xref: /openbmc/linux/mm/mlock.c (revision 95042f9e)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 /**
139  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
140  * @vma:   target vma
141  * @start: start address
142  * @end:   end address
143  *
144  * This takes care of making the pages present too.
145  *
146  * return 0 on success, negative error code on error.
147  *
148  * vma->vm_mm->mmap_sem must be held for at least read.
149  */
150 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151 				    unsigned long start, unsigned long end,
152 				    int *nonblocking)
153 {
154 	struct mm_struct *mm = vma->vm_mm;
155 	unsigned long addr = start;
156 	int nr_pages = (end - start) / PAGE_SIZE;
157 	int gup_flags;
158 
159 	VM_BUG_ON(start & ~PAGE_MASK);
160 	VM_BUG_ON(end   & ~PAGE_MASK);
161 	VM_BUG_ON(start < vma->vm_start);
162 	VM_BUG_ON(end   > vma->vm_end);
163 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
164 
165 	gup_flags = FOLL_TOUCH;
166 	/*
167 	 * We want to touch writable mappings with a write fault in order
168 	 * to break COW, except for shared mappings because these don't COW
169 	 * and we would not want to dirty them for nothing.
170 	 */
171 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
172 		gup_flags |= FOLL_WRITE;
173 
174 	/*
175 	 * We want mlock to succeed for regions that have any permissions
176 	 * other than PROT_NONE.
177 	 */
178 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
179 		gup_flags |= FOLL_FORCE;
180 
181 	if (vma->vm_flags & VM_LOCKED)
182 		gup_flags |= FOLL_MLOCK;
183 
184 	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
185 				NULL, NULL, nonblocking);
186 }
187 
188 /*
189  * convert get_user_pages() return value to posix mlock() error
190  */
191 static int __mlock_posix_error_return(long retval)
192 {
193 	if (retval == -EFAULT)
194 		retval = -ENOMEM;
195 	else if (retval == -ENOMEM)
196 		retval = -EAGAIN;
197 	return retval;
198 }
199 
200 /**
201  * mlock_vma_pages_range() - mlock pages in specified vma range.
202  * @vma - the vma containing the specfied address range
203  * @start - starting address in @vma to mlock
204  * @end   - end address [+1] in @vma to mlock
205  *
206  * For mmap()/mremap()/expansion of mlocked vma.
207  *
208  * return 0 on success for "normal" vmas.
209  *
210  * return number of pages [> 0] to be removed from locked_vm on success
211  * of "special" vmas.
212  */
213 long mlock_vma_pages_range(struct vm_area_struct *vma,
214 			unsigned long start, unsigned long end)
215 {
216 	int nr_pages = (end - start) / PAGE_SIZE;
217 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
218 
219 	/*
220 	 * filter unlockable vmas
221 	 */
222 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
223 		goto no_mlock;
224 
225 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
226 			is_vm_hugetlb_page(vma) ||
227 			vma == get_gate_vma(current->mm))) {
228 
229 		__mlock_vma_pages_range(vma, start, end, NULL);
230 
231 		/* Hide errors from mmap() and other callers */
232 		return 0;
233 	}
234 
235 	/*
236 	 * User mapped kernel pages or huge pages:
237 	 * make these pages present to populate the ptes, but
238 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
239 	 * return nr_pages so these don't get counted against task's
240 	 * locked limit.  huge pages are already counted against
241 	 * locked vm limit.
242 	 */
243 	make_pages_present(start, end);
244 
245 no_mlock:
246 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
247 	return nr_pages;		/* error or pages NOT mlocked */
248 }
249 
250 /*
251  * munlock_vma_pages_range() - munlock all pages in the vma range.'
252  * @vma - vma containing range to be munlock()ed.
253  * @start - start address in @vma of the range
254  * @end - end of range in @vma.
255  *
256  *  For mremap(), munmap() and exit().
257  *
258  * Called with @vma VM_LOCKED.
259  *
260  * Returns with VM_LOCKED cleared.  Callers must be prepared to
261  * deal with this.
262  *
263  * We don't save and restore VM_LOCKED here because pages are
264  * still on lru.  In unmap path, pages might be scanned by reclaim
265  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
266  * free them.  This will result in freeing mlocked pages.
267  */
268 void munlock_vma_pages_range(struct vm_area_struct *vma,
269 			     unsigned long start, unsigned long end)
270 {
271 	unsigned long addr;
272 
273 	lru_add_drain();
274 	vma->vm_flags &= ~VM_LOCKED;
275 
276 	for (addr = start; addr < end; addr += PAGE_SIZE) {
277 		struct page *page;
278 		/*
279 		 * Although FOLL_DUMP is intended for get_dump_page(),
280 		 * it just so happens that its special treatment of the
281 		 * ZERO_PAGE (returning an error instead of doing get_page)
282 		 * suits munlock very well (and if somehow an abnormal page
283 		 * has sneaked into the range, we won't oops here: great).
284 		 */
285 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
286 		if (page && !IS_ERR(page)) {
287 			lock_page(page);
288 			/*
289 			 * Like in __mlock_vma_pages_range(),
290 			 * because we lock page here and migration is
291 			 * blocked by the elevated reference, we need
292 			 * only check for file-cache page truncation.
293 			 */
294 			if (page->mapping)
295 				munlock_vma_page(page);
296 			unlock_page(page);
297 			put_page(page);
298 		}
299 		cond_resched();
300 	}
301 }
302 
303 /*
304  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
305  *
306  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
307  * munlock is a no-op.  However, for some special vmas, we go ahead and
308  * populate the ptes via make_pages_present().
309  *
310  * For vmas that pass the filters, merge/split as appropriate.
311  */
312 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
313 	unsigned long start, unsigned long end, unsigned int newflags)
314 {
315 	struct mm_struct *mm = vma->vm_mm;
316 	pgoff_t pgoff;
317 	int nr_pages;
318 	int ret = 0;
319 	int lock = newflags & VM_LOCKED;
320 
321 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
322 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
323 		goto out;	/* don't set VM_LOCKED,  don't count */
324 
325 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
326 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
327 			  vma->vm_file, pgoff, vma_policy(vma));
328 	if (*prev) {
329 		vma = *prev;
330 		goto success;
331 	}
332 
333 	if (start != vma->vm_start) {
334 		ret = split_vma(mm, vma, start, 1);
335 		if (ret)
336 			goto out;
337 	}
338 
339 	if (end != vma->vm_end) {
340 		ret = split_vma(mm, vma, end, 0);
341 		if (ret)
342 			goto out;
343 	}
344 
345 success:
346 	/*
347 	 * Keep track of amount of locked VM.
348 	 */
349 	nr_pages = (end - start) >> PAGE_SHIFT;
350 	if (!lock)
351 		nr_pages = -nr_pages;
352 	mm->locked_vm += nr_pages;
353 
354 	/*
355 	 * vm_flags is protected by the mmap_sem held in write mode.
356 	 * It's okay if try_to_unmap_one unmaps a page just after we
357 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
358 	 */
359 
360 	if (lock)
361 		vma->vm_flags = newflags;
362 	else
363 		munlock_vma_pages_range(vma, start, end);
364 
365 out:
366 	*prev = vma;
367 	return ret;
368 }
369 
370 static int do_mlock(unsigned long start, size_t len, int on)
371 {
372 	unsigned long nstart, end, tmp;
373 	struct vm_area_struct * vma, * prev;
374 	int error;
375 
376 	VM_BUG_ON(start & ~PAGE_MASK);
377 	VM_BUG_ON(len != PAGE_ALIGN(len));
378 	end = start + len;
379 	if (end < start)
380 		return -EINVAL;
381 	if (end == start)
382 		return 0;
383 	vma = find_vma_prev(current->mm, start, &prev);
384 	if (!vma || vma->vm_start > start)
385 		return -ENOMEM;
386 
387 	if (start > vma->vm_start)
388 		prev = vma;
389 
390 	for (nstart = start ; ; ) {
391 		unsigned int newflags;
392 
393 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
394 
395 		newflags = vma->vm_flags | VM_LOCKED;
396 		if (!on)
397 			newflags &= ~VM_LOCKED;
398 
399 		tmp = vma->vm_end;
400 		if (tmp > end)
401 			tmp = end;
402 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
403 		if (error)
404 			break;
405 		nstart = tmp;
406 		if (nstart < prev->vm_end)
407 			nstart = prev->vm_end;
408 		if (nstart >= end)
409 			break;
410 
411 		vma = prev->vm_next;
412 		if (!vma || vma->vm_start != nstart) {
413 			error = -ENOMEM;
414 			break;
415 		}
416 	}
417 	return error;
418 }
419 
420 static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
421 {
422 	struct mm_struct *mm = current->mm;
423 	unsigned long end, nstart, nend;
424 	struct vm_area_struct *vma = NULL;
425 	int locked = 0;
426 	int ret = 0;
427 
428 	VM_BUG_ON(start & ~PAGE_MASK);
429 	VM_BUG_ON(len != PAGE_ALIGN(len));
430 	end = start + len;
431 
432 	for (nstart = start; nstart < end; nstart = nend) {
433 		/*
434 		 * We want to fault in pages for [nstart; end) address range.
435 		 * Find first corresponding VMA.
436 		 */
437 		if (!locked) {
438 			locked = 1;
439 			down_read(&mm->mmap_sem);
440 			vma = find_vma(mm, nstart);
441 		} else if (nstart >= vma->vm_end)
442 			vma = vma->vm_next;
443 		if (!vma || vma->vm_start >= end)
444 			break;
445 		/*
446 		 * Set [nstart; nend) to intersection of desired address
447 		 * range with the first VMA. Also, skip undesirable VMA types.
448 		 */
449 		nend = min(end, vma->vm_end);
450 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
451 			continue;
452 		if (nstart < vma->vm_start)
453 			nstart = vma->vm_start;
454 		/*
455 		 * Now fault in a range of pages. __mlock_vma_pages_range()
456 		 * double checks the vma flags, so that it won't mlock pages
457 		 * if the vma was already munlocked.
458 		 */
459 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
460 		if (ret < 0) {
461 			if (ignore_errors) {
462 				ret = 0;
463 				continue;	/* continue at next VMA */
464 			}
465 			ret = __mlock_posix_error_return(ret);
466 			break;
467 		}
468 		nend = nstart + ret * PAGE_SIZE;
469 		ret = 0;
470 	}
471 	if (locked)
472 		up_read(&mm->mmap_sem);
473 	return ret;	/* 0 or negative error code */
474 }
475 
476 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
477 {
478 	unsigned long locked;
479 	unsigned long lock_limit;
480 	int error = -ENOMEM;
481 
482 	if (!can_do_mlock())
483 		return -EPERM;
484 
485 	lru_add_drain_all();	/* flush pagevec */
486 
487 	down_write(&current->mm->mmap_sem);
488 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
489 	start &= PAGE_MASK;
490 
491 	locked = len >> PAGE_SHIFT;
492 	locked += current->mm->locked_vm;
493 
494 	lock_limit = rlimit(RLIMIT_MEMLOCK);
495 	lock_limit >>= PAGE_SHIFT;
496 
497 	/* check against resource limits */
498 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
499 		error = do_mlock(start, len, 1);
500 	up_write(&current->mm->mmap_sem);
501 	if (!error)
502 		error = do_mlock_pages(start, len, 0);
503 	return error;
504 }
505 
506 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
507 {
508 	int ret;
509 
510 	down_write(&current->mm->mmap_sem);
511 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
512 	start &= PAGE_MASK;
513 	ret = do_mlock(start, len, 0);
514 	up_write(&current->mm->mmap_sem);
515 	return ret;
516 }
517 
518 static int do_mlockall(int flags)
519 {
520 	struct vm_area_struct * vma, * prev = NULL;
521 	unsigned int def_flags = 0;
522 
523 	if (flags & MCL_FUTURE)
524 		def_flags = VM_LOCKED;
525 	current->mm->def_flags = def_flags;
526 	if (flags == MCL_FUTURE)
527 		goto out;
528 
529 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
530 		unsigned int newflags;
531 
532 		newflags = vma->vm_flags | VM_LOCKED;
533 		if (!(flags & MCL_CURRENT))
534 			newflags &= ~VM_LOCKED;
535 
536 		/* Ignore errors */
537 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
538 	}
539 out:
540 	return 0;
541 }
542 
543 SYSCALL_DEFINE1(mlockall, int, flags)
544 {
545 	unsigned long lock_limit;
546 	int ret = -EINVAL;
547 
548 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
549 		goto out;
550 
551 	ret = -EPERM;
552 	if (!can_do_mlock())
553 		goto out;
554 
555 	lru_add_drain_all();	/* flush pagevec */
556 
557 	down_write(&current->mm->mmap_sem);
558 
559 	lock_limit = rlimit(RLIMIT_MEMLOCK);
560 	lock_limit >>= PAGE_SHIFT;
561 
562 	ret = -ENOMEM;
563 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
564 	    capable(CAP_IPC_LOCK))
565 		ret = do_mlockall(flags);
566 	up_write(&current->mm->mmap_sem);
567 	if (!ret && (flags & MCL_CURRENT)) {
568 		/* Ignore errors */
569 		do_mlock_pages(0, TASK_SIZE, 1);
570 	}
571 out:
572 	return ret;
573 }
574 
575 SYSCALL_DEFINE0(munlockall)
576 {
577 	int ret;
578 
579 	down_write(&current->mm->mmap_sem);
580 	ret = do_mlockall(0);
581 	up_write(&current->mm->mmap_sem);
582 	return ret;
583 }
584 
585 /*
586  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
587  * shm segments) get accounted against the user_struct instead.
588  */
589 static DEFINE_SPINLOCK(shmlock_user_lock);
590 
591 int user_shm_lock(size_t size, struct user_struct *user)
592 {
593 	unsigned long lock_limit, locked;
594 	int allowed = 0;
595 
596 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
597 	lock_limit = rlimit(RLIMIT_MEMLOCK);
598 	if (lock_limit == RLIM_INFINITY)
599 		allowed = 1;
600 	lock_limit >>= PAGE_SHIFT;
601 	spin_lock(&shmlock_user_lock);
602 	if (!allowed &&
603 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
604 		goto out;
605 	get_uid(user);
606 	user->locked_shm += locked;
607 	allowed = 1;
608 out:
609 	spin_unlock(&shmlock_user_lock);
610 	return allowed;
611 }
612 
613 void user_shm_unlock(size_t size, struct user_struct *user)
614 {
615 	spin_lock(&shmlock_user_lock);
616 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
617 	spin_unlock(&shmlock_user_lock);
618 	free_uid(user);
619 }
620