range(struct vm_area_struct *vma,
258 			unsigned long start, unsigned long end)
259 {
260 	int nr_pages = (end - start) / PAGE_SIZE;
261 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
262 
263 	/*
264 	 * filter unlockable vmas
265 	 */
266 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
267 		goto no_mlock;
268 
269 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
270 			is_vm_hugetlb_page(vma) ||
271 			vma == get_gate_vma(current))) {
272 
273 		__mlock_vma_pages_range(vma, start, end);
274 
275 		/* Hide errors from mmap() and other callers */
276 		return 0;
277 	}
278 
279 	/*
280 	 * User mapped kernel pages or huge pages:
281 	 * make these pages present to populate the ptes, but
282 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
283 	 * return nr_pages so these don't get counted against task's
284 	 * locked limit.  huge pages are already counted against
285 	 * locked vm limit.
286 	 */
287 	make_pages_present(start, end);
288 
289 no_mlock:
290 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
291 	return nr_pages;		/* error or pages NOT mlocked */
292 }
293 
294 /*
295  * munlock_vma_pages_range() - munlock all pages in the vma range.'
296  * @vma - vma containing range to be munlock()ed.
297  * @start - start address in @vma of the range
298  * @end - end of range in @vma.
299  *
300  *  For mremap(), munmap() and exit().
301  *
302  * Called with @vma VM_LOCKED.
303  *
304  * Returns with VM_LOCKED cleared.  Callers must be prepared to
305  * deal with this.
306  *
307  * We don't save and restore VM_LOCKED here because pages are
308  * still on lru.  In unmap path, pages might be scanned by reclaim
309  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
310  * free them.  This will result in freeing mlocked pages.
311  */
312 void munlock_vma_pages_range(struct vm_area_struct *vma,
313 			     unsigned long start, unsigned long end)
314 {
315 	unsigned long addr;
316 
317 	lru_add_drain();
318 	vma->vm_flags &= ~VM_LOCKED;
319 
320 	for (addr = start; addr < end; addr += PAGE_SIZE) {
321 		struct page *page;
322 		/*
323 		 * Although FOLL_DUMP is intended for get_dump_page(),
324 		 * it just so happens that its special treatment of the
325 		 * ZERO_PAGE (returning an error instead of doing get_page)
326 		 * suits munlock very well (and if somehow an abnormal page
327 		 * has sneaked into the range, we won't oops here: great).
328 		 */
329 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
330 		if (page && !IS_ERR(page)) {
331 			lock_page(page);
332 			/*
333 			 * Like in __mlock_vma_pages_range(),
334 			 * because we lock page here and migration is
335 			 * blocked by the elevated reference, we need
336 			 * only check for file-cache page truncation.
337 			 */
338 			if (page->mapping)
339 				munlock_vma_page(page);
340 			unlock_page(page);
341 			put_page(page);
342 		}
343 		cond_resched();
344 	}
345 }
346 
347 /*
348  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
349  *
350  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
351  * munlock is a no-op.  However, for some special vmas, we go ahead and
352  * populate the ptes via make_pages_present().
353  *
354  * For vmas that pass the filters, merge/split as appropriate.
355  */
356 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
357 	unsigned long start, unsigned long end, unsigned int newflags)
358 {
359 	struct mm_struct *mm = vma->vm_mm;
360 	pgoff_t pgoff;
361 	int nr_pages;
362 	int ret = 0;
363 	int lock = newflags & VM_LOCKED;
364 
365 	if (newflags == vma->vm_flags ||
366 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
367 		goto out;	/* don't set VM_LOCKED,  don't count */
368 
369 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
370 			is_vm_hugetlb_page(vma) ||
371 			vma == get_gate_vma(current)) {
372 		if (lock)
373 			make_pages_present(start, end);
374 		goto out;	/* don't set VM_LOCKED,  don't count */
375 	}
376 
377 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
378 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
379 			  vma->vm_file, pgoff, vma_policy(vma));
380 	if (*prev) {
381 		vma = *prev;
382 		goto success;
383 	}
384 
385 	if (start != vma->vm_start) {
386 		ret = split_vma(mm, vma, start, 1);
387 		if (ret)
388 			goto out;
389 	}
390 
391 	if (end != vma->vm_end) {
392 		ret = split_vma(mm, vma, end, 0);
393 		if (ret)
394 			goto out;
395 	}
396 
397 success:
398 	/*
399 	 * Keep track of amount of locked VM.
400 	 */
401 	nr_pages = (end - start) >> PAGE_SHIFT;
402 	if (!lock)
403 		nr_pages = -nr_pages;
404 	mm->locked_vm += nr_pages;
405 
406 	/*
407 	 * vm_flags is protected by the mmap_sem held in write mode.
408 	 * It's okay if try_to_unmap_one unmaps a page just after we
409 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
410 	 */
411 
412 	if (lock) {
413 		vma->vm_flags = newflags;
414 		ret = __mlock_vma_pages_range(vma, start, end);
415 		if (ret < 0)
416 			ret = __mlock_posix_error_return(ret);
417 	} else {
418 		munlock_vma_pages_range(vma, start, end);
419 	}
420 
421 out:
422 	*prev = vma;
423 	return ret;
424 }
425 
426 static int do_mlock(unsigned long start, size_t len, int on)
427 {
428 	unsigned long nstart, end, tmp;
429 	struct vm_area_struct * vma, * prev;
430 	int error;
431 
432 	len = PAGE_ALIGN(len);
433 	end = start + len;
434 	if (end < start)
435 		return -EINVAL;
436 	if (end == start)
437 		return 0;
438 	vma = find_vma_prev(current->mm, start, &prev);
439 	if (!vma || vma->vm_start > start)
440 		return -ENOMEM;
441 
442 	if (start > vma->vm_start)
443 		prev = vma;
444 
445 	for (nstart = start ; ; ) {
446 		unsigned int newflags;
447 
448 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
449 
450 		newflags = vma->vm_flags | VM_LOCKED;
451 		if (!on)
452 			newflags &= ~VM_LOCKED;
453 
454 		tmp = vma->vm_end;
455 		if (tmp > end)
456 			tmp = end;
457 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
458 		if (error)
459 			break;
460 		nstart = tmp;
461 		if (nstart < prev->vm_end)
462 			nstart = prev->vm_end;
463 		if (nstart >= end)
464 			break;
465 
466 		vma = prev->vm_next;
467 		if (!vma || vma->vm_start != nstart) {
468 			error = -ENOMEM;
469 			break;
470 		}
471 	}
472 	return error;
473 }
474 
475 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
476 {
477 	unsigned long locked;
478 	unsigned long lock_limit;
479 	int error = -ENOMEM;
480 
481 	if (!can_do_mlock())
482 		return -EPERM;
483 
484 	lru_add_drain_all();	/* flush pagevec */
485 
486 	down_write(&current->mm->mmap_sem);
487 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
488 	start &= PAGE_MASK;
489 
490 	locked = len >> PAGE_SHIFT;
491 	locked += current->mm->locked_vm;
492 
493 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
494 	lock_limit >>= PAGE_SHIFT;
495 
496 	/* check against resource limits */
497 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
498 		error = do_mlock(start, len, 1);
499 	up_write(&current->mm->mmap_sem);
500 	return error;
501 }
502 
503 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
504 {
505 	int ret;
506 
507 	down_write(&current->mm->mmap_sem);
508 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
509 	start &= PAGE_MASK;
510 	ret = do_mlock(start, len, 0);
511 	up_write(&current->mm->mmap_sem);
512 	return ret;
513 }
514 
515 static int do_mlockall(int flags)
516 {
517 	struct vm_area_struct * vma, * prev = NULL;
518 	unsigned int def_flags = 0;
519 
520 	if (flags & MCL_FUTURE)
521 		def_flags = VM_LOCKED;
522 	current->mm->def_flags = def_flags;
523 	if (flags == MCL_FUTURE)
524 		goto out;
525 
526 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527 		unsigned int newflags;
528 
529 		newflags = vma->vm_flags | VM_LOCKED;
530 		if (!(flags & MCL_CURRENT))
531 			newflags &= ~VM_LOCKED;
532 
533 		/* Ignore errors */
534 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
535 	}
536 out:
537 	return 0;
538 }
539 
540 SYSCALL_DEFINE1(mlockall, int, flags)
541 {
542 	unsigned long lock_limit;
543 	int ret = -EINVAL;
544 
545 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546 		goto out;
547 
548 	ret = -EPERM;
549 	if (!can_do_mlock())
550 		goto out;
551 
552 	lru_add_drain_all();	/* flush pagevec */
553 
554 	down_write(&current->mm->mmap_sem);
555 
556 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
557 	lock_limit >>= PAGE_SHIFT;
558 
559 	ret = -ENOMEM;
560 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561 	    capable(CAP_IPC_LOCK))
562 		ret = do_mlockall(flags);
563 	up_write(&current->mm->mmap_sem);
564 out:
565 	return ret;
566 }
567 
568 SYSCALL_DEFINE0(munlockall)
569 {
570 	int ret;
571 
572 	down_write(&current->mm->mmap_sem);
573 	ret = do_mlockall(0);
574 	up_write(&current->mm->mmap_sem);
575 	return ret;
576 }
577 
578 /*
579  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
580  * shm segments) get accounted against the user_struct instead.
581  */
582 static DEFINE_SPINLOCK(shmlock_user_lock);
583 
584 int user_shm_lock(size_t size, struct user_struct *user)
585 {
586 	unsigned long lock_limit, locked;
587 	int allowed = 0;
588 
589 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
590 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
591 	if (lock_limit == RLIM_INFINITY)
592 		allowed = 1;
593 	lock_limit >>= PAGE_SHIFT;
594 	spin_lock(&shmlock_user_lock);
595 	if (!allowed &&
596 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
597 		goto out;
598 	get_uid(user);
599 	user->locked_shm += locked;
600 	allowed = 1;
601 out:
602 	spin_unlock(&shmlock_user_lock);
603 	return allowed;
604 }
605 
606 void user_shm_unlock(size_t size, struct user_struct *user)
607 {
608 	spin_lock(&shmlock_user_lock);
609 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
610 	spin_unlock(&shmlock_user_lock);
611 	free_uid(user);
612 }
613 
614 int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
615 			  size_t size)
616 {
617 	unsigned long lim, vm, pgsz;
618 	int error = -ENOMEM;
619 
620 	pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
621 
622 	down_write(&mm->mmap_sem);
623 
624 	lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
625 	vm   = mm->total_vm + pgsz;
626 	if (lim < vm)
627 		goto out;
628 
629 	lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
630 	vm   = mm->locked_vm + pgsz;
631 	if (lim < vm)
632 		goto out;
633 
634 	mm->total_vm  += pgsz;
635 	mm->locked_vm += pgsz;
636 
637 	error = 0;
638  out:
639 	up_write(&mm->mmap_sem);
640 	return error;
641 }
642 
643 void refund_locked_memory(struct mm_struct *mm, size_t size)
644 {
645 	unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
646 
647 	down_write(&mm->mmap_sem);
648 
649 	mm->total_vm  -= pgsz;
650 	mm->locked_vm -= pgsz;
651 
652 	up_write(&mm->mmap_sem);
653 }
654