xref: /openbmc/linux/mm/mlock.c (revision c93db682)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_lock for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	int nr_pages;
62 
63 	if (!TestClearPageMlocked(page))
64 		return;
65 
66 	nr_pages = thp_nr_pages(page);
67 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
68 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
69 	/*
70 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
71 	 * in __pagevec_lru_add_fn().
72 	 *
73 	 * See __pagevec_lru_add_fn for more explanation.
74 	 */
75 	if (!isolate_lru_page(page)) {
76 		putback_lru_page(page);
77 	} else {
78 		/*
79 		 * We lost the race. the page already moved to evictable list.
80 		 */
81 		if (PageUnevictable(page))
82 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
83 	}
84 }
85 
86 /*
87  * Mark page as mlocked if not already.
88  * If page on LRU, isolate and putback to move to unevictable list.
89  */
90 void mlock_vma_page(struct page *page)
91 {
92 	/* Serialize with page migration */
93 	BUG_ON(!PageLocked(page));
94 
95 	VM_BUG_ON_PAGE(PageTail(page), page);
96 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
97 
98 	if (!TestSetPageMlocked(page)) {
99 		int nr_pages = thp_nr_pages(page);
100 
101 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
102 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
103 		if (!isolate_lru_page(page))
104 			putback_lru_page(page);
105 	}
106 }
107 
108 /*
109  * Finish munlock after successful page isolation
110  *
111  * Page must be locked. This is a wrapper for try_to_munlock()
112  * and putback_lru_page() with munlock accounting.
113  */
114 static void __munlock_isolated_page(struct page *page)
115 {
116 	/*
117 	 * Optimization: if the page was mapped just once, that's our mapping
118 	 * and we don't need to check all the other vmas.
119 	 */
120 	if (page_mapcount(page) > 1)
121 		try_to_munlock(page);
122 
123 	/* Did try_to_unlock() succeed or punt? */
124 	if (!PageMlocked(page))
125 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
126 
127 	putback_lru_page(page);
128 }
129 
130 /*
131  * Accounting for page isolation fail during munlock
132  *
133  * Performs accounting when page isolation fails in munlock. There is nothing
134  * else to do because it means some other task has already removed the page
135  * from the LRU. putback_lru_page() will take care of removing the page from
136  * the unevictable list, if necessary. vmscan [page_referenced()] will move
137  * the page back to the unevictable list if some other vma has it mlocked.
138  */
139 static void __munlock_isolation_failed(struct page *page)
140 {
141 	int nr_pages = thp_nr_pages(page);
142 
143 	if (PageUnevictable(page))
144 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
145 	else
146 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147 }
148 
149 /**
150  * munlock_vma_page - munlock a vma page
151  * @page: page to be unlocked, either a normal page or THP page head
152  *
153  * returns the size of the page as a page mask (0 for normal page,
154  *         HPAGE_PMD_NR - 1 for THP head page)
155  *
156  * called from munlock()/munmap() path with page supposedly on the LRU.
157  * When we munlock a page, because the vma where we found the page is being
158  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
159  * page locked so that we can leave it on the unevictable lru list and not
160  * bother vmscan with it.  However, to walk the page's rmap list in
161  * try_to_munlock() we must isolate the page from the LRU.  If some other
162  * task has removed the page from the LRU, we won't be able to do that.
163  * So we clear the PageMlocked as we might not get another chance.  If we
164  * can't isolate the page, we leave it for putback_lru_page() and vmscan
165  * [page_referenced()/try_to_unmap()] to deal with.
166  */
167 unsigned int munlock_vma_page(struct page *page)
168 {
169 	int nr_pages;
170 
171 	/* For try_to_munlock() and to serialize with page migration */
172 	BUG_ON(!PageLocked(page));
173 	VM_BUG_ON_PAGE(PageTail(page), page);
174 
175 	if (!TestClearPageMlocked(page)) {
176 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
177 		return 0;
178 	}
179 
180 	nr_pages = thp_nr_pages(page);
181 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
182 
183 	if (!isolate_lru_page(page))
184 		__munlock_isolated_page(page);
185 	else
186 		__munlock_isolation_failed(page);
187 
188 	return nr_pages - 1;
189 }
190 
191 /*
192  * convert get_user_pages() return value to posix mlock() error
193  */
194 static int __mlock_posix_error_return(long retval)
195 {
196 	if (retval == -EFAULT)
197 		retval = -ENOMEM;
198 	else if (retval == -ENOMEM)
199 		retval = -EAGAIN;
200 	return retval;
201 }
202 
203 /*
204  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
205  *
206  * The fast path is available only for evictable pages with single mapping.
207  * Then we can bypass the per-cpu pvec and get better performance.
208  * when mapcount > 1 we need try_to_munlock() which can fail.
209  * when !page_evictable(), we need the full redo logic of putback_lru_page to
210  * avoid leaving evictable page in unevictable list.
211  *
212  * In case of success, @page is added to @pvec and @pgrescued is incremented
213  * in case that the page was previously unevictable. @page is also unlocked.
214  */
215 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
216 		int *pgrescued)
217 {
218 	VM_BUG_ON_PAGE(PageLRU(page), page);
219 	VM_BUG_ON_PAGE(!PageLocked(page), page);
220 
221 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
222 		pagevec_add(pvec, page);
223 		if (TestClearPageUnevictable(page))
224 			(*pgrescued)++;
225 		unlock_page(page);
226 		return true;
227 	}
228 
229 	return false;
230 }
231 
232 /*
233  * Putback multiple evictable pages to the LRU
234  *
235  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
236  * the pages might have meanwhile become unevictable but that is OK.
237  */
238 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
239 {
240 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
241 	/*
242 	 *__pagevec_lru_add() calls release_pages() so we don't call
243 	 * put_page() explicitly
244 	 */
245 	__pagevec_lru_add(pvec);
246 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
247 }
248 
249 /*
250  * Munlock a batch of pages from the same zone
251  *
252  * The work is split to two main phases. First phase clears the Mlocked flag
253  * and attempts to isolate the pages, all under a single zone lru lock.
254  * The second phase finishes the munlock only for pages where isolation
255  * succeeded.
256  *
257  * Note that the pagevec may be modified during the process.
258  */
259 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
260 {
261 	int i;
262 	int nr = pagevec_count(pvec);
263 	int delta_munlocked = -nr;
264 	struct pagevec pvec_putback;
265 	struct lruvec *lruvec = NULL;
266 	int pgrescued = 0;
267 
268 	pagevec_init(&pvec_putback);
269 
270 	/* Phase 1: page isolation */
271 	for (i = 0; i < nr; i++) {
272 		struct page *page = pvec->pages[i];
273 
274 		if (TestClearPageMlocked(page)) {
275 			/*
276 			 * We already have pin from follow_page_mask()
277 			 * so we can spare the get_page() here.
278 			 */
279 			if (TestClearPageLRU(page)) {
280 				lruvec = relock_page_lruvec_irq(page, lruvec);
281 				del_page_from_lru_list(page, lruvec);
282 				continue;
283 			} else
284 				__munlock_isolation_failed(page);
285 		} else {
286 			delta_munlocked++;
287 		}
288 
289 		/*
290 		 * We won't be munlocking this page in the next phase
291 		 * but we still need to release the follow_page_mask()
292 		 * pin. We cannot do it under lru_lock however. If it's
293 		 * the last pin, __page_cache_release() would deadlock.
294 		 */
295 		pagevec_add(&pvec_putback, pvec->pages[i]);
296 		pvec->pages[i] = NULL;
297 	}
298 	if (lruvec) {
299 		__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
300 		unlock_page_lruvec_irq(lruvec);
301 	} else if (delta_munlocked) {
302 		mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
303 	}
304 
305 	/* Now we can release pins of pages that we are not munlocking */
306 	pagevec_release(&pvec_putback);
307 
308 	/* Phase 2: page munlock */
309 	for (i = 0; i < nr; i++) {
310 		struct page *page = pvec->pages[i];
311 
312 		if (page) {
313 			lock_page(page);
314 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
315 					&pgrescued)) {
316 				/*
317 				 * Slow path. We don't want to lose the last
318 				 * pin before unlock_page()
319 				 */
320 				get_page(page); /* for putback_lru_page() */
321 				__munlock_isolated_page(page);
322 				unlock_page(page);
323 				put_page(page); /* from follow_page_mask() */
324 			}
325 		}
326 	}
327 
328 	/*
329 	 * Phase 3: page putback for pages that qualified for the fast path
330 	 * This will also call put_page() to return pin from follow_page_mask()
331 	 */
332 	if (pagevec_count(&pvec_putback))
333 		__putback_lru_fast(&pvec_putback, pgrescued);
334 }
335 
336 /*
337  * Fill up pagevec for __munlock_pagevec using pte walk
338  *
339  * The function expects that the struct page corresponding to @start address is
340  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
341  *
342  * The rest of @pvec is filled by subsequent pages within the same pmd and same
343  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
344  * pages also get pinned.
345  *
346  * Returns the address of the next page that should be scanned. This equals
347  * @start + PAGE_SIZE when no page could be added by the pte walk.
348  */
349 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
350 			struct vm_area_struct *vma, struct zone *zone,
351 			unsigned long start, unsigned long end)
352 {
353 	pte_t *pte;
354 	spinlock_t *ptl;
355 
356 	/*
357 	 * Initialize pte walk starting at the already pinned page where we
358 	 * are sure that there is a pte, as it was pinned under the same
359 	 * mmap_lock write op.
360 	 */
361 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
362 	/* Make sure we do not cross the page table boundary */
363 	end = pgd_addr_end(start, end);
364 	end = p4d_addr_end(start, end);
365 	end = pud_addr_end(start, end);
366 	end = pmd_addr_end(start, end);
367 
368 	/* The page next to the pinned page is the first we will try to get */
369 	start += PAGE_SIZE;
370 	while (start < end) {
371 		struct page *page = NULL;
372 		pte++;
373 		if (pte_present(*pte))
374 			page = vm_normal_page(vma, start, *pte);
375 		/*
376 		 * Break if page could not be obtained or the page's node+zone does not
377 		 * match
378 		 */
379 		if (!page || page_zone(page) != zone)
380 			break;
381 
382 		/*
383 		 * Do not use pagevec for PTE-mapped THP,
384 		 * munlock_vma_pages_range() will handle them.
385 		 */
386 		if (PageTransCompound(page))
387 			break;
388 
389 		get_page(page);
390 		/*
391 		 * Increase the address that will be returned *before* the
392 		 * eventual break due to pvec becoming full by adding the page
393 		 */
394 		start += PAGE_SIZE;
395 		if (pagevec_add(pvec, page) == 0)
396 			break;
397 	}
398 	pte_unmap_unlock(pte, ptl);
399 	return start;
400 }
401 
402 /*
403  * munlock_vma_pages_range() - munlock all pages in the vma range.'
404  * @vma - vma containing range to be munlock()ed.
405  * @start - start address in @vma of the range
406  * @end - end of range in @vma.
407  *
408  *  For mremap(), munmap() and exit().
409  *
410  * Called with @vma VM_LOCKED.
411  *
412  * Returns with VM_LOCKED cleared.  Callers must be prepared to
413  * deal with this.
414  *
415  * We don't save and restore VM_LOCKED here because pages are
416  * still on lru.  In unmap path, pages might be scanned by reclaim
417  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
418  * free them.  This will result in freeing mlocked pages.
419  */
420 void munlock_vma_pages_range(struct vm_area_struct *vma,
421 			     unsigned long start, unsigned long end)
422 {
423 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
424 
425 	while (start < end) {
426 		struct page *page;
427 		unsigned int page_mask = 0;
428 		unsigned long page_increm;
429 		struct pagevec pvec;
430 		struct zone *zone;
431 
432 		pagevec_init(&pvec);
433 		/*
434 		 * Although FOLL_DUMP is intended for get_dump_page(),
435 		 * it just so happens that its special treatment of the
436 		 * ZERO_PAGE (returning an error instead of doing get_page)
437 		 * suits munlock very well (and if somehow an abnormal page
438 		 * has sneaked into the range, we won't oops here: great).
439 		 */
440 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
441 
442 		if (page && !IS_ERR(page)) {
443 			if (PageTransTail(page)) {
444 				VM_BUG_ON_PAGE(PageMlocked(page), page);
445 				put_page(page); /* follow_page_mask() */
446 			} else if (PageTransHuge(page)) {
447 				lock_page(page);
448 				/*
449 				 * Any THP page found by follow_page_mask() may
450 				 * have gotten split before reaching
451 				 * munlock_vma_page(), so we need to compute
452 				 * the page_mask here instead.
453 				 */
454 				page_mask = munlock_vma_page(page);
455 				unlock_page(page);
456 				put_page(page); /* follow_page_mask() */
457 			} else {
458 				/*
459 				 * Non-huge pages are handled in batches via
460 				 * pagevec. The pin from follow_page_mask()
461 				 * prevents them from collapsing by THP.
462 				 */
463 				pagevec_add(&pvec, page);
464 				zone = page_zone(page);
465 
466 				/*
467 				 * Try to fill the rest of pagevec using fast
468 				 * pte walk. This will also update start to
469 				 * the next page to process. Then munlock the
470 				 * pagevec.
471 				 */
472 				start = __munlock_pagevec_fill(&pvec, vma,
473 						zone, start, end);
474 				__munlock_pagevec(&pvec, zone);
475 				goto next;
476 			}
477 		}
478 		page_increm = 1 + page_mask;
479 		start += page_increm * PAGE_SIZE;
480 next:
481 		cond_resched();
482 	}
483 }
484 
485 /*
486  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
487  *
488  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
489  * munlock is a no-op.  However, for some special vmas, we go ahead and
490  * populate the ptes.
491  *
492  * For vmas that pass the filters, merge/split as appropriate.
493  */
494 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
495 	unsigned long start, unsigned long end, vm_flags_t newflags)
496 {
497 	struct mm_struct *mm = vma->vm_mm;
498 	pgoff_t pgoff;
499 	int nr_pages;
500 	int ret = 0;
501 	int lock = !!(newflags & VM_LOCKED);
502 	vm_flags_t old_flags = vma->vm_flags;
503 
504 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
505 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
506 	    vma_is_dax(vma))
507 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
508 		goto out;
509 
510 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
511 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
512 			  vma->vm_file, pgoff, vma_policy(vma),
513 			  vma->vm_userfaultfd_ctx);
514 	if (*prev) {
515 		vma = *prev;
516 		goto success;
517 	}
518 
519 	if (start != vma->vm_start) {
520 		ret = split_vma(mm, vma, start, 1);
521 		if (ret)
522 			goto out;
523 	}
524 
525 	if (end != vma->vm_end) {
526 		ret = split_vma(mm, vma, end, 0);
527 		if (ret)
528 			goto out;
529 	}
530 
531 success:
532 	/*
533 	 * Keep track of amount of locked VM.
534 	 */
535 	nr_pages = (end - start) >> PAGE_SHIFT;
536 	if (!lock)
537 		nr_pages = -nr_pages;
538 	else if (old_flags & VM_LOCKED)
539 		nr_pages = 0;
540 	mm->locked_vm += nr_pages;
541 
542 	/*
543 	 * vm_flags is protected by the mmap_lock held in write mode.
544 	 * It's okay if try_to_unmap_one unmaps a page just after we
545 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
546 	 */
547 
548 	if (lock)
549 		vma->vm_flags = newflags;
550 	else
551 		munlock_vma_pages_range(vma, start, end);
552 
553 out:
554 	*prev = vma;
555 	return ret;
556 }
557 
558 static int apply_vma_lock_flags(unsigned long start, size_t len,
559 				vm_flags_t flags)
560 {
561 	unsigned long nstart, end, tmp;
562 	struct vm_area_struct *vma, *prev;
563 	int error;
564 
565 	VM_BUG_ON(offset_in_page(start));
566 	VM_BUG_ON(len != PAGE_ALIGN(len));
567 	end = start + len;
568 	if (end < start)
569 		return -EINVAL;
570 	if (end == start)
571 		return 0;
572 	vma = find_vma(current->mm, start);
573 	if (!vma || vma->vm_start > start)
574 		return -ENOMEM;
575 
576 	prev = vma->vm_prev;
577 	if (start > vma->vm_start)
578 		prev = vma;
579 
580 	for (nstart = start ; ; ) {
581 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
582 
583 		newflags |= flags;
584 
585 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
586 		tmp = vma->vm_end;
587 		if (tmp > end)
588 			tmp = end;
589 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
590 		if (error)
591 			break;
592 		nstart = tmp;
593 		if (nstart < prev->vm_end)
594 			nstart = prev->vm_end;
595 		if (nstart >= end)
596 			break;
597 
598 		vma = prev->vm_next;
599 		if (!vma || vma->vm_start != nstart) {
600 			error = -ENOMEM;
601 			break;
602 		}
603 	}
604 	return error;
605 }
606 
607 /*
608  * Go through vma areas and sum size of mlocked
609  * vma pages, as return value.
610  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
611  * is also counted.
612  * Return value: previously mlocked page counts
613  */
614 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
615 		unsigned long start, size_t len)
616 {
617 	struct vm_area_struct *vma;
618 	unsigned long count = 0;
619 
620 	if (mm == NULL)
621 		mm = current->mm;
622 
623 	vma = find_vma(mm, start);
624 	if (vma == NULL)
625 		return 0;
626 
627 	for (; vma ; vma = vma->vm_next) {
628 		if (start >= vma->vm_end)
629 			continue;
630 		if (start + len <=  vma->vm_start)
631 			break;
632 		if (vma->vm_flags & VM_LOCKED) {
633 			if (start > vma->vm_start)
634 				count -= (start - vma->vm_start);
635 			if (start + len < vma->vm_end) {
636 				count += start + len - vma->vm_start;
637 				break;
638 			}
639 			count += vma->vm_end - vma->vm_start;
640 		}
641 	}
642 
643 	return count >> PAGE_SHIFT;
644 }
645 
646 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
647 {
648 	unsigned long locked;
649 	unsigned long lock_limit;
650 	int error = -ENOMEM;
651 
652 	start = untagged_addr(start);
653 
654 	if (!can_do_mlock())
655 		return -EPERM;
656 
657 	len = PAGE_ALIGN(len + (offset_in_page(start)));
658 	start &= PAGE_MASK;
659 
660 	lock_limit = rlimit(RLIMIT_MEMLOCK);
661 	lock_limit >>= PAGE_SHIFT;
662 	locked = len >> PAGE_SHIFT;
663 
664 	if (mmap_write_lock_killable(current->mm))
665 		return -EINTR;
666 
667 	locked += current->mm->locked_vm;
668 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
669 		/*
670 		 * It is possible that the regions requested intersect with
671 		 * previously mlocked areas, that part area in "mm->locked_vm"
672 		 * should not be counted to new mlock increment count. So check
673 		 * and adjust locked count if necessary.
674 		 */
675 		locked -= count_mm_mlocked_page_nr(current->mm,
676 				start, len);
677 	}
678 
679 	/* check against resource limits */
680 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
681 		error = apply_vma_lock_flags(start, len, flags);
682 
683 	mmap_write_unlock(current->mm);
684 	if (error)
685 		return error;
686 
687 	error = __mm_populate(start, len, 0);
688 	if (error)
689 		return __mlock_posix_error_return(error);
690 	return 0;
691 }
692 
693 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
694 {
695 	return do_mlock(start, len, VM_LOCKED);
696 }
697 
698 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
699 {
700 	vm_flags_t vm_flags = VM_LOCKED;
701 
702 	if (flags & ~MLOCK_ONFAULT)
703 		return -EINVAL;
704 
705 	if (flags & MLOCK_ONFAULT)
706 		vm_flags |= VM_LOCKONFAULT;
707 
708 	return do_mlock(start, len, vm_flags);
709 }
710 
711 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
712 {
713 	int ret;
714 
715 	start = untagged_addr(start);
716 
717 	len = PAGE_ALIGN(len + (offset_in_page(start)));
718 	start &= PAGE_MASK;
719 
720 	if (mmap_write_lock_killable(current->mm))
721 		return -EINTR;
722 	ret = apply_vma_lock_flags(start, len, 0);
723 	mmap_write_unlock(current->mm);
724 
725 	return ret;
726 }
727 
728 /*
729  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
730  * and translate into the appropriate modifications to mm->def_flags and/or the
731  * flags for all current VMAs.
732  *
733  * There are a couple of subtleties with this.  If mlockall() is called multiple
734  * times with different flags, the values do not necessarily stack.  If mlockall
735  * is called once including the MCL_FUTURE flag and then a second time without
736  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
737  */
738 static int apply_mlockall_flags(int flags)
739 {
740 	struct vm_area_struct *vma, *prev = NULL;
741 	vm_flags_t to_add = 0;
742 
743 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
744 	if (flags & MCL_FUTURE) {
745 		current->mm->def_flags |= VM_LOCKED;
746 
747 		if (flags & MCL_ONFAULT)
748 			current->mm->def_flags |= VM_LOCKONFAULT;
749 
750 		if (!(flags & MCL_CURRENT))
751 			goto out;
752 	}
753 
754 	if (flags & MCL_CURRENT) {
755 		to_add |= VM_LOCKED;
756 		if (flags & MCL_ONFAULT)
757 			to_add |= VM_LOCKONFAULT;
758 	}
759 
760 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
761 		vm_flags_t newflags;
762 
763 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
764 		newflags |= to_add;
765 
766 		/* Ignore errors */
767 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
768 		cond_resched();
769 	}
770 out:
771 	return 0;
772 }
773 
774 SYSCALL_DEFINE1(mlockall, int, flags)
775 {
776 	unsigned long lock_limit;
777 	int ret;
778 
779 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
780 	    flags == MCL_ONFAULT)
781 		return -EINVAL;
782 
783 	if (!can_do_mlock())
784 		return -EPERM;
785 
786 	lock_limit = rlimit(RLIMIT_MEMLOCK);
787 	lock_limit >>= PAGE_SHIFT;
788 
789 	if (mmap_write_lock_killable(current->mm))
790 		return -EINTR;
791 
792 	ret = -ENOMEM;
793 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
794 	    capable(CAP_IPC_LOCK))
795 		ret = apply_mlockall_flags(flags);
796 	mmap_write_unlock(current->mm);
797 	if (!ret && (flags & MCL_CURRENT))
798 		mm_populate(0, TASK_SIZE);
799 
800 	return ret;
801 }
802 
803 SYSCALL_DEFINE0(munlockall)
804 {
805 	int ret;
806 
807 	if (mmap_write_lock_killable(current->mm))
808 		return -EINTR;
809 	ret = apply_mlockall_flags(0);
810 	mmap_write_unlock(current->mm);
811 	return ret;
812 }
813 
814 /*
815  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
816  * shm segments) get accounted against the user_struct instead.
817  */
818 static DEFINE_SPINLOCK(shmlock_user_lock);
819 
820 int user_shm_lock(size_t size, struct user_struct *user)
821 {
822 	unsigned long lock_limit, locked;
823 	int allowed = 0;
824 
825 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
826 	lock_limit = rlimit(RLIMIT_MEMLOCK);
827 	if (lock_limit == RLIM_INFINITY)
828 		allowed = 1;
829 	lock_limit >>= PAGE_SHIFT;
830 	spin_lock(&shmlock_user_lock);
831 	if (!allowed &&
832 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
833 		goto out;
834 	get_uid(user);
835 	user->locked_shm += locked;
836 	allowed = 1;
837 out:
838 	spin_unlock(&shmlock_user_lock);
839 	return allowed;
840 }
841 
842 void user_shm_unlock(size_t size, struct user_struct *user)
843 {
844 	spin_lock(&shmlock_user_lock);
845 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
846 	spin_unlock(&shmlock_user_lock);
847 	free_uid(user);
848 }
849