xref: /openbmc/linux/mm/mlock.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_lock for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
59 void clear_page_mlock(struct page *page)
60 {
61 	int nr_pages;
62 
63 	if (!TestClearPageMlocked(page))
64 		return;
65 
66 	nr_pages = thp_nr_pages(page);
67 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
68 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
69 	/*
70 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
71 	 * in __pagevec_lru_add_fn().
72 	 *
73 	 * See __pagevec_lru_add_fn for more explanation.
74 	 */
75 	if (!isolate_lru_page(page)) {
76 		putback_lru_page(page);
77 	} else {
78 		/*
79 		 * We lost the race. the page already moved to evictable list.
80 		 */
81 		if (PageUnevictable(page))
82 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
83 	}
84 }
85 
86 /*
87  * Mark page as mlocked if not already.
88  * If page on LRU, isolate and putback to move to unevictable list.
89  */
90 void mlock_vma_page(struct page *page)
91 {
92 	/* Serialize with page migration */
93 	BUG_ON(!PageLocked(page));
94 
95 	VM_BUG_ON_PAGE(PageTail(page), page);
96 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
97 
98 	if (!TestSetPageMlocked(page)) {
99 		int nr_pages = thp_nr_pages(page);
100 
101 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
102 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
103 		if (!isolate_lru_page(page))
104 			putback_lru_page(page);
105 	}
106 }
107 
108 /*
109  * Finish munlock after successful page isolation
110  *
111  * Page must be locked. This is a wrapper for try_to_munlock()
112  * and putback_lru_page() with munlock accounting.
113  */
114 static void __munlock_isolated_page(struct page *page)
115 {
116 	/*
117 	 * Optimization: if the page was mapped just once, that's our mapping
118 	 * and we don't need to check all the other vmas.
119 	 */
120 	if (page_mapcount(page) > 1)
121 		try_to_munlock(page);
122 
123 	/* Did try_to_unlock() succeed or punt? */
124 	if (!PageMlocked(page))
125 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
126 
127 	putback_lru_page(page);
128 }
129 
130 /*
131  * Accounting for page isolation fail during munlock
132  *
133  * Performs accounting when page isolation fails in munlock. There is nothing
134  * else to do because it means some other task has already removed the page
135  * from the LRU. putback_lru_page() will take care of removing the page from
136  * the unevictable list, if necessary. vmscan [page_referenced()] will move
137  * the page back to the unevictable list if some other vma has it mlocked.
138  */
139 static void __munlock_isolation_failed(struct page *page)
140 {
141 	int nr_pages = thp_nr_pages(page);
142 
143 	if (PageUnevictable(page))
144 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
145 	else
146 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147 }
148 
149 /**
150  * munlock_vma_page - munlock a vma page
151  * @page: page to be unlocked, either a normal page or THP page head
152  *
153  * returns the size of the page as a page mask (0 for normal page,
154  *         HPAGE_PMD_NR - 1 for THP head page)
155  *
156  * called from munlock()/munmap() path with page supposedly on the LRU.
157  * When we munlock a page, because the vma where we found the page is being
158  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
159  * page locked so that we can leave it on the unevictable lru list and not
160  * bother vmscan with it.  However, to walk the page's rmap list in
161  * try_to_munlock() we must isolate the page from the LRU.  If some other
162  * task has removed the page from the LRU, we won't be able to do that.
163  * So we clear the PageMlocked as we might not get another chance.  If we
164  * can't isolate the page, we leave it for putback_lru_page() and vmscan
165  * [page_referenced()/try_to_unmap()] to deal with.
166  */
167 unsigned int munlock_vma_page(struct page *page)
168 {
169 	int nr_pages;
170 
171 	/* For try_to_munlock() and to serialize with page migration */
172 	BUG_ON(!PageLocked(page));
173 	VM_BUG_ON_PAGE(PageTail(page), page);
174 
175 	if (!TestClearPageMlocked(page)) {
176 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
177 		return 0;
178 	}
179 
180 	nr_pages = thp_nr_pages(page);
181 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
182 
183 	if (!isolate_lru_page(page))
184 		__munlock_isolated_page(page);
185 	else
186 		__munlock_isolation_failed(page);
187 
188 	return nr_pages - 1;
189 }
190 
191 /*
192  * convert get_user_pages() return value to posix mlock() error
193  */
194 static int __mlock_posix_error_return(long retval)
195 {
196 	if (retval == -EFAULT)
197 		retval = -ENOMEM;
198 	else if (retval == -ENOMEM)
199 		retval = -EAGAIN;
200 	return retval;
201 }
202 
203 /*
204  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
205  *
206  * The fast path is available only for evictable pages with single mapping.
207  * Then we can bypass the per-cpu pvec and get better performance.
208  * when mapcount > 1 we need try_to_munlock() which can fail.
209  * when !page_evictable(), we need the full redo logic of putback_lru_page to
210  * avoid leaving evictable page in unevictable list.
211  *
212  * In case of success, @page is added to @pvec and @pgrescued is incremented
213  * in case that the page was previously unevictable. @page is also unlocked.
214  */
215 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
216 		int *pgrescued)
217 {
218 	VM_BUG_ON_PAGE(PageLRU(page), page);
219 	VM_BUG_ON_PAGE(!PageLocked(page), page);
220 
221 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
222 		pagevec_add(pvec, page);
223 		if (TestClearPageUnevictable(page))
224 			(*pgrescued)++;
225 		unlock_page(page);
226 		return true;
227 	}
228 
229 	return false;
230 }
231 
232 /*
233  * Putback multiple evictable pages to the LRU
234  *
235  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
236  * the pages might have meanwhile become unevictable but that is OK.
237  */
238 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
239 {
240 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
241 	/*
242 	 *__pagevec_lru_add() calls release_pages() so we don't call
243 	 * put_page() explicitly
244 	 */
245 	__pagevec_lru_add(pvec);
246 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
247 }
248 
249 /*
250  * Munlock a batch of pages from the same zone
251  *
252  * The work is split to two main phases. First phase clears the Mlocked flag
253  * and attempts to isolate the pages, all under a single zone lru lock.
254  * The second phase finishes the munlock only for pages where isolation
255  * succeeded.
256  *
257  * Note that the pagevec may be modified during the process.
258  */
259 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
260 {
261 	int i;
262 	int nr = pagevec_count(pvec);
263 	int delta_munlocked = -nr;
264 	struct pagevec pvec_putback;
265 	struct lruvec *lruvec = NULL;
266 	int pgrescued = 0;
267 
268 	pagevec_init(&pvec_putback);
269 
270 	/* Phase 1: page isolation */
271 	for (i = 0; i < nr; i++) {
272 		struct page *page = pvec->pages[i];
273 
274 		if (TestClearPageMlocked(page)) {
275 			/*
276 			 * We already have pin from follow_page_mask()
277 			 * so we can spare the get_page() here.
278 			 */
279 			if (TestClearPageLRU(page)) {
280 				lruvec = relock_page_lruvec_irq(page, lruvec);
281 				del_page_from_lru_list(page, lruvec,
282 							page_lru(page));
283 				continue;
284 			} else
285 				__munlock_isolation_failed(page);
286 		} else {
287 			delta_munlocked++;
288 		}
289 
290 		/*
291 		 * We won't be munlocking this page in the next phase
292 		 * but we still need to release the follow_page_mask()
293 		 * pin. We cannot do it under lru_lock however. If it's
294 		 * the last pin, __page_cache_release() would deadlock.
295 		 */
296 		pagevec_add(&pvec_putback, pvec->pages[i]);
297 		pvec->pages[i] = NULL;
298 	}
299 	if (lruvec) {
300 		__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
301 		unlock_page_lruvec_irq(lruvec);
302 	} else if (delta_munlocked) {
303 		mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
304 	}
305 
306 	/* Now we can release pins of pages that we are not munlocking */
307 	pagevec_release(&pvec_putback);
308 
309 	/* Phase 2: page munlock */
310 	for (i = 0; i < nr; i++) {
311 		struct page *page = pvec->pages[i];
312 
313 		if (page) {
314 			lock_page(page);
315 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
316 					&pgrescued)) {
317 				/*
318 				 * Slow path. We don't want to lose the last
319 				 * pin before unlock_page()
320 				 */
321 				get_page(page); /* for putback_lru_page() */
322 				__munlock_isolated_page(page);
323 				unlock_page(page);
324 				put_page(page); /* from follow_page_mask() */
325 			}
326 		}
327 	}
328 
329 	/*
330 	 * Phase 3: page putback for pages that qualified for the fast path
331 	 * This will also call put_page() to return pin from follow_page_mask()
332 	 */
333 	if (pagevec_count(&pvec_putback))
334 		__putback_lru_fast(&pvec_putback, pgrescued);
335 }
336 
337 /*
338  * Fill up pagevec for __munlock_pagevec using pte walk
339  *
340  * The function expects that the struct page corresponding to @start address is
341  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
342  *
343  * The rest of @pvec is filled by subsequent pages within the same pmd and same
344  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
345  * pages also get pinned.
346  *
347  * Returns the address of the next page that should be scanned. This equals
348  * @start + PAGE_SIZE when no page could be added by the pte walk.
349  */
350 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
351 			struct vm_area_struct *vma, struct zone *zone,
352 			unsigned long start, unsigned long end)
353 {
354 	pte_t *pte;
355 	spinlock_t *ptl;
356 
357 	/*
358 	 * Initialize pte walk starting at the already pinned page where we
359 	 * are sure that there is a pte, as it was pinned under the same
360 	 * mmap_lock write op.
361 	 */
362 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
363 	/* Make sure we do not cross the page table boundary */
364 	end = pgd_addr_end(start, end);
365 	end = p4d_addr_end(start, end);
366 	end = pud_addr_end(start, end);
367 	end = pmd_addr_end(start, end);
368 
369 	/* The page next to the pinned page is the first we will try to get */
370 	start += PAGE_SIZE;
371 	while (start < end) {
372 		struct page *page = NULL;
373 		pte++;
374 		if (pte_present(*pte))
375 			page = vm_normal_page(vma, start, *pte);
376 		/*
377 		 * Break if page could not be obtained or the page's node+zone does not
378 		 * match
379 		 */
380 		if (!page || page_zone(page) != zone)
381 			break;
382 
383 		/*
384 		 * Do not use pagevec for PTE-mapped THP,
385 		 * munlock_vma_pages_range() will handle them.
386 		 */
387 		if (PageTransCompound(page))
388 			break;
389 
390 		get_page(page);
391 		/*
392 		 * Increase the address that will be returned *before* the
393 		 * eventual break due to pvec becoming full by adding the page
394 		 */
395 		start += PAGE_SIZE;
396 		if (pagevec_add(pvec, page) == 0)
397 			break;
398 	}
399 	pte_unmap_unlock(pte, ptl);
400 	return start;
401 }
402 
403 /*
404  * munlock_vma_pages_range() - munlock all pages in the vma range.'
405  * @vma - vma containing range to be munlock()ed.
406  * @start - start address in @vma of the range
407  * @end - end of range in @vma.
408  *
409  *  For mremap(), munmap() and exit().
410  *
411  * Called with @vma VM_LOCKED.
412  *
413  * Returns with VM_LOCKED cleared.  Callers must be prepared to
414  * deal with this.
415  *
416  * We don't save and restore VM_LOCKED here because pages are
417  * still on lru.  In unmap path, pages might be scanned by reclaim
418  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
419  * free them.  This will result in freeing mlocked pages.
420  */
421 void munlock_vma_pages_range(struct vm_area_struct *vma,
422 			     unsigned long start, unsigned long end)
423 {
424 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
425 
426 	while (start < end) {
427 		struct page *page;
428 		unsigned int page_mask = 0;
429 		unsigned long page_increm;
430 		struct pagevec pvec;
431 		struct zone *zone;
432 
433 		pagevec_init(&pvec);
434 		/*
435 		 * Although FOLL_DUMP is intended for get_dump_page(),
436 		 * it just so happens that its special treatment of the
437 		 * ZERO_PAGE (returning an error instead of doing get_page)
438 		 * suits munlock very well (and if somehow an abnormal page
439 		 * has sneaked into the range, we won't oops here: great).
440 		 */
441 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
442 
443 		if (page && !IS_ERR(page)) {
444 			if (PageTransTail(page)) {
445 				VM_BUG_ON_PAGE(PageMlocked(page), page);
446 				put_page(page); /* follow_page_mask() */
447 			} else if (PageTransHuge(page)) {
448 				lock_page(page);
449 				/*
450 				 * Any THP page found by follow_page_mask() may
451 				 * have gotten split before reaching
452 				 * munlock_vma_page(), so we need to compute
453 				 * the page_mask here instead.
454 				 */
455 				page_mask = munlock_vma_page(page);
456 				unlock_page(page);
457 				put_page(page); /* follow_page_mask() */
458 			} else {
459 				/*
460 				 * Non-huge pages are handled in batches via
461 				 * pagevec. The pin from follow_page_mask()
462 				 * prevents them from collapsing by THP.
463 				 */
464 				pagevec_add(&pvec, page);
465 				zone = page_zone(page);
466 
467 				/*
468 				 * Try to fill the rest of pagevec using fast
469 				 * pte walk. This will also update start to
470 				 * the next page to process. Then munlock the
471 				 * pagevec.
472 				 */
473 				start = __munlock_pagevec_fill(&pvec, vma,
474 						zone, start, end);
475 				__munlock_pagevec(&pvec, zone);
476 				goto next;
477 			}
478 		}
479 		page_increm = 1 + page_mask;
480 		start += page_increm * PAGE_SIZE;
481 next:
482 		cond_resched();
483 	}
484 }
485 
486 /*
487  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
488  *
489  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
490  * munlock is a no-op.  However, for some special vmas, we go ahead and
491  * populate the ptes.
492  *
493  * For vmas that pass the filters, merge/split as appropriate.
494  */
495 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
496 	unsigned long start, unsigned long end, vm_flags_t newflags)
497 {
498 	struct mm_struct *mm = vma->vm_mm;
499 	pgoff_t pgoff;
500 	int nr_pages;
501 	int ret = 0;
502 	int lock = !!(newflags & VM_LOCKED);
503 	vm_flags_t old_flags = vma->vm_flags;
504 
505 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
506 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
507 	    vma_is_dax(vma))
508 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
509 		goto out;
510 
511 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
512 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
513 			  vma->vm_file, pgoff, vma_policy(vma),
514 			  vma->vm_userfaultfd_ctx);
515 	if (*prev) {
516 		vma = *prev;
517 		goto success;
518 	}
519 
520 	if (start != vma->vm_start) {
521 		ret = split_vma(mm, vma, start, 1);
522 		if (ret)
523 			goto out;
524 	}
525 
526 	if (end != vma->vm_end) {
527 		ret = split_vma(mm, vma, end, 0);
528 		if (ret)
529 			goto out;
530 	}
531 
532 success:
533 	/*
534 	 * Keep track of amount of locked VM.
535 	 */
536 	nr_pages = (end - start) >> PAGE_SHIFT;
537 	if (!lock)
538 		nr_pages = -nr_pages;
539 	else if (old_flags & VM_LOCKED)
540 		nr_pages = 0;
541 	mm->locked_vm += nr_pages;
542 
543 	/*
544 	 * vm_flags is protected by the mmap_lock held in write mode.
545 	 * It's okay if try_to_unmap_one unmaps a page just after we
546 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
547 	 */
548 
549 	if (lock)
550 		vma->vm_flags = newflags;
551 	else
552 		munlock_vma_pages_range(vma, start, end);
553 
554 out:
555 	*prev = vma;
556 	return ret;
557 }
558 
559 static int apply_vma_lock_flags(unsigned long start, size_t len,
560 				vm_flags_t flags)
561 {
562 	unsigned long nstart, end, tmp;
563 	struct vm_area_struct * vma, * prev;
564 	int error;
565 
566 	VM_BUG_ON(offset_in_page(start));
567 	VM_BUG_ON(len != PAGE_ALIGN(len));
568 	end = start + len;
569 	if (end < start)
570 		return -EINVAL;
571 	if (end == start)
572 		return 0;
573 	vma = find_vma(current->mm, start);
574 	if (!vma || vma->vm_start > start)
575 		return -ENOMEM;
576 
577 	prev = vma->vm_prev;
578 	if (start > vma->vm_start)
579 		prev = vma;
580 
581 	for (nstart = start ; ; ) {
582 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
583 
584 		newflags |= flags;
585 
586 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
587 		tmp = vma->vm_end;
588 		if (tmp > end)
589 			tmp = end;
590 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
591 		if (error)
592 			break;
593 		nstart = tmp;
594 		if (nstart < prev->vm_end)
595 			nstart = prev->vm_end;
596 		if (nstart >= end)
597 			break;
598 
599 		vma = prev->vm_next;
600 		if (!vma || vma->vm_start != nstart) {
601 			error = -ENOMEM;
602 			break;
603 		}
604 	}
605 	return error;
606 }
607 
608 /*
609  * Go through vma areas and sum size of mlocked
610  * vma pages, as return value.
611  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
612  * is also counted.
613  * Return value: previously mlocked page counts
614  */
615 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
616 		unsigned long start, size_t len)
617 {
618 	struct vm_area_struct *vma;
619 	unsigned long count = 0;
620 
621 	if (mm == NULL)
622 		mm = current->mm;
623 
624 	vma = find_vma(mm, start);
625 	if (vma == NULL)
626 		vma = mm->mmap;
627 
628 	for (; vma ; vma = vma->vm_next) {
629 		if (start >= vma->vm_end)
630 			continue;
631 		if (start + len <=  vma->vm_start)
632 			break;
633 		if (vma->vm_flags & VM_LOCKED) {
634 			if (start > vma->vm_start)
635 				count -= (start - vma->vm_start);
636 			if (start + len < vma->vm_end) {
637 				count += start + len - vma->vm_start;
638 				break;
639 			}
640 			count += vma->vm_end - vma->vm_start;
641 		}
642 	}
643 
644 	return count >> PAGE_SHIFT;
645 }
646 
647 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
648 {
649 	unsigned long locked;
650 	unsigned long lock_limit;
651 	int error = -ENOMEM;
652 
653 	start = untagged_addr(start);
654 
655 	if (!can_do_mlock())
656 		return -EPERM;
657 
658 	len = PAGE_ALIGN(len + (offset_in_page(start)));
659 	start &= PAGE_MASK;
660 
661 	lock_limit = rlimit(RLIMIT_MEMLOCK);
662 	lock_limit >>= PAGE_SHIFT;
663 	locked = len >> PAGE_SHIFT;
664 
665 	if (mmap_write_lock_killable(current->mm))
666 		return -EINTR;
667 
668 	locked += current->mm->locked_vm;
669 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
670 		/*
671 		 * It is possible that the regions requested intersect with
672 		 * previously mlocked areas, that part area in "mm->locked_vm"
673 		 * should not be counted to new mlock increment count. So check
674 		 * and adjust locked count if necessary.
675 		 */
676 		locked -= count_mm_mlocked_page_nr(current->mm,
677 				start, len);
678 	}
679 
680 	/* check against resource limits */
681 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
682 		error = apply_vma_lock_flags(start, len, flags);
683 
684 	mmap_write_unlock(current->mm);
685 	if (error)
686 		return error;
687 
688 	error = __mm_populate(start, len, 0);
689 	if (error)
690 		return __mlock_posix_error_return(error);
691 	return 0;
692 }
693 
694 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
695 {
696 	return do_mlock(start, len, VM_LOCKED);
697 }
698 
699 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
700 {
701 	vm_flags_t vm_flags = VM_LOCKED;
702 
703 	if (flags & ~MLOCK_ONFAULT)
704 		return -EINVAL;
705 
706 	if (flags & MLOCK_ONFAULT)
707 		vm_flags |= VM_LOCKONFAULT;
708 
709 	return do_mlock(start, len, vm_flags);
710 }
711 
712 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
713 {
714 	int ret;
715 
716 	start = untagged_addr(start);
717 
718 	len = PAGE_ALIGN(len + (offset_in_page(start)));
719 	start &= PAGE_MASK;
720 
721 	if (mmap_write_lock_killable(current->mm))
722 		return -EINTR;
723 	ret = apply_vma_lock_flags(start, len, 0);
724 	mmap_write_unlock(current->mm);
725 
726 	return ret;
727 }
728 
729 /*
730  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
731  * and translate into the appropriate modifications to mm->def_flags and/or the
732  * flags for all current VMAs.
733  *
734  * There are a couple of subtleties with this.  If mlockall() is called multiple
735  * times with different flags, the values do not necessarily stack.  If mlockall
736  * is called once including the MCL_FUTURE flag and then a second time without
737  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
738  */
739 static int apply_mlockall_flags(int flags)
740 {
741 	struct vm_area_struct * vma, * prev = NULL;
742 	vm_flags_t to_add = 0;
743 
744 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
745 	if (flags & MCL_FUTURE) {
746 		current->mm->def_flags |= VM_LOCKED;
747 
748 		if (flags & MCL_ONFAULT)
749 			current->mm->def_flags |= VM_LOCKONFAULT;
750 
751 		if (!(flags & MCL_CURRENT))
752 			goto out;
753 	}
754 
755 	if (flags & MCL_CURRENT) {
756 		to_add |= VM_LOCKED;
757 		if (flags & MCL_ONFAULT)
758 			to_add |= VM_LOCKONFAULT;
759 	}
760 
761 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
762 		vm_flags_t newflags;
763 
764 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
765 		newflags |= to_add;
766 
767 		/* Ignore errors */
768 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
769 		cond_resched();
770 	}
771 out:
772 	return 0;
773 }
774 
775 SYSCALL_DEFINE1(mlockall, int, flags)
776 {
777 	unsigned long lock_limit;
778 	int ret;
779 
780 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
781 	    flags == MCL_ONFAULT)
782 		return -EINVAL;
783 
784 	if (!can_do_mlock())
785 		return -EPERM;
786 
787 	lock_limit = rlimit(RLIMIT_MEMLOCK);
788 	lock_limit >>= PAGE_SHIFT;
789 
790 	if (mmap_write_lock_killable(current->mm))
791 		return -EINTR;
792 
793 	ret = -ENOMEM;
794 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
795 	    capable(CAP_IPC_LOCK))
796 		ret = apply_mlockall_flags(flags);
797 	mmap_write_unlock(current->mm);
798 	if (!ret && (flags & MCL_CURRENT))
799 		mm_populate(0, TASK_SIZE);
800 
801 	return ret;
802 }
803 
804 SYSCALL_DEFINE0(munlockall)
805 {
806 	int ret;
807 
808 	if (mmap_write_lock_killable(current->mm))
809 		return -EINTR;
810 	ret = apply_mlockall_flags(0);
811 	mmap_write_unlock(current->mm);
812 	return ret;
813 }
814 
815 /*
816  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
817  * shm segments) get accounted against the user_struct instead.
818  */
819 static DEFINE_SPINLOCK(shmlock_user_lock);
820 
821 int user_shm_lock(size_t size, struct user_struct *user)
822 {
823 	unsigned long lock_limit, locked;
824 	int allowed = 0;
825 
826 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
827 	lock_limit = rlimit(RLIMIT_MEMLOCK);
828 	if (lock_limit == RLIM_INFINITY)
829 		allowed = 1;
830 	lock_limit >>= PAGE_SHIFT;
831 	spin_lock(&shmlock_user_lock);
832 	if (!allowed &&
833 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
834 		goto out;
835 	get_uid(user);
836 	user->locked_shm += locked;
837 	allowed = 1;
838 out:
839 	spin_unlock(&shmlock_user_lock);
840 	return allowed;
841 }
842 
843 void user_shm_unlock(size_t size, struct user_struct *user)
844 {
845 	spin_lock(&shmlock_user_lock);
846 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 	spin_unlock(&shmlock_user_lock);
848 	free_uid(user);
849 }
850