1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 int can_do_mlock(void) 28 { 29 if (capable(CAP_IPC_LOCK)) 30 return 1; 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return 1; 33 return 0; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 /* Serialize with page migration */ 83 BUG_ON(!PageLocked(page)); 84 85 if (!TestSetPageMlocked(page)) { 86 mod_zone_page_state(page_zone(page), NR_MLOCK, 87 hpage_nr_pages(page)); 88 count_vm_event(UNEVICTABLE_PGMLOCKED); 89 if (!isolate_lru_page(page)) 90 putback_lru_page(page); 91 } 92 } 93 94 /* 95 * Isolate a page from LRU with optional get_page() pin. 96 * Assumes lru_lock already held and page already pinned. 97 */ 98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 99 { 100 if (PageLRU(page)) { 101 struct lruvec *lruvec; 102 103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); 104 if (getpage) 105 get_page(page); 106 ClearPageLRU(page); 107 del_page_from_lru_list(page, lruvec, page_lru(page)); 108 return true; 109 } 110 111 return false; 112 } 113 114 /* 115 * Finish munlock after successful page isolation 116 * 117 * Page must be locked. This is a wrapper for try_to_munlock() 118 * and putback_lru_page() with munlock accounting. 119 */ 120 static void __munlock_isolated_page(struct page *page) 121 { 122 int ret = SWAP_AGAIN; 123 124 /* 125 * Optimization: if the page was mapped just once, that's our mapping 126 * and we don't need to check all the other vmas. 127 */ 128 if (page_mapcount(page) > 1) 129 ret = try_to_munlock(page); 130 131 /* Did try_to_unlock() succeed or punt? */ 132 if (ret != SWAP_MLOCK) 133 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 134 135 putback_lru_page(page); 136 } 137 138 /* 139 * Accounting for page isolation fail during munlock 140 * 141 * Performs accounting when page isolation fails in munlock. There is nothing 142 * else to do because it means some other task has already removed the page 143 * from the LRU. putback_lru_page() will take care of removing the page from 144 * the unevictable list, if necessary. vmscan [page_referenced()] will move 145 * the page back to the unevictable list if some other vma has it mlocked. 146 */ 147 static void __munlock_isolation_failed(struct page *page) 148 { 149 if (PageUnevictable(page)) 150 __count_vm_event(UNEVICTABLE_PGSTRANDED); 151 else 152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 153 } 154 155 /** 156 * munlock_vma_page - munlock a vma page 157 * @page - page to be unlocked, either a normal page or THP page head 158 * 159 * returns the size of the page as a page mask (0 for normal page, 160 * HPAGE_PMD_NR - 1 for THP head page) 161 * 162 * called from munlock()/munmap() path with page supposedly on the LRU. 163 * When we munlock a page, because the vma where we found the page is being 164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 165 * page locked so that we can leave it on the unevictable lru list and not 166 * bother vmscan with it. However, to walk the page's rmap list in 167 * try_to_munlock() we must isolate the page from the LRU. If some other 168 * task has removed the page from the LRU, we won't be able to do that. 169 * So we clear the PageMlocked as we might not get another chance. If we 170 * can't isolate the page, we leave it for putback_lru_page() and vmscan 171 * [page_referenced()/try_to_unmap()] to deal with. 172 */ 173 unsigned int munlock_vma_page(struct page *page) 174 { 175 unsigned int nr_pages; 176 struct zone *zone = page_zone(page); 177 178 /* For try_to_munlock() and to serialize with page migration */ 179 BUG_ON(!PageLocked(page)); 180 181 /* 182 * Serialize with any parallel __split_huge_page_refcount() which 183 * might otherwise copy PageMlocked to part of the tail pages before 184 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 185 */ 186 spin_lock_irq(&zone->lru_lock); 187 188 nr_pages = hpage_nr_pages(page); 189 if (!TestClearPageMlocked(page)) 190 goto unlock_out; 191 192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 193 194 if (__munlock_isolate_lru_page(page, true)) { 195 spin_unlock_irq(&zone->lru_lock); 196 __munlock_isolated_page(page); 197 goto out; 198 } 199 __munlock_isolation_failed(page); 200 201 unlock_out: 202 spin_unlock_irq(&zone->lru_lock); 203 204 out: 205 return nr_pages - 1; 206 } 207 208 /** 209 * __mlock_vma_pages_range() - mlock a range of pages in the vma. 210 * @vma: target vma 211 * @start: start address 212 * @end: end address 213 * 214 * This takes care of making the pages present too. 215 * 216 * return 0 on success, negative error code on error. 217 * 218 * vma->vm_mm->mmap_sem must be held for at least read. 219 */ 220 long __mlock_vma_pages_range(struct vm_area_struct *vma, 221 unsigned long start, unsigned long end, int *nonblocking) 222 { 223 struct mm_struct *mm = vma->vm_mm; 224 unsigned long nr_pages = (end - start) / PAGE_SIZE; 225 int gup_flags; 226 227 VM_BUG_ON(start & ~PAGE_MASK); 228 VM_BUG_ON(end & ~PAGE_MASK); 229 VM_BUG_ON(start < vma->vm_start); 230 VM_BUG_ON(end > vma->vm_end); 231 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 232 233 gup_flags = FOLL_TOUCH | FOLL_MLOCK; 234 /* 235 * We want to touch writable mappings with a write fault in order 236 * to break COW, except for shared mappings because these don't COW 237 * and we would not want to dirty them for nothing. 238 */ 239 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 240 gup_flags |= FOLL_WRITE; 241 242 /* 243 * We want mlock to succeed for regions that have any permissions 244 * other than PROT_NONE. 245 */ 246 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 247 gup_flags |= FOLL_FORCE; 248 249 /* 250 * We made sure addr is within a VMA, so the following will 251 * not result in a stack expansion that recurses back here. 252 */ 253 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 254 NULL, NULL, nonblocking); 255 } 256 257 /* 258 * convert get_user_pages() return value to posix mlock() error 259 */ 260 static int __mlock_posix_error_return(long retval) 261 { 262 if (retval == -EFAULT) 263 retval = -ENOMEM; 264 else if (retval == -ENOMEM) 265 retval = -EAGAIN; 266 return retval; 267 } 268 269 /* 270 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 271 * 272 * The fast path is available only for evictable pages with single mapping. 273 * Then we can bypass the per-cpu pvec and get better performance. 274 * when mapcount > 1 we need try_to_munlock() which can fail. 275 * when !page_evictable(), we need the full redo logic of putback_lru_page to 276 * avoid leaving evictable page in unevictable list. 277 * 278 * In case of success, @page is added to @pvec and @pgrescued is incremented 279 * in case that the page was previously unevictable. @page is also unlocked. 280 */ 281 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 282 int *pgrescued) 283 { 284 VM_BUG_ON_PAGE(PageLRU(page), page); 285 VM_BUG_ON_PAGE(!PageLocked(page), page); 286 287 if (page_mapcount(page) <= 1 && page_evictable(page)) { 288 pagevec_add(pvec, page); 289 if (TestClearPageUnevictable(page)) 290 (*pgrescued)++; 291 unlock_page(page); 292 return true; 293 } 294 295 return false; 296 } 297 298 /* 299 * Putback multiple evictable pages to the LRU 300 * 301 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 302 * the pages might have meanwhile become unevictable but that is OK. 303 */ 304 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 305 { 306 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 307 /* 308 *__pagevec_lru_add() calls release_pages() so we don't call 309 * put_page() explicitly 310 */ 311 __pagevec_lru_add(pvec); 312 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 313 } 314 315 /* 316 * Munlock a batch of pages from the same zone 317 * 318 * The work is split to two main phases. First phase clears the Mlocked flag 319 * and attempts to isolate the pages, all under a single zone lru lock. 320 * The second phase finishes the munlock only for pages where isolation 321 * succeeded. 322 * 323 * Note that the pagevec may be modified during the process. 324 */ 325 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 326 { 327 int i; 328 int nr = pagevec_count(pvec); 329 int delta_munlocked; 330 struct pagevec pvec_putback; 331 int pgrescued = 0; 332 333 pagevec_init(&pvec_putback, 0); 334 335 /* Phase 1: page isolation */ 336 spin_lock_irq(&zone->lru_lock); 337 for (i = 0; i < nr; i++) { 338 struct page *page = pvec->pages[i]; 339 340 if (TestClearPageMlocked(page)) { 341 /* 342 * We already have pin from follow_page_mask() 343 * so we can spare the get_page() here. 344 */ 345 if (__munlock_isolate_lru_page(page, false)) 346 continue; 347 else 348 __munlock_isolation_failed(page); 349 } 350 351 /* 352 * We won't be munlocking this page in the next phase 353 * but we still need to release the follow_page_mask() 354 * pin. We cannot do it under lru_lock however. If it's 355 * the last pin, __page_cache_release() would deadlock. 356 */ 357 pagevec_add(&pvec_putback, pvec->pages[i]); 358 pvec->pages[i] = NULL; 359 } 360 delta_munlocked = -nr + pagevec_count(&pvec_putback); 361 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 362 spin_unlock_irq(&zone->lru_lock); 363 364 /* Now we can release pins of pages that we are not munlocking */ 365 pagevec_release(&pvec_putback); 366 367 /* Phase 2: page munlock */ 368 for (i = 0; i < nr; i++) { 369 struct page *page = pvec->pages[i]; 370 371 if (page) { 372 lock_page(page); 373 if (!__putback_lru_fast_prepare(page, &pvec_putback, 374 &pgrescued)) { 375 /* 376 * Slow path. We don't want to lose the last 377 * pin before unlock_page() 378 */ 379 get_page(page); /* for putback_lru_page() */ 380 __munlock_isolated_page(page); 381 unlock_page(page); 382 put_page(page); /* from follow_page_mask() */ 383 } 384 } 385 } 386 387 /* 388 * Phase 3: page putback for pages that qualified for the fast path 389 * This will also call put_page() to return pin from follow_page_mask() 390 */ 391 if (pagevec_count(&pvec_putback)) 392 __putback_lru_fast(&pvec_putback, pgrescued); 393 } 394 395 /* 396 * Fill up pagevec for __munlock_pagevec using pte walk 397 * 398 * The function expects that the struct page corresponding to @start address is 399 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 400 * 401 * The rest of @pvec is filled by subsequent pages within the same pmd and same 402 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 403 * pages also get pinned. 404 * 405 * Returns the address of the next page that should be scanned. This equals 406 * @start + PAGE_SIZE when no page could be added by the pte walk. 407 */ 408 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 409 struct vm_area_struct *vma, int zoneid, unsigned long start, 410 unsigned long end) 411 { 412 pte_t *pte; 413 spinlock_t *ptl; 414 415 /* 416 * Initialize pte walk starting at the already pinned page where we 417 * are sure that there is a pte, as it was pinned under the same 418 * mmap_sem write op. 419 */ 420 pte = get_locked_pte(vma->vm_mm, start, &ptl); 421 /* Make sure we do not cross the page table boundary */ 422 end = pgd_addr_end(start, end); 423 end = pud_addr_end(start, end); 424 end = pmd_addr_end(start, end); 425 426 /* The page next to the pinned page is the first we will try to get */ 427 start += PAGE_SIZE; 428 while (start < end) { 429 struct page *page = NULL; 430 pte++; 431 if (pte_present(*pte)) 432 page = vm_normal_page(vma, start, *pte); 433 /* 434 * Break if page could not be obtained or the page's node+zone does not 435 * match 436 */ 437 if (!page || page_zone_id(page) != zoneid) 438 break; 439 440 get_page(page); 441 /* 442 * Increase the address that will be returned *before* the 443 * eventual break due to pvec becoming full by adding the page 444 */ 445 start += PAGE_SIZE; 446 if (pagevec_add(pvec, page) == 0) 447 break; 448 } 449 pte_unmap_unlock(pte, ptl); 450 return start; 451 } 452 453 /* 454 * munlock_vma_pages_range() - munlock all pages in the vma range.' 455 * @vma - vma containing range to be munlock()ed. 456 * @start - start address in @vma of the range 457 * @end - end of range in @vma. 458 * 459 * For mremap(), munmap() and exit(). 460 * 461 * Called with @vma VM_LOCKED. 462 * 463 * Returns with VM_LOCKED cleared. Callers must be prepared to 464 * deal with this. 465 * 466 * We don't save and restore VM_LOCKED here because pages are 467 * still on lru. In unmap path, pages might be scanned by reclaim 468 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 469 * free them. This will result in freeing mlocked pages. 470 */ 471 void munlock_vma_pages_range(struct vm_area_struct *vma, 472 unsigned long start, unsigned long end) 473 { 474 vma->vm_flags &= ~VM_LOCKED; 475 476 while (start < end) { 477 struct page *page = NULL; 478 unsigned int page_mask; 479 unsigned long page_increm; 480 struct pagevec pvec; 481 struct zone *zone; 482 int zoneid; 483 484 pagevec_init(&pvec, 0); 485 /* 486 * Although FOLL_DUMP is intended for get_dump_page(), 487 * it just so happens that its special treatment of the 488 * ZERO_PAGE (returning an error instead of doing get_page) 489 * suits munlock very well (and if somehow an abnormal page 490 * has sneaked into the range, we won't oops here: great). 491 */ 492 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 493 &page_mask); 494 495 if (page && !IS_ERR(page)) { 496 if (PageTransHuge(page)) { 497 lock_page(page); 498 /* 499 * Any THP page found by follow_page_mask() may 500 * have gotten split before reaching 501 * munlock_vma_page(), so we need to recompute 502 * the page_mask here. 503 */ 504 page_mask = munlock_vma_page(page); 505 unlock_page(page); 506 put_page(page); /* follow_page_mask() */ 507 } else { 508 /* 509 * Non-huge pages are handled in batches via 510 * pagevec. The pin from follow_page_mask() 511 * prevents them from collapsing by THP. 512 */ 513 pagevec_add(&pvec, page); 514 zone = page_zone(page); 515 zoneid = page_zone_id(page); 516 517 /* 518 * Try to fill the rest of pagevec using fast 519 * pte walk. This will also update start to 520 * the next page to process. Then munlock the 521 * pagevec. 522 */ 523 start = __munlock_pagevec_fill(&pvec, vma, 524 zoneid, start, end); 525 __munlock_pagevec(&pvec, zone); 526 goto next; 527 } 528 } 529 /* It's a bug to munlock in the middle of a THP page */ 530 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask); 531 page_increm = 1 + page_mask; 532 start += page_increm * PAGE_SIZE; 533 next: 534 cond_resched(); 535 } 536 } 537 538 /* 539 * mlock_fixup - handle mlock[all]/munlock[all] requests. 540 * 541 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 542 * munlock is a no-op. However, for some special vmas, we go ahead and 543 * populate the ptes. 544 * 545 * For vmas that pass the filters, merge/split as appropriate. 546 */ 547 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 548 unsigned long start, unsigned long end, vm_flags_t newflags) 549 { 550 struct mm_struct *mm = vma->vm_mm; 551 pgoff_t pgoff; 552 int nr_pages; 553 int ret = 0; 554 int lock = !!(newflags & VM_LOCKED); 555 556 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 557 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 558 goto out; /* don't set VM_LOCKED, don't count */ 559 560 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 561 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 562 vma->vm_file, pgoff, vma_policy(vma)); 563 if (*prev) { 564 vma = *prev; 565 goto success; 566 } 567 568 if (start != vma->vm_start) { 569 ret = split_vma(mm, vma, start, 1); 570 if (ret) 571 goto out; 572 } 573 574 if (end != vma->vm_end) { 575 ret = split_vma(mm, vma, end, 0); 576 if (ret) 577 goto out; 578 } 579 580 success: 581 /* 582 * Keep track of amount of locked VM. 583 */ 584 nr_pages = (end - start) >> PAGE_SHIFT; 585 if (!lock) 586 nr_pages = -nr_pages; 587 mm->locked_vm += nr_pages; 588 589 /* 590 * vm_flags is protected by the mmap_sem held in write mode. 591 * It's okay if try_to_unmap_one unmaps a page just after we 592 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 593 */ 594 595 if (lock) 596 vma->vm_flags = newflags; 597 else 598 munlock_vma_pages_range(vma, start, end); 599 600 out: 601 *prev = vma; 602 return ret; 603 } 604 605 static int do_mlock(unsigned long start, size_t len, int on) 606 { 607 unsigned long nstart, end, tmp; 608 struct vm_area_struct * vma, * prev; 609 int error; 610 611 VM_BUG_ON(start & ~PAGE_MASK); 612 VM_BUG_ON(len != PAGE_ALIGN(len)); 613 end = start + len; 614 if (end < start) 615 return -EINVAL; 616 if (end == start) 617 return 0; 618 vma = find_vma(current->mm, start); 619 if (!vma || vma->vm_start > start) 620 return -ENOMEM; 621 622 prev = vma->vm_prev; 623 if (start > vma->vm_start) 624 prev = vma; 625 626 for (nstart = start ; ; ) { 627 vm_flags_t newflags; 628 629 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 630 631 newflags = vma->vm_flags & ~VM_LOCKED; 632 if (on) 633 newflags |= VM_LOCKED; 634 635 tmp = vma->vm_end; 636 if (tmp > end) 637 tmp = end; 638 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 639 if (error) 640 break; 641 nstart = tmp; 642 if (nstart < prev->vm_end) 643 nstart = prev->vm_end; 644 if (nstart >= end) 645 break; 646 647 vma = prev->vm_next; 648 if (!vma || vma->vm_start != nstart) { 649 error = -ENOMEM; 650 break; 651 } 652 } 653 return error; 654 } 655 656 /* 657 * __mm_populate - populate and/or mlock pages within a range of address space. 658 * 659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 660 * flags. VMAs must be already marked with the desired vm_flags, and 661 * mmap_sem must not be held. 662 */ 663 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 664 { 665 struct mm_struct *mm = current->mm; 666 unsigned long end, nstart, nend; 667 struct vm_area_struct *vma = NULL; 668 int locked = 0; 669 long ret = 0; 670 671 VM_BUG_ON(start & ~PAGE_MASK); 672 VM_BUG_ON(len != PAGE_ALIGN(len)); 673 end = start + len; 674 675 for (nstart = start; nstart < end; nstart = nend) { 676 /* 677 * We want to fault in pages for [nstart; end) address range. 678 * Find first corresponding VMA. 679 */ 680 if (!locked) { 681 locked = 1; 682 down_read(&mm->mmap_sem); 683 vma = find_vma(mm, nstart); 684 } else if (nstart >= vma->vm_end) 685 vma = vma->vm_next; 686 if (!vma || vma->vm_start >= end) 687 break; 688 /* 689 * Set [nstart; nend) to intersection of desired address 690 * range with the first VMA. Also, skip undesirable VMA types. 691 */ 692 nend = min(end, vma->vm_end); 693 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 694 continue; 695 if (nstart < vma->vm_start) 696 nstart = vma->vm_start; 697 /* 698 * Now fault in a range of pages. __mlock_vma_pages_range() 699 * double checks the vma flags, so that it won't mlock pages 700 * if the vma was already munlocked. 701 */ 702 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked); 703 if (ret < 0) { 704 if (ignore_errors) { 705 ret = 0; 706 continue; /* continue at next VMA */ 707 } 708 ret = __mlock_posix_error_return(ret); 709 break; 710 } 711 nend = nstart + ret * PAGE_SIZE; 712 ret = 0; 713 } 714 if (locked) 715 up_read(&mm->mmap_sem); 716 return ret; /* 0 or negative error code */ 717 } 718 719 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 720 { 721 unsigned long locked; 722 unsigned long lock_limit; 723 int error = -ENOMEM; 724 725 if (!can_do_mlock()) 726 return -EPERM; 727 728 lru_add_drain_all(); /* flush pagevec */ 729 730 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 731 start &= PAGE_MASK; 732 733 lock_limit = rlimit(RLIMIT_MEMLOCK); 734 lock_limit >>= PAGE_SHIFT; 735 locked = len >> PAGE_SHIFT; 736 737 down_write(¤t->mm->mmap_sem); 738 739 locked += current->mm->locked_vm; 740 741 /* check against resource limits */ 742 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 743 error = do_mlock(start, len, 1); 744 745 up_write(¤t->mm->mmap_sem); 746 if (!error) 747 error = __mm_populate(start, len, 0); 748 return error; 749 } 750 751 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 752 { 753 int ret; 754 755 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 756 start &= PAGE_MASK; 757 758 down_write(¤t->mm->mmap_sem); 759 ret = do_mlock(start, len, 0); 760 up_write(¤t->mm->mmap_sem); 761 762 return ret; 763 } 764 765 static int do_mlockall(int flags) 766 { 767 struct vm_area_struct * vma, * prev = NULL; 768 769 if (flags & MCL_FUTURE) 770 current->mm->def_flags |= VM_LOCKED; 771 else 772 current->mm->def_flags &= ~VM_LOCKED; 773 if (flags == MCL_FUTURE) 774 goto out; 775 776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 777 vm_flags_t newflags; 778 779 newflags = vma->vm_flags & ~VM_LOCKED; 780 if (flags & MCL_CURRENT) 781 newflags |= VM_LOCKED; 782 783 /* Ignore errors */ 784 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 785 cond_resched(); 786 } 787 out: 788 return 0; 789 } 790 791 SYSCALL_DEFINE1(mlockall, int, flags) 792 { 793 unsigned long lock_limit; 794 int ret = -EINVAL; 795 796 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 797 goto out; 798 799 ret = -EPERM; 800 if (!can_do_mlock()) 801 goto out; 802 803 if (flags & MCL_CURRENT) 804 lru_add_drain_all(); /* flush pagevec */ 805 806 lock_limit = rlimit(RLIMIT_MEMLOCK); 807 lock_limit >>= PAGE_SHIFT; 808 809 ret = -ENOMEM; 810 down_write(¤t->mm->mmap_sem); 811 812 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 813 capable(CAP_IPC_LOCK)) 814 ret = do_mlockall(flags); 815 up_write(¤t->mm->mmap_sem); 816 if (!ret && (flags & MCL_CURRENT)) 817 mm_populate(0, TASK_SIZE); 818 out: 819 return ret; 820 } 821 822 SYSCALL_DEFINE0(munlockall) 823 { 824 int ret; 825 826 down_write(¤t->mm->mmap_sem); 827 ret = do_mlockall(0); 828 up_write(¤t->mm->mmap_sem); 829 return ret; 830 } 831 832 /* 833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 834 * shm segments) get accounted against the user_struct instead. 835 */ 836 static DEFINE_SPINLOCK(shmlock_user_lock); 837 838 int user_shm_lock(size_t size, struct user_struct *user) 839 { 840 unsigned long lock_limit, locked; 841 int allowed = 0; 842 843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 844 lock_limit = rlimit(RLIMIT_MEMLOCK); 845 if (lock_limit == RLIM_INFINITY) 846 allowed = 1; 847 lock_limit >>= PAGE_SHIFT; 848 spin_lock(&shmlock_user_lock); 849 if (!allowed && 850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 851 goto out; 852 get_uid(user); 853 user->locked_shm += locked; 854 allowed = 1; 855 out: 856 spin_unlock(&shmlock_user_lock); 857 return allowed; 858 } 859 860 void user_shm_unlock(size_t size, struct user_struct *user) 861 { 862 spin_lock(&shmlock_user_lock); 863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 864 spin_unlock(&shmlock_user_lock); 865 free_uid(user); 866 } 867