1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 27 #include "internal.h" 28 29 bool can_do_mlock(void) 30 { 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return true; 33 if (capable(CAP_IPC_LOCK)) 34 return true; 35 return false; 36 } 37 EXPORT_SYMBOL(can_do_mlock); 38 39 /* 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing 41 * in vmscan and, possibly, the fault path; and to support semi-accurate 42 * statistics. 43 * 44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 46 * The unevictable list is an LRU sibling list to the [in]active lists. 47 * PageUnevictable is set to indicate the unevictable state. 48 * 49 * When lazy mlocking via vmscan, it is important to ensure that the 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 51 * may have mlocked a page that is being munlocked. So lazy mlock must take 52 * the mmap_lock for read, and verify that the vma really is locked 53 * (see mm/rmap.c). 54 */ 55 56 /* 57 * LRU accounting for clear_page_mlock() 58 */ 59 void clear_page_mlock(struct page *page) 60 { 61 int nr_pages; 62 63 if (!TestClearPageMlocked(page)) 64 return; 65 66 nr_pages = thp_nr_pages(page); 67 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 68 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 69 /* 70 * The previous TestClearPageMlocked() corresponds to the smp_mb() 71 * in __pagevec_lru_add_fn(). 72 * 73 * See __pagevec_lru_add_fn for more explanation. 74 */ 75 if (!isolate_lru_page(page)) { 76 putback_lru_page(page); 77 } else { 78 /* 79 * We lost the race. the page already moved to evictable list. 80 */ 81 if (PageUnevictable(page)) 82 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 83 } 84 } 85 86 /* 87 * Mark page as mlocked if not already. 88 * If page on LRU, isolate and putback to move to unevictable list. 89 */ 90 void mlock_vma_page(struct page *page) 91 { 92 /* Serialize with page migration */ 93 BUG_ON(!PageLocked(page)); 94 95 VM_BUG_ON_PAGE(PageTail(page), page); 96 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 97 98 if (!TestSetPageMlocked(page)) { 99 int nr_pages = thp_nr_pages(page); 100 101 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 102 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 103 if (!isolate_lru_page(page)) 104 putback_lru_page(page); 105 } 106 } 107 108 /* 109 * Finish munlock after successful page isolation 110 * 111 * Page must be locked. This is a wrapper for try_to_munlock() 112 * and putback_lru_page() with munlock accounting. 113 */ 114 static void __munlock_isolated_page(struct page *page) 115 { 116 /* 117 * Optimization: if the page was mapped just once, that's our mapping 118 * and we don't need to check all the other vmas. 119 */ 120 if (page_mapcount(page) > 1) 121 try_to_munlock(page); 122 123 /* Did try_to_unlock() succeed or punt? */ 124 if (!PageMlocked(page)) 125 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page)); 126 127 putback_lru_page(page); 128 } 129 130 /* 131 * Accounting for page isolation fail during munlock 132 * 133 * Performs accounting when page isolation fails in munlock. There is nothing 134 * else to do because it means some other task has already removed the page 135 * from the LRU. putback_lru_page() will take care of removing the page from 136 * the unevictable list, if necessary. vmscan [page_referenced()] will move 137 * the page back to the unevictable list if some other vma has it mlocked. 138 */ 139 static void __munlock_isolation_failed(struct page *page) 140 { 141 int nr_pages = thp_nr_pages(page); 142 143 if (PageUnevictable(page)) 144 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 145 else 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 } 148 149 /** 150 * munlock_vma_page - munlock a vma page 151 * @page: page to be unlocked, either a normal page or THP page head 152 * 153 * returns the size of the page as a page mask (0 for normal page, 154 * HPAGE_PMD_NR - 1 for THP head page) 155 * 156 * called from munlock()/munmap() path with page supposedly on the LRU. 157 * When we munlock a page, because the vma where we found the page is being 158 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 159 * page locked so that we can leave it on the unevictable lru list and not 160 * bother vmscan with it. However, to walk the page's rmap list in 161 * try_to_munlock() we must isolate the page from the LRU. If some other 162 * task has removed the page from the LRU, we won't be able to do that. 163 * So we clear the PageMlocked as we might not get another chance. If we 164 * can't isolate the page, we leave it for putback_lru_page() and vmscan 165 * [page_referenced()/try_to_unmap()] to deal with. 166 */ 167 unsigned int munlock_vma_page(struct page *page) 168 { 169 int nr_pages; 170 171 /* For try_to_munlock() and to serialize with page migration */ 172 BUG_ON(!PageLocked(page)); 173 VM_BUG_ON_PAGE(PageTail(page), page); 174 175 if (!TestClearPageMlocked(page)) { 176 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 177 return 0; 178 } 179 180 nr_pages = thp_nr_pages(page); 181 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 182 183 if (!isolate_lru_page(page)) 184 __munlock_isolated_page(page); 185 else 186 __munlock_isolation_failed(page); 187 188 return nr_pages - 1; 189 } 190 191 /* 192 * convert get_user_pages() return value to posix mlock() error 193 */ 194 static int __mlock_posix_error_return(long retval) 195 { 196 if (retval == -EFAULT) 197 retval = -ENOMEM; 198 else if (retval == -ENOMEM) 199 retval = -EAGAIN; 200 return retval; 201 } 202 203 /* 204 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 205 * 206 * The fast path is available only for evictable pages with single mapping. 207 * Then we can bypass the per-cpu pvec and get better performance. 208 * when mapcount > 1 we need try_to_munlock() which can fail. 209 * when !page_evictable(), we need the full redo logic of putback_lru_page to 210 * avoid leaving evictable page in unevictable list. 211 * 212 * In case of success, @page is added to @pvec and @pgrescued is incremented 213 * in case that the page was previously unevictable. @page is also unlocked. 214 */ 215 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 216 int *pgrescued) 217 { 218 VM_BUG_ON_PAGE(PageLRU(page), page); 219 VM_BUG_ON_PAGE(!PageLocked(page), page); 220 221 if (page_mapcount(page) <= 1 && page_evictable(page)) { 222 pagevec_add(pvec, page); 223 if (TestClearPageUnevictable(page)) 224 (*pgrescued)++; 225 unlock_page(page); 226 return true; 227 } 228 229 return false; 230 } 231 232 /* 233 * Putback multiple evictable pages to the LRU 234 * 235 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 236 * the pages might have meanwhile become unevictable but that is OK. 237 */ 238 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 239 { 240 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 241 /* 242 *__pagevec_lru_add() calls release_pages() so we don't call 243 * put_page() explicitly 244 */ 245 __pagevec_lru_add(pvec); 246 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 247 } 248 249 /* 250 * Munlock a batch of pages from the same zone 251 * 252 * The work is split to two main phases. First phase clears the Mlocked flag 253 * and attempts to isolate the pages, all under a single zone lru lock. 254 * The second phase finishes the munlock only for pages where isolation 255 * succeeded. 256 * 257 * Note that the pagevec may be modified during the process. 258 */ 259 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 260 { 261 int i; 262 int nr = pagevec_count(pvec); 263 int delta_munlocked = -nr; 264 struct pagevec pvec_putback; 265 struct lruvec *lruvec = NULL; 266 int pgrescued = 0; 267 268 pagevec_init(&pvec_putback); 269 270 /* Phase 1: page isolation */ 271 for (i = 0; i < nr; i++) { 272 struct page *page = pvec->pages[i]; 273 274 if (TestClearPageMlocked(page)) { 275 /* 276 * We already have pin from follow_page_mask() 277 * so we can spare the get_page() here. 278 */ 279 if (TestClearPageLRU(page)) { 280 lruvec = relock_page_lruvec_irq(page, lruvec); 281 del_page_from_lru_list(page, lruvec, 282 page_lru(page)); 283 continue; 284 } else 285 __munlock_isolation_failed(page); 286 } else { 287 delta_munlocked++; 288 } 289 290 /* 291 * We won't be munlocking this page in the next phase 292 * but we still need to release the follow_page_mask() 293 * pin. We cannot do it under lru_lock however. If it's 294 * the last pin, __page_cache_release() would deadlock. 295 */ 296 pagevec_add(&pvec_putback, pvec->pages[i]); 297 pvec->pages[i] = NULL; 298 } 299 if (lruvec) { 300 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 301 unlock_page_lruvec_irq(lruvec); 302 } else if (delta_munlocked) { 303 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 304 } 305 306 /* Now we can release pins of pages that we are not munlocking */ 307 pagevec_release(&pvec_putback); 308 309 /* Phase 2: page munlock */ 310 for (i = 0; i < nr; i++) { 311 struct page *page = pvec->pages[i]; 312 313 if (page) { 314 lock_page(page); 315 if (!__putback_lru_fast_prepare(page, &pvec_putback, 316 &pgrescued)) { 317 /* 318 * Slow path. We don't want to lose the last 319 * pin before unlock_page() 320 */ 321 get_page(page); /* for putback_lru_page() */ 322 __munlock_isolated_page(page); 323 unlock_page(page); 324 put_page(page); /* from follow_page_mask() */ 325 } 326 } 327 } 328 329 /* 330 * Phase 3: page putback for pages that qualified for the fast path 331 * This will also call put_page() to return pin from follow_page_mask() 332 */ 333 if (pagevec_count(&pvec_putback)) 334 __putback_lru_fast(&pvec_putback, pgrescued); 335 } 336 337 /* 338 * Fill up pagevec for __munlock_pagevec using pte walk 339 * 340 * The function expects that the struct page corresponding to @start address is 341 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 342 * 343 * The rest of @pvec is filled by subsequent pages within the same pmd and same 344 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 345 * pages also get pinned. 346 * 347 * Returns the address of the next page that should be scanned. This equals 348 * @start + PAGE_SIZE when no page could be added by the pte walk. 349 */ 350 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 351 struct vm_area_struct *vma, struct zone *zone, 352 unsigned long start, unsigned long end) 353 { 354 pte_t *pte; 355 spinlock_t *ptl; 356 357 /* 358 * Initialize pte walk starting at the already pinned page where we 359 * are sure that there is a pte, as it was pinned under the same 360 * mmap_lock write op. 361 */ 362 pte = get_locked_pte(vma->vm_mm, start, &ptl); 363 /* Make sure we do not cross the page table boundary */ 364 end = pgd_addr_end(start, end); 365 end = p4d_addr_end(start, end); 366 end = pud_addr_end(start, end); 367 end = pmd_addr_end(start, end); 368 369 /* The page next to the pinned page is the first we will try to get */ 370 start += PAGE_SIZE; 371 while (start < end) { 372 struct page *page = NULL; 373 pte++; 374 if (pte_present(*pte)) 375 page = vm_normal_page(vma, start, *pte); 376 /* 377 * Break if page could not be obtained or the page's node+zone does not 378 * match 379 */ 380 if (!page || page_zone(page) != zone) 381 break; 382 383 /* 384 * Do not use pagevec for PTE-mapped THP, 385 * munlock_vma_pages_range() will handle them. 386 */ 387 if (PageTransCompound(page)) 388 break; 389 390 get_page(page); 391 /* 392 * Increase the address that will be returned *before* the 393 * eventual break due to pvec becoming full by adding the page 394 */ 395 start += PAGE_SIZE; 396 if (pagevec_add(pvec, page) == 0) 397 break; 398 } 399 pte_unmap_unlock(pte, ptl); 400 return start; 401 } 402 403 /* 404 * munlock_vma_pages_range() - munlock all pages in the vma range.' 405 * @vma - vma containing range to be munlock()ed. 406 * @start - start address in @vma of the range 407 * @end - end of range in @vma. 408 * 409 * For mremap(), munmap() and exit(). 410 * 411 * Called with @vma VM_LOCKED. 412 * 413 * Returns with VM_LOCKED cleared. Callers must be prepared to 414 * deal with this. 415 * 416 * We don't save and restore VM_LOCKED here because pages are 417 * still on lru. In unmap path, pages might be scanned by reclaim 418 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 419 * free them. This will result in freeing mlocked pages. 420 */ 421 void munlock_vma_pages_range(struct vm_area_struct *vma, 422 unsigned long start, unsigned long end) 423 { 424 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 425 426 while (start < end) { 427 struct page *page; 428 unsigned int page_mask = 0; 429 unsigned long page_increm; 430 struct pagevec pvec; 431 struct zone *zone; 432 433 pagevec_init(&pvec); 434 /* 435 * Although FOLL_DUMP is intended for get_dump_page(), 436 * it just so happens that its special treatment of the 437 * ZERO_PAGE (returning an error instead of doing get_page) 438 * suits munlock very well (and if somehow an abnormal page 439 * has sneaked into the range, we won't oops here: great). 440 */ 441 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 442 443 if (page && !IS_ERR(page)) { 444 if (PageTransTail(page)) { 445 VM_BUG_ON_PAGE(PageMlocked(page), page); 446 put_page(page); /* follow_page_mask() */ 447 } else if (PageTransHuge(page)) { 448 lock_page(page); 449 /* 450 * Any THP page found by follow_page_mask() may 451 * have gotten split before reaching 452 * munlock_vma_page(), so we need to compute 453 * the page_mask here instead. 454 */ 455 page_mask = munlock_vma_page(page); 456 unlock_page(page); 457 put_page(page); /* follow_page_mask() */ 458 } else { 459 /* 460 * Non-huge pages are handled in batches via 461 * pagevec. The pin from follow_page_mask() 462 * prevents them from collapsing by THP. 463 */ 464 pagevec_add(&pvec, page); 465 zone = page_zone(page); 466 467 /* 468 * Try to fill the rest of pagevec using fast 469 * pte walk. This will also update start to 470 * the next page to process. Then munlock the 471 * pagevec. 472 */ 473 start = __munlock_pagevec_fill(&pvec, vma, 474 zone, start, end); 475 __munlock_pagevec(&pvec, zone); 476 goto next; 477 } 478 } 479 page_increm = 1 + page_mask; 480 start += page_increm * PAGE_SIZE; 481 next: 482 cond_resched(); 483 } 484 } 485 486 /* 487 * mlock_fixup - handle mlock[all]/munlock[all] requests. 488 * 489 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 490 * munlock is a no-op. However, for some special vmas, we go ahead and 491 * populate the ptes. 492 * 493 * For vmas that pass the filters, merge/split as appropriate. 494 */ 495 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 496 unsigned long start, unsigned long end, vm_flags_t newflags) 497 { 498 struct mm_struct *mm = vma->vm_mm; 499 pgoff_t pgoff; 500 int nr_pages; 501 int ret = 0; 502 int lock = !!(newflags & VM_LOCKED); 503 vm_flags_t old_flags = vma->vm_flags; 504 505 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 506 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 507 vma_is_dax(vma)) 508 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 509 goto out; 510 511 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 512 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 513 vma->vm_file, pgoff, vma_policy(vma), 514 vma->vm_userfaultfd_ctx); 515 if (*prev) { 516 vma = *prev; 517 goto success; 518 } 519 520 if (start != vma->vm_start) { 521 ret = split_vma(mm, vma, start, 1); 522 if (ret) 523 goto out; 524 } 525 526 if (end != vma->vm_end) { 527 ret = split_vma(mm, vma, end, 0); 528 if (ret) 529 goto out; 530 } 531 532 success: 533 /* 534 * Keep track of amount of locked VM. 535 */ 536 nr_pages = (end - start) >> PAGE_SHIFT; 537 if (!lock) 538 nr_pages = -nr_pages; 539 else if (old_flags & VM_LOCKED) 540 nr_pages = 0; 541 mm->locked_vm += nr_pages; 542 543 /* 544 * vm_flags is protected by the mmap_lock held in write mode. 545 * It's okay if try_to_unmap_one unmaps a page just after we 546 * set VM_LOCKED, populate_vma_page_range will bring it back. 547 */ 548 549 if (lock) 550 vma->vm_flags = newflags; 551 else 552 munlock_vma_pages_range(vma, start, end); 553 554 out: 555 *prev = vma; 556 return ret; 557 } 558 559 static int apply_vma_lock_flags(unsigned long start, size_t len, 560 vm_flags_t flags) 561 { 562 unsigned long nstart, end, tmp; 563 struct vm_area_struct * vma, * prev; 564 int error; 565 566 VM_BUG_ON(offset_in_page(start)); 567 VM_BUG_ON(len != PAGE_ALIGN(len)); 568 end = start + len; 569 if (end < start) 570 return -EINVAL; 571 if (end == start) 572 return 0; 573 vma = find_vma(current->mm, start); 574 if (!vma || vma->vm_start > start) 575 return -ENOMEM; 576 577 prev = vma->vm_prev; 578 if (start > vma->vm_start) 579 prev = vma; 580 581 for (nstart = start ; ; ) { 582 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 583 584 newflags |= flags; 585 586 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 587 tmp = vma->vm_end; 588 if (tmp > end) 589 tmp = end; 590 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 591 if (error) 592 break; 593 nstart = tmp; 594 if (nstart < prev->vm_end) 595 nstart = prev->vm_end; 596 if (nstart >= end) 597 break; 598 599 vma = prev->vm_next; 600 if (!vma || vma->vm_start != nstart) { 601 error = -ENOMEM; 602 break; 603 } 604 } 605 return error; 606 } 607 608 /* 609 * Go through vma areas and sum size of mlocked 610 * vma pages, as return value. 611 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 612 * is also counted. 613 * Return value: previously mlocked page counts 614 */ 615 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 616 unsigned long start, size_t len) 617 { 618 struct vm_area_struct *vma; 619 unsigned long count = 0; 620 621 if (mm == NULL) 622 mm = current->mm; 623 624 vma = find_vma(mm, start); 625 if (vma == NULL) 626 vma = mm->mmap; 627 628 for (; vma ; vma = vma->vm_next) { 629 if (start >= vma->vm_end) 630 continue; 631 if (start + len <= vma->vm_start) 632 break; 633 if (vma->vm_flags & VM_LOCKED) { 634 if (start > vma->vm_start) 635 count -= (start - vma->vm_start); 636 if (start + len < vma->vm_end) { 637 count += start + len - vma->vm_start; 638 break; 639 } 640 count += vma->vm_end - vma->vm_start; 641 } 642 } 643 644 return count >> PAGE_SHIFT; 645 } 646 647 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 648 { 649 unsigned long locked; 650 unsigned long lock_limit; 651 int error = -ENOMEM; 652 653 start = untagged_addr(start); 654 655 if (!can_do_mlock()) 656 return -EPERM; 657 658 len = PAGE_ALIGN(len + (offset_in_page(start))); 659 start &= PAGE_MASK; 660 661 lock_limit = rlimit(RLIMIT_MEMLOCK); 662 lock_limit >>= PAGE_SHIFT; 663 locked = len >> PAGE_SHIFT; 664 665 if (mmap_write_lock_killable(current->mm)) 666 return -EINTR; 667 668 locked += current->mm->locked_vm; 669 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 670 /* 671 * It is possible that the regions requested intersect with 672 * previously mlocked areas, that part area in "mm->locked_vm" 673 * should not be counted to new mlock increment count. So check 674 * and adjust locked count if necessary. 675 */ 676 locked -= count_mm_mlocked_page_nr(current->mm, 677 start, len); 678 } 679 680 /* check against resource limits */ 681 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 682 error = apply_vma_lock_flags(start, len, flags); 683 684 mmap_write_unlock(current->mm); 685 if (error) 686 return error; 687 688 error = __mm_populate(start, len, 0); 689 if (error) 690 return __mlock_posix_error_return(error); 691 return 0; 692 } 693 694 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 695 { 696 return do_mlock(start, len, VM_LOCKED); 697 } 698 699 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 700 { 701 vm_flags_t vm_flags = VM_LOCKED; 702 703 if (flags & ~MLOCK_ONFAULT) 704 return -EINVAL; 705 706 if (flags & MLOCK_ONFAULT) 707 vm_flags |= VM_LOCKONFAULT; 708 709 return do_mlock(start, len, vm_flags); 710 } 711 712 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 713 { 714 int ret; 715 716 start = untagged_addr(start); 717 718 len = PAGE_ALIGN(len + (offset_in_page(start))); 719 start &= PAGE_MASK; 720 721 if (mmap_write_lock_killable(current->mm)) 722 return -EINTR; 723 ret = apply_vma_lock_flags(start, len, 0); 724 mmap_write_unlock(current->mm); 725 726 return ret; 727 } 728 729 /* 730 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 731 * and translate into the appropriate modifications to mm->def_flags and/or the 732 * flags for all current VMAs. 733 * 734 * There are a couple of subtleties with this. If mlockall() is called multiple 735 * times with different flags, the values do not necessarily stack. If mlockall 736 * is called once including the MCL_FUTURE flag and then a second time without 737 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 738 */ 739 static int apply_mlockall_flags(int flags) 740 { 741 struct vm_area_struct * vma, * prev = NULL; 742 vm_flags_t to_add = 0; 743 744 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 745 if (flags & MCL_FUTURE) { 746 current->mm->def_flags |= VM_LOCKED; 747 748 if (flags & MCL_ONFAULT) 749 current->mm->def_flags |= VM_LOCKONFAULT; 750 751 if (!(flags & MCL_CURRENT)) 752 goto out; 753 } 754 755 if (flags & MCL_CURRENT) { 756 to_add |= VM_LOCKED; 757 if (flags & MCL_ONFAULT) 758 to_add |= VM_LOCKONFAULT; 759 } 760 761 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 762 vm_flags_t newflags; 763 764 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 765 newflags |= to_add; 766 767 /* Ignore errors */ 768 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 769 cond_resched(); 770 } 771 out: 772 return 0; 773 } 774 775 SYSCALL_DEFINE1(mlockall, int, flags) 776 { 777 unsigned long lock_limit; 778 int ret; 779 780 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 781 flags == MCL_ONFAULT) 782 return -EINVAL; 783 784 if (!can_do_mlock()) 785 return -EPERM; 786 787 lock_limit = rlimit(RLIMIT_MEMLOCK); 788 lock_limit >>= PAGE_SHIFT; 789 790 if (mmap_write_lock_killable(current->mm)) 791 return -EINTR; 792 793 ret = -ENOMEM; 794 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 795 capable(CAP_IPC_LOCK)) 796 ret = apply_mlockall_flags(flags); 797 mmap_write_unlock(current->mm); 798 if (!ret && (flags & MCL_CURRENT)) 799 mm_populate(0, TASK_SIZE); 800 801 return ret; 802 } 803 804 SYSCALL_DEFINE0(munlockall) 805 { 806 int ret; 807 808 if (mmap_write_lock_killable(current->mm)) 809 return -EINTR; 810 ret = apply_mlockall_flags(0); 811 mmap_write_unlock(current->mm); 812 return ret; 813 } 814 815 /* 816 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 817 * shm segments) get accounted against the user_struct instead. 818 */ 819 static DEFINE_SPINLOCK(shmlock_user_lock); 820 821 int user_shm_lock(size_t size, struct user_struct *user) 822 { 823 unsigned long lock_limit, locked; 824 int allowed = 0; 825 826 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 827 lock_limit = rlimit(RLIMIT_MEMLOCK); 828 if (lock_limit == RLIM_INFINITY) 829 allowed = 1; 830 lock_limit >>= PAGE_SHIFT; 831 spin_lock(&shmlock_user_lock); 832 if (!allowed && 833 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 834 goto out; 835 get_uid(user); 836 user->locked_shm += locked; 837 allowed = 1; 838 out: 839 spin_unlock(&shmlock_user_lock); 840 return allowed; 841 } 842 843 void user_shm_unlock(size_t size, struct user_struct *user) 844 { 845 spin_lock(&shmlock_user_lock); 846 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 847 spin_unlock(&shmlock_user_lock); 848 free_uid(user); 849 } 850