1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/sched/user.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/pagemap.h> 15 #include <linux/pagevec.h> 16 #include <linux/mempolicy.h> 17 #include <linux/syscalls.h> 18 #include <linux/sched.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> 21 #include <linux/mmzone.h> 22 #include <linux/hugetlb.h> 23 #include <linux/memcontrol.h> 24 #include <linux/mm_inline.h> 25 26 #include "internal.h" 27 28 bool can_do_mlock(void) 29 { 30 if (rlimit(RLIMIT_MEMLOCK) != 0) 31 return true; 32 if (capable(CAP_IPC_LOCK)) 33 return true; 34 return false; 35 } 36 EXPORT_SYMBOL(can_do_mlock); 37 38 /* 39 * Mlocked pages are marked with PageMlocked() flag for efficient testing 40 * in vmscan and, possibly, the fault path; and to support semi-accurate 41 * statistics. 42 * 43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 44 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 45 * The unevictable list is an LRU sibling list to the [in]active lists. 46 * PageUnevictable is set to indicate the unevictable state. 47 * 48 * When lazy mlocking via vmscan, it is important to ensure that the 49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 50 * may have mlocked a page that is being munlocked. So lazy mlock must take 51 * the mmap_sem for read, and verify that the vma really is locked 52 * (see mm/rmap.c). 53 */ 54 55 /* 56 * LRU accounting for clear_page_mlock() 57 */ 58 void clear_page_mlock(struct page *page) 59 { 60 if (!TestClearPageMlocked(page)) 61 return; 62 63 mod_zone_page_state(page_zone(page), NR_MLOCK, 64 -hpage_nr_pages(page)); 65 count_vm_event(UNEVICTABLE_PGCLEARED); 66 if (!isolate_lru_page(page)) { 67 putback_lru_page(page); 68 } else { 69 /* 70 * We lost the race. the page already moved to evictable list. 71 */ 72 if (PageUnevictable(page)) 73 count_vm_event(UNEVICTABLE_PGSTRANDED); 74 } 75 } 76 77 /* 78 * Mark page as mlocked if not already. 79 * If page on LRU, isolate and putback to move to unevictable list. 80 */ 81 void mlock_vma_page(struct page *page) 82 { 83 /* Serialize with page migration */ 84 BUG_ON(!PageLocked(page)); 85 86 VM_BUG_ON_PAGE(PageTail(page), page); 87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 88 89 if (!TestSetPageMlocked(page)) { 90 mod_zone_page_state(page_zone(page), NR_MLOCK, 91 hpage_nr_pages(page)); 92 count_vm_event(UNEVICTABLE_PGMLOCKED); 93 if (!isolate_lru_page(page)) 94 putback_lru_page(page); 95 } 96 } 97 98 /* 99 * Isolate a page from LRU with optional get_page() pin. 100 * Assumes lru_lock already held and page already pinned. 101 */ 102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 103 { 104 if (PageLRU(page)) { 105 struct lruvec *lruvec; 106 107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 108 if (getpage) 109 get_page(page); 110 ClearPageLRU(page); 111 del_page_from_lru_list(page, lruvec, page_lru(page)); 112 return true; 113 } 114 115 return false; 116 } 117 118 /* 119 * Finish munlock after successful page isolation 120 * 121 * Page must be locked. This is a wrapper for try_to_munlock() 122 * and putback_lru_page() with munlock accounting. 123 */ 124 static void __munlock_isolated_page(struct page *page) 125 { 126 int ret = SWAP_AGAIN; 127 128 /* 129 * Optimization: if the page was mapped just once, that's our mapping 130 * and we don't need to check all the other vmas. 131 */ 132 if (page_mapcount(page) > 1) 133 ret = try_to_munlock(page); 134 135 /* Did try_to_unlock() succeed or punt? */ 136 if (ret != SWAP_MLOCK) 137 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 138 139 putback_lru_page(page); 140 } 141 142 /* 143 * Accounting for page isolation fail during munlock 144 * 145 * Performs accounting when page isolation fails in munlock. There is nothing 146 * else to do because it means some other task has already removed the page 147 * from the LRU. putback_lru_page() will take care of removing the page from 148 * the unevictable list, if necessary. vmscan [page_referenced()] will move 149 * the page back to the unevictable list if some other vma has it mlocked. 150 */ 151 static void __munlock_isolation_failed(struct page *page) 152 { 153 if (PageUnevictable(page)) 154 __count_vm_event(UNEVICTABLE_PGSTRANDED); 155 else 156 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 157 } 158 159 /** 160 * munlock_vma_page - munlock a vma page 161 * @page - page to be unlocked, either a normal page or THP page head 162 * 163 * returns the size of the page as a page mask (0 for normal page, 164 * HPAGE_PMD_NR - 1 for THP head page) 165 * 166 * called from munlock()/munmap() path with page supposedly on the LRU. 167 * When we munlock a page, because the vma where we found the page is being 168 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 169 * page locked so that we can leave it on the unevictable lru list and not 170 * bother vmscan with it. However, to walk the page's rmap list in 171 * try_to_munlock() we must isolate the page from the LRU. If some other 172 * task has removed the page from the LRU, we won't be able to do that. 173 * So we clear the PageMlocked as we might not get another chance. If we 174 * can't isolate the page, we leave it for putback_lru_page() and vmscan 175 * [page_referenced()/try_to_unmap()] to deal with. 176 */ 177 unsigned int munlock_vma_page(struct page *page) 178 { 179 int nr_pages; 180 struct zone *zone = page_zone(page); 181 182 /* For try_to_munlock() and to serialize with page migration */ 183 BUG_ON(!PageLocked(page)); 184 185 VM_BUG_ON_PAGE(PageTail(page), page); 186 187 /* 188 * Serialize with any parallel __split_huge_page_refcount() which 189 * might otherwise copy PageMlocked to part of the tail pages before 190 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 191 */ 192 spin_lock_irq(zone_lru_lock(zone)); 193 194 if (!TestClearPageMlocked(page)) { 195 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 196 nr_pages = 1; 197 goto unlock_out; 198 } 199 200 nr_pages = hpage_nr_pages(page); 201 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 202 203 if (__munlock_isolate_lru_page(page, true)) { 204 spin_unlock_irq(zone_lru_lock(zone)); 205 __munlock_isolated_page(page); 206 goto out; 207 } 208 __munlock_isolation_failed(page); 209 210 unlock_out: 211 spin_unlock_irq(zone_lru_lock(zone)); 212 213 out: 214 return nr_pages - 1; 215 } 216 217 /* 218 * convert get_user_pages() return value to posix mlock() error 219 */ 220 static int __mlock_posix_error_return(long retval) 221 { 222 if (retval == -EFAULT) 223 retval = -ENOMEM; 224 else if (retval == -ENOMEM) 225 retval = -EAGAIN; 226 return retval; 227 } 228 229 /* 230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 231 * 232 * The fast path is available only for evictable pages with single mapping. 233 * Then we can bypass the per-cpu pvec and get better performance. 234 * when mapcount > 1 we need try_to_munlock() which can fail. 235 * when !page_evictable(), we need the full redo logic of putback_lru_page to 236 * avoid leaving evictable page in unevictable list. 237 * 238 * In case of success, @page is added to @pvec and @pgrescued is incremented 239 * in case that the page was previously unevictable. @page is also unlocked. 240 */ 241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 242 int *pgrescued) 243 { 244 VM_BUG_ON_PAGE(PageLRU(page), page); 245 VM_BUG_ON_PAGE(!PageLocked(page), page); 246 247 if (page_mapcount(page) <= 1 && page_evictable(page)) { 248 pagevec_add(pvec, page); 249 if (TestClearPageUnevictable(page)) 250 (*pgrescued)++; 251 unlock_page(page); 252 return true; 253 } 254 255 return false; 256 } 257 258 /* 259 * Putback multiple evictable pages to the LRU 260 * 261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 262 * the pages might have meanwhile become unevictable but that is OK. 263 */ 264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 265 { 266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 267 /* 268 *__pagevec_lru_add() calls release_pages() so we don't call 269 * put_page() explicitly 270 */ 271 __pagevec_lru_add(pvec); 272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 273 } 274 275 /* 276 * Munlock a batch of pages from the same zone 277 * 278 * The work is split to two main phases. First phase clears the Mlocked flag 279 * and attempts to isolate the pages, all under a single zone lru lock. 280 * The second phase finishes the munlock only for pages where isolation 281 * succeeded. 282 * 283 * Note that the pagevec may be modified during the process. 284 */ 285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 286 { 287 int i; 288 int nr = pagevec_count(pvec); 289 int delta_munlocked; 290 struct pagevec pvec_putback; 291 int pgrescued = 0; 292 293 pagevec_init(&pvec_putback, 0); 294 295 /* Phase 1: page isolation */ 296 spin_lock_irq(zone_lru_lock(zone)); 297 for (i = 0; i < nr; i++) { 298 struct page *page = pvec->pages[i]; 299 300 if (TestClearPageMlocked(page)) { 301 /* 302 * We already have pin from follow_page_mask() 303 * so we can spare the get_page() here. 304 */ 305 if (__munlock_isolate_lru_page(page, false)) 306 continue; 307 else 308 __munlock_isolation_failed(page); 309 } 310 311 /* 312 * We won't be munlocking this page in the next phase 313 * but we still need to release the follow_page_mask() 314 * pin. We cannot do it under lru_lock however. If it's 315 * the last pin, __page_cache_release() would deadlock. 316 */ 317 pagevec_add(&pvec_putback, pvec->pages[i]); 318 pvec->pages[i] = NULL; 319 } 320 delta_munlocked = -nr + pagevec_count(&pvec_putback); 321 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 322 spin_unlock_irq(zone_lru_lock(zone)); 323 324 /* Now we can release pins of pages that we are not munlocking */ 325 pagevec_release(&pvec_putback); 326 327 /* Phase 2: page munlock */ 328 for (i = 0; i < nr; i++) { 329 struct page *page = pvec->pages[i]; 330 331 if (page) { 332 lock_page(page); 333 if (!__putback_lru_fast_prepare(page, &pvec_putback, 334 &pgrescued)) { 335 /* 336 * Slow path. We don't want to lose the last 337 * pin before unlock_page() 338 */ 339 get_page(page); /* for putback_lru_page() */ 340 __munlock_isolated_page(page); 341 unlock_page(page); 342 put_page(page); /* from follow_page_mask() */ 343 } 344 } 345 } 346 347 /* 348 * Phase 3: page putback for pages that qualified for the fast path 349 * This will also call put_page() to return pin from follow_page_mask() 350 */ 351 if (pagevec_count(&pvec_putback)) 352 __putback_lru_fast(&pvec_putback, pgrescued); 353 } 354 355 /* 356 * Fill up pagevec for __munlock_pagevec using pte walk 357 * 358 * The function expects that the struct page corresponding to @start address is 359 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 360 * 361 * The rest of @pvec is filled by subsequent pages within the same pmd and same 362 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 363 * pages also get pinned. 364 * 365 * Returns the address of the next page that should be scanned. This equals 366 * @start + PAGE_SIZE when no page could be added by the pte walk. 367 */ 368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 369 struct vm_area_struct *vma, int zoneid, unsigned long start, 370 unsigned long end) 371 { 372 pte_t *pte; 373 spinlock_t *ptl; 374 375 /* 376 * Initialize pte walk starting at the already pinned page where we 377 * are sure that there is a pte, as it was pinned under the same 378 * mmap_sem write op. 379 */ 380 pte = get_locked_pte(vma->vm_mm, start, &ptl); 381 /* Make sure we do not cross the page table boundary */ 382 end = pgd_addr_end(start, end); 383 end = pud_addr_end(start, end); 384 end = pmd_addr_end(start, end); 385 386 /* The page next to the pinned page is the first we will try to get */ 387 start += PAGE_SIZE; 388 while (start < end) { 389 struct page *page = NULL; 390 pte++; 391 if (pte_present(*pte)) 392 page = vm_normal_page(vma, start, *pte); 393 /* 394 * Break if page could not be obtained or the page's node+zone does not 395 * match 396 */ 397 if (!page || page_zone_id(page) != zoneid) 398 break; 399 400 /* 401 * Do not use pagevec for PTE-mapped THP, 402 * munlock_vma_pages_range() will handle them. 403 */ 404 if (PageTransCompound(page)) 405 break; 406 407 get_page(page); 408 /* 409 * Increase the address that will be returned *before* the 410 * eventual break due to pvec becoming full by adding the page 411 */ 412 start += PAGE_SIZE; 413 if (pagevec_add(pvec, page) == 0) 414 break; 415 } 416 pte_unmap_unlock(pte, ptl); 417 return start; 418 } 419 420 /* 421 * munlock_vma_pages_range() - munlock all pages in the vma range.' 422 * @vma - vma containing range to be munlock()ed. 423 * @start - start address in @vma of the range 424 * @end - end of range in @vma. 425 * 426 * For mremap(), munmap() and exit(). 427 * 428 * Called with @vma VM_LOCKED. 429 * 430 * Returns with VM_LOCKED cleared. Callers must be prepared to 431 * deal with this. 432 * 433 * We don't save and restore VM_LOCKED here because pages are 434 * still on lru. In unmap path, pages might be scanned by reclaim 435 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 436 * free them. This will result in freeing mlocked pages. 437 */ 438 void munlock_vma_pages_range(struct vm_area_struct *vma, 439 unsigned long start, unsigned long end) 440 { 441 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 442 443 while (start < end) { 444 struct page *page; 445 unsigned int page_mask; 446 unsigned long page_increm; 447 struct pagevec pvec; 448 struct zone *zone; 449 int zoneid; 450 451 pagevec_init(&pvec, 0); 452 /* 453 * Although FOLL_DUMP is intended for get_dump_page(), 454 * it just so happens that its special treatment of the 455 * ZERO_PAGE (returning an error instead of doing get_page) 456 * suits munlock very well (and if somehow an abnormal page 457 * has sneaked into the range, we won't oops here: great). 458 */ 459 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 460 &page_mask); 461 462 if (page && !IS_ERR(page)) { 463 if (PageTransTail(page)) { 464 VM_BUG_ON_PAGE(PageMlocked(page), page); 465 put_page(page); /* follow_page_mask() */ 466 } else if (PageTransHuge(page)) { 467 lock_page(page); 468 /* 469 * Any THP page found by follow_page_mask() may 470 * have gotten split before reaching 471 * munlock_vma_page(), so we need to recompute 472 * the page_mask here. 473 */ 474 page_mask = munlock_vma_page(page); 475 unlock_page(page); 476 put_page(page); /* follow_page_mask() */ 477 } else { 478 /* 479 * Non-huge pages are handled in batches via 480 * pagevec. The pin from follow_page_mask() 481 * prevents them from collapsing by THP. 482 */ 483 pagevec_add(&pvec, page); 484 zone = page_zone(page); 485 zoneid = page_zone_id(page); 486 487 /* 488 * Try to fill the rest of pagevec using fast 489 * pte walk. This will also update start to 490 * the next page to process. Then munlock the 491 * pagevec. 492 */ 493 start = __munlock_pagevec_fill(&pvec, vma, 494 zoneid, start, end); 495 __munlock_pagevec(&pvec, zone); 496 goto next; 497 } 498 } 499 page_increm = 1 + page_mask; 500 start += page_increm * PAGE_SIZE; 501 next: 502 cond_resched(); 503 } 504 } 505 506 /* 507 * mlock_fixup - handle mlock[all]/munlock[all] requests. 508 * 509 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 510 * munlock is a no-op. However, for some special vmas, we go ahead and 511 * populate the ptes. 512 * 513 * For vmas that pass the filters, merge/split as appropriate. 514 */ 515 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 516 unsigned long start, unsigned long end, vm_flags_t newflags) 517 { 518 struct mm_struct *mm = vma->vm_mm; 519 pgoff_t pgoff; 520 int nr_pages; 521 int ret = 0; 522 int lock = !!(newflags & VM_LOCKED); 523 vm_flags_t old_flags = vma->vm_flags; 524 525 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 526 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 527 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 528 goto out; 529 530 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 531 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 532 vma->vm_file, pgoff, vma_policy(vma), 533 vma->vm_userfaultfd_ctx); 534 if (*prev) { 535 vma = *prev; 536 goto success; 537 } 538 539 if (start != vma->vm_start) { 540 ret = split_vma(mm, vma, start, 1); 541 if (ret) 542 goto out; 543 } 544 545 if (end != vma->vm_end) { 546 ret = split_vma(mm, vma, end, 0); 547 if (ret) 548 goto out; 549 } 550 551 success: 552 /* 553 * Keep track of amount of locked VM. 554 */ 555 nr_pages = (end - start) >> PAGE_SHIFT; 556 if (!lock) 557 nr_pages = -nr_pages; 558 else if (old_flags & VM_LOCKED) 559 nr_pages = 0; 560 mm->locked_vm += nr_pages; 561 562 /* 563 * vm_flags is protected by the mmap_sem held in write mode. 564 * It's okay if try_to_unmap_one unmaps a page just after we 565 * set VM_LOCKED, populate_vma_page_range will bring it back. 566 */ 567 568 if (lock) 569 vma->vm_flags = newflags; 570 else 571 munlock_vma_pages_range(vma, start, end); 572 573 out: 574 *prev = vma; 575 return ret; 576 } 577 578 static int apply_vma_lock_flags(unsigned long start, size_t len, 579 vm_flags_t flags) 580 { 581 unsigned long nstart, end, tmp; 582 struct vm_area_struct * vma, * prev; 583 int error; 584 585 VM_BUG_ON(offset_in_page(start)); 586 VM_BUG_ON(len != PAGE_ALIGN(len)); 587 end = start + len; 588 if (end < start) 589 return -EINVAL; 590 if (end == start) 591 return 0; 592 vma = find_vma(current->mm, start); 593 if (!vma || vma->vm_start > start) 594 return -ENOMEM; 595 596 prev = vma->vm_prev; 597 if (start > vma->vm_start) 598 prev = vma; 599 600 for (nstart = start ; ; ) { 601 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 602 603 newflags |= flags; 604 605 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 606 tmp = vma->vm_end; 607 if (tmp > end) 608 tmp = end; 609 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 610 if (error) 611 break; 612 nstart = tmp; 613 if (nstart < prev->vm_end) 614 nstart = prev->vm_end; 615 if (nstart >= end) 616 break; 617 618 vma = prev->vm_next; 619 if (!vma || vma->vm_start != nstart) { 620 error = -ENOMEM; 621 break; 622 } 623 } 624 return error; 625 } 626 627 /* 628 * Go through vma areas and sum size of mlocked 629 * vma pages, as return value. 630 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 631 * is also counted. 632 * Return value: previously mlocked page counts 633 */ 634 static int count_mm_mlocked_page_nr(struct mm_struct *mm, 635 unsigned long start, size_t len) 636 { 637 struct vm_area_struct *vma; 638 int count = 0; 639 640 if (mm == NULL) 641 mm = current->mm; 642 643 vma = find_vma(mm, start); 644 if (vma == NULL) 645 vma = mm->mmap; 646 647 for (; vma ; vma = vma->vm_next) { 648 if (start >= vma->vm_end) 649 continue; 650 if (start + len <= vma->vm_start) 651 break; 652 if (vma->vm_flags & VM_LOCKED) { 653 if (start > vma->vm_start) 654 count -= (start - vma->vm_start); 655 if (start + len < vma->vm_end) { 656 count += start + len - vma->vm_start; 657 break; 658 } 659 count += vma->vm_end - vma->vm_start; 660 } 661 } 662 663 return count >> PAGE_SHIFT; 664 } 665 666 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 667 { 668 unsigned long locked; 669 unsigned long lock_limit; 670 int error = -ENOMEM; 671 672 if (!can_do_mlock()) 673 return -EPERM; 674 675 lru_add_drain_all(); /* flush pagevec */ 676 677 len = PAGE_ALIGN(len + (offset_in_page(start))); 678 start &= PAGE_MASK; 679 680 lock_limit = rlimit(RLIMIT_MEMLOCK); 681 lock_limit >>= PAGE_SHIFT; 682 locked = len >> PAGE_SHIFT; 683 684 if (down_write_killable(¤t->mm->mmap_sem)) 685 return -EINTR; 686 687 locked += current->mm->locked_vm; 688 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 689 /* 690 * It is possible that the regions requested intersect with 691 * previously mlocked areas, that part area in "mm->locked_vm" 692 * should not be counted to new mlock increment count. So check 693 * and adjust locked count if necessary. 694 */ 695 locked -= count_mm_mlocked_page_nr(current->mm, 696 start, len); 697 } 698 699 /* check against resource limits */ 700 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 701 error = apply_vma_lock_flags(start, len, flags); 702 703 up_write(¤t->mm->mmap_sem); 704 if (error) 705 return error; 706 707 error = __mm_populate(start, len, 0); 708 if (error) 709 return __mlock_posix_error_return(error); 710 return 0; 711 } 712 713 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 714 { 715 return do_mlock(start, len, VM_LOCKED); 716 } 717 718 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 719 { 720 vm_flags_t vm_flags = VM_LOCKED; 721 722 if (flags & ~MLOCK_ONFAULT) 723 return -EINVAL; 724 725 if (flags & MLOCK_ONFAULT) 726 vm_flags |= VM_LOCKONFAULT; 727 728 return do_mlock(start, len, vm_flags); 729 } 730 731 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 732 { 733 int ret; 734 735 len = PAGE_ALIGN(len + (offset_in_page(start))); 736 start &= PAGE_MASK; 737 738 if (down_write_killable(¤t->mm->mmap_sem)) 739 return -EINTR; 740 ret = apply_vma_lock_flags(start, len, 0); 741 up_write(¤t->mm->mmap_sem); 742 743 return ret; 744 } 745 746 /* 747 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 748 * and translate into the appropriate modifications to mm->def_flags and/or the 749 * flags for all current VMAs. 750 * 751 * There are a couple of subtleties with this. If mlockall() is called multiple 752 * times with different flags, the values do not necessarily stack. If mlockall 753 * is called once including the MCL_FUTURE flag and then a second time without 754 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 755 */ 756 static int apply_mlockall_flags(int flags) 757 { 758 struct vm_area_struct * vma, * prev = NULL; 759 vm_flags_t to_add = 0; 760 761 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 762 if (flags & MCL_FUTURE) { 763 current->mm->def_flags |= VM_LOCKED; 764 765 if (flags & MCL_ONFAULT) 766 current->mm->def_flags |= VM_LOCKONFAULT; 767 768 if (!(flags & MCL_CURRENT)) 769 goto out; 770 } 771 772 if (flags & MCL_CURRENT) { 773 to_add |= VM_LOCKED; 774 if (flags & MCL_ONFAULT) 775 to_add |= VM_LOCKONFAULT; 776 } 777 778 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 779 vm_flags_t newflags; 780 781 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 782 newflags |= to_add; 783 784 /* Ignore errors */ 785 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 786 cond_resched_rcu_qs(); 787 } 788 out: 789 return 0; 790 } 791 792 SYSCALL_DEFINE1(mlockall, int, flags) 793 { 794 unsigned long lock_limit; 795 int ret; 796 797 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) 798 return -EINVAL; 799 800 if (!can_do_mlock()) 801 return -EPERM; 802 803 if (flags & MCL_CURRENT) 804 lru_add_drain_all(); /* flush pagevec */ 805 806 lock_limit = rlimit(RLIMIT_MEMLOCK); 807 lock_limit >>= PAGE_SHIFT; 808 809 if (down_write_killable(¤t->mm->mmap_sem)) 810 return -EINTR; 811 812 ret = -ENOMEM; 813 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 814 capable(CAP_IPC_LOCK)) 815 ret = apply_mlockall_flags(flags); 816 up_write(¤t->mm->mmap_sem); 817 if (!ret && (flags & MCL_CURRENT)) 818 mm_populate(0, TASK_SIZE); 819 820 return ret; 821 } 822 823 SYSCALL_DEFINE0(munlockall) 824 { 825 int ret; 826 827 if (down_write_killable(¤t->mm->mmap_sem)) 828 return -EINTR; 829 ret = apply_mlockall_flags(0); 830 up_write(¤t->mm->mmap_sem); 831 return ret; 832 } 833 834 /* 835 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 836 * shm segments) get accounted against the user_struct instead. 837 */ 838 static DEFINE_SPINLOCK(shmlock_user_lock); 839 840 int user_shm_lock(size_t size, struct user_struct *user) 841 { 842 unsigned long lock_limit, locked; 843 int allowed = 0; 844 845 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 846 lock_limit = rlimit(RLIMIT_MEMLOCK); 847 if (lock_limit == RLIM_INFINITY) 848 allowed = 1; 849 lock_limit >>= PAGE_SHIFT; 850 spin_lock(&shmlock_user_lock); 851 if (!allowed && 852 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 853 goto out; 854 get_uid(user); 855 user->locked_shm += locked; 856 allowed = 1; 857 out: 858 spin_unlock(&shmlock_user_lock); 859 return allowed; 860 } 861 862 void user_shm_unlock(size_t size, struct user_struct *user) 863 { 864 spin_lock(&shmlock_user_lock); 865 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 866 spin_unlock(&shmlock_user_lock); 867 free_uid(user); 868 } 869