xref: /openbmc/linux/mm/mlock.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24 
25 #include "internal.h"
26 
27 int can_do_mlock(void)
28 {
29 	if (capable(CAP_IPC_LOCK))
30 		return 1;
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return 1;
33 	return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36 
37 /*
38  * Mlocked pages are marked with PageMlocked() flag for efficient testing
39  * in vmscan and, possibly, the fault path; and to support semi-accurate
40  * statistics.
41  *
42  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44  * The unevictable list is an LRU sibling list to the [in]active lists.
45  * PageUnevictable is set to indicate the unevictable state.
46  *
47  * When lazy mlocking via vmscan, it is important to ensure that the
48  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49  * may have mlocked a page that is being munlocked. So lazy mlock must take
50  * the mmap_sem for read, and verify that the vma really is locked
51  * (see mm/rmap.c).
52  */
53 
54 /*
55  *  LRU accounting for clear_page_mlock()
56  */
57 void clear_page_mlock(struct page *page)
58 {
59 	if (!TestClearPageMlocked(page))
60 		return;
61 
62 	mod_zone_page_state(page_zone(page), NR_MLOCK,
63 			    -hpage_nr_pages(page));
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	/* Serialize with page migration */
83 	BUG_ON(!PageLocked(page));
84 
85 	if (!TestSetPageMlocked(page)) {
86 		mod_zone_page_state(page_zone(page), NR_MLOCK,
87 				    hpage_nr_pages(page));
88 		count_vm_event(UNEVICTABLE_PGMLOCKED);
89 		if (!isolate_lru_page(page))
90 			putback_lru_page(page);
91 	}
92 }
93 
94 /*
95  * Isolate a page from LRU with optional get_page() pin.
96  * Assumes lru_lock already held and page already pinned.
97  */
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99 {
100 	if (PageLRU(page)) {
101 		struct lruvec *lruvec;
102 
103 		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 		if (getpage)
105 			get_page(page);
106 		ClearPageLRU(page);
107 		del_page_from_lru_list(page, lruvec, page_lru(page));
108 		return true;
109 	}
110 
111 	return false;
112 }
113 
114 /*
115  * Finish munlock after successful page isolation
116  *
117  * Page must be locked. This is a wrapper for try_to_munlock()
118  * and putback_lru_page() with munlock accounting.
119  */
120 static void __munlock_isolated_page(struct page *page)
121 {
122 	int ret = SWAP_AGAIN;
123 
124 	/*
125 	 * Optimization: if the page was mapped just once, that's our mapping
126 	 * and we don't need to check all the other vmas.
127 	 */
128 	if (page_mapcount(page) > 1)
129 		ret = try_to_munlock(page);
130 
131 	/* Did try_to_unlock() succeed or punt? */
132 	if (ret != SWAP_MLOCK)
133 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 
135 	putback_lru_page(page);
136 }
137 
138 /*
139  * Accounting for page isolation fail during munlock
140  *
141  * Performs accounting when page isolation fails in munlock. There is nothing
142  * else to do because it means some other task has already removed the page
143  * from the LRU. putback_lru_page() will take care of removing the page from
144  * the unevictable list, if necessary. vmscan [page_referenced()] will move
145  * the page back to the unevictable list if some other vma has it mlocked.
146  */
147 static void __munlock_isolation_failed(struct page *page)
148 {
149 	if (PageUnevictable(page))
150 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
151 	else
152 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153 }
154 
155 /**
156  * munlock_vma_page - munlock a vma page
157  * @page - page to be unlocked, either a normal page or THP page head
158  *
159  * returns the size of the page as a page mask (0 for normal page,
160  *         HPAGE_PMD_NR - 1 for THP head page)
161  *
162  * called from munlock()/munmap() path with page supposedly on the LRU.
163  * When we munlock a page, because the vma where we found the page is being
164  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165  * page locked so that we can leave it on the unevictable lru list and not
166  * bother vmscan with it.  However, to walk the page's rmap list in
167  * try_to_munlock() we must isolate the page from the LRU.  If some other
168  * task has removed the page from the LRU, we won't be able to do that.
169  * So we clear the PageMlocked as we might not get another chance.  If we
170  * can't isolate the page, we leave it for putback_lru_page() and vmscan
171  * [page_referenced()/try_to_unmap()] to deal with.
172  */
173 unsigned int munlock_vma_page(struct page *page)
174 {
175 	unsigned int nr_pages;
176 	struct zone *zone = page_zone(page);
177 
178 	/* For try_to_munlock() and to serialize with page migration */
179 	BUG_ON(!PageLocked(page));
180 
181 	/*
182 	 * Serialize with any parallel __split_huge_page_refcount() which
183 	 * might otherwise copy PageMlocked to part of the tail pages before
184 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185 	 */
186 	spin_lock_irq(&zone->lru_lock);
187 
188 	nr_pages = hpage_nr_pages(page);
189 	if (!TestClearPageMlocked(page))
190 		goto unlock_out;
191 
192 	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193 
194 	if (__munlock_isolate_lru_page(page, true)) {
195 		spin_unlock_irq(&zone->lru_lock);
196 		__munlock_isolated_page(page);
197 		goto out;
198 	}
199 	__munlock_isolation_failed(page);
200 
201 unlock_out:
202 	spin_unlock_irq(&zone->lru_lock);
203 
204 out:
205 	return nr_pages - 1;
206 }
207 
208 /**
209  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
210  * @vma:   target vma
211  * @start: start address
212  * @end:   end address
213  *
214  * This takes care of making the pages present too.
215  *
216  * return 0 on success, negative error code on error.
217  *
218  * vma->vm_mm->mmap_sem must be held for at least read.
219  */
220 long __mlock_vma_pages_range(struct vm_area_struct *vma,
221 		unsigned long start, unsigned long end, int *nonblocking)
222 {
223 	struct mm_struct *mm = vma->vm_mm;
224 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
225 	int gup_flags;
226 
227 	VM_BUG_ON(start & ~PAGE_MASK);
228 	VM_BUG_ON(end   & ~PAGE_MASK);
229 	VM_BUG_ON(start < vma->vm_start);
230 	VM_BUG_ON(end   > vma->vm_end);
231 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
232 
233 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
234 	/*
235 	 * We want to touch writable mappings with a write fault in order
236 	 * to break COW, except for shared mappings because these don't COW
237 	 * and we would not want to dirty them for nothing.
238 	 */
239 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
240 		gup_flags |= FOLL_WRITE;
241 
242 	/*
243 	 * We want mlock to succeed for regions that have any permissions
244 	 * other than PROT_NONE.
245 	 */
246 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
247 		gup_flags |= FOLL_FORCE;
248 
249 	/*
250 	 * We made sure addr is within a VMA, so the following will
251 	 * not result in a stack expansion that recurses back here.
252 	 */
253 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
254 				NULL, NULL, nonblocking);
255 }
256 
257 /*
258  * convert get_user_pages() return value to posix mlock() error
259  */
260 static int __mlock_posix_error_return(long retval)
261 {
262 	if (retval == -EFAULT)
263 		retval = -ENOMEM;
264 	else if (retval == -ENOMEM)
265 		retval = -EAGAIN;
266 	return retval;
267 }
268 
269 /*
270  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
271  *
272  * The fast path is available only for evictable pages with single mapping.
273  * Then we can bypass the per-cpu pvec and get better performance.
274  * when mapcount > 1 we need try_to_munlock() which can fail.
275  * when !page_evictable(), we need the full redo logic of putback_lru_page to
276  * avoid leaving evictable page in unevictable list.
277  *
278  * In case of success, @page is added to @pvec and @pgrescued is incremented
279  * in case that the page was previously unevictable. @page is also unlocked.
280  */
281 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
282 		int *pgrescued)
283 {
284 	VM_BUG_ON_PAGE(PageLRU(page), page);
285 	VM_BUG_ON_PAGE(!PageLocked(page), page);
286 
287 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
288 		pagevec_add(pvec, page);
289 		if (TestClearPageUnevictable(page))
290 			(*pgrescued)++;
291 		unlock_page(page);
292 		return true;
293 	}
294 
295 	return false;
296 }
297 
298 /*
299  * Putback multiple evictable pages to the LRU
300  *
301  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
302  * the pages might have meanwhile become unevictable but that is OK.
303  */
304 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
305 {
306 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
307 	/*
308 	 *__pagevec_lru_add() calls release_pages() so we don't call
309 	 * put_page() explicitly
310 	 */
311 	__pagevec_lru_add(pvec);
312 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
313 }
314 
315 /*
316  * Munlock a batch of pages from the same zone
317  *
318  * The work is split to two main phases. First phase clears the Mlocked flag
319  * and attempts to isolate the pages, all under a single zone lru lock.
320  * The second phase finishes the munlock only for pages where isolation
321  * succeeded.
322  *
323  * Note that the pagevec may be modified during the process.
324  */
325 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
326 {
327 	int i;
328 	int nr = pagevec_count(pvec);
329 	int delta_munlocked;
330 	struct pagevec pvec_putback;
331 	int pgrescued = 0;
332 
333 	pagevec_init(&pvec_putback, 0);
334 
335 	/* Phase 1: page isolation */
336 	spin_lock_irq(&zone->lru_lock);
337 	for (i = 0; i < nr; i++) {
338 		struct page *page = pvec->pages[i];
339 
340 		if (TestClearPageMlocked(page)) {
341 			/*
342 			 * We already have pin from follow_page_mask()
343 			 * so we can spare the get_page() here.
344 			 */
345 			if (__munlock_isolate_lru_page(page, false))
346 				continue;
347 			else
348 				__munlock_isolation_failed(page);
349 		}
350 
351 		/*
352 		 * We won't be munlocking this page in the next phase
353 		 * but we still need to release the follow_page_mask()
354 		 * pin. We cannot do it under lru_lock however. If it's
355 		 * the last pin, __page_cache_release() would deadlock.
356 		 */
357 		pagevec_add(&pvec_putback, pvec->pages[i]);
358 		pvec->pages[i] = NULL;
359 	}
360 	delta_munlocked = -nr + pagevec_count(&pvec_putback);
361 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
362 	spin_unlock_irq(&zone->lru_lock);
363 
364 	/* Now we can release pins of pages that we are not munlocking */
365 	pagevec_release(&pvec_putback);
366 
367 	/* Phase 2: page munlock */
368 	for (i = 0; i < nr; i++) {
369 		struct page *page = pvec->pages[i];
370 
371 		if (page) {
372 			lock_page(page);
373 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
374 					&pgrescued)) {
375 				/*
376 				 * Slow path. We don't want to lose the last
377 				 * pin before unlock_page()
378 				 */
379 				get_page(page); /* for putback_lru_page() */
380 				__munlock_isolated_page(page);
381 				unlock_page(page);
382 				put_page(page); /* from follow_page_mask() */
383 			}
384 		}
385 	}
386 
387 	/*
388 	 * Phase 3: page putback for pages that qualified for the fast path
389 	 * This will also call put_page() to return pin from follow_page_mask()
390 	 */
391 	if (pagevec_count(&pvec_putback))
392 		__putback_lru_fast(&pvec_putback, pgrescued);
393 }
394 
395 /*
396  * Fill up pagevec for __munlock_pagevec using pte walk
397  *
398  * The function expects that the struct page corresponding to @start address is
399  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
400  *
401  * The rest of @pvec is filled by subsequent pages within the same pmd and same
402  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
403  * pages also get pinned.
404  *
405  * Returns the address of the next page that should be scanned. This equals
406  * @start + PAGE_SIZE when no page could be added by the pte walk.
407  */
408 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
409 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
410 		unsigned long end)
411 {
412 	pte_t *pte;
413 	spinlock_t *ptl;
414 
415 	/*
416 	 * Initialize pte walk starting at the already pinned page where we
417 	 * are sure that there is a pte, as it was pinned under the same
418 	 * mmap_sem write op.
419 	 */
420 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
421 	/* Make sure we do not cross the page table boundary */
422 	end = pgd_addr_end(start, end);
423 	end = pud_addr_end(start, end);
424 	end = pmd_addr_end(start, end);
425 
426 	/* The page next to the pinned page is the first we will try to get */
427 	start += PAGE_SIZE;
428 	while (start < end) {
429 		struct page *page = NULL;
430 		pte++;
431 		if (pte_present(*pte))
432 			page = vm_normal_page(vma, start, *pte);
433 		/*
434 		 * Break if page could not be obtained or the page's node+zone does not
435 		 * match
436 		 */
437 		if (!page || page_zone_id(page) != zoneid)
438 			break;
439 
440 		get_page(page);
441 		/*
442 		 * Increase the address that will be returned *before* the
443 		 * eventual break due to pvec becoming full by adding the page
444 		 */
445 		start += PAGE_SIZE;
446 		if (pagevec_add(pvec, page) == 0)
447 			break;
448 	}
449 	pte_unmap_unlock(pte, ptl);
450 	return start;
451 }
452 
453 /*
454  * munlock_vma_pages_range() - munlock all pages in the vma range.'
455  * @vma - vma containing range to be munlock()ed.
456  * @start - start address in @vma of the range
457  * @end - end of range in @vma.
458  *
459  *  For mremap(), munmap() and exit().
460  *
461  * Called with @vma VM_LOCKED.
462  *
463  * Returns with VM_LOCKED cleared.  Callers must be prepared to
464  * deal with this.
465  *
466  * We don't save and restore VM_LOCKED here because pages are
467  * still on lru.  In unmap path, pages might be scanned by reclaim
468  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
469  * free them.  This will result in freeing mlocked pages.
470  */
471 void munlock_vma_pages_range(struct vm_area_struct *vma,
472 			     unsigned long start, unsigned long end)
473 {
474 	vma->vm_flags &= ~VM_LOCKED;
475 
476 	while (start < end) {
477 		struct page *page = NULL;
478 		unsigned int page_mask;
479 		unsigned long page_increm;
480 		struct pagevec pvec;
481 		struct zone *zone;
482 		int zoneid;
483 
484 		pagevec_init(&pvec, 0);
485 		/*
486 		 * Although FOLL_DUMP is intended for get_dump_page(),
487 		 * it just so happens that its special treatment of the
488 		 * ZERO_PAGE (returning an error instead of doing get_page)
489 		 * suits munlock very well (and if somehow an abnormal page
490 		 * has sneaked into the range, we won't oops here: great).
491 		 */
492 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
493 				&page_mask);
494 
495 		if (page && !IS_ERR(page)) {
496 			if (PageTransHuge(page)) {
497 				lock_page(page);
498 				/*
499 				 * Any THP page found by follow_page_mask() may
500 				 * have gotten split before reaching
501 				 * munlock_vma_page(), so we need to recompute
502 				 * the page_mask here.
503 				 */
504 				page_mask = munlock_vma_page(page);
505 				unlock_page(page);
506 				put_page(page); /* follow_page_mask() */
507 			} else {
508 				/*
509 				 * Non-huge pages are handled in batches via
510 				 * pagevec. The pin from follow_page_mask()
511 				 * prevents them from collapsing by THP.
512 				 */
513 				pagevec_add(&pvec, page);
514 				zone = page_zone(page);
515 				zoneid = page_zone_id(page);
516 
517 				/*
518 				 * Try to fill the rest of pagevec using fast
519 				 * pte walk. This will also update start to
520 				 * the next page to process. Then munlock the
521 				 * pagevec.
522 				 */
523 				start = __munlock_pagevec_fill(&pvec, vma,
524 						zoneid, start, end);
525 				__munlock_pagevec(&pvec, zone);
526 				goto next;
527 			}
528 		}
529 		/* It's a bug to munlock in the middle of a THP page */
530 		VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
531 		page_increm = 1 + page_mask;
532 		start += page_increm * PAGE_SIZE;
533 next:
534 		cond_resched();
535 	}
536 }
537 
538 /*
539  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
540  *
541  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
542  * munlock is a no-op.  However, for some special vmas, we go ahead and
543  * populate the ptes.
544  *
545  * For vmas that pass the filters, merge/split as appropriate.
546  */
547 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
548 	unsigned long start, unsigned long end, vm_flags_t newflags)
549 {
550 	struct mm_struct *mm = vma->vm_mm;
551 	pgoff_t pgoff;
552 	int nr_pages;
553 	int ret = 0;
554 	int lock = !!(newflags & VM_LOCKED);
555 
556 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
557 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
558 		goto out;	/* don't set VM_LOCKED,  don't count */
559 
560 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
561 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
562 			  vma->vm_file, pgoff, vma_policy(vma));
563 	if (*prev) {
564 		vma = *prev;
565 		goto success;
566 	}
567 
568 	if (start != vma->vm_start) {
569 		ret = split_vma(mm, vma, start, 1);
570 		if (ret)
571 			goto out;
572 	}
573 
574 	if (end != vma->vm_end) {
575 		ret = split_vma(mm, vma, end, 0);
576 		if (ret)
577 			goto out;
578 	}
579 
580 success:
581 	/*
582 	 * Keep track of amount of locked VM.
583 	 */
584 	nr_pages = (end - start) >> PAGE_SHIFT;
585 	if (!lock)
586 		nr_pages = -nr_pages;
587 	mm->locked_vm += nr_pages;
588 
589 	/*
590 	 * vm_flags is protected by the mmap_sem held in write mode.
591 	 * It's okay if try_to_unmap_one unmaps a page just after we
592 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
593 	 */
594 
595 	if (lock)
596 		vma->vm_flags = newflags;
597 	else
598 		munlock_vma_pages_range(vma, start, end);
599 
600 out:
601 	*prev = vma;
602 	return ret;
603 }
604 
605 static int do_mlock(unsigned long start, size_t len, int on)
606 {
607 	unsigned long nstart, end, tmp;
608 	struct vm_area_struct * vma, * prev;
609 	int error;
610 
611 	VM_BUG_ON(start & ~PAGE_MASK);
612 	VM_BUG_ON(len != PAGE_ALIGN(len));
613 	end = start + len;
614 	if (end < start)
615 		return -EINVAL;
616 	if (end == start)
617 		return 0;
618 	vma = find_vma(current->mm, start);
619 	if (!vma || vma->vm_start > start)
620 		return -ENOMEM;
621 
622 	prev = vma->vm_prev;
623 	if (start > vma->vm_start)
624 		prev = vma;
625 
626 	for (nstart = start ; ; ) {
627 		vm_flags_t newflags;
628 
629 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
630 
631 		newflags = vma->vm_flags & ~VM_LOCKED;
632 		if (on)
633 			newflags |= VM_LOCKED;
634 
635 		tmp = vma->vm_end;
636 		if (tmp > end)
637 			tmp = end;
638 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
639 		if (error)
640 			break;
641 		nstart = tmp;
642 		if (nstart < prev->vm_end)
643 			nstart = prev->vm_end;
644 		if (nstart >= end)
645 			break;
646 
647 		vma = prev->vm_next;
648 		if (!vma || vma->vm_start != nstart) {
649 			error = -ENOMEM;
650 			break;
651 		}
652 	}
653 	return error;
654 }
655 
656 /*
657  * __mm_populate - populate and/or mlock pages within a range of address space.
658  *
659  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
660  * flags. VMAs must be already marked with the desired vm_flags, and
661  * mmap_sem must not be held.
662  */
663 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
664 {
665 	struct mm_struct *mm = current->mm;
666 	unsigned long end, nstart, nend;
667 	struct vm_area_struct *vma = NULL;
668 	int locked = 0;
669 	long ret = 0;
670 
671 	VM_BUG_ON(start & ~PAGE_MASK);
672 	VM_BUG_ON(len != PAGE_ALIGN(len));
673 	end = start + len;
674 
675 	for (nstart = start; nstart < end; nstart = nend) {
676 		/*
677 		 * We want to fault in pages for [nstart; end) address range.
678 		 * Find first corresponding VMA.
679 		 */
680 		if (!locked) {
681 			locked = 1;
682 			down_read(&mm->mmap_sem);
683 			vma = find_vma(mm, nstart);
684 		} else if (nstart >= vma->vm_end)
685 			vma = vma->vm_next;
686 		if (!vma || vma->vm_start >= end)
687 			break;
688 		/*
689 		 * Set [nstart; nend) to intersection of desired address
690 		 * range with the first VMA. Also, skip undesirable VMA types.
691 		 */
692 		nend = min(end, vma->vm_end);
693 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
694 			continue;
695 		if (nstart < vma->vm_start)
696 			nstart = vma->vm_start;
697 		/*
698 		 * Now fault in a range of pages. __mlock_vma_pages_range()
699 		 * double checks the vma flags, so that it won't mlock pages
700 		 * if the vma was already munlocked.
701 		 */
702 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
703 		if (ret < 0) {
704 			if (ignore_errors) {
705 				ret = 0;
706 				continue;	/* continue at next VMA */
707 			}
708 			ret = __mlock_posix_error_return(ret);
709 			break;
710 		}
711 		nend = nstart + ret * PAGE_SIZE;
712 		ret = 0;
713 	}
714 	if (locked)
715 		up_read(&mm->mmap_sem);
716 	return ret;	/* 0 or negative error code */
717 }
718 
719 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
720 {
721 	unsigned long locked;
722 	unsigned long lock_limit;
723 	int error = -ENOMEM;
724 
725 	if (!can_do_mlock())
726 		return -EPERM;
727 
728 	lru_add_drain_all();	/* flush pagevec */
729 
730 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
731 	start &= PAGE_MASK;
732 
733 	lock_limit = rlimit(RLIMIT_MEMLOCK);
734 	lock_limit >>= PAGE_SHIFT;
735 	locked = len >> PAGE_SHIFT;
736 
737 	down_write(&current->mm->mmap_sem);
738 
739 	locked += current->mm->locked_vm;
740 
741 	/* check against resource limits */
742 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
743 		error = do_mlock(start, len, 1);
744 
745 	up_write(&current->mm->mmap_sem);
746 	if (!error)
747 		error = __mm_populate(start, len, 0);
748 	return error;
749 }
750 
751 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
752 {
753 	int ret;
754 
755 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
756 	start &= PAGE_MASK;
757 
758 	down_write(&current->mm->mmap_sem);
759 	ret = do_mlock(start, len, 0);
760 	up_write(&current->mm->mmap_sem);
761 
762 	return ret;
763 }
764 
765 static int do_mlockall(int flags)
766 {
767 	struct vm_area_struct * vma, * prev = NULL;
768 
769 	if (flags & MCL_FUTURE)
770 		current->mm->def_flags |= VM_LOCKED;
771 	else
772 		current->mm->def_flags &= ~VM_LOCKED;
773 	if (flags == MCL_FUTURE)
774 		goto out;
775 
776 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777 		vm_flags_t newflags;
778 
779 		newflags = vma->vm_flags & ~VM_LOCKED;
780 		if (flags & MCL_CURRENT)
781 			newflags |= VM_LOCKED;
782 
783 		/* Ignore errors */
784 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
785 		cond_resched();
786 	}
787 out:
788 	return 0;
789 }
790 
791 SYSCALL_DEFINE1(mlockall, int, flags)
792 {
793 	unsigned long lock_limit;
794 	int ret = -EINVAL;
795 
796 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
797 		goto out;
798 
799 	ret = -EPERM;
800 	if (!can_do_mlock())
801 		goto out;
802 
803 	if (flags & MCL_CURRENT)
804 		lru_add_drain_all();	/* flush pagevec */
805 
806 	lock_limit = rlimit(RLIMIT_MEMLOCK);
807 	lock_limit >>= PAGE_SHIFT;
808 
809 	ret = -ENOMEM;
810 	down_write(&current->mm->mmap_sem);
811 
812 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813 	    capable(CAP_IPC_LOCK))
814 		ret = do_mlockall(flags);
815 	up_write(&current->mm->mmap_sem);
816 	if (!ret && (flags & MCL_CURRENT))
817 		mm_populate(0, TASK_SIZE);
818 out:
819 	return ret;
820 }
821 
822 SYSCALL_DEFINE0(munlockall)
823 {
824 	int ret;
825 
826 	down_write(&current->mm->mmap_sem);
827 	ret = do_mlockall(0);
828 	up_write(&current->mm->mmap_sem);
829 	return ret;
830 }
831 
832 /*
833  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834  * shm segments) get accounted against the user_struct instead.
835  */
836 static DEFINE_SPINLOCK(shmlock_user_lock);
837 
838 int user_shm_lock(size_t size, struct user_struct *user)
839 {
840 	unsigned long lock_limit, locked;
841 	int allowed = 0;
842 
843 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 	lock_limit = rlimit(RLIMIT_MEMLOCK);
845 	if (lock_limit == RLIM_INFINITY)
846 		allowed = 1;
847 	lock_limit >>= PAGE_SHIFT;
848 	spin_lock(&shmlock_user_lock);
849 	if (!allowed &&
850 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851 		goto out;
852 	get_uid(user);
853 	user->locked_shm += locked;
854 	allowed = 1;
855 out:
856 	spin_unlock(&shmlock_user_lock);
857 	return allowed;
858 }
859 
860 void user_shm_unlock(size_t size, struct user_struct *user)
861 {
862 	spin_lock(&shmlock_user_lock);
863 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 	spin_unlock(&shmlock_user_lock);
865 	free_uid(user);
866 }
867