xref: /openbmc/linux/mm/mlock.c (revision ca79522c)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void clear_page_mlock(struct page *page)
55 {
56 	if (!TestClearPageMlocked(page))
57 		return;
58 
59 	mod_zone_page_state(page_zone(page), NR_MLOCK,
60 			    -hpage_nr_pages(page));
61 	count_vm_event(UNEVICTABLE_PGCLEARED);
62 	if (!isolate_lru_page(page)) {
63 		putback_lru_page(page);
64 	} else {
65 		/*
66 		 * We lost the race. the page already moved to evictable list.
67 		 */
68 		if (PageUnevictable(page))
69 			count_vm_event(UNEVICTABLE_PGSTRANDED);
70 	}
71 }
72 
73 /*
74  * Mark page as mlocked if not already.
75  * If page on LRU, isolate and putback to move to unevictable list.
76  */
77 void mlock_vma_page(struct page *page)
78 {
79 	BUG_ON(!PageLocked(page));
80 
81 	if (!TestSetPageMlocked(page)) {
82 		mod_zone_page_state(page_zone(page), NR_MLOCK,
83 				    hpage_nr_pages(page));
84 		count_vm_event(UNEVICTABLE_PGMLOCKED);
85 		if (!isolate_lru_page(page))
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /**
91  * munlock_vma_page - munlock a vma page
92  * @page - page to be unlocked
93  *
94  * called from munlock()/munmap() path with page supposedly on the LRU.
95  * When we munlock a page, because the vma where we found the page is being
96  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
97  * page locked so that we can leave it on the unevictable lru list and not
98  * bother vmscan with it.  However, to walk the page's rmap list in
99  * try_to_munlock() we must isolate the page from the LRU.  If some other
100  * task has removed the page from the LRU, we won't be able to do that.
101  * So we clear the PageMlocked as we might not get another chance.  If we
102  * can't isolate the page, we leave it for putback_lru_page() and vmscan
103  * [page_referenced()/try_to_unmap()] to deal with.
104  */
105 unsigned int munlock_vma_page(struct page *page)
106 {
107 	unsigned int page_mask = 0;
108 
109 	BUG_ON(!PageLocked(page));
110 
111 	if (TestClearPageMlocked(page)) {
112 		unsigned int nr_pages = hpage_nr_pages(page);
113 		mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
114 		page_mask = nr_pages - 1;
115 		if (!isolate_lru_page(page)) {
116 			int ret = SWAP_AGAIN;
117 
118 			/*
119 			 * Optimization: if the page was mapped just once,
120 			 * that's our mapping and we don't need to check all the
121 			 * other vmas.
122 			 */
123 			if (page_mapcount(page) > 1)
124 				ret = try_to_munlock(page);
125 			/*
126 			 * did try_to_unlock() succeed or punt?
127 			 */
128 			if (ret != SWAP_MLOCK)
129 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
130 
131 			putback_lru_page(page);
132 		} else {
133 			/*
134 			 * Some other task has removed the page from the LRU.
135 			 * putback_lru_page() will take care of removing the
136 			 * page from the unevictable list, if necessary.
137 			 * vmscan [page_referenced()] will move the page back
138 			 * to the unevictable list if some other vma has it
139 			 * mlocked.
140 			 */
141 			if (PageUnevictable(page))
142 				count_vm_event(UNEVICTABLE_PGSTRANDED);
143 			else
144 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
145 		}
146 	}
147 
148 	return page_mask;
149 }
150 
151 /**
152  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
153  * @vma:   target vma
154  * @start: start address
155  * @end:   end address
156  *
157  * This takes care of making the pages present too.
158  *
159  * return 0 on success, negative error code on error.
160  *
161  * vma->vm_mm->mmap_sem must be held for at least read.
162  */
163 long __mlock_vma_pages_range(struct vm_area_struct *vma,
164 		unsigned long start, unsigned long end, int *nonblocking)
165 {
166 	struct mm_struct *mm = vma->vm_mm;
167 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
168 	int gup_flags;
169 
170 	VM_BUG_ON(start & ~PAGE_MASK);
171 	VM_BUG_ON(end   & ~PAGE_MASK);
172 	VM_BUG_ON(start < vma->vm_start);
173 	VM_BUG_ON(end   > vma->vm_end);
174 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
175 
176 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
177 	/*
178 	 * We want to touch writable mappings with a write fault in order
179 	 * to break COW, except for shared mappings because these don't COW
180 	 * and we would not want to dirty them for nothing.
181 	 */
182 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
183 		gup_flags |= FOLL_WRITE;
184 
185 	/*
186 	 * We want mlock to succeed for regions that have any permissions
187 	 * other than PROT_NONE.
188 	 */
189 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
190 		gup_flags |= FOLL_FORCE;
191 
192 	/*
193 	 * We made sure addr is within a VMA, so the following will
194 	 * not result in a stack expansion that recurses back here.
195 	 */
196 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
197 				NULL, NULL, nonblocking);
198 }
199 
200 /*
201  * convert get_user_pages() return value to posix mlock() error
202  */
203 static int __mlock_posix_error_return(long retval)
204 {
205 	if (retval == -EFAULT)
206 		retval = -ENOMEM;
207 	else if (retval == -ENOMEM)
208 		retval = -EAGAIN;
209 	return retval;
210 }
211 
212 /*
213  * munlock_vma_pages_range() - munlock all pages in the vma range.'
214  * @vma - vma containing range to be munlock()ed.
215  * @start - start address in @vma of the range
216  * @end - end of range in @vma.
217  *
218  *  For mremap(), munmap() and exit().
219  *
220  * Called with @vma VM_LOCKED.
221  *
222  * Returns with VM_LOCKED cleared.  Callers must be prepared to
223  * deal with this.
224  *
225  * We don't save and restore VM_LOCKED here because pages are
226  * still on lru.  In unmap path, pages might be scanned by reclaim
227  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
228  * free them.  This will result in freeing mlocked pages.
229  */
230 void munlock_vma_pages_range(struct vm_area_struct *vma,
231 			     unsigned long start, unsigned long end)
232 {
233 	vma->vm_flags &= ~VM_LOCKED;
234 
235 	while (start < end) {
236 		struct page *page;
237 		unsigned int page_mask, page_increm;
238 
239 		/*
240 		 * Although FOLL_DUMP is intended for get_dump_page(),
241 		 * it just so happens that its special treatment of the
242 		 * ZERO_PAGE (returning an error instead of doing get_page)
243 		 * suits munlock very well (and if somehow an abnormal page
244 		 * has sneaked into the range, we won't oops here: great).
245 		 */
246 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
247 					&page_mask);
248 		if (page && !IS_ERR(page)) {
249 			lock_page(page);
250 			lru_add_drain();
251 			/*
252 			 * Any THP page found by follow_page_mask() may have
253 			 * gotten split before reaching munlock_vma_page(),
254 			 * so we need to recompute the page_mask here.
255 			 */
256 			page_mask = munlock_vma_page(page);
257 			unlock_page(page);
258 			put_page(page);
259 		}
260 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
261 		start += page_increm * PAGE_SIZE;
262 		cond_resched();
263 	}
264 }
265 
266 /*
267  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
268  *
269  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
270  * munlock is a no-op.  However, for some special vmas, we go ahead and
271  * populate the ptes.
272  *
273  * For vmas that pass the filters, merge/split as appropriate.
274  */
275 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
276 	unsigned long start, unsigned long end, vm_flags_t newflags)
277 {
278 	struct mm_struct *mm = vma->vm_mm;
279 	pgoff_t pgoff;
280 	int nr_pages;
281 	int ret = 0;
282 	int lock = !!(newflags & VM_LOCKED);
283 
284 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
285 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
286 		goto out;	/* don't set VM_LOCKED,  don't count */
287 
288 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
289 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
290 			  vma->vm_file, pgoff, vma_policy(vma));
291 	if (*prev) {
292 		vma = *prev;
293 		goto success;
294 	}
295 
296 	if (start != vma->vm_start) {
297 		ret = split_vma(mm, vma, start, 1);
298 		if (ret)
299 			goto out;
300 	}
301 
302 	if (end != vma->vm_end) {
303 		ret = split_vma(mm, vma, end, 0);
304 		if (ret)
305 			goto out;
306 	}
307 
308 success:
309 	/*
310 	 * Keep track of amount of locked VM.
311 	 */
312 	nr_pages = (end - start) >> PAGE_SHIFT;
313 	if (!lock)
314 		nr_pages = -nr_pages;
315 	mm->locked_vm += nr_pages;
316 
317 	/*
318 	 * vm_flags is protected by the mmap_sem held in write mode.
319 	 * It's okay if try_to_unmap_one unmaps a page just after we
320 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
321 	 */
322 
323 	if (lock)
324 		vma->vm_flags = newflags;
325 	else
326 		munlock_vma_pages_range(vma, start, end);
327 
328 out:
329 	*prev = vma;
330 	return ret;
331 }
332 
333 static int do_mlock(unsigned long start, size_t len, int on)
334 {
335 	unsigned long nstart, end, tmp;
336 	struct vm_area_struct * vma, * prev;
337 	int error;
338 
339 	VM_BUG_ON(start & ~PAGE_MASK);
340 	VM_BUG_ON(len != PAGE_ALIGN(len));
341 	end = start + len;
342 	if (end < start)
343 		return -EINVAL;
344 	if (end == start)
345 		return 0;
346 	vma = find_vma(current->mm, start);
347 	if (!vma || vma->vm_start > start)
348 		return -ENOMEM;
349 
350 	prev = vma->vm_prev;
351 	if (start > vma->vm_start)
352 		prev = vma;
353 
354 	for (nstart = start ; ; ) {
355 		vm_flags_t newflags;
356 
357 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
358 
359 		newflags = vma->vm_flags & ~VM_LOCKED;
360 		if (on)
361 			newflags |= VM_LOCKED;
362 
363 		tmp = vma->vm_end;
364 		if (tmp > end)
365 			tmp = end;
366 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
367 		if (error)
368 			break;
369 		nstart = tmp;
370 		if (nstart < prev->vm_end)
371 			nstart = prev->vm_end;
372 		if (nstart >= end)
373 			break;
374 
375 		vma = prev->vm_next;
376 		if (!vma || vma->vm_start != nstart) {
377 			error = -ENOMEM;
378 			break;
379 		}
380 	}
381 	return error;
382 }
383 
384 /*
385  * __mm_populate - populate and/or mlock pages within a range of address space.
386  *
387  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
388  * flags. VMAs must be already marked with the desired vm_flags, and
389  * mmap_sem must not be held.
390  */
391 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
392 {
393 	struct mm_struct *mm = current->mm;
394 	unsigned long end, nstart, nend;
395 	struct vm_area_struct *vma = NULL;
396 	int locked = 0;
397 	long ret = 0;
398 
399 	VM_BUG_ON(start & ~PAGE_MASK);
400 	VM_BUG_ON(len != PAGE_ALIGN(len));
401 	end = start + len;
402 
403 	for (nstart = start; nstart < end; nstart = nend) {
404 		/*
405 		 * We want to fault in pages for [nstart; end) address range.
406 		 * Find first corresponding VMA.
407 		 */
408 		if (!locked) {
409 			locked = 1;
410 			down_read(&mm->mmap_sem);
411 			vma = find_vma(mm, nstart);
412 		} else if (nstart >= vma->vm_end)
413 			vma = vma->vm_next;
414 		if (!vma || vma->vm_start >= end)
415 			break;
416 		/*
417 		 * Set [nstart; nend) to intersection of desired address
418 		 * range with the first VMA. Also, skip undesirable VMA types.
419 		 */
420 		nend = min(end, vma->vm_end);
421 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
422 			continue;
423 		if (nstart < vma->vm_start)
424 			nstart = vma->vm_start;
425 		/*
426 		 * Now fault in a range of pages. __mlock_vma_pages_range()
427 		 * double checks the vma flags, so that it won't mlock pages
428 		 * if the vma was already munlocked.
429 		 */
430 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
431 		if (ret < 0) {
432 			if (ignore_errors) {
433 				ret = 0;
434 				continue;	/* continue at next VMA */
435 			}
436 			ret = __mlock_posix_error_return(ret);
437 			break;
438 		}
439 		nend = nstart + ret * PAGE_SIZE;
440 		ret = 0;
441 	}
442 	if (locked)
443 		up_read(&mm->mmap_sem);
444 	return ret;	/* 0 or negative error code */
445 }
446 
447 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
448 {
449 	unsigned long locked;
450 	unsigned long lock_limit;
451 	int error = -ENOMEM;
452 
453 	if (!can_do_mlock())
454 		return -EPERM;
455 
456 	lru_add_drain_all();	/* flush pagevec */
457 
458 	down_write(&current->mm->mmap_sem);
459 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
460 	start &= PAGE_MASK;
461 
462 	locked = len >> PAGE_SHIFT;
463 	locked += current->mm->locked_vm;
464 
465 	lock_limit = rlimit(RLIMIT_MEMLOCK);
466 	lock_limit >>= PAGE_SHIFT;
467 
468 	/* check against resource limits */
469 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
470 		error = do_mlock(start, len, 1);
471 	up_write(&current->mm->mmap_sem);
472 	if (!error)
473 		error = __mm_populate(start, len, 0);
474 	return error;
475 }
476 
477 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
478 {
479 	int ret;
480 
481 	down_write(&current->mm->mmap_sem);
482 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
483 	start &= PAGE_MASK;
484 	ret = do_mlock(start, len, 0);
485 	up_write(&current->mm->mmap_sem);
486 	return ret;
487 }
488 
489 static int do_mlockall(int flags)
490 {
491 	struct vm_area_struct * vma, * prev = NULL;
492 
493 	if (flags & MCL_FUTURE)
494 		current->mm->def_flags |= VM_LOCKED;
495 	else
496 		current->mm->def_flags &= ~VM_LOCKED;
497 	if (flags == MCL_FUTURE)
498 		goto out;
499 
500 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
501 		vm_flags_t newflags;
502 
503 		newflags = vma->vm_flags & ~VM_LOCKED;
504 		if (flags & MCL_CURRENT)
505 			newflags |= VM_LOCKED;
506 
507 		/* Ignore errors */
508 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
509 	}
510 out:
511 	return 0;
512 }
513 
514 SYSCALL_DEFINE1(mlockall, int, flags)
515 {
516 	unsigned long lock_limit;
517 	int ret = -EINVAL;
518 
519 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
520 		goto out;
521 
522 	ret = -EPERM;
523 	if (!can_do_mlock())
524 		goto out;
525 
526 	if (flags & MCL_CURRENT)
527 		lru_add_drain_all();	/* flush pagevec */
528 
529 	down_write(&current->mm->mmap_sem);
530 
531 	lock_limit = rlimit(RLIMIT_MEMLOCK);
532 	lock_limit >>= PAGE_SHIFT;
533 
534 	ret = -ENOMEM;
535 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
536 	    capable(CAP_IPC_LOCK))
537 		ret = do_mlockall(flags);
538 	up_write(&current->mm->mmap_sem);
539 	if (!ret && (flags & MCL_CURRENT))
540 		mm_populate(0, TASK_SIZE);
541 out:
542 	return ret;
543 }
544 
545 SYSCALL_DEFINE0(munlockall)
546 {
547 	int ret;
548 
549 	down_write(&current->mm->mmap_sem);
550 	ret = do_mlockall(0);
551 	up_write(&current->mm->mmap_sem);
552 	return ret;
553 }
554 
555 /*
556  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
557  * shm segments) get accounted against the user_struct instead.
558  */
559 static DEFINE_SPINLOCK(shmlock_user_lock);
560 
561 int user_shm_lock(size_t size, struct user_struct *user)
562 {
563 	unsigned long lock_limit, locked;
564 	int allowed = 0;
565 
566 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
567 	lock_limit = rlimit(RLIMIT_MEMLOCK);
568 	if (lock_limit == RLIM_INFINITY)
569 		allowed = 1;
570 	lock_limit >>= PAGE_SHIFT;
571 	spin_lock(&shmlock_user_lock);
572 	if (!allowed &&
573 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
574 		goto out;
575 	get_uid(user);
576 	user->locked_shm += locked;
577 	allowed = 1;
578 out:
579 	spin_unlock(&shmlock_user_lock);
580 	return allowed;
581 }
582 
583 void user_shm_unlock(size_t size, struct user_struct *user)
584 {
585 	spin_lock(&shmlock_user_lock);
586 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
587 	spin_unlock(&shmlock_user_lock);
588 	free_uid(user);
589 }
590