1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 int can_do_mlock(void) 28 { 29 if (capable(CAP_IPC_LOCK)) 30 return 1; 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return 1; 33 return 0; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 BUG_ON(!PageLocked(page)); 83 84 if (!TestSetPageMlocked(page)) { 85 mod_zone_page_state(page_zone(page), NR_MLOCK, 86 hpage_nr_pages(page)); 87 count_vm_event(UNEVICTABLE_PGMLOCKED); 88 if (!isolate_lru_page(page)) 89 putback_lru_page(page); 90 } 91 } 92 93 /* 94 * Isolate a page from LRU with optional get_page() pin. 95 * Assumes lru_lock already held and page already pinned. 96 */ 97 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 98 { 99 if (PageLRU(page)) { 100 struct lruvec *lruvec; 101 102 lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); 103 if (getpage) 104 get_page(page); 105 ClearPageLRU(page); 106 del_page_from_lru_list(page, lruvec, page_lru(page)); 107 return true; 108 } 109 110 return false; 111 } 112 113 /* 114 * Finish munlock after successful page isolation 115 * 116 * Page must be locked. This is a wrapper for try_to_munlock() 117 * and putback_lru_page() with munlock accounting. 118 */ 119 static void __munlock_isolated_page(struct page *page) 120 { 121 int ret = SWAP_AGAIN; 122 123 /* 124 * Optimization: if the page was mapped just once, that's our mapping 125 * and we don't need to check all the other vmas. 126 */ 127 if (page_mapcount(page) > 1) 128 ret = try_to_munlock(page); 129 130 /* Did try_to_unlock() succeed or punt? */ 131 if (ret != SWAP_MLOCK) 132 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 133 134 putback_lru_page(page); 135 } 136 137 /* 138 * Accounting for page isolation fail during munlock 139 * 140 * Performs accounting when page isolation fails in munlock. There is nothing 141 * else to do because it means some other task has already removed the page 142 * from the LRU. putback_lru_page() will take care of removing the page from 143 * the unevictable list, if necessary. vmscan [page_referenced()] will move 144 * the page back to the unevictable list if some other vma has it mlocked. 145 */ 146 static void __munlock_isolation_failed(struct page *page) 147 { 148 if (PageUnevictable(page)) 149 __count_vm_event(UNEVICTABLE_PGSTRANDED); 150 else 151 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 152 } 153 154 /** 155 * munlock_vma_page - munlock a vma page 156 * @page - page to be unlocked, either a normal page or THP page head 157 * 158 * returns the size of the page as a page mask (0 for normal page, 159 * HPAGE_PMD_NR - 1 for THP head page) 160 * 161 * called from munlock()/munmap() path with page supposedly on the LRU. 162 * When we munlock a page, because the vma where we found the page is being 163 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 164 * page locked so that we can leave it on the unevictable lru list and not 165 * bother vmscan with it. However, to walk the page's rmap list in 166 * try_to_munlock() we must isolate the page from the LRU. If some other 167 * task has removed the page from the LRU, we won't be able to do that. 168 * So we clear the PageMlocked as we might not get another chance. If we 169 * can't isolate the page, we leave it for putback_lru_page() and vmscan 170 * [page_referenced()/try_to_unmap()] to deal with. 171 */ 172 unsigned int munlock_vma_page(struct page *page) 173 { 174 unsigned int nr_pages; 175 struct zone *zone = page_zone(page); 176 177 BUG_ON(!PageLocked(page)); 178 179 /* 180 * Serialize with any parallel __split_huge_page_refcount() which 181 * might otherwise copy PageMlocked to part of the tail pages before 182 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 183 */ 184 spin_lock_irq(&zone->lru_lock); 185 186 nr_pages = hpage_nr_pages(page); 187 if (!TestClearPageMlocked(page)) 188 goto unlock_out; 189 190 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 191 192 if (__munlock_isolate_lru_page(page, true)) { 193 spin_unlock_irq(&zone->lru_lock); 194 __munlock_isolated_page(page); 195 goto out; 196 } 197 __munlock_isolation_failed(page); 198 199 unlock_out: 200 spin_unlock_irq(&zone->lru_lock); 201 202 out: 203 return nr_pages - 1; 204 } 205 206 /** 207 * __mlock_vma_pages_range() - mlock a range of pages in the vma. 208 * @vma: target vma 209 * @start: start address 210 * @end: end address 211 * 212 * This takes care of making the pages present too. 213 * 214 * return 0 on success, negative error code on error. 215 * 216 * vma->vm_mm->mmap_sem must be held for at least read. 217 */ 218 long __mlock_vma_pages_range(struct vm_area_struct *vma, 219 unsigned long start, unsigned long end, int *nonblocking) 220 { 221 struct mm_struct *mm = vma->vm_mm; 222 unsigned long nr_pages = (end - start) / PAGE_SIZE; 223 int gup_flags; 224 225 VM_BUG_ON(start & ~PAGE_MASK); 226 VM_BUG_ON(end & ~PAGE_MASK); 227 VM_BUG_ON(start < vma->vm_start); 228 VM_BUG_ON(end > vma->vm_end); 229 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 230 231 gup_flags = FOLL_TOUCH | FOLL_MLOCK; 232 /* 233 * We want to touch writable mappings with a write fault in order 234 * to break COW, except for shared mappings because these don't COW 235 * and we would not want to dirty them for nothing. 236 */ 237 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 238 gup_flags |= FOLL_WRITE; 239 240 /* 241 * We want mlock to succeed for regions that have any permissions 242 * other than PROT_NONE. 243 */ 244 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 245 gup_flags |= FOLL_FORCE; 246 247 /* 248 * We made sure addr is within a VMA, so the following will 249 * not result in a stack expansion that recurses back here. 250 */ 251 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 252 NULL, NULL, nonblocking); 253 } 254 255 /* 256 * convert get_user_pages() return value to posix mlock() error 257 */ 258 static int __mlock_posix_error_return(long retval) 259 { 260 if (retval == -EFAULT) 261 retval = -ENOMEM; 262 else if (retval == -ENOMEM) 263 retval = -EAGAIN; 264 return retval; 265 } 266 267 /* 268 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 269 * 270 * The fast path is available only for evictable pages with single mapping. 271 * Then we can bypass the per-cpu pvec and get better performance. 272 * when mapcount > 1 we need try_to_munlock() which can fail. 273 * when !page_evictable(), we need the full redo logic of putback_lru_page to 274 * avoid leaving evictable page in unevictable list. 275 * 276 * In case of success, @page is added to @pvec and @pgrescued is incremented 277 * in case that the page was previously unevictable. @page is also unlocked. 278 */ 279 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 280 int *pgrescued) 281 { 282 VM_BUG_ON_PAGE(PageLRU(page), page); 283 VM_BUG_ON_PAGE(!PageLocked(page), page); 284 285 if (page_mapcount(page) <= 1 && page_evictable(page)) { 286 pagevec_add(pvec, page); 287 if (TestClearPageUnevictable(page)) 288 (*pgrescued)++; 289 unlock_page(page); 290 return true; 291 } 292 293 return false; 294 } 295 296 /* 297 * Putback multiple evictable pages to the LRU 298 * 299 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 300 * the pages might have meanwhile become unevictable but that is OK. 301 */ 302 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 303 { 304 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 305 /* 306 *__pagevec_lru_add() calls release_pages() so we don't call 307 * put_page() explicitly 308 */ 309 __pagevec_lru_add(pvec); 310 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 311 } 312 313 /* 314 * Munlock a batch of pages from the same zone 315 * 316 * The work is split to two main phases. First phase clears the Mlocked flag 317 * and attempts to isolate the pages, all under a single zone lru lock. 318 * The second phase finishes the munlock only for pages where isolation 319 * succeeded. 320 * 321 * Note that the pagevec may be modified during the process. 322 */ 323 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 324 { 325 int i; 326 int nr = pagevec_count(pvec); 327 int delta_munlocked; 328 struct pagevec pvec_putback; 329 int pgrescued = 0; 330 331 pagevec_init(&pvec_putback, 0); 332 333 /* Phase 1: page isolation */ 334 spin_lock_irq(&zone->lru_lock); 335 for (i = 0; i < nr; i++) { 336 struct page *page = pvec->pages[i]; 337 338 if (TestClearPageMlocked(page)) { 339 /* 340 * We already have pin from follow_page_mask() 341 * so we can spare the get_page() here. 342 */ 343 if (__munlock_isolate_lru_page(page, false)) 344 continue; 345 else 346 __munlock_isolation_failed(page); 347 } 348 349 /* 350 * We won't be munlocking this page in the next phase 351 * but we still need to release the follow_page_mask() 352 * pin. We cannot do it under lru_lock however. If it's 353 * the last pin, __page_cache_release() would deadlock. 354 */ 355 pagevec_add(&pvec_putback, pvec->pages[i]); 356 pvec->pages[i] = NULL; 357 } 358 delta_munlocked = -nr + pagevec_count(&pvec_putback); 359 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 360 spin_unlock_irq(&zone->lru_lock); 361 362 /* Now we can release pins of pages that we are not munlocking */ 363 pagevec_release(&pvec_putback); 364 365 /* Phase 2: page munlock */ 366 for (i = 0; i < nr; i++) { 367 struct page *page = pvec->pages[i]; 368 369 if (page) { 370 lock_page(page); 371 if (!__putback_lru_fast_prepare(page, &pvec_putback, 372 &pgrescued)) { 373 /* 374 * Slow path. We don't want to lose the last 375 * pin before unlock_page() 376 */ 377 get_page(page); /* for putback_lru_page() */ 378 __munlock_isolated_page(page); 379 unlock_page(page); 380 put_page(page); /* from follow_page_mask() */ 381 } 382 } 383 } 384 385 /* 386 * Phase 3: page putback for pages that qualified for the fast path 387 * This will also call put_page() to return pin from follow_page_mask() 388 */ 389 if (pagevec_count(&pvec_putback)) 390 __putback_lru_fast(&pvec_putback, pgrescued); 391 } 392 393 /* 394 * Fill up pagevec for __munlock_pagevec using pte walk 395 * 396 * The function expects that the struct page corresponding to @start address is 397 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 398 * 399 * The rest of @pvec is filled by subsequent pages within the same pmd and same 400 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 401 * pages also get pinned. 402 * 403 * Returns the address of the next page that should be scanned. This equals 404 * @start + PAGE_SIZE when no page could be added by the pte walk. 405 */ 406 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 407 struct vm_area_struct *vma, int zoneid, unsigned long start, 408 unsigned long end) 409 { 410 pte_t *pte; 411 spinlock_t *ptl; 412 413 /* 414 * Initialize pte walk starting at the already pinned page where we 415 * are sure that there is a pte, as it was pinned under the same 416 * mmap_sem write op. 417 */ 418 pte = get_locked_pte(vma->vm_mm, start, &ptl); 419 /* Make sure we do not cross the page table boundary */ 420 end = pgd_addr_end(start, end); 421 end = pud_addr_end(start, end); 422 end = pmd_addr_end(start, end); 423 424 /* The page next to the pinned page is the first we will try to get */ 425 start += PAGE_SIZE; 426 while (start < end) { 427 struct page *page = NULL; 428 pte++; 429 if (pte_present(*pte)) 430 page = vm_normal_page(vma, start, *pte); 431 /* 432 * Break if page could not be obtained or the page's node+zone does not 433 * match 434 */ 435 if (!page || page_zone_id(page) != zoneid) 436 break; 437 438 get_page(page); 439 /* 440 * Increase the address that will be returned *before* the 441 * eventual break due to pvec becoming full by adding the page 442 */ 443 start += PAGE_SIZE; 444 if (pagevec_add(pvec, page) == 0) 445 break; 446 } 447 pte_unmap_unlock(pte, ptl); 448 return start; 449 } 450 451 /* 452 * munlock_vma_pages_range() - munlock all pages in the vma range.' 453 * @vma - vma containing range to be munlock()ed. 454 * @start - start address in @vma of the range 455 * @end - end of range in @vma. 456 * 457 * For mremap(), munmap() and exit(). 458 * 459 * Called with @vma VM_LOCKED. 460 * 461 * Returns with VM_LOCKED cleared. Callers must be prepared to 462 * deal with this. 463 * 464 * We don't save and restore VM_LOCKED here because pages are 465 * still on lru. In unmap path, pages might be scanned by reclaim 466 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 467 * free them. This will result in freeing mlocked pages. 468 */ 469 void munlock_vma_pages_range(struct vm_area_struct *vma, 470 unsigned long start, unsigned long end) 471 { 472 vma->vm_flags &= ~VM_LOCKED; 473 474 while (start < end) { 475 struct page *page = NULL; 476 unsigned int page_mask; 477 unsigned long page_increm; 478 struct pagevec pvec; 479 struct zone *zone; 480 int zoneid; 481 482 pagevec_init(&pvec, 0); 483 /* 484 * Although FOLL_DUMP is intended for get_dump_page(), 485 * it just so happens that its special treatment of the 486 * ZERO_PAGE (returning an error instead of doing get_page) 487 * suits munlock very well (and if somehow an abnormal page 488 * has sneaked into the range, we won't oops here: great). 489 */ 490 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 491 &page_mask); 492 493 if (page && !IS_ERR(page)) { 494 if (PageTransHuge(page)) { 495 lock_page(page); 496 /* 497 * Any THP page found by follow_page_mask() may 498 * have gotten split before reaching 499 * munlock_vma_page(), so we need to recompute 500 * the page_mask here. 501 */ 502 page_mask = munlock_vma_page(page); 503 unlock_page(page); 504 put_page(page); /* follow_page_mask() */ 505 } else { 506 /* 507 * Non-huge pages are handled in batches via 508 * pagevec. The pin from follow_page_mask() 509 * prevents them from collapsing by THP. 510 */ 511 pagevec_add(&pvec, page); 512 zone = page_zone(page); 513 zoneid = page_zone_id(page); 514 515 /* 516 * Try to fill the rest of pagevec using fast 517 * pte walk. This will also update start to 518 * the next page to process. Then munlock the 519 * pagevec. 520 */ 521 start = __munlock_pagevec_fill(&pvec, vma, 522 zoneid, start, end); 523 __munlock_pagevec(&pvec, zone); 524 goto next; 525 } 526 } 527 /* It's a bug to munlock in the middle of a THP page */ 528 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask); 529 page_increm = 1 + page_mask; 530 start += page_increm * PAGE_SIZE; 531 next: 532 cond_resched(); 533 } 534 } 535 536 /* 537 * mlock_fixup - handle mlock[all]/munlock[all] requests. 538 * 539 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 540 * munlock is a no-op. However, for some special vmas, we go ahead and 541 * populate the ptes. 542 * 543 * For vmas that pass the filters, merge/split as appropriate. 544 */ 545 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 546 unsigned long start, unsigned long end, vm_flags_t newflags) 547 { 548 struct mm_struct *mm = vma->vm_mm; 549 pgoff_t pgoff; 550 int nr_pages; 551 int ret = 0; 552 int lock = !!(newflags & VM_LOCKED); 553 554 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 555 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 556 goto out; /* don't set VM_LOCKED, don't count */ 557 558 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 559 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 560 vma->vm_file, pgoff, vma_policy(vma)); 561 if (*prev) { 562 vma = *prev; 563 goto success; 564 } 565 566 if (start != vma->vm_start) { 567 ret = split_vma(mm, vma, start, 1); 568 if (ret) 569 goto out; 570 } 571 572 if (end != vma->vm_end) { 573 ret = split_vma(mm, vma, end, 0); 574 if (ret) 575 goto out; 576 } 577 578 success: 579 /* 580 * Keep track of amount of locked VM. 581 */ 582 nr_pages = (end - start) >> PAGE_SHIFT; 583 if (!lock) 584 nr_pages = -nr_pages; 585 mm->locked_vm += nr_pages; 586 587 /* 588 * vm_flags is protected by the mmap_sem held in write mode. 589 * It's okay if try_to_unmap_one unmaps a page just after we 590 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 591 */ 592 593 if (lock) 594 vma->vm_flags = newflags; 595 else 596 munlock_vma_pages_range(vma, start, end); 597 598 out: 599 *prev = vma; 600 return ret; 601 } 602 603 static int do_mlock(unsigned long start, size_t len, int on) 604 { 605 unsigned long nstart, end, tmp; 606 struct vm_area_struct * vma, * prev; 607 int error; 608 609 VM_BUG_ON(start & ~PAGE_MASK); 610 VM_BUG_ON(len != PAGE_ALIGN(len)); 611 end = start + len; 612 if (end < start) 613 return -EINVAL; 614 if (end == start) 615 return 0; 616 vma = find_vma(current->mm, start); 617 if (!vma || vma->vm_start > start) 618 return -ENOMEM; 619 620 prev = vma->vm_prev; 621 if (start > vma->vm_start) 622 prev = vma; 623 624 for (nstart = start ; ; ) { 625 vm_flags_t newflags; 626 627 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 628 629 newflags = vma->vm_flags & ~VM_LOCKED; 630 if (on) 631 newflags |= VM_LOCKED; 632 633 tmp = vma->vm_end; 634 if (tmp > end) 635 tmp = end; 636 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 637 if (error) 638 break; 639 nstart = tmp; 640 if (nstart < prev->vm_end) 641 nstart = prev->vm_end; 642 if (nstart >= end) 643 break; 644 645 vma = prev->vm_next; 646 if (!vma || vma->vm_start != nstart) { 647 error = -ENOMEM; 648 break; 649 } 650 } 651 return error; 652 } 653 654 /* 655 * __mm_populate - populate and/or mlock pages within a range of address space. 656 * 657 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 658 * flags. VMAs must be already marked with the desired vm_flags, and 659 * mmap_sem must not be held. 660 */ 661 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 662 { 663 struct mm_struct *mm = current->mm; 664 unsigned long end, nstart, nend; 665 struct vm_area_struct *vma = NULL; 666 int locked = 0; 667 long ret = 0; 668 669 VM_BUG_ON(start & ~PAGE_MASK); 670 VM_BUG_ON(len != PAGE_ALIGN(len)); 671 end = start + len; 672 673 for (nstart = start; nstart < end; nstart = nend) { 674 /* 675 * We want to fault in pages for [nstart; end) address range. 676 * Find first corresponding VMA. 677 */ 678 if (!locked) { 679 locked = 1; 680 down_read(&mm->mmap_sem); 681 vma = find_vma(mm, nstart); 682 } else if (nstart >= vma->vm_end) 683 vma = vma->vm_next; 684 if (!vma || vma->vm_start >= end) 685 break; 686 /* 687 * Set [nstart; nend) to intersection of desired address 688 * range with the first VMA. Also, skip undesirable VMA types. 689 */ 690 nend = min(end, vma->vm_end); 691 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 692 continue; 693 if (nstart < vma->vm_start) 694 nstart = vma->vm_start; 695 /* 696 * Now fault in a range of pages. __mlock_vma_pages_range() 697 * double checks the vma flags, so that it won't mlock pages 698 * if the vma was already munlocked. 699 */ 700 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked); 701 if (ret < 0) { 702 if (ignore_errors) { 703 ret = 0; 704 continue; /* continue at next VMA */ 705 } 706 ret = __mlock_posix_error_return(ret); 707 break; 708 } 709 nend = nstart + ret * PAGE_SIZE; 710 ret = 0; 711 } 712 if (locked) 713 up_read(&mm->mmap_sem); 714 return ret; /* 0 or negative error code */ 715 } 716 717 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 718 { 719 unsigned long locked; 720 unsigned long lock_limit; 721 int error = -ENOMEM; 722 723 if (!can_do_mlock()) 724 return -EPERM; 725 726 lru_add_drain_all(); /* flush pagevec */ 727 728 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 729 start &= PAGE_MASK; 730 731 lock_limit = rlimit(RLIMIT_MEMLOCK); 732 lock_limit >>= PAGE_SHIFT; 733 locked = len >> PAGE_SHIFT; 734 735 down_write(¤t->mm->mmap_sem); 736 737 locked += current->mm->locked_vm; 738 739 /* check against resource limits */ 740 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 741 error = do_mlock(start, len, 1); 742 743 up_write(¤t->mm->mmap_sem); 744 if (!error) 745 error = __mm_populate(start, len, 0); 746 return error; 747 } 748 749 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 750 { 751 int ret; 752 753 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 754 start &= PAGE_MASK; 755 756 down_write(¤t->mm->mmap_sem); 757 ret = do_mlock(start, len, 0); 758 up_write(¤t->mm->mmap_sem); 759 760 return ret; 761 } 762 763 static int do_mlockall(int flags) 764 { 765 struct vm_area_struct * vma, * prev = NULL; 766 767 if (flags & MCL_FUTURE) 768 current->mm->def_flags |= VM_LOCKED; 769 else 770 current->mm->def_flags &= ~VM_LOCKED; 771 if (flags == MCL_FUTURE) 772 goto out; 773 774 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 775 vm_flags_t newflags; 776 777 newflags = vma->vm_flags & ~VM_LOCKED; 778 if (flags & MCL_CURRENT) 779 newflags |= VM_LOCKED; 780 781 /* Ignore errors */ 782 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 783 cond_resched(); 784 } 785 out: 786 return 0; 787 } 788 789 SYSCALL_DEFINE1(mlockall, int, flags) 790 { 791 unsigned long lock_limit; 792 int ret = -EINVAL; 793 794 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 795 goto out; 796 797 ret = -EPERM; 798 if (!can_do_mlock()) 799 goto out; 800 801 if (flags & MCL_CURRENT) 802 lru_add_drain_all(); /* flush pagevec */ 803 804 lock_limit = rlimit(RLIMIT_MEMLOCK); 805 lock_limit >>= PAGE_SHIFT; 806 807 ret = -ENOMEM; 808 down_write(¤t->mm->mmap_sem); 809 810 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 811 capable(CAP_IPC_LOCK)) 812 ret = do_mlockall(flags); 813 up_write(¤t->mm->mmap_sem); 814 if (!ret && (flags & MCL_CURRENT)) 815 mm_populate(0, TASK_SIZE); 816 out: 817 return ret; 818 } 819 820 SYSCALL_DEFINE0(munlockall) 821 { 822 int ret; 823 824 down_write(¤t->mm->mmap_sem); 825 ret = do_mlockall(0); 826 up_write(¤t->mm->mmap_sem); 827 return ret; 828 } 829 830 /* 831 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 832 * shm segments) get accounted against the user_struct instead. 833 */ 834 static DEFINE_SPINLOCK(shmlock_user_lock); 835 836 int user_shm_lock(size_t size, struct user_struct *user) 837 { 838 unsigned long lock_limit, locked; 839 int allowed = 0; 840 841 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 842 lock_limit = rlimit(RLIMIT_MEMLOCK); 843 if (lock_limit == RLIM_INFINITY) 844 allowed = 1; 845 lock_limit >>= PAGE_SHIFT; 846 spin_lock(&shmlock_user_lock); 847 if (!allowed && 848 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 849 goto out; 850 get_uid(user); 851 user->locked_shm += locked; 852 allowed = 1; 853 out: 854 spin_unlock(&shmlock_user_lock); 855 return allowed; 856 } 857 858 void user_shm_unlock(size_t size, struct user_struct *user) 859 { 860 spin_lock(&shmlock_user_lock); 861 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 862 spin_unlock(&shmlock_user_lock); 863 free_uid(user); 864 } 865