1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/secretmem.h> 27 28 #include "internal.h" 29 30 bool can_do_mlock(void) 31 { 32 if (rlimit(RLIMIT_MEMLOCK) != 0) 33 return true; 34 if (capable(CAP_IPC_LOCK)) 35 return true; 36 return false; 37 } 38 EXPORT_SYMBOL(can_do_mlock); 39 40 /* 41 * Mlocked pages are marked with PageMlocked() flag for efficient testing 42 * in vmscan and, possibly, the fault path; and to support semi-accurate 43 * statistics. 44 * 45 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 46 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 47 * The unevictable list is an LRU sibling list to the [in]active lists. 48 * PageUnevictable is set to indicate the unevictable state. 49 * 50 * When lazy mlocking via vmscan, it is important to ensure that the 51 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 52 * may have mlocked a page that is being munlocked. So lazy mlock must take 53 * the mmap_lock for read, and verify that the vma really is locked 54 * (see mm/rmap.c). 55 */ 56 57 /* 58 * LRU accounting for clear_page_mlock() 59 */ 60 void clear_page_mlock(struct page *page) 61 { 62 int nr_pages; 63 64 if (!TestClearPageMlocked(page)) 65 return; 66 67 nr_pages = thp_nr_pages(page); 68 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 69 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 70 /* 71 * The previous TestClearPageMlocked() corresponds to the smp_mb() 72 * in __pagevec_lru_add_fn(). 73 * 74 * See __pagevec_lru_add_fn for more explanation. 75 */ 76 if (!isolate_lru_page(page)) { 77 putback_lru_page(page); 78 } else { 79 /* 80 * We lost the race. the page already moved to evictable list. 81 */ 82 if (PageUnevictable(page)) 83 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 84 } 85 } 86 87 /* 88 * Mark page as mlocked if not already. 89 * If page on LRU, isolate and putback to move to unevictable list. 90 */ 91 void mlock_vma_page(struct page *page) 92 { 93 /* Serialize with page migration */ 94 BUG_ON(!PageLocked(page)); 95 96 VM_BUG_ON_PAGE(PageTail(page), page); 97 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 98 99 if (!TestSetPageMlocked(page)) { 100 int nr_pages = thp_nr_pages(page); 101 102 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 103 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 104 if (!isolate_lru_page(page)) 105 putback_lru_page(page); 106 } 107 } 108 109 /* 110 * Finish munlock after successful page isolation 111 * 112 * Page must be locked. This is a wrapper for page_mlock() 113 * and putback_lru_page() with munlock accounting. 114 */ 115 static void __munlock_isolated_page(struct page *page) 116 { 117 /* 118 * Optimization: if the page was mapped just once, that's our mapping 119 * and we don't need to check all the other vmas. 120 */ 121 if (page_mapcount(page) > 1) 122 page_mlock(page); 123 124 /* Did try_to_unlock() succeed or punt? */ 125 if (!PageMlocked(page)) 126 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page)); 127 128 putback_lru_page(page); 129 } 130 131 /* 132 * Accounting for page isolation fail during munlock 133 * 134 * Performs accounting when page isolation fails in munlock. There is nothing 135 * else to do because it means some other task has already removed the page 136 * from the LRU. putback_lru_page() will take care of removing the page from 137 * the unevictable list, if necessary. vmscan [page_referenced()] will move 138 * the page back to the unevictable list if some other vma has it mlocked. 139 */ 140 static void __munlock_isolation_failed(struct page *page) 141 { 142 int nr_pages = thp_nr_pages(page); 143 144 if (PageUnevictable(page)) 145 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 146 else 147 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 148 } 149 150 /** 151 * munlock_vma_page - munlock a vma page 152 * @page: page to be unlocked, either a normal page or THP page head 153 * 154 * returns the size of the page as a page mask (0 for normal page, 155 * HPAGE_PMD_NR - 1 for THP head page) 156 * 157 * called from munlock()/munmap() path with page supposedly on the LRU. 158 * When we munlock a page, because the vma where we found the page is being 159 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 160 * page locked so that we can leave it on the unevictable lru list and not 161 * bother vmscan with it. However, to walk the page's rmap list in 162 * page_mlock() we must isolate the page from the LRU. If some other 163 * task has removed the page from the LRU, we won't be able to do that. 164 * So we clear the PageMlocked as we might not get another chance. If we 165 * can't isolate the page, we leave it for putback_lru_page() and vmscan 166 * [page_referenced()/try_to_unmap()] to deal with. 167 */ 168 unsigned int munlock_vma_page(struct page *page) 169 { 170 int nr_pages; 171 172 /* For page_mlock() and to serialize with page migration */ 173 BUG_ON(!PageLocked(page)); 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 176 if (!TestClearPageMlocked(page)) { 177 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 178 return 0; 179 } 180 181 nr_pages = thp_nr_pages(page); 182 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 183 184 if (!isolate_lru_page(page)) 185 __munlock_isolated_page(page); 186 else 187 __munlock_isolation_failed(page); 188 189 return nr_pages - 1; 190 } 191 192 /* 193 * convert get_user_pages() return value to posix mlock() error 194 */ 195 static int __mlock_posix_error_return(long retval) 196 { 197 if (retval == -EFAULT) 198 retval = -ENOMEM; 199 else if (retval == -ENOMEM) 200 retval = -EAGAIN; 201 return retval; 202 } 203 204 /* 205 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 206 * 207 * The fast path is available only for evictable pages with single mapping. 208 * Then we can bypass the per-cpu pvec and get better performance. 209 * when mapcount > 1 we need page_mlock() which can fail. 210 * when !page_evictable(), we need the full redo logic of putback_lru_page to 211 * avoid leaving evictable page in unevictable list. 212 * 213 * In case of success, @page is added to @pvec and @pgrescued is incremented 214 * in case that the page was previously unevictable. @page is also unlocked. 215 */ 216 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 217 int *pgrescued) 218 { 219 VM_BUG_ON_PAGE(PageLRU(page), page); 220 VM_BUG_ON_PAGE(!PageLocked(page), page); 221 222 if (page_mapcount(page) <= 1 && page_evictable(page)) { 223 pagevec_add(pvec, page); 224 if (TestClearPageUnevictable(page)) 225 (*pgrescued)++; 226 unlock_page(page); 227 return true; 228 } 229 230 return false; 231 } 232 233 /* 234 * Putback multiple evictable pages to the LRU 235 * 236 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 237 * the pages might have meanwhile become unevictable but that is OK. 238 */ 239 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 240 { 241 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 242 /* 243 *__pagevec_lru_add() calls release_pages() so we don't call 244 * put_page() explicitly 245 */ 246 __pagevec_lru_add(pvec); 247 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 248 } 249 250 /* 251 * Munlock a batch of pages from the same zone 252 * 253 * The work is split to two main phases. First phase clears the Mlocked flag 254 * and attempts to isolate the pages, all under a single zone lru lock. 255 * The second phase finishes the munlock only for pages where isolation 256 * succeeded. 257 * 258 * Note that the pagevec may be modified during the process. 259 */ 260 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 261 { 262 int i; 263 int nr = pagevec_count(pvec); 264 int delta_munlocked = -nr; 265 struct pagevec pvec_putback; 266 struct lruvec *lruvec = NULL; 267 int pgrescued = 0; 268 269 pagevec_init(&pvec_putback); 270 271 /* Phase 1: page isolation */ 272 for (i = 0; i < nr; i++) { 273 struct page *page = pvec->pages[i]; 274 struct folio *folio = page_folio(page); 275 276 if (TestClearPageMlocked(page)) { 277 /* 278 * We already have pin from follow_page_mask() 279 * so we can spare the get_page() here. 280 */ 281 if (TestClearPageLRU(page)) { 282 lruvec = folio_lruvec_relock_irq(folio, lruvec); 283 del_page_from_lru_list(page, lruvec); 284 continue; 285 } else 286 __munlock_isolation_failed(page); 287 } else { 288 delta_munlocked++; 289 } 290 291 /* 292 * We won't be munlocking this page in the next phase 293 * but we still need to release the follow_page_mask() 294 * pin. We cannot do it under lru_lock however. If it's 295 * the last pin, __page_cache_release() would deadlock. 296 */ 297 pagevec_add(&pvec_putback, pvec->pages[i]); 298 pvec->pages[i] = NULL; 299 } 300 if (lruvec) { 301 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 302 unlock_page_lruvec_irq(lruvec); 303 } else if (delta_munlocked) { 304 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 305 } 306 307 /* Now we can release pins of pages that we are not munlocking */ 308 pagevec_release(&pvec_putback); 309 310 /* Phase 2: page munlock */ 311 for (i = 0; i < nr; i++) { 312 struct page *page = pvec->pages[i]; 313 314 if (page) { 315 lock_page(page); 316 if (!__putback_lru_fast_prepare(page, &pvec_putback, 317 &pgrescued)) { 318 /* 319 * Slow path. We don't want to lose the last 320 * pin before unlock_page() 321 */ 322 get_page(page); /* for putback_lru_page() */ 323 __munlock_isolated_page(page); 324 unlock_page(page); 325 put_page(page); /* from follow_page_mask() */ 326 } 327 } 328 } 329 330 /* 331 * Phase 3: page putback for pages that qualified for the fast path 332 * This will also call put_page() to return pin from follow_page_mask() 333 */ 334 if (pagevec_count(&pvec_putback)) 335 __putback_lru_fast(&pvec_putback, pgrescued); 336 } 337 338 /* 339 * Fill up pagevec for __munlock_pagevec using pte walk 340 * 341 * The function expects that the struct page corresponding to @start address is 342 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 343 * 344 * The rest of @pvec is filled by subsequent pages within the same pmd and same 345 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 346 * pages also get pinned. 347 * 348 * Returns the address of the next page that should be scanned. This equals 349 * @start + PAGE_SIZE when no page could be added by the pte walk. 350 */ 351 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 352 struct vm_area_struct *vma, struct zone *zone, 353 unsigned long start, unsigned long end) 354 { 355 pte_t *pte; 356 spinlock_t *ptl; 357 358 /* 359 * Initialize pte walk starting at the already pinned page where we 360 * are sure that there is a pte, as it was pinned under the same 361 * mmap_lock write op. 362 */ 363 pte = get_locked_pte(vma->vm_mm, start, &ptl); 364 /* Make sure we do not cross the page table boundary */ 365 end = pgd_addr_end(start, end); 366 end = p4d_addr_end(start, end); 367 end = pud_addr_end(start, end); 368 end = pmd_addr_end(start, end); 369 370 /* The page next to the pinned page is the first we will try to get */ 371 start += PAGE_SIZE; 372 while (start < end) { 373 struct page *page = NULL; 374 pte++; 375 if (pte_present(*pte)) 376 page = vm_normal_page(vma, start, *pte); 377 /* 378 * Break if page could not be obtained or the page's node+zone does not 379 * match 380 */ 381 if (!page || page_zone(page) != zone) 382 break; 383 384 /* 385 * Do not use pagevec for PTE-mapped THP, 386 * munlock_vma_pages_range() will handle them. 387 */ 388 if (PageTransCompound(page)) 389 break; 390 391 get_page(page); 392 /* 393 * Increase the address that will be returned *before* the 394 * eventual break due to pvec becoming full by adding the page 395 */ 396 start += PAGE_SIZE; 397 if (pagevec_add(pvec, page) == 0) 398 break; 399 } 400 pte_unmap_unlock(pte, ptl); 401 return start; 402 } 403 404 /* 405 * munlock_vma_pages_range() - munlock all pages in the vma range.' 406 * @vma - vma containing range to be munlock()ed. 407 * @start - start address in @vma of the range 408 * @end - end of range in @vma. 409 * 410 * For mremap(), munmap() and exit(). 411 * 412 * Called with @vma VM_LOCKED. 413 * 414 * Returns with VM_LOCKED cleared. Callers must be prepared to 415 * deal with this. 416 * 417 * We don't save and restore VM_LOCKED here because pages are 418 * still on lru. In unmap path, pages might be scanned by reclaim 419 * and re-mlocked by page_mlock/try_to_unmap before we unmap and 420 * free them. This will result in freeing mlocked pages. 421 */ 422 void munlock_vma_pages_range(struct vm_area_struct *vma, 423 unsigned long start, unsigned long end) 424 { 425 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 426 427 while (start < end) { 428 struct page *page; 429 unsigned int page_mask = 0; 430 unsigned long page_increm; 431 struct pagevec pvec; 432 struct zone *zone; 433 434 pagevec_init(&pvec); 435 /* 436 * Although FOLL_DUMP is intended for get_dump_page(), 437 * it just so happens that its special treatment of the 438 * ZERO_PAGE (returning an error instead of doing get_page) 439 * suits munlock very well (and if somehow an abnormal page 440 * has sneaked into the range, we won't oops here: great). 441 */ 442 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 443 444 if (page && !IS_ERR(page)) { 445 if (PageTransTail(page)) { 446 VM_BUG_ON_PAGE(PageMlocked(page), page); 447 put_page(page); /* follow_page_mask() */ 448 } else if (PageTransHuge(page)) { 449 lock_page(page); 450 /* 451 * Any THP page found by follow_page_mask() may 452 * have gotten split before reaching 453 * munlock_vma_page(), so we need to compute 454 * the page_mask here instead. 455 */ 456 page_mask = munlock_vma_page(page); 457 unlock_page(page); 458 put_page(page); /* follow_page_mask() */ 459 } else { 460 /* 461 * Non-huge pages are handled in batches via 462 * pagevec. The pin from follow_page_mask() 463 * prevents them from collapsing by THP. 464 */ 465 pagevec_add(&pvec, page); 466 zone = page_zone(page); 467 468 /* 469 * Try to fill the rest of pagevec using fast 470 * pte walk. This will also update start to 471 * the next page to process. Then munlock the 472 * pagevec. 473 */ 474 start = __munlock_pagevec_fill(&pvec, vma, 475 zone, start, end); 476 __munlock_pagevec(&pvec, zone); 477 goto next; 478 } 479 } 480 page_increm = 1 + page_mask; 481 start += page_increm * PAGE_SIZE; 482 next: 483 cond_resched(); 484 } 485 } 486 487 /* 488 * mlock_fixup - handle mlock[all]/munlock[all] requests. 489 * 490 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 491 * munlock is a no-op. However, for some special vmas, we go ahead and 492 * populate the ptes. 493 * 494 * For vmas that pass the filters, merge/split as appropriate. 495 */ 496 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 497 unsigned long start, unsigned long end, vm_flags_t newflags) 498 { 499 struct mm_struct *mm = vma->vm_mm; 500 pgoff_t pgoff; 501 int nr_pages; 502 int ret = 0; 503 int lock = !!(newflags & VM_LOCKED); 504 vm_flags_t old_flags = vma->vm_flags; 505 506 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 507 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 508 vma_is_dax(vma) || vma_is_secretmem(vma)) 509 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 510 goto out; 511 512 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 513 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 514 vma->vm_file, pgoff, vma_policy(vma), 515 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 516 if (*prev) { 517 vma = *prev; 518 goto success; 519 } 520 521 if (start != vma->vm_start) { 522 ret = split_vma(mm, vma, start, 1); 523 if (ret) 524 goto out; 525 } 526 527 if (end != vma->vm_end) { 528 ret = split_vma(mm, vma, end, 0); 529 if (ret) 530 goto out; 531 } 532 533 success: 534 /* 535 * Keep track of amount of locked VM. 536 */ 537 nr_pages = (end - start) >> PAGE_SHIFT; 538 if (!lock) 539 nr_pages = -nr_pages; 540 else if (old_flags & VM_LOCKED) 541 nr_pages = 0; 542 mm->locked_vm += nr_pages; 543 544 /* 545 * vm_flags is protected by the mmap_lock held in write mode. 546 * It's okay if try_to_unmap_one unmaps a page just after we 547 * set VM_LOCKED, populate_vma_page_range will bring it back. 548 */ 549 550 if (lock) 551 vma->vm_flags = newflags; 552 else 553 munlock_vma_pages_range(vma, start, end); 554 555 out: 556 *prev = vma; 557 return ret; 558 } 559 560 static int apply_vma_lock_flags(unsigned long start, size_t len, 561 vm_flags_t flags) 562 { 563 unsigned long nstart, end, tmp; 564 struct vm_area_struct *vma, *prev; 565 int error; 566 567 VM_BUG_ON(offset_in_page(start)); 568 VM_BUG_ON(len != PAGE_ALIGN(len)); 569 end = start + len; 570 if (end < start) 571 return -EINVAL; 572 if (end == start) 573 return 0; 574 vma = find_vma(current->mm, start); 575 if (!vma || vma->vm_start > start) 576 return -ENOMEM; 577 578 prev = vma->vm_prev; 579 if (start > vma->vm_start) 580 prev = vma; 581 582 for (nstart = start ; ; ) { 583 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 584 585 newflags |= flags; 586 587 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 588 tmp = vma->vm_end; 589 if (tmp > end) 590 tmp = end; 591 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 592 if (error) 593 break; 594 nstart = tmp; 595 if (nstart < prev->vm_end) 596 nstart = prev->vm_end; 597 if (nstart >= end) 598 break; 599 600 vma = prev->vm_next; 601 if (!vma || vma->vm_start != nstart) { 602 error = -ENOMEM; 603 break; 604 } 605 } 606 return error; 607 } 608 609 /* 610 * Go through vma areas and sum size of mlocked 611 * vma pages, as return value. 612 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 613 * is also counted. 614 * Return value: previously mlocked page counts 615 */ 616 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 617 unsigned long start, size_t len) 618 { 619 struct vm_area_struct *vma; 620 unsigned long count = 0; 621 622 if (mm == NULL) 623 mm = current->mm; 624 625 vma = find_vma(mm, start); 626 if (vma == NULL) 627 return 0; 628 629 for (; vma ; vma = vma->vm_next) { 630 if (start >= vma->vm_end) 631 continue; 632 if (start + len <= vma->vm_start) 633 break; 634 if (vma->vm_flags & VM_LOCKED) { 635 if (start > vma->vm_start) 636 count -= (start - vma->vm_start); 637 if (start + len < vma->vm_end) { 638 count += start + len - vma->vm_start; 639 break; 640 } 641 count += vma->vm_end - vma->vm_start; 642 } 643 } 644 645 return count >> PAGE_SHIFT; 646 } 647 648 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 649 { 650 unsigned long locked; 651 unsigned long lock_limit; 652 int error = -ENOMEM; 653 654 start = untagged_addr(start); 655 656 if (!can_do_mlock()) 657 return -EPERM; 658 659 len = PAGE_ALIGN(len + (offset_in_page(start))); 660 start &= PAGE_MASK; 661 662 lock_limit = rlimit(RLIMIT_MEMLOCK); 663 lock_limit >>= PAGE_SHIFT; 664 locked = len >> PAGE_SHIFT; 665 666 if (mmap_write_lock_killable(current->mm)) 667 return -EINTR; 668 669 locked += current->mm->locked_vm; 670 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 671 /* 672 * It is possible that the regions requested intersect with 673 * previously mlocked areas, that part area in "mm->locked_vm" 674 * should not be counted to new mlock increment count. So check 675 * and adjust locked count if necessary. 676 */ 677 locked -= count_mm_mlocked_page_nr(current->mm, 678 start, len); 679 } 680 681 /* check against resource limits */ 682 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 683 error = apply_vma_lock_flags(start, len, flags); 684 685 mmap_write_unlock(current->mm); 686 if (error) 687 return error; 688 689 error = __mm_populate(start, len, 0); 690 if (error) 691 return __mlock_posix_error_return(error); 692 return 0; 693 } 694 695 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 696 { 697 return do_mlock(start, len, VM_LOCKED); 698 } 699 700 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 701 { 702 vm_flags_t vm_flags = VM_LOCKED; 703 704 if (flags & ~MLOCK_ONFAULT) 705 return -EINVAL; 706 707 if (flags & MLOCK_ONFAULT) 708 vm_flags |= VM_LOCKONFAULT; 709 710 return do_mlock(start, len, vm_flags); 711 } 712 713 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 714 { 715 int ret; 716 717 start = untagged_addr(start); 718 719 len = PAGE_ALIGN(len + (offset_in_page(start))); 720 start &= PAGE_MASK; 721 722 if (mmap_write_lock_killable(current->mm)) 723 return -EINTR; 724 ret = apply_vma_lock_flags(start, len, 0); 725 mmap_write_unlock(current->mm); 726 727 return ret; 728 } 729 730 /* 731 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 732 * and translate into the appropriate modifications to mm->def_flags and/or the 733 * flags for all current VMAs. 734 * 735 * There are a couple of subtleties with this. If mlockall() is called multiple 736 * times with different flags, the values do not necessarily stack. If mlockall 737 * is called once including the MCL_FUTURE flag and then a second time without 738 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 739 */ 740 static int apply_mlockall_flags(int flags) 741 { 742 struct vm_area_struct *vma, *prev = NULL; 743 vm_flags_t to_add = 0; 744 745 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 746 if (flags & MCL_FUTURE) { 747 current->mm->def_flags |= VM_LOCKED; 748 749 if (flags & MCL_ONFAULT) 750 current->mm->def_flags |= VM_LOCKONFAULT; 751 752 if (!(flags & MCL_CURRENT)) 753 goto out; 754 } 755 756 if (flags & MCL_CURRENT) { 757 to_add |= VM_LOCKED; 758 if (flags & MCL_ONFAULT) 759 to_add |= VM_LOCKONFAULT; 760 } 761 762 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 763 vm_flags_t newflags; 764 765 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 766 newflags |= to_add; 767 768 /* Ignore errors */ 769 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 770 cond_resched(); 771 } 772 out: 773 return 0; 774 } 775 776 SYSCALL_DEFINE1(mlockall, int, flags) 777 { 778 unsigned long lock_limit; 779 int ret; 780 781 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 782 flags == MCL_ONFAULT) 783 return -EINVAL; 784 785 if (!can_do_mlock()) 786 return -EPERM; 787 788 lock_limit = rlimit(RLIMIT_MEMLOCK); 789 lock_limit >>= PAGE_SHIFT; 790 791 if (mmap_write_lock_killable(current->mm)) 792 return -EINTR; 793 794 ret = -ENOMEM; 795 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 796 capable(CAP_IPC_LOCK)) 797 ret = apply_mlockall_flags(flags); 798 mmap_write_unlock(current->mm); 799 if (!ret && (flags & MCL_CURRENT)) 800 mm_populate(0, TASK_SIZE); 801 802 return ret; 803 } 804 805 SYSCALL_DEFINE0(munlockall) 806 { 807 int ret; 808 809 if (mmap_write_lock_killable(current->mm)) 810 return -EINTR; 811 ret = apply_mlockall_flags(0); 812 mmap_write_unlock(current->mm); 813 return ret; 814 } 815 816 /* 817 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 818 * shm segments) get accounted against the user_struct instead. 819 */ 820 static DEFINE_SPINLOCK(shmlock_user_lock); 821 822 int user_shm_lock(size_t size, struct ucounts *ucounts) 823 { 824 unsigned long lock_limit, locked; 825 long memlock; 826 int allowed = 0; 827 828 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 829 lock_limit = rlimit(RLIMIT_MEMLOCK); 830 if (lock_limit == RLIM_INFINITY) 831 allowed = 1; 832 lock_limit >>= PAGE_SHIFT; 833 spin_lock(&shmlock_user_lock); 834 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 835 836 if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { 837 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 838 goto out; 839 } 840 if (!get_ucounts(ucounts)) { 841 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 842 goto out; 843 } 844 allowed = 1; 845 out: 846 spin_unlock(&shmlock_user_lock); 847 return allowed; 848 } 849 850 void user_shm_unlock(size_t size, struct ucounts *ucounts) 851 { 852 spin_lock(&shmlock_user_lock); 853 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 854 spin_unlock(&shmlock_user_lock); 855 put_ucounts(ucounts); 856 } 857