xref: /openbmc/linux/mm/mlock.c (revision a1fde08c)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 /**
139  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
140  * @vma:   target vma
141  * @start: start address
142  * @end:   end address
143  *
144  * This takes care of making the pages present too.
145  *
146  * return 0 on success, negative error code on error.
147  *
148  * vma->vm_mm->mmap_sem must be held for at least read.
149  */
150 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151 				    unsigned long start, unsigned long end,
152 				    int *nonblocking)
153 {
154 	struct mm_struct *mm = vma->vm_mm;
155 	unsigned long addr = start;
156 	int nr_pages = (end - start) / PAGE_SIZE;
157 	int gup_flags;
158 
159 	VM_BUG_ON(start & ~PAGE_MASK);
160 	VM_BUG_ON(end   & ~PAGE_MASK);
161 	VM_BUG_ON(start < vma->vm_start);
162 	VM_BUG_ON(end   > vma->vm_end);
163 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
164 
165 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
166 	/*
167 	 * We want to touch writable mappings with a write fault in order
168 	 * to break COW, except for shared mappings because these don't COW
169 	 * and we would not want to dirty them for nothing.
170 	 */
171 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
172 		gup_flags |= FOLL_WRITE;
173 
174 	/*
175 	 * We want mlock to succeed for regions that have any permissions
176 	 * other than PROT_NONE.
177 	 */
178 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
179 		gup_flags |= FOLL_FORCE;
180 
181 	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
182 				NULL, NULL, nonblocking);
183 }
184 
185 /*
186  * convert get_user_pages() return value to posix mlock() error
187  */
188 static int __mlock_posix_error_return(long retval)
189 {
190 	if (retval == -EFAULT)
191 		retval = -ENOMEM;
192 	else if (retval == -ENOMEM)
193 		retval = -EAGAIN;
194 	return retval;
195 }
196 
197 /**
198  * mlock_vma_pages_range() - mlock pages in specified vma range.
199  * @vma - the vma containing the specfied address range
200  * @start - starting address in @vma to mlock
201  * @end   - end address [+1] in @vma to mlock
202  *
203  * For mmap()/mremap()/expansion of mlocked vma.
204  *
205  * return 0 on success for "normal" vmas.
206  *
207  * return number of pages [> 0] to be removed from locked_vm on success
208  * of "special" vmas.
209  */
210 long mlock_vma_pages_range(struct vm_area_struct *vma,
211 			unsigned long start, unsigned long end)
212 {
213 	int nr_pages = (end - start) / PAGE_SIZE;
214 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
215 
216 	/*
217 	 * filter unlockable vmas
218 	 */
219 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
220 		goto no_mlock;
221 
222 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
223 			is_vm_hugetlb_page(vma) ||
224 			vma == get_gate_vma(current->mm))) {
225 
226 		__mlock_vma_pages_range(vma, start, end, NULL);
227 
228 		/* Hide errors from mmap() and other callers */
229 		return 0;
230 	}
231 
232 	/*
233 	 * User mapped kernel pages or huge pages:
234 	 * make these pages present to populate the ptes, but
235 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
236 	 * return nr_pages so these don't get counted against task's
237 	 * locked limit.  huge pages are already counted against
238 	 * locked vm limit.
239 	 */
240 	make_pages_present(start, end);
241 
242 no_mlock:
243 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
244 	return nr_pages;		/* error or pages NOT mlocked */
245 }
246 
247 /*
248  * munlock_vma_pages_range() - munlock all pages in the vma range.'
249  * @vma - vma containing range to be munlock()ed.
250  * @start - start address in @vma of the range
251  * @end - end of range in @vma.
252  *
253  *  For mremap(), munmap() and exit().
254  *
255  * Called with @vma VM_LOCKED.
256  *
257  * Returns with VM_LOCKED cleared.  Callers must be prepared to
258  * deal with this.
259  *
260  * We don't save and restore VM_LOCKED here because pages are
261  * still on lru.  In unmap path, pages might be scanned by reclaim
262  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
263  * free them.  This will result in freeing mlocked pages.
264  */
265 void munlock_vma_pages_range(struct vm_area_struct *vma,
266 			     unsigned long start, unsigned long end)
267 {
268 	unsigned long addr;
269 
270 	lru_add_drain();
271 	vma->vm_flags &= ~VM_LOCKED;
272 
273 	for (addr = start; addr < end; addr += PAGE_SIZE) {
274 		struct page *page;
275 		/*
276 		 * Although FOLL_DUMP is intended for get_dump_page(),
277 		 * it just so happens that its special treatment of the
278 		 * ZERO_PAGE (returning an error instead of doing get_page)
279 		 * suits munlock very well (and if somehow an abnormal page
280 		 * has sneaked into the range, we won't oops here: great).
281 		 */
282 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
283 		if (page && !IS_ERR(page)) {
284 			lock_page(page);
285 			/*
286 			 * Like in __mlock_vma_pages_range(),
287 			 * because we lock page here and migration is
288 			 * blocked by the elevated reference, we need
289 			 * only check for file-cache page truncation.
290 			 */
291 			if (page->mapping)
292 				munlock_vma_page(page);
293 			unlock_page(page);
294 			put_page(page);
295 		}
296 		cond_resched();
297 	}
298 }
299 
300 /*
301  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
302  *
303  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
304  * munlock is a no-op.  However, for some special vmas, we go ahead and
305  * populate the ptes via make_pages_present().
306  *
307  * For vmas that pass the filters, merge/split as appropriate.
308  */
309 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
310 	unsigned long start, unsigned long end, unsigned int newflags)
311 {
312 	struct mm_struct *mm = vma->vm_mm;
313 	pgoff_t pgoff;
314 	int nr_pages;
315 	int ret = 0;
316 	int lock = newflags & VM_LOCKED;
317 
318 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
319 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
320 		goto out;	/* don't set VM_LOCKED,  don't count */
321 
322 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
323 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
324 			  vma->vm_file, pgoff, vma_policy(vma));
325 	if (*prev) {
326 		vma = *prev;
327 		goto success;
328 	}
329 
330 	if (start != vma->vm_start) {
331 		ret = split_vma(mm, vma, start, 1);
332 		if (ret)
333 			goto out;
334 	}
335 
336 	if (end != vma->vm_end) {
337 		ret = split_vma(mm, vma, end, 0);
338 		if (ret)
339 			goto out;
340 	}
341 
342 success:
343 	/*
344 	 * Keep track of amount of locked VM.
345 	 */
346 	nr_pages = (end - start) >> PAGE_SHIFT;
347 	if (!lock)
348 		nr_pages = -nr_pages;
349 	mm->locked_vm += nr_pages;
350 
351 	/*
352 	 * vm_flags is protected by the mmap_sem held in write mode.
353 	 * It's okay if try_to_unmap_one unmaps a page just after we
354 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
355 	 */
356 
357 	if (lock)
358 		vma->vm_flags = newflags;
359 	else
360 		munlock_vma_pages_range(vma, start, end);
361 
362 out:
363 	*prev = vma;
364 	return ret;
365 }
366 
367 static int do_mlock(unsigned long start, size_t len, int on)
368 {
369 	unsigned long nstart, end, tmp;
370 	struct vm_area_struct * vma, * prev;
371 	int error;
372 
373 	VM_BUG_ON(start & ~PAGE_MASK);
374 	VM_BUG_ON(len != PAGE_ALIGN(len));
375 	end = start + len;
376 	if (end < start)
377 		return -EINVAL;
378 	if (end == start)
379 		return 0;
380 	vma = find_vma_prev(current->mm, start, &prev);
381 	if (!vma || vma->vm_start > start)
382 		return -ENOMEM;
383 
384 	if (start > vma->vm_start)
385 		prev = vma;
386 
387 	for (nstart = start ; ; ) {
388 		unsigned int newflags;
389 
390 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
391 
392 		newflags = vma->vm_flags | VM_LOCKED;
393 		if (!on)
394 			newflags &= ~VM_LOCKED;
395 
396 		tmp = vma->vm_end;
397 		if (tmp > end)
398 			tmp = end;
399 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
400 		if (error)
401 			break;
402 		nstart = tmp;
403 		if (nstart < prev->vm_end)
404 			nstart = prev->vm_end;
405 		if (nstart >= end)
406 			break;
407 
408 		vma = prev->vm_next;
409 		if (!vma || vma->vm_start != nstart) {
410 			error = -ENOMEM;
411 			break;
412 		}
413 	}
414 	return error;
415 }
416 
417 static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
418 {
419 	struct mm_struct *mm = current->mm;
420 	unsigned long end, nstart, nend;
421 	struct vm_area_struct *vma = NULL;
422 	int locked = 0;
423 	int ret = 0;
424 
425 	VM_BUG_ON(start & ~PAGE_MASK);
426 	VM_BUG_ON(len != PAGE_ALIGN(len));
427 	end = start + len;
428 
429 	for (nstart = start; nstart < end; nstart = nend) {
430 		/*
431 		 * We want to fault in pages for [nstart; end) address range.
432 		 * Find first corresponding VMA.
433 		 */
434 		if (!locked) {
435 			locked = 1;
436 			down_read(&mm->mmap_sem);
437 			vma = find_vma(mm, nstart);
438 		} else if (nstart >= vma->vm_end)
439 			vma = vma->vm_next;
440 		if (!vma || vma->vm_start >= end)
441 			break;
442 		/*
443 		 * Set [nstart; nend) to intersection of desired address
444 		 * range with the first VMA. Also, skip undesirable VMA types.
445 		 */
446 		nend = min(end, vma->vm_end);
447 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
448 			continue;
449 		if (nstart < vma->vm_start)
450 			nstart = vma->vm_start;
451 		/*
452 		 * Now fault in a range of pages. __mlock_vma_pages_range()
453 		 * double checks the vma flags, so that it won't mlock pages
454 		 * if the vma was already munlocked.
455 		 */
456 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
457 		if (ret < 0) {
458 			if (ignore_errors) {
459 				ret = 0;
460 				continue;	/* continue at next VMA */
461 			}
462 			ret = __mlock_posix_error_return(ret);
463 			break;
464 		}
465 		nend = nstart + ret * PAGE_SIZE;
466 		ret = 0;
467 	}
468 	if (locked)
469 		up_read(&mm->mmap_sem);
470 	return ret;	/* 0 or negative error code */
471 }
472 
473 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
474 {
475 	unsigned long locked;
476 	unsigned long lock_limit;
477 	int error = -ENOMEM;
478 
479 	if (!can_do_mlock())
480 		return -EPERM;
481 
482 	lru_add_drain_all();	/* flush pagevec */
483 
484 	down_write(&current->mm->mmap_sem);
485 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
486 	start &= PAGE_MASK;
487 
488 	locked = len >> PAGE_SHIFT;
489 	locked += current->mm->locked_vm;
490 
491 	lock_limit = rlimit(RLIMIT_MEMLOCK);
492 	lock_limit >>= PAGE_SHIFT;
493 
494 	/* check against resource limits */
495 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
496 		error = do_mlock(start, len, 1);
497 	up_write(&current->mm->mmap_sem);
498 	if (!error)
499 		error = do_mlock_pages(start, len, 0);
500 	return error;
501 }
502 
503 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
504 {
505 	int ret;
506 
507 	down_write(&current->mm->mmap_sem);
508 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
509 	start &= PAGE_MASK;
510 	ret = do_mlock(start, len, 0);
511 	up_write(&current->mm->mmap_sem);
512 	return ret;
513 }
514 
515 static int do_mlockall(int flags)
516 {
517 	struct vm_area_struct * vma, * prev = NULL;
518 	unsigned int def_flags = 0;
519 
520 	if (flags & MCL_FUTURE)
521 		def_flags = VM_LOCKED;
522 	current->mm->def_flags = def_flags;
523 	if (flags == MCL_FUTURE)
524 		goto out;
525 
526 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527 		unsigned int newflags;
528 
529 		newflags = vma->vm_flags | VM_LOCKED;
530 		if (!(flags & MCL_CURRENT))
531 			newflags &= ~VM_LOCKED;
532 
533 		/* Ignore errors */
534 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
535 	}
536 out:
537 	return 0;
538 }
539 
540 SYSCALL_DEFINE1(mlockall, int, flags)
541 {
542 	unsigned long lock_limit;
543 	int ret = -EINVAL;
544 
545 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546 		goto out;
547 
548 	ret = -EPERM;
549 	if (!can_do_mlock())
550 		goto out;
551 
552 	lru_add_drain_all();	/* flush pagevec */
553 
554 	down_write(&current->mm->mmap_sem);
555 
556 	lock_limit = rlimit(RLIMIT_MEMLOCK);
557 	lock_limit >>= PAGE_SHIFT;
558 
559 	ret = -ENOMEM;
560 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561 	    capable(CAP_IPC_LOCK))
562 		ret = do_mlockall(flags);
563 	up_write(&current->mm->mmap_sem);
564 	if (!ret && (flags & MCL_CURRENT)) {
565 		/* Ignore errors */
566 		do_mlock_pages(0, TASK_SIZE, 1);
567 	}
568 out:
569 	return ret;
570 }
571 
572 SYSCALL_DEFINE0(munlockall)
573 {
574 	int ret;
575 
576 	down_write(&current->mm->mmap_sem);
577 	ret = do_mlockall(0);
578 	up_write(&current->mm->mmap_sem);
579 	return ret;
580 }
581 
582 /*
583  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
584  * shm segments) get accounted against the user_struct instead.
585  */
586 static DEFINE_SPINLOCK(shmlock_user_lock);
587 
588 int user_shm_lock(size_t size, struct user_struct *user)
589 {
590 	unsigned long lock_limit, locked;
591 	int allowed = 0;
592 
593 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
594 	lock_limit = rlimit(RLIMIT_MEMLOCK);
595 	if (lock_limit == RLIM_INFINITY)
596 		allowed = 1;
597 	lock_limit >>= PAGE_SHIFT;
598 	spin_lock(&shmlock_user_lock);
599 	if (!allowed &&
600 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
601 		goto out;
602 	get_uid(user);
603 	user->locked_shm += locked;
604 	allowed = 1;
605 out:
606 	spin_unlock(&shmlock_user_lock);
607 	return allowed;
608 }
609 
610 void user_shm_unlock(size_t size, struct user_struct *user)
611 {
612 	spin_lock(&shmlock_user_lock);
613 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
614 	spin_unlock(&shmlock_user_lock);
615 	free_uid(user);
616 }
617