xref: /openbmc/linux/mm/mlock.c (revision e5c86679)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25 
26 #include "internal.h"
27 
28 bool can_do_mlock(void)
29 {
30 	if (rlimit(RLIMIT_MEMLOCK) != 0)
31 		return true;
32 	if (capable(CAP_IPC_LOCK))
33 		return true;
34 	return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37 
38 /*
39  * Mlocked pages are marked with PageMlocked() flag for efficient testing
40  * in vmscan and, possibly, the fault path; and to support semi-accurate
41  * statistics.
42  *
43  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
44  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45  * The unevictable list is an LRU sibling list to the [in]active lists.
46  * PageUnevictable is set to indicate the unevictable state.
47  *
48  * When lazy mlocking via vmscan, it is important to ensure that the
49  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50  * may have mlocked a page that is being munlocked. So lazy mlock must take
51  * the mmap_sem for read, and verify that the vma really is locked
52  * (see mm/rmap.c).
53  */
54 
55 /*
56  *  LRU accounting for clear_page_mlock()
57  */
58 void clear_page_mlock(struct page *page)
59 {
60 	if (!TestClearPageMlocked(page))
61 		return;
62 
63 	mod_zone_page_state(page_zone(page), NR_MLOCK,
64 			    -hpage_nr_pages(page));
65 	count_vm_event(UNEVICTABLE_PGCLEARED);
66 	if (!isolate_lru_page(page)) {
67 		putback_lru_page(page);
68 	} else {
69 		/*
70 		 * We lost the race. the page already moved to evictable list.
71 		 */
72 		if (PageUnevictable(page))
73 			count_vm_event(UNEVICTABLE_PGSTRANDED);
74 	}
75 }
76 
77 /*
78  * Mark page as mlocked if not already.
79  * If page on LRU, isolate and putback to move to unevictable list.
80  */
81 void mlock_vma_page(struct page *page)
82 {
83 	/* Serialize with page migration */
84 	BUG_ON(!PageLocked(page));
85 
86 	VM_BUG_ON_PAGE(PageTail(page), page);
87 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88 
89 	if (!TestSetPageMlocked(page)) {
90 		mod_zone_page_state(page_zone(page), NR_MLOCK,
91 				    hpage_nr_pages(page));
92 		count_vm_event(UNEVICTABLE_PGMLOCKED);
93 		if (!isolate_lru_page(page))
94 			putback_lru_page(page);
95 	}
96 }
97 
98 /*
99  * Isolate a page from LRU with optional get_page() pin.
100  * Assumes lru_lock already held and page already pinned.
101  */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 	if (PageLRU(page)) {
105 		struct lruvec *lruvec;
106 
107 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 		if (getpage)
109 			get_page(page);
110 		ClearPageLRU(page);
111 		del_page_from_lru_list(page, lruvec, page_lru(page));
112 		return true;
113 	}
114 
115 	return false;
116 }
117 
118 /*
119  * Finish munlock after successful page isolation
120  *
121  * Page must be locked. This is a wrapper for try_to_munlock()
122  * and putback_lru_page() with munlock accounting.
123  */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 	int ret = SWAP_AGAIN;
127 
128 	/*
129 	 * Optimization: if the page was mapped just once, that's our mapping
130 	 * and we don't need to check all the other vmas.
131 	 */
132 	if (page_mapcount(page) > 1)
133 		ret = try_to_munlock(page);
134 
135 	/* Did try_to_unlock() succeed or punt? */
136 	if (ret != SWAP_MLOCK)
137 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138 
139 	putback_lru_page(page);
140 }
141 
142 /*
143  * Accounting for page isolation fail during munlock
144  *
145  * Performs accounting when page isolation fails in munlock. There is nothing
146  * else to do because it means some other task has already removed the page
147  * from the LRU. putback_lru_page() will take care of removing the page from
148  * the unevictable list, if necessary. vmscan [page_referenced()] will move
149  * the page back to the unevictable list if some other vma has it mlocked.
150  */
151 static void __munlock_isolation_failed(struct page *page)
152 {
153 	if (PageUnevictable(page))
154 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
155 	else
156 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
157 }
158 
159 /**
160  * munlock_vma_page - munlock a vma page
161  * @page - page to be unlocked, either a normal page or THP page head
162  *
163  * returns the size of the page as a page mask (0 for normal page,
164  *         HPAGE_PMD_NR - 1 for THP head page)
165  *
166  * called from munlock()/munmap() path with page supposedly on the LRU.
167  * When we munlock a page, because the vma where we found the page is being
168  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
169  * page locked so that we can leave it on the unevictable lru list and not
170  * bother vmscan with it.  However, to walk the page's rmap list in
171  * try_to_munlock() we must isolate the page from the LRU.  If some other
172  * task has removed the page from the LRU, we won't be able to do that.
173  * So we clear the PageMlocked as we might not get another chance.  If we
174  * can't isolate the page, we leave it for putback_lru_page() and vmscan
175  * [page_referenced()/try_to_unmap()] to deal with.
176  */
177 unsigned int munlock_vma_page(struct page *page)
178 {
179 	int nr_pages;
180 	struct zone *zone = page_zone(page);
181 
182 	/* For try_to_munlock() and to serialize with page migration */
183 	BUG_ON(!PageLocked(page));
184 
185 	VM_BUG_ON_PAGE(PageTail(page), page);
186 
187 	/*
188 	 * Serialize with any parallel __split_huge_page_refcount() which
189 	 * might otherwise copy PageMlocked to part of the tail pages before
190 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
191 	 */
192 	spin_lock_irq(zone_lru_lock(zone));
193 
194 	if (!TestClearPageMlocked(page)) {
195 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
196 		nr_pages = 1;
197 		goto unlock_out;
198 	}
199 
200 	nr_pages = hpage_nr_pages(page);
201 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
202 
203 	if (__munlock_isolate_lru_page(page, true)) {
204 		spin_unlock_irq(zone_lru_lock(zone));
205 		__munlock_isolated_page(page);
206 		goto out;
207 	}
208 	__munlock_isolation_failed(page);
209 
210 unlock_out:
211 	spin_unlock_irq(zone_lru_lock(zone));
212 
213 out:
214 	return nr_pages - 1;
215 }
216 
217 /*
218  * convert get_user_pages() return value to posix mlock() error
219  */
220 static int __mlock_posix_error_return(long retval)
221 {
222 	if (retval == -EFAULT)
223 		retval = -ENOMEM;
224 	else if (retval == -ENOMEM)
225 		retval = -EAGAIN;
226 	return retval;
227 }
228 
229 /*
230  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231  *
232  * The fast path is available only for evictable pages with single mapping.
233  * Then we can bypass the per-cpu pvec and get better performance.
234  * when mapcount > 1 we need try_to_munlock() which can fail.
235  * when !page_evictable(), we need the full redo logic of putback_lru_page to
236  * avoid leaving evictable page in unevictable list.
237  *
238  * In case of success, @page is added to @pvec and @pgrescued is incremented
239  * in case that the page was previously unevictable. @page is also unlocked.
240  */
241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242 		int *pgrescued)
243 {
244 	VM_BUG_ON_PAGE(PageLRU(page), page);
245 	VM_BUG_ON_PAGE(!PageLocked(page), page);
246 
247 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
248 		pagevec_add(pvec, page);
249 		if (TestClearPageUnevictable(page))
250 			(*pgrescued)++;
251 		unlock_page(page);
252 		return true;
253 	}
254 
255 	return false;
256 }
257 
258 /*
259  * Putback multiple evictable pages to the LRU
260  *
261  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262  * the pages might have meanwhile become unevictable but that is OK.
263  */
264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265 {
266 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267 	/*
268 	 *__pagevec_lru_add() calls release_pages() so we don't call
269 	 * put_page() explicitly
270 	 */
271 	__pagevec_lru_add(pvec);
272 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273 }
274 
275 /*
276  * Munlock a batch of pages from the same zone
277  *
278  * The work is split to two main phases. First phase clears the Mlocked flag
279  * and attempts to isolate the pages, all under a single zone lru lock.
280  * The second phase finishes the munlock only for pages where isolation
281  * succeeded.
282  *
283  * Note that the pagevec may be modified during the process.
284  */
285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
286 {
287 	int i;
288 	int nr = pagevec_count(pvec);
289 	int delta_munlocked;
290 	struct pagevec pvec_putback;
291 	int pgrescued = 0;
292 
293 	pagevec_init(&pvec_putback, 0);
294 
295 	/* Phase 1: page isolation */
296 	spin_lock_irq(zone_lru_lock(zone));
297 	for (i = 0; i < nr; i++) {
298 		struct page *page = pvec->pages[i];
299 
300 		if (TestClearPageMlocked(page)) {
301 			/*
302 			 * We already have pin from follow_page_mask()
303 			 * so we can spare the get_page() here.
304 			 */
305 			if (__munlock_isolate_lru_page(page, false))
306 				continue;
307 			else
308 				__munlock_isolation_failed(page);
309 		}
310 
311 		/*
312 		 * We won't be munlocking this page in the next phase
313 		 * but we still need to release the follow_page_mask()
314 		 * pin. We cannot do it under lru_lock however. If it's
315 		 * the last pin, __page_cache_release() would deadlock.
316 		 */
317 		pagevec_add(&pvec_putback, pvec->pages[i]);
318 		pvec->pages[i] = NULL;
319 	}
320 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
321 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
322 	spin_unlock_irq(zone_lru_lock(zone));
323 
324 	/* Now we can release pins of pages that we are not munlocking */
325 	pagevec_release(&pvec_putback);
326 
327 	/* Phase 2: page munlock */
328 	for (i = 0; i < nr; i++) {
329 		struct page *page = pvec->pages[i];
330 
331 		if (page) {
332 			lock_page(page);
333 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
334 					&pgrescued)) {
335 				/*
336 				 * Slow path. We don't want to lose the last
337 				 * pin before unlock_page()
338 				 */
339 				get_page(page); /* for putback_lru_page() */
340 				__munlock_isolated_page(page);
341 				unlock_page(page);
342 				put_page(page); /* from follow_page_mask() */
343 			}
344 		}
345 	}
346 
347 	/*
348 	 * Phase 3: page putback for pages that qualified for the fast path
349 	 * This will also call put_page() to return pin from follow_page_mask()
350 	 */
351 	if (pagevec_count(&pvec_putback))
352 		__putback_lru_fast(&pvec_putback, pgrescued);
353 }
354 
355 /*
356  * Fill up pagevec for __munlock_pagevec using pte walk
357  *
358  * The function expects that the struct page corresponding to @start address is
359  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
360  *
361  * The rest of @pvec is filled by subsequent pages within the same pmd and same
362  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
363  * pages also get pinned.
364  *
365  * Returns the address of the next page that should be scanned. This equals
366  * @start + PAGE_SIZE when no page could be added by the pte walk.
367  */
368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
369 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
370 		unsigned long end)
371 {
372 	pte_t *pte;
373 	spinlock_t *ptl;
374 
375 	/*
376 	 * Initialize pte walk starting at the already pinned page where we
377 	 * are sure that there is a pte, as it was pinned under the same
378 	 * mmap_sem write op.
379 	 */
380 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
381 	/* Make sure we do not cross the page table boundary */
382 	end = pgd_addr_end(start, end);
383 	end = p4d_addr_end(start, end);
384 	end = pud_addr_end(start, end);
385 	end = pmd_addr_end(start, end);
386 
387 	/* The page next to the pinned page is the first we will try to get */
388 	start += PAGE_SIZE;
389 	while (start < end) {
390 		struct page *page = NULL;
391 		pte++;
392 		if (pte_present(*pte))
393 			page = vm_normal_page(vma, start, *pte);
394 		/*
395 		 * Break if page could not be obtained or the page's node+zone does not
396 		 * match
397 		 */
398 		if (!page || page_zone_id(page) != zoneid)
399 			break;
400 
401 		/*
402 		 * Do not use pagevec for PTE-mapped THP,
403 		 * munlock_vma_pages_range() will handle them.
404 		 */
405 		if (PageTransCompound(page))
406 			break;
407 
408 		get_page(page);
409 		/*
410 		 * Increase the address that will be returned *before* the
411 		 * eventual break due to pvec becoming full by adding the page
412 		 */
413 		start += PAGE_SIZE;
414 		if (pagevec_add(pvec, page) == 0)
415 			break;
416 	}
417 	pte_unmap_unlock(pte, ptl);
418 	return start;
419 }
420 
421 /*
422  * munlock_vma_pages_range() - munlock all pages in the vma range.'
423  * @vma - vma containing range to be munlock()ed.
424  * @start - start address in @vma of the range
425  * @end - end of range in @vma.
426  *
427  *  For mremap(), munmap() and exit().
428  *
429  * Called with @vma VM_LOCKED.
430  *
431  * Returns with VM_LOCKED cleared.  Callers must be prepared to
432  * deal with this.
433  *
434  * We don't save and restore VM_LOCKED here because pages are
435  * still on lru.  In unmap path, pages might be scanned by reclaim
436  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
437  * free them.  This will result in freeing mlocked pages.
438  */
439 void munlock_vma_pages_range(struct vm_area_struct *vma,
440 			     unsigned long start, unsigned long end)
441 {
442 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
443 
444 	while (start < end) {
445 		struct page *page;
446 		unsigned int page_mask = 0;
447 		unsigned long page_increm;
448 		struct pagevec pvec;
449 		struct zone *zone;
450 		int zoneid;
451 
452 		pagevec_init(&pvec, 0);
453 		/*
454 		 * Although FOLL_DUMP is intended for get_dump_page(),
455 		 * it just so happens that its special treatment of the
456 		 * ZERO_PAGE (returning an error instead of doing get_page)
457 		 * suits munlock very well (and if somehow an abnormal page
458 		 * has sneaked into the range, we won't oops here: great).
459 		 */
460 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
461 
462 		if (page && !IS_ERR(page)) {
463 			if (PageTransTail(page)) {
464 				VM_BUG_ON_PAGE(PageMlocked(page), page);
465 				put_page(page); /* follow_page_mask() */
466 			} else if (PageTransHuge(page)) {
467 				lock_page(page);
468 				/*
469 				 * Any THP page found by follow_page_mask() may
470 				 * have gotten split before reaching
471 				 * munlock_vma_page(), so we need to compute
472 				 * the page_mask here instead.
473 				 */
474 				page_mask = munlock_vma_page(page);
475 				unlock_page(page);
476 				put_page(page); /* follow_page_mask() */
477 			} else {
478 				/*
479 				 * Non-huge pages are handled in batches via
480 				 * pagevec. The pin from follow_page_mask()
481 				 * prevents them from collapsing by THP.
482 				 */
483 				pagevec_add(&pvec, page);
484 				zone = page_zone(page);
485 				zoneid = page_zone_id(page);
486 
487 				/*
488 				 * Try to fill the rest of pagevec using fast
489 				 * pte walk. This will also update start to
490 				 * the next page to process. Then munlock the
491 				 * pagevec.
492 				 */
493 				start = __munlock_pagevec_fill(&pvec, vma,
494 						zoneid, start, end);
495 				__munlock_pagevec(&pvec, zone);
496 				goto next;
497 			}
498 		}
499 		page_increm = 1 + page_mask;
500 		start += page_increm * PAGE_SIZE;
501 next:
502 		cond_resched();
503 	}
504 }
505 
506 /*
507  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
508  *
509  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
510  * munlock is a no-op.  However, for some special vmas, we go ahead and
511  * populate the ptes.
512  *
513  * For vmas that pass the filters, merge/split as appropriate.
514  */
515 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
516 	unsigned long start, unsigned long end, vm_flags_t newflags)
517 {
518 	struct mm_struct *mm = vma->vm_mm;
519 	pgoff_t pgoff;
520 	int nr_pages;
521 	int ret = 0;
522 	int lock = !!(newflags & VM_LOCKED);
523 	vm_flags_t old_flags = vma->vm_flags;
524 
525 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
526 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
527 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
528 		goto out;
529 
530 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
531 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
532 			  vma->vm_file, pgoff, vma_policy(vma),
533 			  vma->vm_userfaultfd_ctx);
534 	if (*prev) {
535 		vma = *prev;
536 		goto success;
537 	}
538 
539 	if (start != vma->vm_start) {
540 		ret = split_vma(mm, vma, start, 1);
541 		if (ret)
542 			goto out;
543 	}
544 
545 	if (end != vma->vm_end) {
546 		ret = split_vma(mm, vma, end, 0);
547 		if (ret)
548 			goto out;
549 	}
550 
551 success:
552 	/*
553 	 * Keep track of amount of locked VM.
554 	 */
555 	nr_pages = (end - start) >> PAGE_SHIFT;
556 	if (!lock)
557 		nr_pages = -nr_pages;
558 	else if (old_flags & VM_LOCKED)
559 		nr_pages = 0;
560 	mm->locked_vm += nr_pages;
561 
562 	/*
563 	 * vm_flags is protected by the mmap_sem held in write mode.
564 	 * It's okay if try_to_unmap_one unmaps a page just after we
565 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
566 	 */
567 
568 	if (lock)
569 		vma->vm_flags = newflags;
570 	else
571 		munlock_vma_pages_range(vma, start, end);
572 
573 out:
574 	*prev = vma;
575 	return ret;
576 }
577 
578 static int apply_vma_lock_flags(unsigned long start, size_t len,
579 				vm_flags_t flags)
580 {
581 	unsigned long nstart, end, tmp;
582 	struct vm_area_struct * vma, * prev;
583 	int error;
584 
585 	VM_BUG_ON(offset_in_page(start));
586 	VM_BUG_ON(len != PAGE_ALIGN(len));
587 	end = start + len;
588 	if (end < start)
589 		return -EINVAL;
590 	if (end == start)
591 		return 0;
592 	vma = find_vma(current->mm, start);
593 	if (!vma || vma->vm_start > start)
594 		return -ENOMEM;
595 
596 	prev = vma->vm_prev;
597 	if (start > vma->vm_start)
598 		prev = vma;
599 
600 	for (nstart = start ; ; ) {
601 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
602 
603 		newflags |= flags;
604 
605 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
606 		tmp = vma->vm_end;
607 		if (tmp > end)
608 			tmp = end;
609 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
610 		if (error)
611 			break;
612 		nstart = tmp;
613 		if (nstart < prev->vm_end)
614 			nstart = prev->vm_end;
615 		if (nstart >= end)
616 			break;
617 
618 		vma = prev->vm_next;
619 		if (!vma || vma->vm_start != nstart) {
620 			error = -ENOMEM;
621 			break;
622 		}
623 	}
624 	return error;
625 }
626 
627 /*
628  * Go through vma areas and sum size of mlocked
629  * vma pages, as return value.
630  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
631  * is also counted.
632  * Return value: previously mlocked page counts
633  */
634 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
635 		unsigned long start, size_t len)
636 {
637 	struct vm_area_struct *vma;
638 	int count = 0;
639 
640 	if (mm == NULL)
641 		mm = current->mm;
642 
643 	vma = find_vma(mm, start);
644 	if (vma == NULL)
645 		vma = mm->mmap;
646 
647 	for (; vma ; vma = vma->vm_next) {
648 		if (start >= vma->vm_end)
649 			continue;
650 		if (start + len <=  vma->vm_start)
651 			break;
652 		if (vma->vm_flags & VM_LOCKED) {
653 			if (start > vma->vm_start)
654 				count -= (start - vma->vm_start);
655 			if (start + len < vma->vm_end) {
656 				count += start + len - vma->vm_start;
657 				break;
658 			}
659 			count += vma->vm_end - vma->vm_start;
660 		}
661 	}
662 
663 	return count >> PAGE_SHIFT;
664 }
665 
666 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
667 {
668 	unsigned long locked;
669 	unsigned long lock_limit;
670 	int error = -ENOMEM;
671 
672 	if (!can_do_mlock())
673 		return -EPERM;
674 
675 	lru_add_drain_all();	/* flush pagevec */
676 
677 	len = PAGE_ALIGN(len + (offset_in_page(start)));
678 	start &= PAGE_MASK;
679 
680 	lock_limit = rlimit(RLIMIT_MEMLOCK);
681 	lock_limit >>= PAGE_SHIFT;
682 	locked = len >> PAGE_SHIFT;
683 
684 	if (down_write_killable(&current->mm->mmap_sem))
685 		return -EINTR;
686 
687 	locked += current->mm->locked_vm;
688 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
689 		/*
690 		 * It is possible that the regions requested intersect with
691 		 * previously mlocked areas, that part area in "mm->locked_vm"
692 		 * should not be counted to new mlock increment count. So check
693 		 * and adjust locked count if necessary.
694 		 */
695 		locked -= count_mm_mlocked_page_nr(current->mm,
696 				start, len);
697 	}
698 
699 	/* check against resource limits */
700 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
701 		error = apply_vma_lock_flags(start, len, flags);
702 
703 	up_write(&current->mm->mmap_sem);
704 	if (error)
705 		return error;
706 
707 	error = __mm_populate(start, len, 0);
708 	if (error)
709 		return __mlock_posix_error_return(error);
710 	return 0;
711 }
712 
713 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
714 {
715 	return do_mlock(start, len, VM_LOCKED);
716 }
717 
718 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
719 {
720 	vm_flags_t vm_flags = VM_LOCKED;
721 
722 	if (flags & ~MLOCK_ONFAULT)
723 		return -EINVAL;
724 
725 	if (flags & MLOCK_ONFAULT)
726 		vm_flags |= VM_LOCKONFAULT;
727 
728 	return do_mlock(start, len, vm_flags);
729 }
730 
731 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
732 {
733 	int ret;
734 
735 	len = PAGE_ALIGN(len + (offset_in_page(start)));
736 	start &= PAGE_MASK;
737 
738 	if (down_write_killable(&current->mm->mmap_sem))
739 		return -EINTR;
740 	ret = apply_vma_lock_flags(start, len, 0);
741 	up_write(&current->mm->mmap_sem);
742 
743 	return ret;
744 }
745 
746 /*
747  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
748  * and translate into the appropriate modifications to mm->def_flags and/or the
749  * flags for all current VMAs.
750  *
751  * There are a couple of subtleties with this.  If mlockall() is called multiple
752  * times with different flags, the values do not necessarily stack.  If mlockall
753  * is called once including the MCL_FUTURE flag and then a second time without
754  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
755  */
756 static int apply_mlockall_flags(int flags)
757 {
758 	struct vm_area_struct * vma, * prev = NULL;
759 	vm_flags_t to_add = 0;
760 
761 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
762 	if (flags & MCL_FUTURE) {
763 		current->mm->def_flags |= VM_LOCKED;
764 
765 		if (flags & MCL_ONFAULT)
766 			current->mm->def_flags |= VM_LOCKONFAULT;
767 
768 		if (!(flags & MCL_CURRENT))
769 			goto out;
770 	}
771 
772 	if (flags & MCL_CURRENT) {
773 		to_add |= VM_LOCKED;
774 		if (flags & MCL_ONFAULT)
775 			to_add |= VM_LOCKONFAULT;
776 	}
777 
778 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
779 		vm_flags_t newflags;
780 
781 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
782 		newflags |= to_add;
783 
784 		/* Ignore errors */
785 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
786 		cond_resched_rcu_qs();
787 	}
788 out:
789 	return 0;
790 }
791 
792 SYSCALL_DEFINE1(mlockall, int, flags)
793 {
794 	unsigned long lock_limit;
795 	int ret;
796 
797 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
798 		return -EINVAL;
799 
800 	if (!can_do_mlock())
801 		return -EPERM;
802 
803 	if (flags & MCL_CURRENT)
804 		lru_add_drain_all();	/* flush pagevec */
805 
806 	lock_limit = rlimit(RLIMIT_MEMLOCK);
807 	lock_limit >>= PAGE_SHIFT;
808 
809 	if (down_write_killable(&current->mm->mmap_sem))
810 		return -EINTR;
811 
812 	ret = -ENOMEM;
813 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
814 	    capable(CAP_IPC_LOCK))
815 		ret = apply_mlockall_flags(flags);
816 	up_write(&current->mm->mmap_sem);
817 	if (!ret && (flags & MCL_CURRENT))
818 		mm_populate(0, TASK_SIZE);
819 
820 	return ret;
821 }
822 
823 SYSCALL_DEFINE0(munlockall)
824 {
825 	int ret;
826 
827 	if (down_write_killable(&current->mm->mmap_sem))
828 		return -EINTR;
829 	ret = apply_mlockall_flags(0);
830 	up_write(&current->mm->mmap_sem);
831 	return ret;
832 }
833 
834 /*
835  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
836  * shm segments) get accounted against the user_struct instead.
837  */
838 static DEFINE_SPINLOCK(shmlock_user_lock);
839 
840 int user_shm_lock(size_t size, struct user_struct *user)
841 {
842 	unsigned long lock_limit, locked;
843 	int allowed = 0;
844 
845 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
846 	lock_limit = rlimit(RLIMIT_MEMLOCK);
847 	if (lock_limit == RLIM_INFINITY)
848 		allowed = 1;
849 	lock_limit >>= PAGE_SHIFT;
850 	spin_lock(&shmlock_user_lock);
851 	if (!allowed &&
852 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
853 		goto out;
854 	get_uid(user);
855 	user->locked_shm += locked;
856 	allowed = 1;
857 out:
858 	spin_unlock(&shmlock_user_lock);
859 	return allowed;
860 }
861 
862 void user_shm_unlock(size_t size, struct user_struct *user)
863 {
864 	spin_lock(&shmlock_user_lock);
865 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
866 	spin_unlock(&shmlock_user_lock);
867 	free_uid(user);
868 }
869