xref: /openbmc/linux/mm/mlock.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_sem for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	if (!TestClearPageMlocked(page))
62 		return;
63 
64 	mod_zone_page_state(page_zone(page), NR_MLOCK,
65 			    -hpage_nr_pages(page));
66 	count_vm_event(UNEVICTABLE_PGCLEARED);
67 	if (!isolate_lru_page(page)) {
68 		putback_lru_page(page);
69 	} else {
70 		/*
71 		 * We lost the race. the page already moved to evictable list.
72 		 */
73 		if (PageUnevictable(page))
74 			count_vm_event(UNEVICTABLE_PGSTRANDED);
75 	}
76 }
77 
78 /*
79  * Mark page as mlocked if not already.
80  * If page on LRU, isolate and putback to move to unevictable list.
81  */
82 void mlock_vma_page(struct page *page)
83 {
84 	/* Serialize with page migration */
85 	BUG_ON(!PageLocked(page));
86 
87 	VM_BUG_ON_PAGE(PageTail(page), page);
88 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
89 
90 	if (!TestSetPageMlocked(page)) {
91 		mod_zone_page_state(page_zone(page), NR_MLOCK,
92 				    hpage_nr_pages(page));
93 		count_vm_event(UNEVICTABLE_PGMLOCKED);
94 		if (!isolate_lru_page(page))
95 			putback_lru_page(page);
96 	}
97 }
98 
99 /*
100  * Isolate a page from LRU with optional get_page() pin.
101  * Assumes lru_lock already held and page already pinned.
102  */
103 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
104 {
105 	if (PageLRU(page)) {
106 		struct lruvec *lruvec;
107 
108 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
109 		if (getpage)
110 			get_page(page);
111 		ClearPageLRU(page);
112 		del_page_from_lru_list(page, lruvec, page_lru(page));
113 		return true;
114 	}
115 
116 	return false;
117 }
118 
119 /*
120  * Finish munlock after successful page isolation
121  *
122  * Page must be locked. This is a wrapper for try_to_munlock()
123  * and putback_lru_page() with munlock accounting.
124  */
125 static void __munlock_isolated_page(struct page *page)
126 {
127 	/*
128 	 * Optimization: if the page was mapped just once, that's our mapping
129 	 * and we don't need to check all the other vmas.
130 	 */
131 	if (page_mapcount(page) > 1)
132 		try_to_munlock(page);
133 
134 	/* Did try_to_unlock() succeed or punt? */
135 	if (!PageMlocked(page))
136 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137 
138 	putback_lru_page(page);
139 }
140 
141 /*
142  * Accounting for page isolation fail during munlock
143  *
144  * Performs accounting when page isolation fails in munlock. There is nothing
145  * else to do because it means some other task has already removed the page
146  * from the LRU. putback_lru_page() will take care of removing the page from
147  * the unevictable list, if necessary. vmscan [page_referenced()] will move
148  * the page back to the unevictable list if some other vma has it mlocked.
149  */
150 static void __munlock_isolation_failed(struct page *page)
151 {
152 	if (PageUnevictable(page))
153 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
154 	else
155 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156 }
157 
158 /**
159  * munlock_vma_page - munlock a vma page
160  * @page: page to be unlocked, either a normal page or THP page head
161  *
162  * returns the size of the page as a page mask (0 for normal page,
163  *         HPAGE_PMD_NR - 1 for THP head page)
164  *
165  * called from munlock()/munmap() path with page supposedly on the LRU.
166  * When we munlock a page, because the vma where we found the page is being
167  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168  * page locked so that we can leave it on the unevictable lru list and not
169  * bother vmscan with it.  However, to walk the page's rmap list in
170  * try_to_munlock() we must isolate the page from the LRU.  If some other
171  * task has removed the page from the LRU, we won't be able to do that.
172  * So we clear the PageMlocked as we might not get another chance.  If we
173  * can't isolate the page, we leave it for putback_lru_page() and vmscan
174  * [page_referenced()/try_to_unmap()] to deal with.
175  */
176 unsigned int munlock_vma_page(struct page *page)
177 {
178 	int nr_pages;
179 	struct zone *zone = page_zone(page);
180 
181 	/* For try_to_munlock() and to serialize with page migration */
182 	BUG_ON(!PageLocked(page));
183 
184 	VM_BUG_ON_PAGE(PageTail(page), page);
185 
186 	/*
187 	 * Serialize with any parallel __split_huge_page_refcount() which
188 	 * might otherwise copy PageMlocked to part of the tail pages before
189 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
190 	 */
191 	spin_lock_irq(zone_lru_lock(zone));
192 
193 	if (!TestClearPageMlocked(page)) {
194 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
195 		nr_pages = 1;
196 		goto unlock_out;
197 	}
198 
199 	nr_pages = hpage_nr_pages(page);
200 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
201 
202 	if (__munlock_isolate_lru_page(page, true)) {
203 		spin_unlock_irq(zone_lru_lock(zone));
204 		__munlock_isolated_page(page);
205 		goto out;
206 	}
207 	__munlock_isolation_failed(page);
208 
209 unlock_out:
210 	spin_unlock_irq(zone_lru_lock(zone));
211 
212 out:
213 	return nr_pages - 1;
214 }
215 
216 /*
217  * convert get_user_pages() return value to posix mlock() error
218  */
219 static int __mlock_posix_error_return(long retval)
220 {
221 	if (retval == -EFAULT)
222 		retval = -ENOMEM;
223 	else if (retval == -ENOMEM)
224 		retval = -EAGAIN;
225 	return retval;
226 }
227 
228 /*
229  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
230  *
231  * The fast path is available only for evictable pages with single mapping.
232  * Then we can bypass the per-cpu pvec and get better performance.
233  * when mapcount > 1 we need try_to_munlock() which can fail.
234  * when !page_evictable(), we need the full redo logic of putback_lru_page to
235  * avoid leaving evictable page in unevictable list.
236  *
237  * In case of success, @page is added to @pvec and @pgrescued is incremented
238  * in case that the page was previously unevictable. @page is also unlocked.
239  */
240 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
241 		int *pgrescued)
242 {
243 	VM_BUG_ON_PAGE(PageLRU(page), page);
244 	VM_BUG_ON_PAGE(!PageLocked(page), page);
245 
246 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
247 		pagevec_add(pvec, page);
248 		if (TestClearPageUnevictable(page))
249 			(*pgrescued)++;
250 		unlock_page(page);
251 		return true;
252 	}
253 
254 	return false;
255 }
256 
257 /*
258  * Putback multiple evictable pages to the LRU
259  *
260  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
261  * the pages might have meanwhile become unevictable but that is OK.
262  */
263 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
264 {
265 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
266 	/*
267 	 *__pagevec_lru_add() calls release_pages() so we don't call
268 	 * put_page() explicitly
269 	 */
270 	__pagevec_lru_add(pvec);
271 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
272 }
273 
274 /*
275  * Munlock a batch of pages from the same zone
276  *
277  * The work is split to two main phases. First phase clears the Mlocked flag
278  * and attempts to isolate the pages, all under a single zone lru lock.
279  * The second phase finishes the munlock only for pages where isolation
280  * succeeded.
281  *
282  * Note that the pagevec may be modified during the process.
283  */
284 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
285 {
286 	int i;
287 	int nr = pagevec_count(pvec);
288 	int delta_munlocked = -nr;
289 	struct pagevec pvec_putback;
290 	int pgrescued = 0;
291 
292 	pagevec_init(&pvec_putback);
293 
294 	/* Phase 1: page isolation */
295 	spin_lock_irq(zone_lru_lock(zone));
296 	for (i = 0; i < nr; i++) {
297 		struct page *page = pvec->pages[i];
298 
299 		if (TestClearPageMlocked(page)) {
300 			/*
301 			 * We already have pin from follow_page_mask()
302 			 * so we can spare the get_page() here.
303 			 */
304 			if (__munlock_isolate_lru_page(page, false))
305 				continue;
306 			else
307 				__munlock_isolation_failed(page);
308 		} else {
309 			delta_munlocked++;
310 		}
311 
312 		/*
313 		 * We won't be munlocking this page in the next phase
314 		 * but we still need to release the follow_page_mask()
315 		 * pin. We cannot do it under lru_lock however. If it's
316 		 * the last pin, __page_cache_release() would deadlock.
317 		 */
318 		pagevec_add(&pvec_putback, pvec->pages[i]);
319 		pvec->pages[i] = NULL;
320 	}
321 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
322 	spin_unlock_irq(zone_lru_lock(zone));
323 
324 	/* Now we can release pins of pages that we are not munlocking */
325 	pagevec_release(&pvec_putback);
326 
327 	/* Phase 2: page munlock */
328 	for (i = 0; i < nr; i++) {
329 		struct page *page = pvec->pages[i];
330 
331 		if (page) {
332 			lock_page(page);
333 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
334 					&pgrescued)) {
335 				/*
336 				 * Slow path. We don't want to lose the last
337 				 * pin before unlock_page()
338 				 */
339 				get_page(page); /* for putback_lru_page() */
340 				__munlock_isolated_page(page);
341 				unlock_page(page);
342 				put_page(page); /* from follow_page_mask() */
343 			}
344 		}
345 	}
346 
347 	/*
348 	 * Phase 3: page putback for pages that qualified for the fast path
349 	 * This will also call put_page() to return pin from follow_page_mask()
350 	 */
351 	if (pagevec_count(&pvec_putback))
352 		__putback_lru_fast(&pvec_putback, pgrescued);
353 }
354 
355 /*
356  * Fill up pagevec for __munlock_pagevec using pte walk
357  *
358  * The function expects that the struct page corresponding to @start address is
359  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
360  *
361  * The rest of @pvec is filled by subsequent pages within the same pmd and same
362  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
363  * pages also get pinned.
364  *
365  * Returns the address of the next page that should be scanned. This equals
366  * @start + PAGE_SIZE when no page could be added by the pte walk.
367  */
368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
369 			struct vm_area_struct *vma, struct zone *zone,
370 			unsigned long start, unsigned long end)
371 {
372 	pte_t *pte;
373 	spinlock_t *ptl;
374 
375 	/*
376 	 * Initialize pte walk starting at the already pinned page where we
377 	 * are sure that there is a pte, as it was pinned under the same
378 	 * mmap_sem write op.
379 	 */
380 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
381 	/* Make sure we do not cross the page table boundary */
382 	end = pgd_addr_end(start, end);
383 	end = p4d_addr_end(start, end);
384 	end = pud_addr_end(start, end);
385 	end = pmd_addr_end(start, end);
386 
387 	/* The page next to the pinned page is the first we will try to get */
388 	start += PAGE_SIZE;
389 	while (start < end) {
390 		struct page *page = NULL;
391 		pte++;
392 		if (pte_present(*pte))
393 			page = vm_normal_page(vma, start, *pte);
394 		/*
395 		 * Break if page could not be obtained or the page's node+zone does not
396 		 * match
397 		 */
398 		if (!page || page_zone(page) != zone)
399 			break;
400 
401 		/*
402 		 * Do not use pagevec for PTE-mapped THP,
403 		 * munlock_vma_pages_range() will handle them.
404 		 */
405 		if (PageTransCompound(page))
406 			break;
407 
408 		get_page(page);
409 		/*
410 		 * Increase the address that will be returned *before* the
411 		 * eventual break due to pvec becoming full by adding the page
412 		 */
413 		start += PAGE_SIZE;
414 		if (pagevec_add(pvec, page) == 0)
415 			break;
416 	}
417 	pte_unmap_unlock(pte, ptl);
418 	return start;
419 }
420 
421 /*
422  * munlock_vma_pages_range() - munlock all pages in the vma range.'
423  * @vma - vma containing range to be munlock()ed.
424  * @start - start address in @vma of the range
425  * @end - end of range in @vma.
426  *
427  *  For mremap(), munmap() and exit().
428  *
429  * Called with @vma VM_LOCKED.
430  *
431  * Returns with VM_LOCKED cleared.  Callers must be prepared to
432  * deal with this.
433  *
434  * We don't save and restore VM_LOCKED here because pages are
435  * still on lru.  In unmap path, pages might be scanned by reclaim
436  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
437  * free them.  This will result in freeing mlocked pages.
438  */
439 void munlock_vma_pages_range(struct vm_area_struct *vma,
440 			     unsigned long start, unsigned long end)
441 {
442 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
443 
444 	while (start < end) {
445 		struct page *page;
446 		unsigned int page_mask = 0;
447 		unsigned long page_increm;
448 		struct pagevec pvec;
449 		struct zone *zone;
450 
451 		pagevec_init(&pvec);
452 		/*
453 		 * Although FOLL_DUMP is intended for get_dump_page(),
454 		 * it just so happens that its special treatment of the
455 		 * ZERO_PAGE (returning an error instead of doing get_page)
456 		 * suits munlock very well (and if somehow an abnormal page
457 		 * has sneaked into the range, we won't oops here: great).
458 		 */
459 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
460 
461 		if (page && !IS_ERR(page)) {
462 			if (PageTransTail(page)) {
463 				VM_BUG_ON_PAGE(PageMlocked(page), page);
464 				put_page(page); /* follow_page_mask() */
465 			} else if (PageTransHuge(page)) {
466 				lock_page(page);
467 				/*
468 				 * Any THP page found by follow_page_mask() may
469 				 * have gotten split before reaching
470 				 * munlock_vma_page(), so we need to compute
471 				 * the page_mask here instead.
472 				 */
473 				page_mask = munlock_vma_page(page);
474 				unlock_page(page);
475 				put_page(page); /* follow_page_mask() */
476 			} else {
477 				/*
478 				 * Non-huge pages are handled in batches via
479 				 * pagevec. The pin from follow_page_mask()
480 				 * prevents them from collapsing by THP.
481 				 */
482 				pagevec_add(&pvec, page);
483 				zone = page_zone(page);
484 
485 				/*
486 				 * Try to fill the rest of pagevec using fast
487 				 * pte walk. This will also update start to
488 				 * the next page to process. Then munlock the
489 				 * pagevec.
490 				 */
491 				start = __munlock_pagevec_fill(&pvec, vma,
492 						zone, start, end);
493 				__munlock_pagevec(&pvec, zone);
494 				goto next;
495 			}
496 		}
497 		page_increm = 1 + page_mask;
498 		start += page_increm * PAGE_SIZE;
499 next:
500 		cond_resched();
501 	}
502 }
503 
504 /*
505  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
506  *
507  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
508  * munlock is a no-op.  However, for some special vmas, we go ahead and
509  * populate the ptes.
510  *
511  * For vmas that pass the filters, merge/split as appropriate.
512  */
513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
514 	unsigned long start, unsigned long end, vm_flags_t newflags)
515 {
516 	struct mm_struct *mm = vma->vm_mm;
517 	pgoff_t pgoff;
518 	int nr_pages;
519 	int ret = 0;
520 	int lock = !!(newflags & VM_LOCKED);
521 	vm_flags_t old_flags = vma->vm_flags;
522 
523 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
524 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
525 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
526 		goto out;
527 
528 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
529 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
530 			  vma->vm_file, pgoff, vma_policy(vma),
531 			  vma->vm_userfaultfd_ctx);
532 	if (*prev) {
533 		vma = *prev;
534 		goto success;
535 	}
536 
537 	if (start != vma->vm_start) {
538 		ret = split_vma(mm, vma, start, 1);
539 		if (ret)
540 			goto out;
541 	}
542 
543 	if (end != vma->vm_end) {
544 		ret = split_vma(mm, vma, end, 0);
545 		if (ret)
546 			goto out;
547 	}
548 
549 success:
550 	/*
551 	 * Keep track of amount of locked VM.
552 	 */
553 	nr_pages = (end - start) >> PAGE_SHIFT;
554 	if (!lock)
555 		nr_pages = -nr_pages;
556 	else if (old_flags & VM_LOCKED)
557 		nr_pages = 0;
558 	mm->locked_vm += nr_pages;
559 
560 	/*
561 	 * vm_flags is protected by the mmap_sem held in write mode.
562 	 * It's okay if try_to_unmap_one unmaps a page just after we
563 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
564 	 */
565 
566 	if (lock)
567 		vma->vm_flags = newflags;
568 	else
569 		munlock_vma_pages_range(vma, start, end);
570 
571 out:
572 	*prev = vma;
573 	return ret;
574 }
575 
576 static int apply_vma_lock_flags(unsigned long start, size_t len,
577 				vm_flags_t flags)
578 {
579 	unsigned long nstart, end, tmp;
580 	struct vm_area_struct * vma, * prev;
581 	int error;
582 
583 	VM_BUG_ON(offset_in_page(start));
584 	VM_BUG_ON(len != PAGE_ALIGN(len));
585 	end = start + len;
586 	if (end < start)
587 		return -EINVAL;
588 	if (end == start)
589 		return 0;
590 	vma = find_vma(current->mm, start);
591 	if (!vma || vma->vm_start > start)
592 		return -ENOMEM;
593 
594 	prev = vma->vm_prev;
595 	if (start > vma->vm_start)
596 		prev = vma;
597 
598 	for (nstart = start ; ; ) {
599 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
600 
601 		newflags |= flags;
602 
603 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
604 		tmp = vma->vm_end;
605 		if (tmp > end)
606 			tmp = end;
607 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
608 		if (error)
609 			break;
610 		nstart = tmp;
611 		if (nstart < prev->vm_end)
612 			nstart = prev->vm_end;
613 		if (nstart >= end)
614 			break;
615 
616 		vma = prev->vm_next;
617 		if (!vma || vma->vm_start != nstart) {
618 			error = -ENOMEM;
619 			break;
620 		}
621 	}
622 	return error;
623 }
624 
625 /*
626  * Go through vma areas and sum size of mlocked
627  * vma pages, as return value.
628  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
629  * is also counted.
630  * Return value: previously mlocked page counts
631  */
632 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
633 		unsigned long start, size_t len)
634 {
635 	struct vm_area_struct *vma;
636 	int count = 0;
637 
638 	if (mm == NULL)
639 		mm = current->mm;
640 
641 	vma = find_vma(mm, start);
642 	if (vma == NULL)
643 		vma = mm->mmap;
644 
645 	for (; vma ; vma = vma->vm_next) {
646 		if (start >= vma->vm_end)
647 			continue;
648 		if (start + len <=  vma->vm_start)
649 			break;
650 		if (vma->vm_flags & VM_LOCKED) {
651 			if (start > vma->vm_start)
652 				count -= (start - vma->vm_start);
653 			if (start + len < vma->vm_end) {
654 				count += start + len - vma->vm_start;
655 				break;
656 			}
657 			count += vma->vm_end - vma->vm_start;
658 		}
659 	}
660 
661 	return count >> PAGE_SHIFT;
662 }
663 
664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
665 {
666 	unsigned long locked;
667 	unsigned long lock_limit;
668 	int error = -ENOMEM;
669 
670 	if (!can_do_mlock())
671 		return -EPERM;
672 
673 	len = PAGE_ALIGN(len + (offset_in_page(start)));
674 	start &= PAGE_MASK;
675 
676 	lock_limit = rlimit(RLIMIT_MEMLOCK);
677 	lock_limit >>= PAGE_SHIFT;
678 	locked = len >> PAGE_SHIFT;
679 
680 	if (down_write_killable(&current->mm->mmap_sem))
681 		return -EINTR;
682 
683 	locked += current->mm->locked_vm;
684 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
685 		/*
686 		 * It is possible that the regions requested intersect with
687 		 * previously mlocked areas, that part area in "mm->locked_vm"
688 		 * should not be counted to new mlock increment count. So check
689 		 * and adjust locked count if necessary.
690 		 */
691 		locked -= count_mm_mlocked_page_nr(current->mm,
692 				start, len);
693 	}
694 
695 	/* check against resource limits */
696 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
697 		error = apply_vma_lock_flags(start, len, flags);
698 
699 	up_write(&current->mm->mmap_sem);
700 	if (error)
701 		return error;
702 
703 	error = __mm_populate(start, len, 0);
704 	if (error)
705 		return __mlock_posix_error_return(error);
706 	return 0;
707 }
708 
709 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
710 {
711 	return do_mlock(start, len, VM_LOCKED);
712 }
713 
714 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
715 {
716 	vm_flags_t vm_flags = VM_LOCKED;
717 
718 	if (flags & ~MLOCK_ONFAULT)
719 		return -EINVAL;
720 
721 	if (flags & MLOCK_ONFAULT)
722 		vm_flags |= VM_LOCKONFAULT;
723 
724 	return do_mlock(start, len, vm_flags);
725 }
726 
727 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
728 {
729 	int ret;
730 
731 	len = PAGE_ALIGN(len + (offset_in_page(start)));
732 	start &= PAGE_MASK;
733 
734 	if (down_write_killable(&current->mm->mmap_sem))
735 		return -EINTR;
736 	ret = apply_vma_lock_flags(start, len, 0);
737 	up_write(&current->mm->mmap_sem);
738 
739 	return ret;
740 }
741 
742 /*
743  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
744  * and translate into the appropriate modifications to mm->def_flags and/or the
745  * flags for all current VMAs.
746  *
747  * There are a couple of subtleties with this.  If mlockall() is called multiple
748  * times with different flags, the values do not necessarily stack.  If mlockall
749  * is called once including the MCL_FUTURE flag and then a second time without
750  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
751  */
752 static int apply_mlockall_flags(int flags)
753 {
754 	struct vm_area_struct * vma, * prev = NULL;
755 	vm_flags_t to_add = 0;
756 
757 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
758 	if (flags & MCL_FUTURE) {
759 		current->mm->def_flags |= VM_LOCKED;
760 
761 		if (flags & MCL_ONFAULT)
762 			current->mm->def_flags |= VM_LOCKONFAULT;
763 
764 		if (!(flags & MCL_CURRENT))
765 			goto out;
766 	}
767 
768 	if (flags & MCL_CURRENT) {
769 		to_add |= VM_LOCKED;
770 		if (flags & MCL_ONFAULT)
771 			to_add |= VM_LOCKONFAULT;
772 	}
773 
774 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
775 		vm_flags_t newflags;
776 
777 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
778 		newflags |= to_add;
779 
780 		/* Ignore errors */
781 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
782 		cond_resched();
783 	}
784 out:
785 	return 0;
786 }
787 
788 SYSCALL_DEFINE1(mlockall, int, flags)
789 {
790 	unsigned long lock_limit;
791 	int ret;
792 
793 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
794 		return -EINVAL;
795 
796 	if (!can_do_mlock())
797 		return -EPERM;
798 
799 	lock_limit = rlimit(RLIMIT_MEMLOCK);
800 	lock_limit >>= PAGE_SHIFT;
801 
802 	if (down_write_killable(&current->mm->mmap_sem))
803 		return -EINTR;
804 
805 	ret = -ENOMEM;
806 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
807 	    capable(CAP_IPC_LOCK))
808 		ret = apply_mlockall_flags(flags);
809 	up_write(&current->mm->mmap_sem);
810 	if (!ret && (flags & MCL_CURRENT))
811 		mm_populate(0, TASK_SIZE);
812 
813 	return ret;
814 }
815 
816 SYSCALL_DEFINE0(munlockall)
817 {
818 	int ret;
819 
820 	if (down_write_killable(&current->mm->mmap_sem))
821 		return -EINTR;
822 	ret = apply_mlockall_flags(0);
823 	up_write(&current->mm->mmap_sem);
824 	return ret;
825 }
826 
827 /*
828  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
829  * shm segments) get accounted against the user_struct instead.
830  */
831 static DEFINE_SPINLOCK(shmlock_user_lock);
832 
833 int user_shm_lock(size_t size, struct user_struct *user)
834 {
835 	unsigned long lock_limit, locked;
836 	int allowed = 0;
837 
838 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
839 	lock_limit = rlimit(RLIMIT_MEMLOCK);
840 	if (lock_limit == RLIM_INFINITY)
841 		allowed = 1;
842 	lock_limit >>= PAGE_SHIFT;
843 	spin_lock(&shmlock_user_lock);
844 	if (!allowed &&
845 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
846 		goto out;
847 	get_uid(user);
848 	user->locked_shm += locked;
849 	allowed = 1;
850 out:
851 	spin_unlock(&shmlock_user_lock);
852 	return allowed;
853 }
854 
855 void user_shm_unlock(size_t size, struct user_struct *user)
856 {
857 	spin_lock(&shmlock_user_lock);
858 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
859 	spin_unlock(&shmlock_user_lock);
860 	free_uid(user);
861 }
862