xref: /openbmc/linux/mm/mlock.c (revision dcc5d337)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagewalk.h>
18 #include <linux/mempolicy.h>
19 #include <linux/syscalls.h>
20 #include <linux/sched.h>
21 #include <linux/export.h>
22 #include <linux/rmap.h>
23 #include <linux/mmzone.h>
24 #include <linux/hugetlb.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 #include <linux/secretmem.h>
28 
29 #include "internal.h"
30 
31 static DEFINE_PER_CPU(struct pagevec, mlock_pvec);
32 
33 bool can_do_mlock(void)
34 {
35 	if (rlimit(RLIMIT_MEMLOCK) != 0)
36 		return true;
37 	if (capable(CAP_IPC_LOCK))
38 		return true;
39 	return false;
40 }
41 EXPORT_SYMBOL(can_do_mlock);
42 
43 /*
44  * Mlocked pages are marked with PageMlocked() flag for efficient testing
45  * in vmscan and, possibly, the fault path; and to support semi-accurate
46  * statistics.
47  *
48  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
49  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
50  * The unevictable list is an LRU sibling list to the [in]active lists.
51  * PageUnevictable is set to indicate the unevictable state.
52  */
53 
54 static struct lruvec *__mlock_page(struct page *page, struct lruvec *lruvec)
55 {
56 	/* There is nothing more we can do while it's off LRU */
57 	if (!TestClearPageLRU(page))
58 		return lruvec;
59 
60 	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
61 
62 	if (unlikely(page_evictable(page))) {
63 		/*
64 		 * This is a little surprising, but quite possible:
65 		 * PageMlocked must have got cleared already by another CPU.
66 		 * Could this page be on the Unevictable LRU?  I'm not sure,
67 		 * but move it now if so.
68 		 */
69 		if (PageUnevictable(page)) {
70 			del_page_from_lru_list(page, lruvec);
71 			ClearPageUnevictable(page);
72 			add_page_to_lru_list(page, lruvec);
73 			__count_vm_events(UNEVICTABLE_PGRESCUED,
74 					  thp_nr_pages(page));
75 		}
76 		goto out;
77 	}
78 
79 	if (PageUnevictable(page)) {
80 		if (PageMlocked(page))
81 			page->mlock_count++;
82 		goto out;
83 	}
84 
85 	del_page_from_lru_list(page, lruvec);
86 	ClearPageActive(page);
87 	SetPageUnevictable(page);
88 	page->mlock_count = !!PageMlocked(page);
89 	add_page_to_lru_list(page, lruvec);
90 	__count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
91 out:
92 	SetPageLRU(page);
93 	return lruvec;
94 }
95 
96 static struct lruvec *__mlock_new_page(struct page *page, struct lruvec *lruvec)
97 {
98 	VM_BUG_ON_PAGE(PageLRU(page), page);
99 
100 	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
101 
102 	/* As above, this is a little surprising, but possible */
103 	if (unlikely(page_evictable(page)))
104 		goto out;
105 
106 	SetPageUnevictable(page);
107 	page->mlock_count = !!PageMlocked(page);
108 	__count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
109 out:
110 	add_page_to_lru_list(page, lruvec);
111 	SetPageLRU(page);
112 	return lruvec;
113 }
114 
115 static struct lruvec *__munlock_page(struct page *page, struct lruvec *lruvec)
116 {
117 	int nr_pages = thp_nr_pages(page);
118 	bool isolated = false;
119 
120 	if (!TestClearPageLRU(page))
121 		goto munlock;
122 
123 	isolated = true;
124 	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
125 
126 	if (PageUnevictable(page)) {
127 		/* Then mlock_count is maintained, but might undercount */
128 		if (page->mlock_count)
129 			page->mlock_count--;
130 		if (page->mlock_count)
131 			goto out;
132 	}
133 	/* else assume that was the last mlock: reclaim will fix it if not */
134 
135 munlock:
136 	if (TestClearPageMlocked(page)) {
137 		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
138 		if (isolated || !PageUnevictable(page))
139 			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
140 		else
141 			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
142 	}
143 
144 	/* page_evictable() has to be checked *after* clearing Mlocked */
145 	if (isolated && PageUnevictable(page) && page_evictable(page)) {
146 		del_page_from_lru_list(page, lruvec);
147 		ClearPageUnevictable(page);
148 		add_page_to_lru_list(page, lruvec);
149 		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
150 	}
151 out:
152 	if (isolated)
153 		SetPageLRU(page);
154 	return lruvec;
155 }
156 
157 /*
158  * Flags held in the low bits of a struct page pointer on the mlock_pvec.
159  */
160 #define LRU_PAGE 0x1
161 #define NEW_PAGE 0x2
162 static inline struct page *mlock_lru(struct page *page)
163 {
164 	return (struct page *)((unsigned long)page + LRU_PAGE);
165 }
166 
167 static inline struct page *mlock_new(struct page *page)
168 {
169 	return (struct page *)((unsigned long)page + NEW_PAGE);
170 }
171 
172 /*
173  * mlock_pagevec() is derived from pagevec_lru_move_fn():
174  * perhaps that can make use of such page pointer flags in future,
175  * but for now just keep it for mlock.  We could use three separate
176  * pagevecs instead, but one feels better (munlocking a full pagevec
177  * does not need to drain mlocking pagevecs first).
178  */
179 static void mlock_pagevec(struct pagevec *pvec)
180 {
181 	struct lruvec *lruvec = NULL;
182 	unsigned long mlock;
183 	struct page *page;
184 	int i;
185 
186 	for (i = 0; i < pagevec_count(pvec); i++) {
187 		page = pvec->pages[i];
188 		mlock = (unsigned long)page & (LRU_PAGE | NEW_PAGE);
189 		page = (struct page *)((unsigned long)page - mlock);
190 		pvec->pages[i] = page;
191 
192 		if (mlock & LRU_PAGE)
193 			lruvec = __mlock_page(page, lruvec);
194 		else if (mlock & NEW_PAGE)
195 			lruvec = __mlock_new_page(page, lruvec);
196 		else
197 			lruvec = __munlock_page(page, lruvec);
198 	}
199 
200 	if (lruvec)
201 		unlock_page_lruvec_irq(lruvec);
202 	release_pages(pvec->pages, pvec->nr);
203 	pagevec_reinit(pvec);
204 }
205 
206 void mlock_page_drain(int cpu)
207 {
208 	struct pagevec *pvec;
209 
210 	pvec = &per_cpu(mlock_pvec, cpu);
211 	if (pagevec_count(pvec))
212 		mlock_pagevec(pvec);
213 }
214 
215 bool need_mlock_page_drain(int cpu)
216 {
217 	return pagevec_count(&per_cpu(mlock_pvec, cpu));
218 }
219 
220 /**
221  * mlock_folio - mlock a folio already on (or temporarily off) LRU
222  * @folio: folio to be mlocked.
223  */
224 void mlock_folio(struct folio *folio)
225 {
226 	struct pagevec *pvec = &get_cpu_var(mlock_pvec);
227 
228 	if (!folio_test_set_mlocked(folio)) {
229 		int nr_pages = folio_nr_pages(folio);
230 
231 		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
232 		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
233 	}
234 
235 	folio_get(folio);
236 	if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
237 	    folio_test_large(folio) || lru_cache_disabled())
238 		mlock_pagevec(pvec);
239 	put_cpu_var(mlock_pvec);
240 }
241 
242 /**
243  * mlock_new_page - mlock a newly allocated page not yet on LRU
244  * @page: page to be mlocked, either a normal page or a THP head.
245  */
246 void mlock_new_page(struct page *page)
247 {
248 	struct pagevec *pvec = &get_cpu_var(mlock_pvec);
249 	int nr_pages = thp_nr_pages(page);
250 
251 	SetPageMlocked(page);
252 	mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
253 	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
254 
255 	get_page(page);
256 	if (!pagevec_add(pvec, mlock_new(page)) ||
257 	    PageHead(page) || lru_cache_disabled())
258 		mlock_pagevec(pvec);
259 	put_cpu_var(mlock_pvec);
260 }
261 
262 /**
263  * munlock_page - munlock a page
264  * @page: page to be munlocked, either a normal page or a THP head.
265  */
266 void munlock_page(struct page *page)
267 {
268 	struct pagevec *pvec = &get_cpu_var(mlock_pvec);
269 
270 	/*
271 	 * TestClearPageMlocked(page) must be left to __munlock_page(),
272 	 * which will check whether the page is multiply mlocked.
273 	 */
274 
275 	get_page(page);
276 	if (!pagevec_add(pvec, page) ||
277 	    PageHead(page) || lru_cache_disabled())
278 		mlock_pagevec(pvec);
279 	put_cpu_var(mlock_pvec);
280 }
281 
282 static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
283 			   unsigned long end, struct mm_walk *walk)
284 
285 {
286 	struct vm_area_struct *vma = walk->vma;
287 	spinlock_t *ptl;
288 	pte_t *start_pte, *pte;
289 	struct page *page;
290 
291 	ptl = pmd_trans_huge_lock(pmd, vma);
292 	if (ptl) {
293 		if (!pmd_present(*pmd))
294 			goto out;
295 		if (is_huge_zero_pmd(*pmd))
296 			goto out;
297 		page = pmd_page(*pmd);
298 		if (vma->vm_flags & VM_LOCKED)
299 			mlock_folio(page_folio(page));
300 		else
301 			munlock_page(page);
302 		goto out;
303 	}
304 
305 	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
306 	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
307 		if (!pte_present(*pte))
308 			continue;
309 		page = vm_normal_page(vma, addr, *pte);
310 		if (!page)
311 			continue;
312 		if (PageTransCompound(page))
313 			continue;
314 		if (vma->vm_flags & VM_LOCKED)
315 			mlock_folio(page_folio(page));
316 		else
317 			munlock_page(page);
318 	}
319 	pte_unmap(start_pte);
320 out:
321 	spin_unlock(ptl);
322 	cond_resched();
323 	return 0;
324 }
325 
326 /*
327  * mlock_vma_pages_range() - mlock any pages already in the range,
328  *                           or munlock all pages in the range.
329  * @vma - vma containing range to be mlock()ed or munlock()ed
330  * @start - start address in @vma of the range
331  * @end - end of range in @vma
332  * @newflags - the new set of flags for @vma.
333  *
334  * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
335  * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
336  */
337 static void mlock_vma_pages_range(struct vm_area_struct *vma,
338 	unsigned long start, unsigned long end, vm_flags_t newflags)
339 {
340 	static const struct mm_walk_ops mlock_walk_ops = {
341 		.pmd_entry = mlock_pte_range,
342 	};
343 
344 	/*
345 	 * There is a slight chance that concurrent page migration,
346 	 * or page reclaim finding a page of this now-VM_LOCKED vma,
347 	 * will call mlock_vma_page() and raise page's mlock_count:
348 	 * double counting, leaving the page unevictable indefinitely.
349 	 * Communicate this danger to mlock_vma_page() with VM_IO,
350 	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
351 	 * mmap_lock is held in write mode here, so this weird
352 	 * combination should not be visible to other mmap_lock users;
353 	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
354 	 */
355 	if (newflags & VM_LOCKED)
356 		newflags |= VM_IO;
357 	WRITE_ONCE(vma->vm_flags, newflags);
358 
359 	lru_add_drain();
360 	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
361 	lru_add_drain();
362 
363 	if (newflags & VM_IO) {
364 		newflags &= ~VM_IO;
365 		WRITE_ONCE(vma->vm_flags, newflags);
366 	}
367 }
368 
369 /*
370  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
371  *
372  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
373  * munlock is a no-op.  However, for some special vmas, we go ahead and
374  * populate the ptes.
375  *
376  * For vmas that pass the filters, merge/split as appropriate.
377  */
378 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
379 	unsigned long start, unsigned long end, vm_flags_t newflags)
380 {
381 	struct mm_struct *mm = vma->vm_mm;
382 	pgoff_t pgoff;
383 	int nr_pages;
384 	int ret = 0;
385 	vm_flags_t oldflags = vma->vm_flags;
386 
387 	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
388 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
389 	    vma_is_dax(vma) || vma_is_secretmem(vma))
390 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
391 		goto out;
392 
393 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
394 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
395 			  vma->vm_file, pgoff, vma_policy(vma),
396 			  vma->vm_userfaultfd_ctx, vma_anon_name(vma));
397 	if (*prev) {
398 		vma = *prev;
399 		goto success;
400 	}
401 
402 	if (start != vma->vm_start) {
403 		ret = split_vma(mm, vma, start, 1);
404 		if (ret)
405 			goto out;
406 	}
407 
408 	if (end != vma->vm_end) {
409 		ret = split_vma(mm, vma, end, 0);
410 		if (ret)
411 			goto out;
412 	}
413 
414 success:
415 	/*
416 	 * Keep track of amount of locked VM.
417 	 */
418 	nr_pages = (end - start) >> PAGE_SHIFT;
419 	if (!(newflags & VM_LOCKED))
420 		nr_pages = -nr_pages;
421 	else if (oldflags & VM_LOCKED)
422 		nr_pages = 0;
423 	mm->locked_vm += nr_pages;
424 
425 	/*
426 	 * vm_flags is protected by the mmap_lock held in write mode.
427 	 * It's okay if try_to_unmap_one unmaps a page just after we
428 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
429 	 */
430 
431 	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
432 		/* No work to do, and mlocking twice would be wrong */
433 		vma->vm_flags = newflags;
434 	} else {
435 		mlock_vma_pages_range(vma, start, end, newflags);
436 	}
437 out:
438 	*prev = vma;
439 	return ret;
440 }
441 
442 static int apply_vma_lock_flags(unsigned long start, size_t len,
443 				vm_flags_t flags)
444 {
445 	unsigned long nstart, end, tmp;
446 	struct vm_area_struct *vma, *prev;
447 	int error;
448 
449 	VM_BUG_ON(offset_in_page(start));
450 	VM_BUG_ON(len != PAGE_ALIGN(len));
451 	end = start + len;
452 	if (end < start)
453 		return -EINVAL;
454 	if (end == start)
455 		return 0;
456 	vma = find_vma(current->mm, start);
457 	if (!vma || vma->vm_start > start)
458 		return -ENOMEM;
459 
460 	prev = vma->vm_prev;
461 	if (start > vma->vm_start)
462 		prev = vma;
463 
464 	for (nstart = start ; ; ) {
465 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
466 
467 		newflags |= flags;
468 
469 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
470 		tmp = vma->vm_end;
471 		if (tmp > end)
472 			tmp = end;
473 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
474 		if (error)
475 			break;
476 		nstart = tmp;
477 		if (nstart < prev->vm_end)
478 			nstart = prev->vm_end;
479 		if (nstart >= end)
480 			break;
481 
482 		vma = prev->vm_next;
483 		if (!vma || vma->vm_start != nstart) {
484 			error = -ENOMEM;
485 			break;
486 		}
487 	}
488 	return error;
489 }
490 
491 /*
492  * Go through vma areas and sum size of mlocked
493  * vma pages, as return value.
494  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
495  * is also counted.
496  * Return value: previously mlocked page counts
497  */
498 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
499 		unsigned long start, size_t len)
500 {
501 	struct vm_area_struct *vma;
502 	unsigned long count = 0;
503 
504 	if (mm == NULL)
505 		mm = current->mm;
506 
507 	vma = find_vma(mm, start);
508 	if (vma == NULL)
509 		return 0;
510 
511 	for (; vma ; vma = vma->vm_next) {
512 		if (start >= vma->vm_end)
513 			continue;
514 		if (start + len <=  vma->vm_start)
515 			break;
516 		if (vma->vm_flags & VM_LOCKED) {
517 			if (start > vma->vm_start)
518 				count -= (start - vma->vm_start);
519 			if (start + len < vma->vm_end) {
520 				count += start + len - vma->vm_start;
521 				break;
522 			}
523 			count += vma->vm_end - vma->vm_start;
524 		}
525 	}
526 
527 	return count >> PAGE_SHIFT;
528 }
529 
530 /*
531  * convert get_user_pages() return value to posix mlock() error
532  */
533 static int __mlock_posix_error_return(long retval)
534 {
535 	if (retval == -EFAULT)
536 		retval = -ENOMEM;
537 	else if (retval == -ENOMEM)
538 		retval = -EAGAIN;
539 	return retval;
540 }
541 
542 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
543 {
544 	unsigned long locked;
545 	unsigned long lock_limit;
546 	int error = -ENOMEM;
547 
548 	start = untagged_addr(start);
549 
550 	if (!can_do_mlock())
551 		return -EPERM;
552 
553 	len = PAGE_ALIGN(len + (offset_in_page(start)));
554 	start &= PAGE_MASK;
555 
556 	lock_limit = rlimit(RLIMIT_MEMLOCK);
557 	lock_limit >>= PAGE_SHIFT;
558 	locked = len >> PAGE_SHIFT;
559 
560 	if (mmap_write_lock_killable(current->mm))
561 		return -EINTR;
562 
563 	locked += current->mm->locked_vm;
564 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
565 		/*
566 		 * It is possible that the regions requested intersect with
567 		 * previously mlocked areas, that part area in "mm->locked_vm"
568 		 * should not be counted to new mlock increment count. So check
569 		 * and adjust locked count if necessary.
570 		 */
571 		locked -= count_mm_mlocked_page_nr(current->mm,
572 				start, len);
573 	}
574 
575 	/* check against resource limits */
576 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
577 		error = apply_vma_lock_flags(start, len, flags);
578 
579 	mmap_write_unlock(current->mm);
580 	if (error)
581 		return error;
582 
583 	error = __mm_populate(start, len, 0);
584 	if (error)
585 		return __mlock_posix_error_return(error);
586 	return 0;
587 }
588 
589 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
590 {
591 	return do_mlock(start, len, VM_LOCKED);
592 }
593 
594 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
595 {
596 	vm_flags_t vm_flags = VM_LOCKED;
597 
598 	if (flags & ~MLOCK_ONFAULT)
599 		return -EINVAL;
600 
601 	if (flags & MLOCK_ONFAULT)
602 		vm_flags |= VM_LOCKONFAULT;
603 
604 	return do_mlock(start, len, vm_flags);
605 }
606 
607 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
608 {
609 	int ret;
610 
611 	start = untagged_addr(start);
612 
613 	len = PAGE_ALIGN(len + (offset_in_page(start)));
614 	start &= PAGE_MASK;
615 
616 	if (mmap_write_lock_killable(current->mm))
617 		return -EINTR;
618 	ret = apply_vma_lock_flags(start, len, 0);
619 	mmap_write_unlock(current->mm);
620 
621 	return ret;
622 }
623 
624 /*
625  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
626  * and translate into the appropriate modifications to mm->def_flags and/or the
627  * flags for all current VMAs.
628  *
629  * There are a couple of subtleties with this.  If mlockall() is called multiple
630  * times with different flags, the values do not necessarily stack.  If mlockall
631  * is called once including the MCL_FUTURE flag and then a second time without
632  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
633  */
634 static int apply_mlockall_flags(int flags)
635 {
636 	struct vm_area_struct *vma, *prev = NULL;
637 	vm_flags_t to_add = 0;
638 
639 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
640 	if (flags & MCL_FUTURE) {
641 		current->mm->def_flags |= VM_LOCKED;
642 
643 		if (flags & MCL_ONFAULT)
644 			current->mm->def_flags |= VM_LOCKONFAULT;
645 
646 		if (!(flags & MCL_CURRENT))
647 			goto out;
648 	}
649 
650 	if (flags & MCL_CURRENT) {
651 		to_add |= VM_LOCKED;
652 		if (flags & MCL_ONFAULT)
653 			to_add |= VM_LOCKONFAULT;
654 	}
655 
656 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
657 		vm_flags_t newflags;
658 
659 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
660 		newflags |= to_add;
661 
662 		/* Ignore errors */
663 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
664 		cond_resched();
665 	}
666 out:
667 	return 0;
668 }
669 
670 SYSCALL_DEFINE1(mlockall, int, flags)
671 {
672 	unsigned long lock_limit;
673 	int ret;
674 
675 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
676 	    flags == MCL_ONFAULT)
677 		return -EINVAL;
678 
679 	if (!can_do_mlock())
680 		return -EPERM;
681 
682 	lock_limit = rlimit(RLIMIT_MEMLOCK);
683 	lock_limit >>= PAGE_SHIFT;
684 
685 	if (mmap_write_lock_killable(current->mm))
686 		return -EINTR;
687 
688 	ret = -ENOMEM;
689 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
690 	    capable(CAP_IPC_LOCK))
691 		ret = apply_mlockall_flags(flags);
692 	mmap_write_unlock(current->mm);
693 	if (!ret && (flags & MCL_CURRENT))
694 		mm_populate(0, TASK_SIZE);
695 
696 	return ret;
697 }
698 
699 SYSCALL_DEFINE0(munlockall)
700 {
701 	int ret;
702 
703 	if (mmap_write_lock_killable(current->mm))
704 		return -EINTR;
705 	ret = apply_mlockall_flags(0);
706 	mmap_write_unlock(current->mm);
707 	return ret;
708 }
709 
710 /*
711  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
712  * shm segments) get accounted against the user_struct instead.
713  */
714 static DEFINE_SPINLOCK(shmlock_user_lock);
715 
716 int user_shm_lock(size_t size, struct ucounts *ucounts)
717 {
718 	unsigned long lock_limit, locked;
719 	long memlock;
720 	int allowed = 0;
721 
722 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
723 	lock_limit = rlimit(RLIMIT_MEMLOCK);
724 	if (lock_limit == RLIM_INFINITY)
725 		allowed = 1;
726 	lock_limit >>= PAGE_SHIFT;
727 	spin_lock(&shmlock_user_lock);
728 	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
729 
730 	if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
731 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
732 		goto out;
733 	}
734 	if (!get_ucounts(ucounts)) {
735 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
736 		goto out;
737 	}
738 	allowed = 1;
739 out:
740 	spin_unlock(&shmlock_user_lock);
741 	return allowed;
742 }
743 
744 void user_shm_unlock(size_t size, struct ucounts *ucounts)
745 {
746 	spin_lock(&shmlock_user_lock);
747 	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
748 	spin_unlock(&shmlock_user_lock);
749 	put_ucounts(ucounts);
750 }
751